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Abstract
Background For the adoption of machine learning clinical decision support systems (ML-CDSS) it is critical to understand 
the performance aid of the ML-CDSS. However, it is not trivial, how the performance aid should be evaluated. To design 
reliable performance evaluation study, both the knowledge from the practical framework of experimental study design and 
the understanding of domain specific design factors are required.
Objective The aim of this review study was to form a practical framework and identify key design factors for experimental 
design in evaluating the performance of clinicians with or without the aid of ML-CDSS.
Methods The study was based on published ML-CDSS performance evaluation studies. We systematically searched arti-
cles published between January 2016 and December 2022. From the articles we collected a set of design factors. Only the 
articles comparing the performance of clinicians with or without the aid of ML-CDSS using experimental study methods 
were considered.
Results The identified key design factors for the practical framework of ML-CDSS experimental study design were perfor-
mance measures, user interface, ground truth data and the selection of samples and participants. In addition, we identified 
the importance of randomization, crossover design and training and practice rounds. Previous studies had shortcomings in 
the rationale and documentation of choices regarding the number of participants and the duration of the experiment.
Conclusion The design factors of ML-CDSS experimental study are interdependent and all factors must be considered in 
individual choices.

Keywords Clinical decision support systems · Experimental design · Machine learning · Literature review

1 Introduction

A clinical Decision Support System (CDSS) is a software 
device that supports clinicians in decision making. For 
example, a CDSS can indicate areas on an X-ray image from 
where a fracture can be found [1, 2], guide an endoscopist to 
execute examination comprehensively [3] or warn clinicians 
of hypoxaemia/hypotension risk [4, 5].

Recent CDSSs utilize advanced machine learning (ML) 
techniques. However, traditional accuracy measurements 
of ML algorithms are not sufficient to show that the ML-
CDSS is effective also in a real clinical environment. The 

human decision-making process is complex and biased. It 
cannot be assumed that clinicians will always closely fol-
low the recommendations of ML models [6, 7]. For that 
reason, it is especially important to measure the performance 
of ML-CDSS software being developed and to validate the 
functionality well in advance by using suitable experimental 
methods before large-scale and expensive implementation.

In this study, we reviewed recent studies in which the per-
formance of ML-CDSSs were measured using experimental 
study methods. The objective was to review how experimen-
tal studies measuring the performance of clinicians with or 
without the aid of ML-CDSS have been designed and con-
ducted. Highlighting what aspects have been considered and 
what choices made in previous studies can provide guidance 
for the design of future experiments. Also, shortcomings 
in existing studies are identified, and places for improve-
ment can be shown. For the review, we group the design 
factors and form a framework of ML-CDSS experimental 
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study. In particular, we identify and explore the important 
individual ML-CDSS domain specific factors that require 
special attention.

The contribution of this study is that the studies selected 
for this review compare the performance of clinicians with 
and without the aid of a ML-CDSS. As far as we know, the 
studies selected for the previous review studies have com-
pared mainly the performance of clinicians and ML mod-
els alone [8–11]. Furthermore, in this study we focus on 
the practical implementation of a ML-CDSS performance 
evaluation study. For example, recent artificial intelligence 

extensions [12, 13] for the clinical trial protocols and report-
ing guidelines focus on defining the items that should be 
reported, such as algorithm version and input/output data, 
not the questions about the practical implementation of 
experiments.

This review study is divided into two parts. Section 2 pre-
sents the methods used to search the published ML-CDSS 
performance evaluation studies and summarizes the selected 
studies (Table 1). Section 3 forms a framework of ML-CDSS 
performance evaluation study and groups the factors (Fig. 1), 
and discusses the important individual design factors.

Table 1  Publication year, disease, machine learning technology and 
expertise of the participants from the studies selected for the review. 
Diseases: number of cancer ML-CDSS studies: 14 (48.28%); num-
ber of fracture ML-CDSS studies: 4 (13.79%); number of other 
studies: 9 (31.03%); ML technologies: number of CNN techniques: 
22 (75.86%); number of RL techniques: 1 (3.45%); number of other 

techniques: 7 (24.14%); Expertise: number of Anaesthesiologist: 2 
(6.90%); number of pathologists: 2 (6.90%); number of endoscopist 
4 (13.79%); number of radiologists: 16 (55.17%); number of others: 
7 (24.14%). ML = Machine Learning; CNN = Convolution Neural 
Network; RL = Reinforcement Learning; GMM = Gaussian Mixture 
Model

