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1 Introduction

Due to the favourable dose profile and the advantageous 
radiobiological effects over photon beam radiotherapy 
(X-RT), carbon ion radiotherapy (CIRT) has gained increas-
ing oncological favour for the treatment of radioresistant 
histologies and tumours located close to high radiosensitiv-
ity organs at risk [1]. These edges, proved both in preclini-
cal and clinical experiences, provide a strong rationale for 
the application of CIRT in several oncological settings [2], 
especially in head and neck radioresistant malignancies [3–
7] and in bone and soft tissue sarcomas [8–12].

However, in recent years accumulating evidence has 
demonstrated a promising application of CIRT in gynae-
cological oncology [13]. Herein we briefly summarized the 
current preclinical and clinical evidence on CIRT for the 
treatment of gynaecological tumors. We also speculated 
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Abstract
Purpose In the present brief report, the authors summarized the data on the use of carbon ion radiotherapy in gynaecological 
malignancies starting from the preclinical evidence to move forward the clinically available literature and hence focusing on 
the possible future application directions.
Methods This is a short report of the published studies on the role of carbon ion radiotherapy in the treatment of gynaeco-
logical malignancies.
Results The use of carbon ion radiotherapy in rare and radioresistant gynaecological tumors is supported by preclinical and 
clinical data. In particular, carbon ion radiotherapy appears to be safe and effective in the management of cervical adeno-
carcinomas, unresectable endometrial cancers, mucosal melanomas of the lower genital tract and vulvar adenoid cystic 
carcinomas. Moreover, considering the dosimetric characteristics, carbon ions are suitable for recurrent disease in the pelvis. 
Prospective and phase II trials on gynaecological melanomas and pelvic relapses after radiotherapy are currently ongoing. 
The future study directions might be the oligometastatic diseases and the oncofertility.
Conclusions More and more growing preclinical and clinical evidence supports the use of carbon ion radiotherapy in gyn-
aecological oncology. Strong and multidisciplinary collaborations at national and international levels are desirable to better 
understand the therapeutic and organizational benefits of this new technology.
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about the possible future direction, emphasizing the poten-
tiality concerning the ballistic hallmarks of CIRT, the 
superior radiobiological features along with the molecular 
background of the tumours.

2 Radiobiological effect of carbon ion 
radiotherapy in gynaecological tumours

2.1 CIRT overcomes the radioresistance of cervical 
cancer and vaginal malignant melanomas

Quiescent cells (G0) are in a sleep-like cellular status, and 
have a higher hypoxic proportion and better capacity for 
repair [14]. When compared to X-RT, CIRT was shown 
to be most efficient in eliminating G0 cancer cells [15]. 
Among the strategies reported in the literature to promote 
this effect [1], in vitro studies showed that CIRT mainly 
acted on adenocarcinoma cervical cancer cell line (HeLa) 
in three ways: (i) induction of the apoptosis of G0 cells via 
an enhanced mitochondria-mediated intrinsic pathway; (ii) 
direct cell death by clustered DNA damages; (iii) induc-
tion a cell cycle re-entry and G2/M arrest of the quies-
cent cells . Interestingly all these phenomena to overcome 
HeLa radioresistance seemed to be mediated mainly by the 
Wnt/β‐catenin signaling [16, 17]. Wnt/β-catenin signaling is 
involved in several essential biological processes, including 

tissue homeostasis, stem cell regrowth, and cell survival and 
it is reported as crucial for preserving quiescent cells’ latent 
condition [18–20]. In vitro experiments proved that after 
CIRT the expression of Wnt3a and β‐catenin significantly 
decreased in proliferating HeLa cells while increasing in G0 
cells, suggesting that CIRT might face the radioresistance 
of this cytotype by the inhibition of this pathway [15, 17]. 
Moreover, due to the down-regulation of Wnt/β-catenin, 
there was a significant reduction of DNA damage, a consis-
tent improvement of DNA damage repair, maintenance of 
G0 status and a decreased apoptosis [15].

