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1  Introduction

1.1  Background

Type 1 diabetes mellitus (T1D) has been one of the most 
common chronic diseases among children and adolescents 
since the last two decades. The prevalence of T1D world-
wide varies significantly across countries [1, 2]. The Euro-
pean Childhood Diabetes Registry shows a 3.4% increase 
per annum in incidence rate in Europe suggesting that the 
incidence rate will duplicate over the next 20 years [3]. 
The paediatric patients suffering from T1D are at greater 
risk for developing acute rather than chronic complications, 
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Purpose  Paediatric Type 1 Diabetes (T1D) patients are at greater risk for developing severe hypo and hyperglycaemic events 
due to poor glycaemic control. To reduce the risk of adverse events, patients need to achieve the best possible glycaemic 
management through frequent blood glucose monitoring with finger prick or Continuous Glucose Monitoring (CGM) sys-
tems. However, several non-invasive techniques have been proposed aiming at exploiting changes in physiological param-
eters based on glucose levels. The overall objective of this study is to validate an artificial intelligence (AI) based algorithm 
to detect glycaemic events using ECG signals collected through non-invasive device.
Methods  This study will enrol T1D paediatric participants who already use CGM. Participants will wear an additional non-
invasive wearable device for recording physiological data and respiratory rate. Glycaemic measurements driven through 
ECG variables are the main outcomes. Data collected will be used to design, develop and validate the personalised and gen-
eralized classifiers based on a deep learning (DL) AI algorithm, able to automatically detect hypoglycaemic events by using 
few ECG heartbeats recorded with wearable devices.
Results  Data collection is expected to be completed approximately by June 2023. It is expected that sufficient data will be 
collected to develop and validate the AI algorithm.
Conclusion  This is a validation study that will perform additional tests on a larger diabetes sample population to validate 
the previous pilot results that were based on four healthy adults, providing evidence on the reliability of the AI algorithm in 
detecting glycaemic events in paediatric diabetic patients in free-living conditions.
Trial registration  ClinicalTrials.gov identifier: NCT03936634. Registered on 11 March 2022, retrospectively registered, 
https://www.clinicaltrials.gov/ct2/show/NCT05278143?titles=AI+for+Glycemic+Events+Detection+Via+ECG+in+a+Pedi
atric+Population&draw=2&rank=1.
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compared to adult patients [4]. In fact, chronic complica-
tions usually appear after decades of T1D, and it is extremely 
uncommon for children or adolescents to develop significant 
diabetic microvascular or macro-vascular complications. 
Therefore, it is pivotal that those paediatric patients achieve 
an optimal T1D management by reducing the HbA1c levels 
and glycaemic variability.

Several studies confirmed that a good management of 
diabetes during the paediatric age not only reduces the risk 
of adverse events but is able to delay the onset of long-term 
complications [5, 6]. The T1D management requires daily 
Self-Monitoring of Blood Glucose (SMBG). The increase 
in daily frequency of SMBG is highly correlated with the 
reduction in HbA1c level which is associated with occur-
rence of complications [7]. However, paediatric and ado-
lescent patients may struggle with SMBG and self T1D 
management not only due to paradigm shift in diet, but also 
because SMBG require the use of finger pricks which are 
invasive and cumbersome. This, as a consequence, may 
affect patient compliance with the glucose measurement [8]. 
As an alternative, Continuous Glucose Monitoring (CGM) 
can infer glucose levels in real-time based on glucose in 
interstitial fluid which may help in reducing self-care bur-
den in terms of improvement in non-invasive capture of gly-
caemic values per day without frequent finger prick. The use 
of CGM devices has shown significant improvement of glu-
cose control among diabetic patients [9, 10]. Nevertheless, 
CGM devices are expensive and can be only worn between 
7 and 14 days [11, 12]. Besides, the reliability and accu-
racy of the CGM values during low blood glucose levels has 
been questioned in some studies as there are no international 
standards for regulating the measurements [13–17]. They 
are not designed to combine glycaemic values with other 
physiological parameters, food intake or activity measures, 
which are pivotal in diabetes management. Above all, the 
CGM devices require cannula to be inserted in subcutane-
ous tissue which still make them invasive and intolerable by 
the skin of the paediatric subjects.

Over the last few years, with increased number of wear-
able sensors developed for tracking physiological signal, 
several studies have been proposed to estimate the blood 
glucose levels by combining CGM data with physiological 
signals for determining glycaemic events [18, 19]. These 
strategies have the potential to overcome the limitation of 
the CGM devices in terms of non-invasive detection blood 
glucose levels [20–23], while combining physiological 
parameters, physical activity, and food intake for estima-
tion of glycaemic events such as hypoglycaemia (event 
with blood glucose lower than normal) and hyperglycae-
mia (event with blood glucose higher than normal) [20, 24, 
25]. Therefore, the development of a non-invasive real-time 

monitoring system which is able to estimate blood glucose 
levels and/or detect glycaemic events is of great interest.

