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Abstract
Purpose Disease risk prediction poses a significant and growing challenge in the medical field. While researchers have 
increasingly utilised machine learning (ML) algorithms to tackle this issue, supervised ML methods remain dominant. How-
ever, there is a rising interest in unsupervised techniques, especially in situations where data labels might be missing — as 
seen with undiagnosed or rare diseases. This study delves into comparing unsupervised ML models for disease prediction.
Methods This study evaluated the efficacy of seven unsupervised algorithms on 15 datasets, including those of heart failure, 
diabetes, and breast cancer. It used six performance metrics for this comparison. They are Adjusted Rand Index, Adjusted 
Mutual Information, Homogeneity, Completeness, V-measure and Silhouette Coefficient.
Results Among the seven unsupervised ML methods, the DBSCAN (Density-based spatial clustering of applications with 
noise) showed the best performance most times (31), followed by the Bayesian Gaussian Mixture (18) and Divisive cluster-
ing (15). No single model consistently outshined others across every dataset and metric. The study emphasises the crucial 
role of model and performance measure selections based on application-specific needs. For example, DBSCAN excels in 
Homogeneity, Completeness and V-measure metrics. Conversely, the Bayesian Gaussian Mixture is good in the Adjusted R 
and Index metric. The codes used in this study can be found at https:// github. com/ haohu ilu/ unsup ervis edml/.
Conclusion This research contributes deeper insights into the unsupervised ML applications in healthcare and encourages 
further investigations into model selection. Subsequent studies could harness genuine disease records for a more nuanced 
comparison and evaluation of models.

Keywords Disease prediction · Performance comparison · Unsupervised machine learning · Healthcare dataset

1 Introduction

Machine learning (ML), a subfield of artificial intelligence, 
leverages computational methods to address challenges 
using historical data and information without requiring 
significant alterations to the fundamental process [1]. ML 
algorithms boast diverse applications, such as automated 
text classification [2], project analytics [3], spam email 
filtering [4], marketing analytics [5], and disease predic-
tion [6]. They are primarily of two categories: supervised 

learning and unsupervised learning, with some researchers 
also acknowledging reinforcement learning algorithms that 
learn data patterns to respond to specific environments. Nev-
ertheless, supervised learning and unsupervised learning are 
the most recognised types. The critical difference between 
these two categories lies in the existence of labels within the 
training data subset [1]. Supervised ML relies on labelled 
data. The dataset includes input features and corresponding 
output labels, allowing the algorithm to learn a mapping 
function to make predictions for test data or unseen data [7]. 
In contrast, unsupervised ML deals with unlabelled data, the 
dataset only consists of input features but no output labels. 
This method discovers patterns or clusters autonomously, 
without direct instructions [8].

The data science research community has recently shown 
an amplified interest in medical informatics, with disease 
prediction being a key area of focus [9]. Disease prediction 
plays a critical role in modern health. It allows for early 

 * Shahadat Uddin 
 shahadat.uddin@sydney.edu.au

 Haohui Lu 
 haohui.lu@sydney.edu.au

1 School of Project Management, Faculty of Engineering, The 
University of Sydney, Level 2, 21 Ross Street, Forest Lodge, 
NSW 2037, Australia

http://crossmark.crossref.org/dialog/?doi=10.1007/s12553-023-00805-8&domain=pdf
http://orcid.org/0000-0003-0091-6919
https://github.com/haohuilu/unsupervisedml/


142 Health and Technology (2024) 14:141–154

1 3

treatments and improves patient outcomes. ML is a robust 
tool for predicting disease risk within intricate health data. 
ML methods can learn from past data to predict future dis-
ease risks. Many studies are comparing the performance of 
supervised ML in the disease prediction domain [10–14].

Nonetheless, there are limited comparative studies on 
unsupervised ML in the disease prediction domain, as it has 
not gained as much popularity as supervised ML [9]. Data 
labels are not always available, particularly in cases where 
patients have undiagnosed or rare diseases. Vats et al. [15] 
compared the unsupervised ML techniques for liver disease 
prediction. They employed DBSCAN (Density-based spatial 
clustering of applications with noise), k-means, and Affin-
ity Propagation to compare their prediction accuracy and 
computational complexity. Antony et al. [16] proposed a 
framework that compares different unsupervised ML meth-
ods for chronic kidney disease prediction. Alashwal et al. 
[17] investigated various unsupervised methods for Alzhei-
mer’s prediction, aiming to identify suitable techniques for 
patient grouping and their potential impact on treatment. 
Our research uncovered a gap in research, specifically a lack 
of thorough comparative studies of unsupervised learning 
algorithms across various types of disease prediction. As 
such, this research aims to evaluate the performance of dif-
ferent unsupervised ML algorithms in predicting diseases. It 
uses a variety of conditions, including heart failure, diabetes, 
and breast cancer, focusing on employing unsupervised ML 
techniques, such as k-means, DBSCAN and Agglomerative 
Clustering for disease prediction. The objective is to com-
pare predictive performance by considering several perfor-
mance measures, such as the Silhouette coefficient, Adjusted 
Mutual Information, Adjusted Rand Index, and V-measure. 
These measures are crucial in identifying the most effec-
tive approach for handling different datasets with numerous 
parameters. The key contributions of this research include:

• Comprehensive analysis and comparison of various unsu-
pervised ML algorithms for disease risk prediction, using 
diverse benchmark datasets and performance measures.

• Identify the top-performing unsupervised ML method 
for healthcare researchers and stakeholders, which will 
eventually help select suitable techniques for enhanced 
disease risk prediction.

2  Methods

ML algorithms are primarily categorised into super-
vised and unsupervised learning based on the presence or 
absence of labels within the given data. Supervised learn-
ing uses labelled data, while unsupervised learning uses 

unlabelled data to discover patterns or clusters. This study 
focuses on different unsupervised learning methods in the 
disease prediction domain. They are partitioning cluster-
ing, model-based clustering, hierarchical clustering and 
density-based clustering.

2.1  Unsupervised machine learning algorithms

Unsupervised ML, also known as clustering, involves 
grouping data into clusters based on the similarity of their 
objectives within the same cluster while ensuring that they 
are dissimilar to objects in other clusters [8]. Clustering 
is a type of unsupervised classification since there are no 
predefined classes.

Figure 1 shows how unsupervised ML techniques clas-
sify three groups in a two-dimensional dataset. The dataset 
consists of 100 randomly generated data points divided into 
three groups based on their similarity. Different colours 
represent the clusters. On the scatter plot, the clusters are 
represented by different circles, and circular bounds have 
been placed around each cluster to visualise their boundaries 
better.

2.1.1  Partitioning clustering

Partitioning clustering requires the analyst to specify the 
number of clusters that should be generated. The k-means 
clustering is the most widely used method of partitioning 
clustering algorithms [18]. Figure 2 demonstrates the pro-
cesses for the standard k-means clustering algorithm. The 
first step involves selecting k points as the initial centroids. 
After that, we need to classifying data points based on the 
distance to the centroids of these k clusters. Then, recomput-
ing the centroid of each cluster based on classified points  
and repeating these steps until the centroids do not change. 
This study uses two popular k-means variants: classic k-means  
and Mini batch k-means [19].

2.1.2  Model‑based clustering

Model-based clustering is another unsupervised ML method. 
It is a probabilistic approach to clustering that uses Gaussian 
Mixture Models (GMMs) to represent data as a mixture of 
Gaussian distributions [20]. GMM is a probabilistic model 
that attempts to fit a dataset to a combination of different 
Gaussian distributions. It evaluates the likelihood of each 
data point belonging to each cluster, as opposed to clas-
sic k-means clustering, which allocates each data point to 
a single cluster. This enables a more flexible and accurate 
representation of data distributions, mainly when dealing 
with overlapping or non-spherical clusters [20]. Figure 3 
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shows how a GMM model with four components is fitted to 
the data, and the resulting clusters are coloured. The GMM’s 
Gaussian distributions are shown by ellipses, demonstrating 
each distribution’s spread and direction and the probabilistic 
character of the clustering process. We also use Bayesian 
Gaussian Mixture (BGM) [21] for performance comparison.

2.1.3  Hierarchical clustering

Hierarchical clustering generates a group of nested clusters 
arranged in a hierarchical tree structure. This can be repre-
sented through a dendrogram, a tree-like diagram that docu-
ments the sequence of merges or splits [22]. Figure 4 shows 

Fig. 1  An example of unsuper-
vised learning

Fig. 2  Demonstration of the 
standard k-means clustering 
algorithm
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an example of a dendrogram for the hierarchical clustering. 
There are two main types of hierarchical clustering: agglom-
erative and divisive. Agglomerative clustering is a method 
that starts with each point as its cluster. As the process pro-
gresses, the nearest pair of clusters is merged in each step. 