Author Year of 
publication

Disease ML technology Expertise of participants

Dhombres et al. [22] 2019 Pregnancy location Knowledge based ontology Obstetrics, gynecology
Lundberg et al. [4] 2018 Hypoxaemia Gradient boosting Anaesthesiologist
Steiner et al. [23] 2018 Breast cancer CNN Pathologist
Lindsay et al. [1] 2018 Wrist fracture CNN Emergency medicine clinician
Kaini et al. [24] 2020 Liver cancer CNN Pathologist
Wu et al. [3] 2019 Gastric cancer CNN, RL Endoscopist
Wang et al. [25] 2019 Colorectal cancer CNN Endoscopist
Bien et al. [26] 2018 Knee injury CNN + Logistic regression Radiologist, Orthopedic surgeon
Wijnberge et al. [5] 2020 Hypotension Logistic regression Anaesthesiologist
Su et al. [27] 2019 Colorectal cancer CNN Endoscopist
Zhou et al. [2] 2020 Rib fracture CNN Radiologist
Tajmir et al. [28] 2019 Bone age assessment CNN Radiologist
Sim et al. [29] 2019 Lung cancer CNN, commercial tool Radiologist
Lee et al. [30] 2020 Thyroid cancer CNN Radiologist
Kozuka et al. [31] 2020 Lung cancer CNN, commercial tool Radiologist
Jang et al. [32] 2020 Lung cancer CNN, commercial tool Radiologist
Cha et al [33] 2019 Muscle-invasive bladder cancer CNN Radiologist
Cai et al. [34] 2019 Esophageal cancer CNN Endoscopist
Sato et al. [35] 2021 Hip fractures CNN Clinician
Yu et al. [36] 2019 Breast cancer GMM, Random forest Radiologist
Choi et al. [37] 2021 Thoracic disease CNN Radiologist
Choi et al. [38] 2022 Skull fracture CNN Radiologist
Shang et al. [39] 2022 SARS-COV-2 CNN Radiologist
Roller et al. [40] 2022 Graft failure Gradient boosting Physicians (internal medicine or 

nephrology)
Wang et al. [41] 2022 Pancreatic cancer CNN Radiologist
Yacoub et al. [42] 2022 Cardiac, pulmonary and 

musculoskeletal diseases
CNN, commercial tool Radiologist

Wei et al. [43] 2022 Breast cancer Commercial tool Radiologist
Wataya et al. [44] 2022 Lung cancer CNN Radiologist
Toda et al. [45] 2022 Lung cancer CNN, commercial tool Radiologist, pulmonologist
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2  Methods

2.1  Search strategies

Our literature search was conducted in PubMed using the com-
bination of search terms (see Appendix). The search was limited 
to articles published between January 2016 and December 2022.

We included articles if study compared the performance 
between clinicians with the aid and without the aid of a CDSS, 
CDSS was based on ML techniques (ML-CDSS), and study 
was experimental and systematically designed. Articles were 
excluded if the comparison was between the performance of ML 
algorithm alone and the performance of a clinician without the 
CDSS (e.g. [14–19]), or study was observational (e.g. [20, 21]).

On the basis of the above inclusion and exclusion cri-
teria, one author (MN) screened article titles and abstracts 
and identified eligible articles. The full texts of eligible arti-
cles were retrieved. Indistinct samples of this process were 
resolved by discussion with other authors.

2.2  Results

Following the search process, 1276 citations were retrieved 
from the database and 1152 articles were excluded based 
on their titles and abstracts, resulting in 124 articles to be 
reviewed in detail. In addition, 94 articles were further 
excluded based on their full text. Finally, 29 studies were 
included for review.

The data we obtained from each study were year of pub-
lication, disease, ML technology, research type (laboratory/
field), independent and dependent variables, performance 
measures, participants (number of subjects, expertise, train-
ing), experiment design (randomization, crossover), samples 
(user interface, number of samples), test duration, ground 
truth data and performance values.

Table 1 presents top-level figures, such as year of publica-
tion, disease, ML technology and expertise of participants. 
All the selected studies were published between 2018-2022. 
In many studies, the ML-CDSS was developed to help diag-
nose cancer (48.28% of the studies). ML technology was 
based in almost all studies on convolutional neural networks 
(75.86% of studies). The participants of the studies were 
most often radiologists (55.17% of the studies).

3  Framework for clinical DSS performance 
evaluation study

Our analysis follows the framework depicted in Fig. 1. 
The framework, derived from research literature [46, 47], 
groups the factors of ML-CDSS performance evaluations 
study in five groups: experimental setup (Section 3.1), par-
ticipants (Section 3.2), experiment design (Section 3.4), 
samples (Section 3.3) and statistical tests and models for 
result data. Next, Sections 3.1–3.4 discusses individual fac-
tors of each group.

The aim of the study

Experimental setup
• Research environment

• Laboratory research
• Field research

• Variables
• Independent variables
• Dependent variables
• Performance measures

• Task effec�veness
• Task efficiency 
• Mental efficiency
• Review panel evalua�on

• Define research ques�ons
• Define hypotheses

Sta�s�cal tests / models for result data

Par�cipants
• Number of par�cipants
• Expert/naïve
• Exper�se
• Training, Prac�ce rounds

Samples
• User interface

• Input/output of algorithm
• Pa�ent background informa�on

• Number of samples
• Power analysis 
• Test dura�on

• Ground truth data

Experiment design
• Randomiza�on

• Complete randomized design
• Randomized blocked design

• Within-subjects / between-subjects
• Crossover

Results: Answers for the 
research ques�ons

Fig. 1  The framework of ML-CDSS performance evaluation study. The factors of the framework are grouped into five groups: experimental 
setup, participants, experiment design, samples and statistical tests and models for result data
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3.1  Experimental setup

The objective of study defines frames for experimental 
setup. That is, what is measured (variables that are modified) 
and where experiment is conducted (research environment). 
When research environment and independent and dependent 
variables are fixed, research questions and hypothesis can 
be refined.