Compared to X-RT and consistently to HeLa cell lines, 
CIRT resulted in a larger ratio of necrosis to apoptosis and 
a stronger inhibition of cell growth in melanoma cell lines. 
Furthermore, CIRT showed a longer-lasting and greater 
G2/M arrest by activation of the pRb/E2F1/Chk2 pathway 
[21]. Moreover, CIRT has proved to decrease cell viability, 
proliferation, and migration of a cell line of vaginal mela-
noma (HMV-II) [22], and to activate their dendricity [2] 
also through the modulation of Ca 2 + signaling [23]. Fig-
ure 1 synthetized the above-reported data.

2.2 CIRT triggers the tumour immune modulation 
in cervical cancer and malignant melanomas

High Mobility Group Box 1 (HMGB1) is one of the main 
damage-associated molecular signals able to enhance the 

Fig. 1 Mechanisms of CIRT 
overcoming the radioresistance 
of cervical cancer and vaginal 
malignant melanomas [74]
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anti-tumour adaptive immunity after radiotherapy (RT) 
exposure [24]. Considering that it is a nuclear chromatin-
associated non-histone protein, the complex double-strand 
breaks (DSBs) DNA damages induced by CIRT lead to a 
significant release of HMGB1 from cancer cells over X-RT 
[25] when administered at iso-survival doses [26]. Indeed, 
in their in vitro study, Onishi et al. [26] demonstrated that 
CIRT significantly increased HMGB1 levels in the culture 
supernatants of HeLa and squamous cervical carcinoma 
SiHa cell lines with increased LET, suggesting the ability 
to trigger a more efficient anti-tumour immunity than X-RT. 
Moreover, the in vitro study by Iijima et al. [27] showed 
that CIRT, compared to X-RT, significantly upregulated the 
expression of programmed cell death-ligand 1 (PD-L1) in 
a dose-dependent manner in HeLa and SiHa cells through 
the phosphorylation of Chk1 pathway mediated by the DNA 
DSBs. These results were confirmed also in vivo by the 
same group. Indeed, the authors collected biopsy specimens 
of 33 cases of cervical adenocarcinomas before and after 
12 Gy[RBE] of CIRT finding that the expression of PD-L1 
was significantly increased after CIRT (p = 0.046) and in 8 
cases of PD-L1 negative before irradiation there was a con-
version into a positive status after 12 Gy[RBE]. Although 
the local control (LC), the progression-free survival (PFS), 
and overall survival (OS) were unrelated to the baseline 
PD-L1 status, the PD-L1 positivity after CIRT seemed to be 
advantageous in terms of PFS.

Consistently to cervical adenocarcinoma data, in a murine 
model of malignant melanomas, CIRT has proved to trigger 
immunogenic death, increasing the tumour immunogenicity 
and enhancing the response to sequential immunotherapy 
more efficiently than X-RT. The via used by CIRT and anti-
PD-1 included the release of adenosine triphosphate (ATP), 
the release of HMGB1, the exposure of calreticulin, and 
the production of type-1 interferon responses. Furthermore, 
CIRT combined with anti-PD-1 boosted the number of 
CD4 + and CD8 + lymphocytes infiltrating the tumour bed, 
which considerably slowed the development of the tumour 
and extended the survival of mice with melanoma [28].

3 Carbon ion radiotherapy in gynecological 
malignancies: clinical evidence

 CIRT data in gynaecological oncology mainly concerned 
uterine cervical carcinomas followed by endometrial car-
cinomas, rare tumours (i.e. malignant mucosal melanomas 
of the low genital tract and adenoid cystic carcinomas) and 
pelvic recurrences after X-RT.

3.1 Uterine cervical cancer

CIRT for cervical cancers was implemented at the National 
Institute of Radiological Sciences (NIRS) of Chiba in 
Japan in 1995 with consecutive dose-escalation studies that 
proved the feasibility and the effectiveness of a whole pel-
vis CIRT in this setting. In their systematic review of the 
literature, collecting data up to December 2018, Wang et 
al. reported for locally advanced cervical cancers treated 
with CIRT a local control (LC) ranging between 60.1 and 
83.6% at 2 years to 53-83.6% at 5 years, despite unsatis-
factory controls on the para-aortic lymph node recurrences 
[13]. The implementation of a prophylactic extended-field 
(para-aortic nodal) irradiation (protocols: 9702, 9902 and 
0508) and the administration of concomitant chemotherapy 
(protocol 1001) reduced the risk of lymph nodal failures, 
with no increased toxicity [13, 29–31].