This merging continues until it culminates in a single cluster 
or a specific number of clusters, depending on the param-
eters set at the outset of the process [22]. On the other hand, 
Divisive clustering is a method that begins with a single, 
all-encompassing cluster. As the process evolves, a cluster is 

Fig. 3  Demonstration of the 
Gaussian Mixture Model

Fig. 4  Dendrogram for Hierar-
chical Clustering
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split at each step. This splitting continues until every cluster 
contains only an individual point or a predetermined number 
of clusters are achieved, depending on the initial setup of the 
procedure [22]. This study uses both Agglomerative cluster-
ing and Divisive clustering for comparison.

2.1.4  Density‑based

The density-based method relies on density as the local clus-
ter criterion, such as points connected by density. Character-
istics and features of density-based clustering include identi-
fying clusters of any shape. It also effectively handles noise 
within the data. It requires only a single scan, examining the 
local region to validate the density. However, it necessitates 
the specification of density parameters as a condition for 
termination [22]. Density-based spatial clustering of appli-
cations with noise (DBSCAN) is a famous example of a 
density-based method [23]. This method labels high-density 
areas as clusters and low-density areas as outliers. It helps 
discover clusters of varied forms and deal with noise without 
requiring a set number of clusters [23]. Figure 5 visualises 
the clusters using the DBSCAN method.

2.2  Performance comparison measures

The performance of various unsupervised ML methods 
is assessed using different evaluation techniques, such as 
Adjusted Rand Index (ARI), Adjusted Mutual Informa-
tion (AMI), Homogeneity, Completeness, V-measure, and 

Silhouette Coefficient. These are applied to establish com-
parative performance metrics in this study.

2.2.1  Adjusted Rand Index

Adjusted Rand Index (ARI) is a modification to the Rand 
index. It calculates a similarity metric between two clus-
ters by considering all sample pairs and then counting those 
pairs that are either similarly or differently assigned in the 
predicted and actual clusters [24]. The formular for ARI is

where RI is the Rand Index, Expected RI is the Expected 
Rand Index, and Max (RI) is the maximum possible Rand 
Index.

The ARI value lies between -1 and 1, where 1 means 
identical clustering and –1 means dissimilar clustering. If 
the ARI is equal to 0, it indicates random labelling.

2.2.2  Adjusted Mutual Information

Adjusted mutual information (AMI) modifies the Mutual 
information (MI) score to account for chance [25]. It 
acknowledges that MI tends to increase with larger clus-
ters, independent of the actual amount of shared information 
between them. The formula for AMI is

ARI =
RI − Expecte RI

Max(RI) − ExpectedRI

Fig. 5  DBSCAN Clustering
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where MI is the mutual information, H(X) and H(Y) are 
the entropies of X and Y, and Expected MI is the expected 
mutual information. AMI ranges from 0 to 1, where a score 
of 1 indicates perfect agreement between two clustering. A 
score close to 0 suggests largely independent clustering or a 
result no better than random chance.

2.2.3  Homogeneity

Homogeneity is a clustering measure that compares the out-
comes to a ground truth. It denotes that a cluster is homog-
enous if made up entirely of data points from a single class 
[26]. The formula for Homogeneity is

where Ytrue is the ground truth, Ypredict is the predicted clus-
ters. H(Ytrue|Ypredict) is the conditional entropy of the ground 
truth given the cluster predictions. H(Ytrue) is the entropy 
of the ground truth. Homogeneity is a metric that also var-
ies between 0 and 1. A score of 1 means that each cluster 
contains only members of a single class, signifying perfect 
Homogeneity. A score of 0 indicates that the clusters are 
randomly assigned, lacking any homogeneity.

2.2.4  Completeness

Completeness is another clustering evaluation metric deter-
mining whether all data points in a given class are clustered. 
The clustering result is deemed complete when each class is 
contained inside a single cluster [26]. The formula for this 
measure is

where Ytrue is the ground truth, Ypredict is the predicted clus-
ters. H(Ypredict|Ytrue) is the conditional entropy of the cluster 
predictions given the ground truth. H(Ypredict) is the entropy 
of the cluster predictions. Completeness ranges from 0 to 1. 
A score of 1 is achieved when all class members are assigned 
to the same cluster, indicating complete capture of all classes 
within the clusters. A score of 0 would imply that the clus-
tering assignments are completely scattered without captur-
ing the essence of classes.

2.2.5  V‑measure

The V-measure is the harmonic mean between Homogeneity 
and Completeness [26], and the formula is

AMI(X,Y) =
MI − ExpectedMI

Max(H(X),H(Y)) − ExpectedMI

Homogeneity = 1 −
H(Ytrue|Ypredict )

H(Ytrue)

Completeness = 1 −
H(Ypredict|Ytrue)

H(Ypredict)

The V-measure score lies between 0 and 1, where 1 
stands for perfectly complete and homogeneous labelling. 
V-measure ranged from 0 to 1. A score of 1 represents perfect 
clustering with both complete capture of all classes within 
clusters and each cluster containing only members of a single 
class. A score of 0 would indicate that the clustering fails on 
both homogeneity and completeness grounds.