3.1.1  Research environment

Research environment can be classified as a field study or 
a controlled laboratory study or something between them. 
A field study refers to a natural clinical environment where 
clinicians use the ML-CDSS. With field studies, not all vari-
ables can be controlled for and their effects should be taken 
into account in the study design. A controlled laboratory 
study is carried out in an isolated space and time. In labora-
tory studies, important research variables are modified while 
other variables are constant.

In the studies in this review, the distinction between a 
laboratory and a field study was made based on the data 
type. If a study used retrospective data and participants used 
ML-CDSS for simulating patient examination, it was con-
sidered laboratory research. If a study collected prospective 
data and ML-CDSS was used as a part of normal patient 
examination, it was considered field research. Five studies 
in this review (17.24% of the studies) were classified as field 
studies (see Table S1 in Supplementary material). In studies 
[3, 5, 25, 27, 42], clinicians examined consecutive patients 
randomly with the aid of ML-CDSS or without the aid. The 
other 25 studies were laboratory studies. These studies used 
retrospective data that was presented to participants who 
executed tasks with the aid of ML-CDSS or without the aid. 
The tasks of these studies simulated patient examinations.

3.1.2  Independent and dependent variables

An experimental performance study measures the change of 
the dependent variable when the level of independent vari-
able is changed. In the studies in this review, the primary 
independent variable was ML-CDSS aid, which has the 
two levels: with and without the aid. Dependent variable of 
the studies was, for example, the number of detected find-
ings, diagnoses estimated by participants or reaction/review 
time. The primary hypothesis was that the aid of ML-CDSS 
increases the performance in executing tasks. That is, with 
the aid of the ML-CDSS, clinicians estimate diagnoses more 
accurately or detect symptoms faster than without the aid of 
the ML-CDSS.

Some studies in this review (51.72% of the studies) 
had more than one independent variable (see Table S1 in 

Supplementary material). For example, study [1] grouped 
the participants in the groups of medical doctors and physi-
cian assistant. Study [24] grouped the participants in the 
groups of GI (gastrointestinal) subspecialty, non-GI sub-
specialty, trainee and pathologist not-otherwise classified. 
Study [29] grouped the participants in the groups of resident 
or chest radiologists. Study [30] groups the participants in 
the groups of trainee or staff radiologist. Study [24] meas-
ured the effect of tumor grade for the clinicians’ perfor-
mance. Study [33] measured the effect of the difficulty of 
chemotherapy response evaluation for the clinicians’ perfor-
mance. These additional independent variables answered to 
the research question if clinician’s professional level or the 
difficulty of the task had an effect on the clinician’s perfor-
mance to execute tasks with or without the aid.

3.1.3  Performance measures

If participants perform tasks more effectively or efficiently 
at one level of the independent variable than at the other, 
the value of the dependent variable changes. The change is 
quantized by performance measures. Study [48] grouped the 
performance measures in three categories: task effective-
ness, task efficiency and mental efficiency. In addition to 
this, we defined a fourth category: review panel evaluation. 
Review panel evaluation measures are values that are scored 
after the study by an external expert panel.

Table 2 groups the dependent variables and performance 
measures of the studies in this review into four performance 
measure categories. 24 studies (82.76% of the studies) in this 
review, used task effectiveness measures (see Table S1 in Sup-
plementary material). Task effectiveness measures indicate 
the ratio of correctly classified or evaluated samples to total 
number of samples. These measures identify whether the ML-
CDSS assisted participants to perform tasks more effectively. 
For example, the accuracy of diagnoses (e.g., early pregnancy, 
cancer diagnose, knee injury, wrist or rib fractures, bone age) 
was an often-used performance measure [22, 24, 26, 28–30]. 
Also, the performance measures of sensitivity and specificity 
[1, 2, 23, 26, 31, 41, 43, 44] and AUC value (area under curve) 
[4, 32, 33, 37, 38, 40, 43–45] were often used.

11 studies (37.93% of the studies) in this review, used 
task efficiency measures (see Table S1 in Supplemenary 
material). Task efficiency measures indicate if ML-CDSS 
aided clinician to execute tasks more efficiently. These 
measures are related to examination time or the number of 
repetitions, detections or incidents. For example, studies [2, 
3, 22, 23, 25, 27, 32, 41, 42, 44] measured time to execute 
tasks (e.g., scan duration, review time, reaction time, reading 
time). Studies [3, 5, 22, 25] measured the numbers of detec-
tions (e.g., number of polyps, number of unobserved sites), 
repetitions (e.g., number of scan images) and incidents (e.g., 
number of treatments or hypotensive events).
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Detection rate is a typical value derived from the num-
bers of detections. For example, study [25] calculated the 
detection rates of polyps/adenomas per sample. That is, how 
many polyps/adenomas clinicians found from one colonos-
copy patient with the aid of ML-CDSS or without the aid.