Going forward 2018, the deadline of this systematic 
review, the newest data on CIRT in cervical cancer become 
more and more intriguing, especially for the adenocar-
cinomas, the most radioresistant histology. Indeed, the 
propensity score-matched analysis demonstrated that for 
adenocarcinomas, the combined approach with weekly Cis-
platin improved the long-term overall survival- OS- ( 72% 
vs. 46% at 5 years, p = 0.041) and the 5-year progression-
free survival -PFS- ( 66% vs. 41% p = 0.048) but did not 
impact the LC (53% vs. 49% at 5-years, p = 0.086). These 
results suggested that CIRT did not need radiosensitizing 
to increase its local effect [32]. These data are encouraging 
the use of chemo-CIRT in cervical adenocarcinomas, con-
sidering that the reported 5-year OS of the X-RT historical 
cohort was up to 33% [33–36]. The effectiveness of CIRT 
in this histology was also proved by a multi-institutional 
study on 55 cases of locally advanced cervical adenocar-
cinomas (IIB–IVA ) in which the 5-year OS and 5-year LC 
rates were 68.6% and 65.2%, respectively, with no signifi-
cant impact of the concomitant chemotherapy [37]. More-
over, the authors identified FIGO staging (5-year OS: IIB 
versus IIIB–IVA, 75.4% versus 54.3%, p = 0.019) and initial 
tumour response (5-year LC: p = 0.003, hazard ratio [HR]: 
0.227) as predictive outcome factors. In both studies, the 
combined approach was safe with no differences in terms of 
haematological and non-haematological toxicities between 
CIRT alone and chemo-CIRT [32, 37]. Notably, also CIRT 
followed by brachytherapy has been reported to be safe [37, 
38], paving the way to further investigations.

Considering the immunomodulation of CIRT in HeLa 
and SiHa cell lines, the radiation community is thrilled to 
wait for the final results of the DECISION trial, a phase I 
study aimed at evaluating the safety of a combination of 
CIRT with Durvalumab (humanized anti-PD-L1 monoclo-
nal antibody) in patients with locally advanced cervical 
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adenocarcinomas was the pooled analysis of 14 cases 
by Irie et al. [47]. These women underwent radical CIRT 
( 62.4–74.4 GyRBE in 20 fractions) for tumors at stage 
I-III achieving a high objective response rate (10 complete 
responses, 3 partial responses and 1 stable disease), with 
a 5-year LC of 86%(95% CI: 67–100%), and no grade ≥ 3 
acute or late toxicity, really promising results compared to 
X-RT data [48–50].

3.4 Adenoid cystic carcinomas

Adenoid cystic carcinoma (ACC) is a rare disease that often 
develops from the salivary glands in the head and neck area 
(age-adjusted incidence rate: 4.5 occurrences per 100,000), 
and barely in other anatomical sites such as breast, lung and 
vulva where ACCs arise from seromucous glandular struc-
tures. Vulvar ACCs are extremely rare, with only approxi-
mately 350 cases reported in the literature, representing less 
than 1% of all vulvar malignancies [51]. For their marked 
neurotropism and pronounced radioresistance, this histol-
ogy is an ideal candidate to assess the feasibility of CIRT 
and, actually, several data on head and neck cancers are 
encouraging [52]. Using a mixed beam approach (CIRT 
first followed by X-RT), a German study revealed safe 
and successful outcomes in pelvic ACCs [53]. The authors 
described the results of X-RT of the lymph node drainage 
up to 50 Gy, using helical tomotherapy, in three cases of 
recurrent pelvic ACC, one of which from the Bartholin’s 
gland after radical surgery, preceded by a CIRT boost on 
macroscopic tumour up to a total dose of 24 GyRBE. The 
patient achieved a partial remission which persisted for 16 
months after CIRT.