2.2.6  Silhouette coefficient

The silhouette coefficient is used in cluster analysis to assess 
clustering quality. It computes the distance between each 
data point in one cluster and the points in neighbouring 
clusters, measuring how well each data point fits into its 
allocated cluster [27]. The formula is

where ai is the average distance inside the cluster, and bi is 
the average distance nearest other clusters. Silhouette Coef-
ficient values range from -1 to 1. A score of 1 denotes that 
the clusters are well apart from each other and clearly distin-
guished. A score of 0 indicates overlapping clusters. A nega-
tive value suggests that data points might have been assigned 
to the wrong clusters. This metric gives a perspective on the 
distance and separation between the formed clusters.

3  Research dataset

Table 1 presents the datasets utilised in this study, outlining 
their respective attributes, including the number of features 
and data size. These datasets were sourced from the UCI 
Machine Learning Repository [28] and Kaggle [29]. This 
research uses the original data without preprocessing to 
ensure an unbiased comparison. We drop any entries with 
missing values.

4  Results

We employed the default parameters provided by Sklearn for 
training our unsupervised ML models [44]. Tables 2, 3, 4, 
5, 6 and 7 show various models' ARI, AMI, Homogeneity, 
Completeness, V-measure and Silhouette metrics. They have 
been trained on our research datasets.

Table 2 illustrates the ARI of 15 datasets. Based on 
these 15 datasets, the best-performing method is the Divi-
sive clustering for D12 (0.8510), followed by BGM for D5 

V − measure =
2 × (Homogeneity × Completeness)

Homogeneity + Completeness

Silhouette =
bi − ai

max(ai, bi)
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(0.6413). Performance varied widely across methods and 
datasets, underlining the necessity of testing multiple tech-
niques. For AMI, the highest-performing models changed 
by dataset (Table 3). For instance, the best performance was 
observed with Divisive clustering in dataset D12 (0.7504), 
followed by BGM in dataset D5 (0.5337). For Homogene-
ity (Table 4), DBSCAN performs remarkably well on eight 
datasets, while the Divisive clustering performs best on D1 
and D12. Regarding Completeness (Table 5), DBSCAN 

performs best on seven datasets, while BGM and Divisive 
clustering showed strong results on three datasets. DBSCAN 
has revealed the best performance on eight datasets with 
the V-measure metric. Evaluating the Silhouette score, the 
Agglomerative clustering dominated four datasets.

Additionally, Table 8 illustrates how often each model 
scored the highest in any given measure. DBSCAN 
showed the best performance most times (31), followed 
by BGM (18), Divisive clustering (15) and Agglomerative 

Table 1  A summary of the 
dataset

ID Dataset name Number of 
features

Data size Reference

D1 Heart Disease 13 303 Detrano et al. [30]
D2 Heart failure clinical records 13 299 Chicco and Jurman [31]
D3 Pima Indians Diabetes 8 768 Smith et al. [32]
D4 Heart Disease Prediction 13 270 Detrano et al. [30]
D5 Breast Cancer Wisconsin (Diagnostic) 5 569 Mangasarian et al. [33]
D6 Cervical Cancer 19 72 Machmud and Wijaya [34]
D7 Indian Liver Patient Dataset 10 583 Ramana et al. [35]
D8 Lung Cancer 15 309 Hong and Yang [36]
D9 Thyroid Disease 5 7200 Quinlan [37]
D10 Chronic Kidney Disease 25 400 Soundarapandian et al. [38]
D11 Indian Liver Patient Dataset 10 583 Lichman [39]
D12 Autism Screening Adult 21 704 Thabtah et al. [40]
D13 Prostate Cancer 10 100 Mahmood [41]
D14 Breast Cancer Coimbra 10 116 Patrício et al. [42]
D15 Cervical cancer 36 858 Fernandes et al. [43]

Table 2  Adjusted Rand Index (ARI) comparison among unsupervised machine learning models

Dataset Partitioning clustering Model-based clustering Hierarchical clustering Density-
based 
clustering