Mental efficiency measures indicate required mental 
resource or confidence to perform a task. Mental efficiency 
can be measured with a self-reported questionnaire, which 
collects numerical values or comments. Three studies in 
this review [23, 30, 32] measured mental efficiency val-
ues (see Table S1 in Supplementary material). Study [23] 

used the scale of 0-100 to rate obviousness, when the task 
was to decide the category of negative, isolated tumor cells, 
micrometastasis, or macrometastasis from digitized slides 
from lymph node sections. Study [30] used the scale of 1-5 
when the task was to measure the level of confidence in 
identifying cervical lymph node metastasis. Study [32] used 
the scale of 1-100 when the task was to measure the level 
of confidence in detecting potential malignant lung lesions.

Review panel evaluation relates to an external expert 
panel which performs a post-hoc evaluation for the results/
documentation of a task. Two studies in this review used 

Table 2  Performance measures and dependent variables from the 
studies of this review for evaluating clinicians with or without the aid 
of ML-CDSS were categorized into the groups of task effectiveness, 

task efficiency, mental efficiency and review panel evaluation. AUC = 
Area Under Curve, RMSE = Root Mean Square Error

Performance measure Dependent variable Authors

Task effectiveness Accuracy, sensitivity,  
specificity

Pregnancy location and diagnosis [22]

Cancer diagnosis/detection [23, 24, 
29–32, 34, 
36, 41, 43, 
44]

Knee injury diagnosis [26]
Fracture diagnosis [1, 2, 35, 38]
Bone age (one year range) [28]
SARS-CoV-2 diagnosis [39]
Abnormal finding [45]

AUC A relative risk of hypoxaemia [4]
Confidence rate if malignant lung lesion is detected [32, 45]
Likelihood of complete response of chemotherapy [33]
Localizing thoracic abnormalities [37]
Likelihood of fracture [38]
Likelihood of graft failure [40]
Likelihood of presence of the 15 characteristics (pulmonary nodules nodules) [44]
Dichotomized pattern of benign or malignant breast masses [43]

RMSE Bone age [28]
Task efficiency Time (avg) Reading, review, withdrawal, scan, inspection, diagnosis time [1–3, 5, 22, 

23, 25, 27, 
32, 41, 42, 
44]

Time-weighted average of hypotension, total time with hypotension, percentage 
of time spent with hypotension during surgery

[5]

Number of repetitions Number of scans [22]
Number of detections Number of detected polyps/adenomas [25, 27]

Number of unobserved sites in patient [3]
Number of chest CT recommendations [32]

Number of incidents Number of hypotensive events per patient [5]
Number of treatments per patient [5]

Mental efficiency Obviousness score Obviousness rate of breast cancer lymph node [23]
Confidence score Level of confidence in identifying cervical LNM [30]

Confidence rate for detected malignant lung lesion [32]
Review panel evaluation Trust Trust score (results of simulated ultrasound imaging) [22]

Quality Quality of image set (results of simulated ultrasound imaging) [22]
Completeness Completeness of photo documentation (real time esophagogastroduodenoscopy) [3]
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review panel evaluation measures (see Table S1 in Supple-
mentary material). For example, in study [22] an external 
expert panel evaluated the trustworthiness of documentation 
produced by the participants of an experiment. The task of 
the participants was to diagnose early pregnancy and preg-
nancy location from ultrasound imaging. In study [3], an 
external expert panel evaluated the completeness of photo 
documentation produced by the participants who conducted 
esophagogastroduodenoscopy examinations.

3.1.4  Statistical tests

Statistical tests are used to prove the statistical signifi-
cance of the difference between the values of perfor-
mance measure for the different levels of the independent 
variable. The selected performance measure defines the 
requirements for statistical tests. Different tests are used 
for continuous, category and count data. In many studies, 
t-test was used because the output of performance meas-
ures was continuous value [4, 22, 26, 27, 39–42]. Also, 
non-parametric Mann Whitneu U test was used in some 
studies [3, 44]. For the categorical outputs, for example, 
the exact McNemar or chi-squared tests were used [3, 5, 
22, 26, 27, 41–43].

3.2  Participants

With traditional randomized clinical trials, the patients 
undergoing medical examination are the participants of the 
study. With ML-CDSS performance experiment studies, cli-
nicians who execute experimental tasks are the participants 
of the study.