3.5 Re-irradiation of gynaecological pelvic relapses

Considering the ballistic hallmarks, re-irradiation of a recur-
rence within or at the edge of a previous X-RT field is one 
of the cornerstones of CIRT corroborated by several data 
on the safety and efficacy for different anatomical sites 
and on several histologies. It is not an exception the gyn-
aecological oncology in which CIRT up to a total dose of 
48-57.6 GyRBE (in 12 or 16 fractions) achieved long-term 
LC when delivered to unresectable pelvic failures after a 
previous pelvic X-RT [54]. Indeed, the 3-year LC was 94% 
(95% CI, 66–99%) on 16 analyzed cases and, compared to 
X-RT series (in which toxicities higher or equal to grades 
3–4 were up to 26% after brachytherapy and 20% after ste-
reotactic RT [55]), no grade ≥ 3 toxicities were recorded. 
Due to the promising result of this Japanese cohort and the 
preliminary Italian data [56], CNAO started a phase II clini-
cal study, currently recruiting, on reirradiation of gynaeco-
logical recurrences (NCT05457595) with LC, defined as the 

cancer. The preliminary report on the first 3 patients enrolled 
suggested the effectiveness with a total of 100% of com-
plete responses. Concerning safety, authors described grade 
3 neutropenia (100%), grade 3 increased gamma-glutamyl 
transpeptidase levels (33%) and grade 3 hypothyroidism 
(33%) [39].

3.2 Gynecological melanomas

Among melanomas, gynaecological mucosal melanomas 
are the rarest form with the most dismal prognosis and 
higher radioresistance features. To date, there are no guide-
lines or consensus about the management of these challeng-
ing diseases, but the therapeutic approaches are based on 
data concerning skin melanomas and other gynaecological 
histologies [40, 41]. Considering the radioresistance char-
acteristics of the disease, mucosal melanomas are ideal for 
testing the efficacy of CIRT.

The largest series on the use of radical CIRT in the treat-
ment of unresectable malignant mucosal melanomas was 
published by Murata et al [42]. Thirty-seven patients, 9 of 
whom with post-surgical recurrence, with vaginal (N = 22), 
vulvar (N = 12) and cervical (N = 3) tumours were treated up 
to a total dose of 57.6 GyRBE in 16 fractions (N = 35) or 64.0 
GyE in 16 fractions (N = 2). 81% experienced a complete 
response within 6 months, with 2-year LC, OS, and PFS 
rates were 71% (CI: 53.6–87.6%), 53% (CI: 36.3–69.2%), 
and 29% (CI: 14.0–4.7%), respectively.  The combination 
of CIRT with immune checkpoint inhibitors appeared to be 
safe [43]. Considering these promising results along with 
the Italian preliminary experience [43–45], the National 
Center for Oncological Hadrontherapy (CNAO) activated 
a currently recruiting phase II prospective clinical trial 
(NCT05478876) to confirm in a prospective cohort the effi-
cacy and feasibility of CIRT in unresectable gynaecological 
melanomas.

3.3 Unresectable endometrial cancers

The most frequent gynaecological malignancy in high-
income countries is endometrial cancer, which ranks second 
in low-income ones after cervical cancer. Obesity and dia-
betes, particularly common in the ever-ageing population of 
Western countries, are often associated with cardiovascular 
diseases and overall contraindicated surgery in up to 9% of 
the cases [46]. In case of unresectability, radical RT with 
or without brachytherapy might be an option. Considering 
the radioresistance of the histology, and the increased per-
centage of women unfit for surgery in developed nations, 
endometrial adenocarcinomas appear suitable to assess the 
efficacy of CIRT. To the best of our knowledge, the only 
experience testing radical CIRT for inoperable endometrial 
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the radiobiological characteristics of these approaches. The 
effect of the combination with new drugs such as PARP-I 
should be evaluated.

Furthermore, considering the preclinical evidence 
about the immunomodulation of CIRT in gynaecological 
tumours, possible future strategies should test the combina-
tion between immunotherapy and CIRT in gynaecological 
radioresistant diseases (i.e. cervical adenocarcinomas and 
gynaecological melanomas) to confirm the safety profile of 
the combination and to evaluate the potentiality of CIRT to 
reverse desert and cold malignancies into immune-respon-
sive ones [68–71].