Classic k-means Mini Batch 
k-means

Gaussian Mixture Bayesian 
Gaussian 
Mixture

Agglomerative 
Clustering

Divisive Clustering DBSCAN

D1 0.0205 0.0205 0.0012 0.0012 0.0117 0.0271 -0.002
D2 0.0174 -0.0270 0.0471 0.0499 0.0044 -0.0021 -0.0002
D3 0.0744 0.0697 0.0009 0.0021 0.1003 -0.0002 0.0001
D4 0.0302 0.0248 0.0471 0.0494 0.0103 0.0490 0.0001
D5 0.4457 0.4358 0.6359 0.6413 0.2745 0.4661 0.0752
D6 0.2961 0.2403 0.3271 0.3271 0.4292 0.1385 0.0034
D7 -0.0209 -0.0709 -0.0700 -0.0240 -0.0410 -0.0529 0.0001
D8 -0.0213 -0.0131 0.0609 0.0136 -0.0595 -0.0211 0.0612
D9 0.1867 0.0514 -0.0465 0.1383 0.1134 0.0266 0.2459
D10 0.3234 0.0859 0.3234 0.3234 0.2135 0.0456 0.0000
D11 -0.0209 -0.0709 -0.0041 -0.0081 -0.0041 -0.0529 0.0001
D12 0.7172 0.6842 0.4318 0.3849 0.3742 0.8510 0.0000
D13 0.0557 0.0448 0.0521 0.0083 0.0743 0.0018 0.0009
D14 -0.0084 -0.0085 0.0677 0.0339 -0.0015 -0.0077 -0.0103
D15 0.0016 0.0049 0.0669 0.0807 0.0008 -0.0061 -0.0087
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clustering (14). For individual performance metrics, the 
DBSCAN is the top performer regarding Homogeneity, 
Completeness and V-measure. BGM did well against 
the ARI and AMI metrics. Unsupervised MLs based on 
k-means (Classic and Mini Batch) showed the most minor 
performance.

The best model to choose will depend on the particulars 
of a specific application and the performance indicators that 
are most important to the stakeholders. From above, the 
DBSCAN model received the highest score among 15 data-
sets, demonstrating the best overall performance. However, 
DBSCAN is sensitive to parameter settings and may struggle 

Table 3  Adjusted Mutual Information (AMI) comparison among unsupervised machine learning models

Dataset Partitioning clustering Model-based clustering Hierarchical clustering Density-
based 
clustering

Classic k-means Mini Batch 
k-means

Gaussian Mixture Bayesian 
Gaussian 
Mixture

Agglomerative 
Clustering

Divisive Clustering DBSCAN

D1 0.0114 0.0114 -0.0023 -0.0023 0.0086 0.0272 -0.002
D2 -0.0004 -0.0025 0.0094 0.0104 -0.0040 -0.0022 0.0042
D3 0.0285 0.0258 0.0003 0.0002 0.0447 -0.0002 0.0001
D4 0.0172 0.0132 0.0094 0.0104 0.0108 0.0317 0.0010
D5 0.4188 0.411 0.5215 0.5337 0.3076 0.3759 0.1191
D6 0.2192 0.2092 0.2382 0.2382 0.3247 0.2448 0.0010
D7 0.016 0.0703 0.0517 0.0956 0.0002 0.0548 0.0041
D8 0.0044 -0.0014 0.0073 0.0010 0.0166 0.0017 0.0460
D9 0.0840 0.0674 0.0058 0.0676 0.0339 0.0214 0.1452
D10 0.3013 0.0423 0.3013 0.3013 0.2084 0.0303 0.0000
D11 0.0160 0.0703 -0.0013 0.0007 0.0002 0.0548 0.0041
D12 0.6621 0.6355 0.2939 0.3400 0.4144 0.7504 0.0000
D13 0.0406 0.0338 0.0446 0.0178 0.0544 0.0363 0.0540
D14 -0.0063 -0.0054 0.1058 0.0844 0.0085 -0.0029 0.0285
D15 0.0114 0.0114 -0.0023 -0.0023 0.0086 0.0272 -0.002

Table 4  Homogeneity comparison among unsupervised machine learning models

Dataset Partitioning clustering Model-based clustering Hierarchical clustering Density-
based 
clustering