In general, experimental study participants are classified 
as naïve or experts. Naïve participants do not have deep 
understanding or experience in the domain whereas expert 
participants do. The participants in the all studies in this 
review were experts (Table 1). They were pathologists [23, 
24], endoscopists [3, 25, 27], radiologists [26, 28–33, 36, 
37, 41–44], orthopedic surgeons [26], internal medicine and 
nephrology physicians [40], emergency physicians [38] or 
anaesthesilogists [4, 5].

The important study design question is the number of par-
ticipants. In the studies reviewed, the number of participants 
was mainly between 2-16 (see Table S2 in Supplementary 
material). Studies [1] and [35] were exceptions with 40 and 
31 participants. According to recommendations, the number 
of naïve participants should be more than 15 [49] or 20 [50]. 
Statistically significant results are possible to achieve with 
lower numbers of expert participants than with naïve par-
ticipants. According to the study [51], the number of expert 
participants should be 10-15. However, none of the stud-
ies in this review discussed how they chose the number of 
expert participants.

3.3  Samples

3.3.1  User interface

All data (patient information) of the experiment is presented 
via the user interface (UI) for participants and the values of 
dependent variables are entered using the input elements of the 
UI. We identified two patient information types presented in the 
UI: patient background information and decision support infor-
mation. Patient background information means patient-related 
medical knowledge, such as medical history and results from 
physical examinations, laboratory or imaging findings. Deci-
sion support information means the output information of the 
ML algorithm incorporated in the ML-CDSS.

Table 3 presents patient background and decision support 
information that was presented for participants in the stud-
ies in this review. We found that 22 studies in this review 
presented only decision support information on UI, such as 
heat maps or bounding boxes on medical image [1, 2, 22–24, 
26, 29–39, 42–45], but no patient background information 
on the UI. Only seven studies [3–5, 25, 27, 40, 41] presented 
patient background information on the UI.

We further divided decision support information into two 
types:

• Category support information: a predicted probability/
category of diagnosis/state of patient

• Guidance support information: an instructional guidance 
for participants to execute patient examination compre-
hensively or better.

In 25 studies in this review (86.2% of the studies), decision sup-
port information belonged to the category group (Table 3). In 
many of these cases, decision support information was presented 
as heat maps on medical images. For example, in study[1] if the 
ML algorithm found a fracture, heat map was used for showing 
the location of the fracture and the confidence of the model’s 
prediction. Study [23] visualized confidence that tissue contains 
tumor by using cyan and green rectangles on images. Study [26] 
highlighted regions on an image that were important for the 
model’s knee injury classification decision.

In four studies [3, 22, 25, 27], decision support infor-
mation belonged to the guidance group (Table 3). The aid 
tested in these studies was instructional guidance for par-
ticipants to execute a task more efficiency or comprehen-
sive. For example, in study [3] a virtual stomach model was 
presented to guide endoscopist to find blind spots. In stud-
ies [25, 27] bounding boxes were presented on the video 
image for showing the locations of polyps. Furthermore, 
audio prompts were played to help tune withdrawal speed 
or to alarm for potential polyps. In study [22] the ML-CDSS 
presented keyword suggestions for participants for selecting 
reference images from a database.
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3.3.2  Number of samples

In the studies in this review the term sample refers to an 
entity being examined by the participant, i.e. a patient or 
patient data, such as imaging data, vital signs or other patient 
record data. Many factors affect the required number of sam-
ples, such as evaluation time of one sample, availability of 
participants and the sensitivity of dependent variables for 
the changes of the independent variable.

Power calculation is a traditional method for defining 
the minimum number of samples required for statistically 
significant results. Seven studies [3, 5, 25, 27, 37, 40, 42] 
of this review used and reported power calculations (see 
Table  S3 in Supplementary material). The numbers of 
samples required according to the power calculation were 
between 30 and 651.

If the number of samples is high and test duration 
becomes too long, participants tire, and the quality of col-
lected data suffers. Also, new participants can be difficult 
to recruit for long experiments. Only one study [23] of this 
review discussed or documented test duration: the test dura-
tion was 3 hours including training, instructions, and breaks 
(see Table S3 in Supplementary material).

Also, training and practice rounds lengthen the duration 
of experiment. Although, the training and practice rounds are 
important for reliable results, only five studies in this review 
reported that they conducted some training before the experi-
ment (see Table S3 in Supplementary material). Study [23] 
presented five and study [24] four training samples for the par-
ticipants. Study [22] presented a 2 minutes video and conducted 
a 10 minutes hands on session before the experiment. In study 
[44], the participants received training on the definition of char-
acteristics of the platform before the experiment. In study [42], 
the participants received training on interpretating the platform 
and used the platform for at least 30 days.

3.3.3  Ground truth data

One important study design question is how ground truth 
(GT) data is produced. GT data must be a close estimate for 
the true values of samples. In this study we divided GT data 
production methods into four types: (1) Majority vote, (2) 
High expertise, (3) Many data sources, and (4) Numerical 
data (see Table S3 in Supplementary material).