Previous clinical studies have shown that glycaemic 
events affect certain cardiac characteristics of the heart 
in healthy, type 1 diabetic and type 2 diabetic subjects [5, 
26–30]. These cardiac characteristics can be represented by 
Heart Rate Variability (HRV) parameters such as beat inter-
vals, power spectrum etc. [31]. Moreover, also the relation-
ships of heart rate with hyperglycaemia has been studied, 
emerging that it was associated with reduced HRV [32]. The 
recurring electrocardiogram (ECG) alterations when hypo 
or hyperglycaemic event occurs are P-R interval shortening, 
ST-segment depression, T-wave flattening and QT-interval 
prolongation during hypoglycaemic events, reduction of 
R-R variability, QT interval variability, corrected QT inter-
val variability and increase of P-R interval [33, 34].

With the relatively recent introduction of Artificial Intel-
ligence (AI) in health diagnosis and monitoring, several 
machine learning models have been developed for hypo-
glycaemia and hyperglycaemia detection, all relying on the 
analysis of the previously mentioned ECG alterations. A 
literature review highlighted that much more efforts have 
been spent on the study of hypoglycaemia classification 
and detection compared to hyperglycaemia (39 studies vs. 
5, respectively) [35]. Results from our preliminary study, 
carried out in 2019, are promising in this field [18, 19]. In 
these studies, we successfully applied advanced deep learn-
ing and mathematical modelling techniques, coupled with 
raw ECG signals, to identify nocturnal glycaemic episodes 
with a high degree of accuracy. However, this initial pilot 
work was conducted on healthy adults, thus, without a clini-
cal classification of diabetes. For this reason, this study pro-
poses to expand such results to a wider cohort of paediatric 
diabetes patients, creating a dedicated, and extended dataset 
specific to enhance the accuracy, robustness and validation 
of machine learning and deep learning models. It will lead 
to the development of the generalized model for non-inva-
sive detection of glycaemic events based on ECG signals.

1.2  Rationale

This study is a validation and developmental project. We 
have conducted a pilot study showing that hypoglycaemic 
events can be automatically detected using short-term ECG 
signals recorded with wearable devices in free-living con-
ditions by developing deep learning based models under 
personalized setup [18, 19]. The proposed system can auto-
matically learn patterns in the ECG heartbeat, discriminating 
between heartbeats recorded during low or normal glucose 
levels in the same subject. The deep learning approach has 
shown significantly better performance compared to tradi-
tional machine learning due to their capability of extracting 
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ECG heartbeat patterns at both spatial and temporal levels. 
However, we need to demonstrate the accuracy, robustness, 
and generalization of the AI model for detecting glycaemic 
events in diabetic patient groups. As a result, the proposal 
is focused on gathering physiological data from diabetes 
patients in order to test and validate our AI models.

1.3  Objectives

The purpose of this single-centre, observational, single-arm 
study is to validate our novel AI model for non-invasive 
detection of glycaemic events. To achieve this, we aim to 
detect and measure the relationship between glucose fluc-
tuations in the blood and ECG variability under hypogly-
caemic, glycaemic and hyperglycaemic events. The ECG 
signals will be recorded via non-invasive wearable devices 
for physiological signal measurements whereas blood glu-
cose will be monitored via CGM for T1D paediatric patients 
under free-living conditions.

2  Materials and methods

2.1  Study setting

This is a single-centre, observational, single-arm study. It 
is conducted at the Unit of Endocrinology and Diabetes in 
Bambino Gesù Children’s Hospital, Rome, Italy. The study 
adheres the ethical principles stated in the Declaration of 
Helsinki and the National Health and Medical Research 
Council statement. The protocol was defined following the 
SPIRIT 2013 checklist (recommended items to address in a 
clinical trial protocol and related documents) the study has 
been prospectively registered in clinicaltrial.gov (Clinical-
Trials.gov identifier: NCT05278143).

2.2  Inclusion and exclusion criteria

Both male and female subjects diagnosed with T1D, aged 
less than 18 years old who are currently under the care of the 
Unit of Endocrinology and Diabetes of Bambino Gesù Chil-
dren’s Hospital, Rome, Italy and who use continuous glu-
cose monitoring (CGM) systems are eligible to be involved 
in the study. Patients with coexistence of celiac disease or 
non-diabetic hypoglycaemia or cardiovascular pathologies 
and cardiac arrhythmias are excluded. Furthermore, patients 
who are pregnant or becoming pregnant during the study 
are also excluded as well as patients that use standard finger 
prick glucometer to measure glycaemic values.

Inclusion and exclusion criteria are summarized in 
Table 1.

2.3  Enrolment procedure

Written, informed consent is obtained from parents or care-
givers of each paediatric patient who decided to join the 
study during regular visits. Paediatric patients and parents 
or caregivers are trained at the end of the regular diabetes 
visit by a member of the study team. During the study, par-
ticipants continue to receive the diabetes care which they 
manage regularly as per clinical advice. In this way, the 
study participation will not affect in any way the clinical 
path of the recruited patients. Participants will be assigned 
a code number. The database that links the subject identity 
to the code number will be kept by the medical doctor of the 
study team and protected by username and password.