Classic k-means Mini Batch 
k-means

Gaussian Mixture Bayesian  
Gaussian Mixture

Agglomerative 
Clustering

Divisive 
Clustering

DBSCAN

D1 0.0135 0.0135 0.0006 0.0006 0.0111 0.0185 0.0058
D2 0.0023 0.001 0.0111 0.0118 0.0002 0.0003 0.8948
D3 0.0267 0.0247 0.0013 0.0012 0.0423 0.0008 0.9944
D4 0.0196 0.0156 0.0113 0.0118 0.0134 0.0341 0.001
D5 0.3764 0.368 0.5094 0.5186 0.2514 0.3842 0.4253
D6 0.2413 0.2235 0.2599 0.2599 0.3247 0.2448 0.001
D7 0.0108 0.0638 0.043 0.0977 0.0019 0.0537 0.9772
D8 0.0103 0.0024 0.0131 0.0058 0.0248 0.0066 0.0379
D9 0.0878 0.0917 0.0065 0.0868 0.0321 0.0114 0.7913
D10 0.2354 0.0505 0.2354 0.2354 0.1509 0.0383 1.0000
D11 0.0108 0.0638 0.0001 0.0021 0.0019 0.0537 0.9772
D12 0.6911 0.6661 0.2972 0.3629 0.4445 0.7599 0.0000
D13 0.0420 0.0349 0.0442 0.0152 0.0557 0.0224 0.0546
D14 0.0001 0.0010 0.1039 0.0807 0.0143 0.0036 0.0260
D15 0.0002 0.0009 0.0357 0.0396 0.0001 0.0019 0.0467
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with clusters of varying densities, whereas Divisive cluster-
ing does not rely on specific parameter settings and is better 
at handling clusters with different densities. Additionally, 
unlike Divisive clustering, DBSCAN can face challenges 
in high-dimensional spaces and in preserving the global 
structure of data. A critical observation is the wide range 
of variance in model performance across different datasets, 

although DBSAN dominated in most cases. This could be 
reflective of the innate differences in data distribution, noise, 
and feature relevance. This variation underscores the need 
for a sophisticated and discerning approach to choosing the 
appropriate unsupervised ML model, carefully weighing the 
dataset's unique properties alongside each model's inherent 
advantages.

Table 5  Completeness comparison among unsupervised machine learning models

Dataset Partitioning clustering Model-based clustering Hierarchical clustering Density-
based 
clustering

Classic k-means Mini Batch 
k-means

Gaussian Mixture Bayesian  
Gaussian Mixture

Agglomerative 
Clustering

Divisive 
Clustering

DBSCAN

D1 0.0135 0.0135 0.0006 0.0006 0.0111 0.0185 0.0058
D2 0.0027 0.0001 0.014 0.0156 0.0008 0.0003 0.1026
D3 0.0331 0.0294 0.0012 0.0011 0.0499 0.0008 0.0972
D4 0.0203 0.0163 0.014 0.0156 0.0135 0.0345 0.1228
D5 0.4741 0.4676 0.5356 0.5511 0.3997 0.3695 0.1166
D6 0.2160 0.2044 0.2348 0.2348 0.3035 0.2162 0.1447
D7 0.0688 0.082 0.0707 0.0960 0.0507 0.0590 0.0928
D8 0.0059 0.0013 0.0094 0.0032 0.0168 0.004 0.1741
D9 0.0810 0.0535 0.0058 0.0557 0.0366 0.3468 0.1087
D10 0.4391 0.0443 0.4391 0.4391 0.3744 0.0325 0.1156
D11 0.0688 0.0820 0.0001 0.0019 0.0507 0.0590 0.0928
D12 0.6361 0.6085 0.2925 0.3214 0.3895 0.7417 1.0000
D13 0.0420 0.0355 0.0480 0.0276 0.0557 0.1466 0.0918
D14 0.0001 0.0011 0.1213 0.1043 0.0161 0.0039 0.0713
D15 0.0001 0.0003 0.0154 0.0181 0.0000 0.0007 0.0330

Table 6  V-measure comparison among unsupervised machine learning models

Dataset Partitioning clustering Model-based clustering Hierarchical clustering Density-
based 
clustering