Majority vote method assumes that the majority opinion 
of a review group is GT for a sample. In many settings, 
majority vote and high expertise methods are used together. 
That is, the group of highly experienced clinicians is used 
for voting. For example, in study [23] GT data was produced 
by the majority vote of three experts (US board certified 
pathologists, > 7 years of experience). In that study and also 
in the studies [1–3, 26, 29, 31, 34, 45, 52], GT method was 
both majority vote and high expertise.

If the number of experts used for generating GT data is 
smaller than three, the method is classified as high expertise 
only, not majority vote. For example, in study [22] the docu-
ments produced by participants were reviewed and scored by 
two senior experienced ultrasound operators.

The method of deriving GT data from many data sources 
combines information from different sources that are not 
available for participants. These data sources are, e.g., 
patient records and other longitudinal patient tracking data. 
The method is viable in particular for retrospective studies 
where longitudinal patient data after patient examination is 
available. For example, in study [4] the hypoaxemia states of 
the patients retrieved from patient records were considered 
GT data. Other examples of the GT method of many data 
sources are studies [24, 26, 28, 30, 33, 34, 36, 37, 39, 40, 
43]. In study [26], expert group produced GT data by using 
all DICOM series, clinical history and follow-up exams of 
samples. In study [28], experts had access to machine learn-
ing attention maps, machine learning bone age scores, and 
the clinical reports to define the bone age from radiographs.

Whereas usually GT data represents the "true diagnosis", 
GT method of numerical data refers to settings where the 
evaluation is not about the correctness of the finding, but 
rather number of findings or the speed of decision mak-
ing. For example, in studies [25, 27] the performance was 
calculated based on the number of detected and analyzed 
polyps/adenomas. Higher number of detected polyps/adeno-
mas was evaluated to be a better result. In study [5] shorter 
hypotension time of the patient and a shorter reaction time 
of the participants were better results. In study [42] shorter 
interpretation time of the chest computer tomography image 
was better result.

Post-hoc GT data means that ground truth values are pro-
duced after the experiment. That is, no prior true values for 
samples exist. For example, in study [3], after experiment, 
two seniors (1–5 years of experience) and three experts (>5 
years of experience) reviewed and scored endoscopy videos 
and documentation generated by the participants. It should 
be noted, that the concepts of post-hoc GT and review panel 
evaluation measure group (Table 2) are similar or same.

3.4  Experiment design

3.4.1  Randomization and within‑subjects/between‑subject 
design

Traditional experiment design can be, e.g., complete 
randomized design (CRD) or randomized block design 
(RCBD). It should be noted that CRD and RCBD con-
cepts differ somewhat between traditional clinical tri-
als and ML-CDSS experiment studies. In the first case, 
patients are the participants of the study who are ran-
domized into groups (yes/no treatment) forming the 
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independent variable. In the latter case, clinicians are the 
participants of the study, and the independent variable 
to be randomized is with/without the aid of ML-CDSS.

The CRD divides clinicians randomly into two groups. 
One group executes tests with the aid of a ML-CDSS 
and the other group without it. In RCBD, first the heter-
ogenous participant group is divided into homogeneous 
same-size sub-groups (blocks). Next, examinations with 
or without the aid are randomized for different blocks. In 
that way, the same number of participants from differ-
ent blocks execute the experiment with and without the 
aid of a ML-CDSS. This can eliminate variance sources 
from confounding factors, such as professional level of 
participants. That is, RCBD ensures that with/without aid 
condition has, for example, an equal proportion of differ-
ent professional levels. As a result, differences between 
the conditions cannot be attributed to professional level.

Furthermore, the experiment design can be classi-
fied as within-subject or between-subject design. In 
the between-subject design, one clinician conducts the 
experiment always at the same level of the independent 
variable. In the within-subject design, all levels of inde-
pendent variable are presented for all clinicians. That 
is, between-subject design divides clinicians into two 
groups: one group executes tests with the aid and other 
group without the aid. Within-subject design presents the 
with aid and without aid settings for all clinicians. That 
is, all clinicians evaluate the same sample twice (with 
and without aid) or part of samples with the aid and part 
of samples without the aid. In this review, 82.8% of the 
studies applied within-subject experiment design (see 
Table S4 in Supplementary material). For example, stud-
ies [1, 22, 29, 31, 45] presented all samples without the 
aid first and then with the aid for all participants. Study 
[23] presented samples randomly with or without the aid 
first for all participants and then the opposite for the sec-
ond round. Studies [2, 5, 28, 30, 43] presented one sample 
first without the aid of ML-CDSS and then with the aid.

3.4.2  Crossover

Crossover is an important concept for evaluating the perfor-
mance of the aid of ML-CDSS. Crossover design executes 
two or more experiment sessions for each participant. For 
example, in the first experiment session, participants evalu-
ate half of the samples with the aid and half of samples 
without the aid. Then, after a washout period, in the second 
session, participants evaluate the same samples but now with 
aid, if originally evaluated without aid, and vice versa. It is 
assumed that the washout period decreases the memory foot-
print from the first session. It should be noted, that crossover 
design is limited for laboratory studies in which retrospec-
tive data is used.