Moreover, because of the advantageous dose deposition 
of CIRT, this technique is potentially feasible in the fertility-
sparing management of young patients treated on the pelvis. 
This topic has become more and more crucial in recent years 
due to the rise in the average age of the first pregnancy. The 
high radiosensitivity of ovaries and the consequences on 
pregnancy after uterine irradiation should be considered 
during a pelvic RT and the patients should be accurately 
consulted about the fertility-sparing options. In this con-
text, multidisciplinary management including prophylactic 
surgery to spare ovaries and uterine structures appeared 
safe and feasible [72] also after a high dose of CIRT for 
radioresistant histologies [73]. A multi-institutional registry 
cumulating data on the oncofertility potential of CIRT is 
warranted to collect more evidence.

Because of the complexity and the rare types of cancers 
treated with CIRT, the creation of national and international 
networks including research groups and experts in particle 
beam RT is desirable to create more robust evidence and 
to reduce barriers, facilitating the access to new RT beams.

5 Conclusions

CIRT appeared safe and effective in the treatment of radio-
resistant and difficult-to-cure gynaecological malignancies. 
The rationale for its use is supported by more and more 
growing preclinical and clinical evidence. The therapeu-
tic and organizational benefits of this new technology in 
gynaecological oncology can only be fully realized with a 
thorough, mature, and even more strong multidisciplinary 
approach.
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absence of local progression at 1 year after treatment, as the 
primary endpoint. The trial, currently open to recruitment, 
would assess the effectiveness and safety of this approach in 
a prospective cohort.

4 Future perspectives

Growing data backs up the concept that oligometastases 
are a cancer state in between a localized tumour and a sys-
temic spread disease, where localized treatments are able to 
extend survival. Hypofractionated X-RT was safe and pro-
vided durable LC when delivered for oligometastatic and 
oligopersistant gynaecological disease [57]. Indeed, MITO-
RT1 and MITO-RT2/RAD studies achieved a 2-year actu-
arial LC rate of 81.9% in oligometastatic ovarian and 75% 
in oligometastatic uterine cancers [58, 59]. These data sug-
gested RT as a valid therapeutic option to prolong the che-
motherapy rechallenge and to improve survival. Although 
the excellent physical characteristics and the greater radio-
biological potential, especially for hypoxic, radioresistant 
tumours, as well as homologous recombination deficiency 
and wild-type BRCA tumours [1, 60–65], there is still 
limited evidence about CIRT in the management of oligo-
metastatic disease. In this challenging scenario, a recent 
nationwide multi-institutional cohort study explored the 
role of particle beam RT ( proton and CIRT) in the manage-
ment of 614 patients ( for a total of 841 oligometastases), 
including 13  cases of ovarian and 45 cases of uterine can-
cers [66]. This large cohort study showed an overall durable 
LC (72.8–83.2% at 3 years), superior to stereotactic RT in 
the case of the liver (incidence rate ratio [IRR], 0.52 ;95% 
CI, 0.37–0.72; P = < 0.001). and lung metastases (IRR, 0.56; 
95% CI, 0.34–0.91, P = 0.020) and similar for lymph node 
ones ( IRR,0.82; 95% CI, 0.61–1.11; P = 0.200), with an 
acceptable risk of severe toxicity (0.8–3.5%). Overall these 
results suggested that particle beam RT may be a new treat-
ment option in the management of these diseases. CNAO 
and the National Institutes for Quantum and Radiological 
Science and Technology (QST) of Chiba conducted a bi-
institutional study, whose preliminary results were recently 
presented at the last ESTRO meeting, to evaluate for the 
first time in literature the use of radical CIRT in oligometa-
static ovarian cancers [67]. The data were encouraging in 
terms of objective response rate ( 85%) and LC ( 89% and 
74% at 1 and 2 years) along with toxicity ( only one case of 
grade 3 gastro-intestinal toxicity), with a safety profile also 
in patients receiving PARP-I and anti-VEGF [67]. Consid-
ering that all efforts should be made to avoid a platinum 
rechallenge in this PARP-I era, a better selection of ovarian 
cancer patients to treat with stereotactic RT vs. CIRT should 
take into consideration the tumour molecular profile and 
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