Classic k-means Mini Batch 
k-means

Gaussian Mixture Bayesian  
Gaussian Mixture

Agglomerative 
Clustering

Divisive 
Clustering

DBSCAN

D1 0.0138 0.0138 0.0007 0.0007 0.0111 0.0186 0.0111
D2 0.0025 0.0001 0.0124 0.0134 0.0004 0.0004 0.1842
D3 0.0295 0.0269 0.0013 0.0012 0.0458 0.0008 0.1771
D4 0.0199 0.0159 0.0124 0.0134 0.0134 0.0343 0.2188
D5 0.4196 0.4119 0.5222 0.5344 0.3087 0.3767 0.2008
D6 0.2280 0.2180 0.2467 0.2467 0.3137 0.2296 0.2527
D7 0.0190 0.0718 0.0534 0.0970 0.0370 0.0563 0.1700
D8 0.0075 0.0017 0.0109 0.0041 0.0200 0.0049 0.0623
D9 0.0843 0.0676 0.0062 0.0678 0.0342 0.0220 0.1912
D10 0.3065 0.0472 0.3065 0.3065 0.2151 0.0352 0.2073
D11 0.0186 0.0718 0.0001 0.0020 0.0037 0.0563 0.1696
D12 0.6625 0.6360 0.2948 0.3409 0.4152 0.7507 0.0000
D13 0.0420 0.0352 0.0460 0.0196 0.0557 0.0388 0.0684
D14 0.0001 0.0010 0.1119 0.0910 0.0152 0.0037 0.0381
D15 0.0001 0.0005 0.0215 0.0249 0.0001 0.0010 0.0387
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Furthermore, the fact that DBSCAN consistently 
exhibits high Homogeneity, Completeness and V-measure 
implies that this model is particularly well-suited for data-
sets where classes are separated by density. This insight 
could prove invaluable for practitioners dealing with such 
data characteristics. Conversely, the strong performance 
of BGM in the ARI and AMI metrics across various data-
sets indicates its potential as a versatile model capable 
of capturing the structure of the data with a reasonable 
balance between cluster purity and recovery.

The Python code used to implement the unsupervised 
machine learning models considered in this study is avail-
able at https:// github. com/ haohu ilu/ unsup ervis edml/.

5  Discussion

This research compares unsupervised machine learning 
models applied to eight different health-related datasets. 
The datasets were sourced from the UCI Machine Learn-
ing Repository and encompass a variety of health issues, 
including heart disease, diabetes, and multiple forms of 
cancer. These datasets exhibit diverse numbers of features 
and sizes. The primary goal of this study was to contrast 
the performance of these models across multiple meas-
ures without undertaking any data preparation, ensuring 
an unbiased comparison.

Table 7  Silhouette comparison among unsupervised machine learning models

Dataset Partitioning clustering Model-based clustering Hierarchical clustering Density-
based 
clustering

Classic k-means Mini Batch 
k-means

Gaussian Mixture Bayesian 
Gaussian 
Mixture

Agglomerative 
Clustering

Divisive Clustering DBSCAN

D1 0.0389 0.0389 0.0022 0.0022 0.3431 0.2821 0.0906
D2 0.5829 0.4561 0.0174 0.1902 0.6789 0.4576 0.1604
D3 0.5688 0.562 0.392 0.3452 0.5533 0.408 0.0176
D4 0.3804 0.3847 0.1740 0.1902 0.3193 0.367 0.0024
D5 0.6991 0.7001 0.6107 0.617 0.6827 0.5102 -0.0511
D6 0.2801 0.2670 0.2821 0.2821 0.2704 0.2118 0.0566
D7 0.8573 0.6628 0.5752 0.4723 0.9256 0.5954 0.0624
D8 0.5088 0.4762 0.0210 0.0145 0.4723 0.5139 0.4364
D9 0.5509 0.3393 -0.0972 0.2782 0.6002 0.8426 -0.5019
D10 0.5970 0.8155 0.6820 0.6820 0.7250 0.3565 -0.0655
D11 0.8573 0.6628 0.0656 0.0923 0.9256 0.5954 0.0624
D12 0.4632 0.3596 0.1514 0.1516 0.3567 0.4235 0.5000
D13 0.2169 0.2109 0.1644 0.2225 0.2094 -0.0034 0.1692
D14 0.2033 0.2172 0.1911 0.2101 0.2144 0.1755 0.4014
D15 0.4050 0.4108 0.1994 0.2255 0.3822 0.2977 -0.4949

Table 8  Comparison of unsupervised machine learning models showing the number of times they presented the highest measurement

Models Adjusted Rand 
Index

Adjust Mutual 
Information

Homogeneity Completeness V-measure Silhouette Total

Classic k-means 1 1 1 1 1 1 6
Mini Batch k-means 0 1 0 0 0 4 5
Gaussian Mixture 2 2 1 2 2 1 10
Bayesian Gaussian Mixture 5 4 1 3 3 2 18
Agglomerative Clustering 3 3 2 1 1 4 14
Divisive Clustering 2 4 2 3 2 2 15
DBSCAN 4 2 8 7 8 2 31

https://github.com/haohuilu/unsupervisedml/
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The performance of the models differed based on the 
dataset and the evaluation metrics employed: ARI, AMI, 
Homogeneity, Completeness, V-measure, and Silhouette. 
Each metric provides a distinct insight into clustering 
quality. ARI and AMI measure the clustering against the 
ground truth. Homogeneity evaluates if each cluster solely 
comprises members of a single class, while Completeness 
assesses if all members of a specific class are grouped into 
the same cluster. V-measure is a harmonic mean of these 
two, and Silhouette gauges cluster separation and cohesion. 
DBSCAN’s excellent performance in Homogeneity suggests 
its robustness in capturing dense clusters, but it also flags 
potential shortcomings in handling data with varying densi-
ties or noise levels.