Twelve studies [22–24, 26, 29, 31, 32, 34, 38, 44] in this 
review (41.4% of the studies) used a crossover design (see 
Table S4 in Supplementary material). The length of the 
washout period varied. In studes [2, 22] the washout period 
was two months. In study [29] the washout period was only 
2-6 hours. In other studies, the washout period was from 7 
to 28 days. When planning the length of the washout period, 
it is important to note that participants may recall samples 
for a long period after the experiment, particularly the dif-
ficult samples. Study [53] recommended that the washout 
period should be at least 2 weeks. On the other hand, with 
a long washout period, the participant’s diagnostic criteria 
could have changed over time. For example, participants 
could have gained more experience or changed their attitude 
toward diagnostic criteria [54].

4  Discussion

The aim of this review study was to summarize experimen-
tal study design factors for measuring the performance of 
clinicians with or without the aid of a ML-CDSS. The key 
factors were performance measures, user interface, ground 
truth data, samples and participants.

Figure 2 shows dependencies between the selection of 
proper performance measure and dependent variables and 
ground truth. First, dependent variables (input requested 
from the participant) determine which performance meas-
ures can be calculated. With the task effectiveness measures 
(such as accuracy, sensitivity, specificity and AUC), input 
value is binary [0,1] or a probability/continuous value. If 
the AUC value is the preferred performance measure, then 
the input should be a probability/continuous value. Accu-
racy, sensitivity and specificity performance measures can 
be calculated from binary inputs. It’s important to note, that 
probability/continuous values can be harder for participants 
to estimate than binary states. Second, the research envi-
ronment (retrospective vs. prospective study or laboratory 
vs. field research) also affects selectable performance meas-
ures. With prospective research settings, no task effective-
ness measures (such as AUC, accuracy, sensitivity, speci-
ficity) can be used, because no exact numerical GT values 
are available. Task effectiveness measures require exact GT 
values, such as true diagnosis or patient state. That is, for 
the prospective research settings, the performance measures 
of task efficiency, mental efficiency or review panel evalu-
ations should be used.

Different performance measures provide different infor-
mation about the ML-CDSS. Task effectiveness and task 
efficiency measures calculate simple numerical or ratio 
values (e.g. accuracy level or detection ratio). If more deep 
or subjective evaluations, such as benefits or pitfalls of the 
system, are required, the use of mental efficiency measures 
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should be considered. For example, mental efficiency meas-
ures can be used for evaluating the difficulty of the task or 
participant’s confidence or what are situations when ML-
CDSS interferes decision making. Answers can be given on 
a numerical scale or in open answers. For example, study 
[55] used a method of "thinking-aloud-test" in which the 
participants communicate their thoughts aloud while inter-
acting with the system. For the situations when the outputs 
of participants are difficult to quantify, such as written 
reports or other documentation, the evaluation of review 
panel measures can be the proper choice. However, review 
panel evaluation measures are expensive to use, when the 
number of participants is high.

A key step of designing the elements of UI is to determine 
available patient information. In this review, we divided 
patient information into the groups of patient background 
and decision support. Patient background information is all 
relevant medical knowledge about the patients. Decision 
support information is based on the output of the incor-
porated ML algorithm. First step of designing the UI is to 
review information available at a normal patient examina-
tion. That is, patient background information that clinicians 
use for planning treatments and interventions. We found that 
many studies in this review presented only decision support 
information on UI, but no patient background information 
on the UI. It should be noted that the results of laboratory 
type studies are comparable to normal patient examinations 
only when all patient’s background information relevant to 
the task is presented in the UI.

The design of the number of participants and samples 
and the design of duration of test are interdependent. The 
required number of samples depends on how large the 
difference is between the levels of dependent variable. If 
the difference is small, the number of samples should be 
higher for significant results. Power analysis can be used 
for approximating number of samples. The total number of 
samples can be increased either by increasing the number 
of participants or by increasing the number of samples 
evaluated by one participant. It should be remembered, 
though, that when the number of samples evaluated by one 
participant is increased, experiment duration lengthens. 
Too long an experiment causes fatigue, which lowers the 
quality of input values. It is also important to document all 
relevant information about the samples and participants. 
Only one study [23] in this review documented the dura-
tion of the experiment. One rule of thumb for determin-
ing the number of samples is to limit the duration of the 
test to 30 minutes. Then by calculating an average time 
to evaluate one sample, a maximum number of samples 
can be calculated. The number of participants should be 
high enough to produce significant differences between 
the samples.