Meanwhile, the BGM model ranks second in overall 
performance across 15 datasets. It shows notable strength 
in ARI scores for five datasets and AMI scores for four. 
However, its high computational requirements might limit 
its use in large datasets or those needing immediate analy-
sis. BGM models excel at autonomously determining cluster 
numbers in complex datasets and resist overfitting by inte-
grating prior distributions. However, their high computa-
tional demand and reduced effectiveness with non-Gaussian 
data or inappropriate priors are notable drawbacks [45]. The 
third best performing model, Divisive clustering, designed 
for sequencing datasets like life-course histories, leverages 
Classification and Regression Tree analysis principles, 
including tree pruning, to predict cluster counts. It excels in 
hierarchical, large datasets by uncovering complex relation-
ships but can struggle with overlapping or non-hierarchical 
data, leading to less accurate clustering [46]. Moreover, 
the consistent performance of Agglomerative Clustering in 
terms of the Silhouette score suggests its potential utility in 
datasets where clear separation between clusters is present. 
Nevertheless, Mini Batch k-means offers an alternative that 
might better manage noise while sacrificing some degree of 
performance due to its inherent randomness.

The selection of models in unsupervised learning tasks 
is nuanced and contextual. For instance, while hierarchi-
cal methods like agglomerative and divisive clustering do 
not require the specification of the number of clusters, their 
computational intensity and potential to create unbalanced 
hierarchies must be considered, especially for large datasets. 
In the literature, the application of unsupervised machine 
learning models in disease prediction must be judicious, 
considering the unique characteristics of healthcare data. 
For example, k-means is known for its efficiency and has 
been widely used in medical data analysis for its simplic-
ity [47]. However, its performance can be hindered by the 
requirement to specify the number of clusters and its sen-
sitivity to outliers [48]. DBSCAN is favoured for its ability 
to find clusters of arbitrary shapes and sizes, which is often 
suitable for the complex patterns present in medical datasets 

[49]. Yet, its performance can degrade with varying density 
clusters. The Gaussian Mixture Model offers flexibility due 
to its probabilistic nature and can accommodate the varied 
distribution of medical data [20], though it can be computa-
tionally intensive, which may not be optimal for all applica-
tions. Experts agree that there is no one-size-fits-all model, 
and the choice should depend on the specific requirements 
of the data and the task at hand [50].

To sum up, while DBSCAN frequently emerged as the 
top performer, no singular model consistently outshone oth-
ers across every dataset and metric. The choice of model 
should be influenced by the unique attributes of the dataset 
and the relevance of the evaluation metrics for the particular 
research or application context. This study serves as a valu-
able reference for future unsupervised learning endeavours 
in health-related fields. It also emphasises the importance of 
continued exploration in model selection and optimisation 
techniques. The basic principles, pros and cons of various 
unsupervised models are detailed in Table 9.

6  Conclusion

This study comprehensively compared unsupervised learn-
ing models within the realm of disease prediction. The 
diversity of data types within this field, from heart disease 
to prostate cancer, demands a flexible approach to model 
selection. Based on the evaluated performance metrics, two 
models emerged as particularly promising: DBSCAN and 
BGM. The former demonstrated robust performance in the 
Homogeneity and V-measure. Conversely, BGM excelled in 
the ARI and AMI metric. This underscores DBSCAN’s apti-
tude for discerning densely populated clusters of similarity, 
even across heterogeneous datasets. Such findings highlight 
the potential prowess of these models in disease prediction. 
Their consistently high performance across diverse datasets 
indicates their capability to transcend the inherent challenges 
posed by the varied scales and ranges typical of medical 
data. Despite the intricate nature of medical datasets, these 
models succeeded in effectively clustering the data. The 
findings from this study serve not only as a testament to the 
capabilities of these models in transcending the challenges 
posed by medical datasets but also as a caveat to the user to 
be mindful of the models’ limitations. Future research direc-
tions could delve into applying deep learning models for 
predicting disease risks, drawing from an even broader pool 
of medical datasets. One of the most noteworthy attributes 
of unsupervised machine learning models is their flexible 
architecture, which facilitates adaptability and continuous 
enhancement. It is important to note that unsupervised learn-
ing is an evolving domain, and ongoing advancements in 
algorithm efficiency, model robustness and interpretability 
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are expected to enhance further their application in disease 
prediction and other medical applications.
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