In addition to the factors of experimental design, there are 
other important issues involved in the practical implementa-
tion of ML-CDSS experiments that should be recognized. 
For example, the accuracy of the ML method incorporated 
in ML-CDSS affects the performance of the clinicians. For 
example, in study [24], when the ML algorithm predicted 

• With / without aid
• Experience level 
• Difficulty of the task • Probability of diagnosis [0-1]

Independent variables Dependent variables

• Reac me [seconds]
• Review me [seconds]

• Diagnosis [0,1]

• Counts of detected samples 
ve numbers]

• Evalua n scale [categories, 
scale]

Performance measures

• Accuracy, sen vity, specificity

• AUC

• Documenta , collected
images

• True diagnosis / 
state of the 
pa ent

Ground truth data

• Average mes

• Average counts

• Average scale values

• Trust / quality scores given by 
the review panel

Task effec ss

Task efficiency

Mental efficiency

Review panel evalua ons

• Completeness scores given by 
the review panel

• Smaller/higher 
value is be er
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• Expert opinions

Fig. 2  Experimental performance study of clinical decision support 
system aims to prove that by changing the independent variable the 
dependent variables change. Performance measures are used to meas-
ure the significancy of the change. Performance measures are cal-
culated by comparing the values of dependent variables and ground 

truth. In this study we grouped the performance measures into the 
groups of task effectiveness, task efficiency, mental efficiency and 
review panel evaluation. Different ground truth data types are used 
for different performance measures
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correct diagnoses, ML-CDSS improved the accuracy of the 
clinicians. When the predictions were incorrect, ML-CDSS 
significantly decreased their accuracy.

The conclusions of the experiment should analyze 
whether the use of a ML-CDSS caused false negatives. 
That is, positive samples were missed because of the sug-
gestions of the ML-CDSS. A reason can be that clinicians 
relied more on the ML-CDSS than their own conclusions. 
False negatives can be related to the low accuracy of ML 
algorithm, but may also be related to the information pre-
sented on UI. For example, if explanations for the factors 
affecting the predictions of the ML algorithm are presented 
and are interpretable in the UI, the clinician can interpret 
whether the prediction is reliable and whether it should be 
taken into account in the decision making. One important 
research question of ML-CDSS performance evaluations 
presented in recent studies is how providing explanations of 
ML model results and factors affecting it benefits decision 
making [48, 56, 57].

Finally, when drawing conclusions from the results of the 
experiment, it is important to keep in mind that experimen-
tal environment often does not correspond to a real clinical 
environment. For example, in a laboratory study of ML-
CDSS, there are no unrelated distractions, nor are there other 
examinations requiring the attention of clinicians. This may 
increase the performance of clinicians to decide the condi-
tion of patient.

4.1  Limitations

The coverage of the ML-CDSS studies selected for this 
review may be incomplete. For example, we did not review 
conference abstracts or studies written in a language other 
than English. In addition, publication biases may occur 
because studies that report results showing that a ML-CDSS 
increased the performance are more likely to be published 
more frequently.

5  Conclusions

The aim of this review study was to analyse how experi-
mental studies for measuring the performance of clinicians 
with or without the aid of ML-CDSS have been conducted. 
We explored key design factors and reviewed the choices 
made in previous studies regarding the factors. For exam-
ple, dependent variables of experiment setup and available 
patient data determine performance measures that can be 
calculated. If the performance is measured by AUC values, 
probability/continuous input values (dependent variables) 
and retrospective patient data are required. In some studies 
more deep or subjective information, than just numerical 

values, were collected by mental efficiency type measures. 
The number of samples, number of participants and the 
duration of experiment are interrelated. The number of 
samples should be high enough to produce statistically 
significant results. However, increasing the number of 
samples per participant and thereby increasing the dura-
tion of experiment, can cause fatigue, which can lower 
the quality of input values. In many studies no patient 
background information was available for the participants. 
Such experiment setups differ from a real world patient 
examination and can bias the results.

Appendix: Search syntax for the Pubmed

("Machine Learning*"[Mesh] OR "Deep Learning"[MeSH] 
OR "Neural Networks, Computer*"[Mesh] OR scan 
assistant[Title/Abstract] OR “deep learning” [Title/
Abstract] OR "random forest"[Title/Abstract] OR "support 
vector machine" [Title/Abstract] OR "decision tree"[Title/
Abstract] OR "gradient boosting"[Title/Abstract])

AND
("Proof of Concept Study"[Mesh] OR "ROC 

Curve"[Mesh] OR “Prospective Studies” [Mesh] OR 
“with and without” [Title/Abstract] OR examination[Title/
Abstract]) OR "controlled experiment"[Title/Abstract] OR 
“unblinded randomized clinical trial” [Title/Abstract] OR 
“prospective randomized controlled study” [Title/Abstract])

AND
("Decision Support Systems, Clinical"[Mesh] OR "Image 

Interpretation, Computer-Assisted"[Mesh] OR "Image 
Interpretation, Computer-Assisted/statistics and numerical 
data"[MAJR] OR "Image Processing, Computer-Assisted/
methods"[MAJR] OR "clinical understanding" [Title/
Abstract] OR “computer-aided diagnosis” [Title/Abstract] 
OR “early warning system” [Title/Abstract])

NOT
(Comment[Publication Type] OR editorial[Publication Type] 

OR letter[Publication Type] OR case reports[Publication Type])
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