2.4  Sample size

In this study, 64 paediatric patients with T1D are going to be 
enrolled. The number of subjects was chosen to ensure that 
there is sufficient evidence that the approaches we propose 
are generalizable and consistent with prior similar research 
that enrolled between 21 and 43 subjects In this study, 64 
paediatric patients with T1D are going to be enrolled. The 
number of subjects was chosen to ensure that there is suf-
ficient evidence that the approaches we propose are gen-
eralizable and consistent with prior similar research that 
enrolled between 21 and 43 subjects [36, 37].

2.5  Study procedure

A graphical representation of the study protocol is showed in 
`. 1. As per inclusion criteria, the study participants continue 
to use their CGM device they are already using. During their 
routine diabetes hospital visit, the participants are asked to 
wear an additional wearable device, Medtronic Zephyr Bio-
Patch, for recording the physiological data for a period of 

Table 1  Inclusion and Exclusion Criteria
Inclusion criteria
  Age less than 18 years old
  Diagnosed with type 1 diabetes
  Use of continuous glucose monitoring systems (CGM)
Exclusion criteria
  Use of standard finger prick glucometer to measure glycaemic 
values
  Being pregnant or becoming pregnant during the study
  Coexistence of celiac disease
  Coexistence of non-diabetic hypoglycaemia
  Coexistence of cardiovascular pathologies and cardiac 
arrhythmias
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to the manufacturer, it does not require any calibration with 
finger pricks (see Table 2).

The Medtronic Zephyr BioPatch is a CE marked device 
and it works with 250  Hz sampling frequency and ECG 
amplitude between 0.25 and 15 mV. The performance of this 
sensor as a remote patient monitoring device was assessed 
and validated in previous clinical trials1. To acquire the bio-
medical signals, the wearable device is positioned using two 
gel electrodes on the patient’s chest, below the sternal notch. 
This device should be removed before bathing, showering, 
or swimming, and then worn again as explained during the 
training session. The device can store up to three days of 
ECG recordings, its battery can last for 36 h and can be fully 
charged in less than one hour. Therefore, each volunteer will 
be given two devices and instructed to change it approxi-
mately every 12-hours before showering. The Zephyr 
also records breathing waveform and 3-axis accelerations 
through which activity level and posture can be computed 

1   An Assessment of the Zephyr BioPatch and Its Ability to Moni-
tor Patient Position | Smart Patients. https://www.smartpatients.com/
trials/NCT02548624., Performance Assessment of a Remote Patient 
Monitoring Device - ICH GCP - Clinical Trials Registry. https://ich-
gcp.net/clinical-trials-registry/NCT02570906.

up to three days. After receiving the training session and 
relevant information about the study, the participants are 
allowed to return home with the wearable device attached. 
During the hospital visit, the quality-of-life questionnaire 
for paediatric patients (PEdsQL) is submitted to recruited 
patients [38, 39]. They are asked to answer questions on 
how T1D affects their daily activities.

During the monitoring days, patients can continue their 
daily activities undisturbed, without any changes in either 
physical activities or diet. In this way, data gathered from 
free-living conditions are obtained. Patients receive regular 
contact from the research team not only to check on their 
safety and wellbeing, but also to ensure the data collection is 
successful. At the end of the third day, patients should return 
the devices to the hospital.

Continuous glucose levels are measured using the CGM 
device that each patient already use. Patients who use Free-
Style Libre Flash glucose monitoring system, Dexcom G6 
or Medtronic Guardian sensor are included in the study. The 
former measures the interstitial glucose every 15 min, the 
others every five minutes. Each glucose sensor can be used 
for up to two weeks, also while showering, and, according 

Fig. 1  Shows the study procedure. During the patients’ routine diabe-
tes hospital visit, recruited patients (that already use CGM sensors) are 
asked to wear an additional wearable device, Medtronic Zephyr Bio-
Patch, for recording the physiological data for a period of up to 3 days. 
After receiving the training session and relevant information about the 
study, the participants are allowed to return home with the wearable 
device attached. During the hospital visit, the PEdsQL is submitted 
to recruited patients. During the monitoring days, patients can con-

tinue their daily activities undisturbed, without any changes in either 
physical activities or diet. They should wear the sensor during the day 
and the night and remove it while showering. The device should be 
approximately charged every 12-hours. For this reason, patients were 
provided with two devices. While wearing the second device the one 
used during the day should be recharged and vice versa. At the end of 
the third day, patients should return the devices to the hospital (This 
picture was created by the authors)
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2.6  Outcome measures

2.6.1  Primary outcomes

The primary outcome of the study is the detection of gly-
caemic events.

The glycaemic events can be determined non-invasively 
via ECG signals by the automated AI algorithm which are 

and physical activity can be assessed. Although the sensor 
can remotely record real time signals via Bluetooth, this 
functionality will be disabled, and the data will be down-
loaded by the researcher at the end of three to four days 
monitoring.

Table 2  Main technical characteristics of Freestyle Libre, Dexcom G6 and Medtronic CGM sensors. [Adapted by ECRI Institute]
MANUFACTURER Abbott Diabetes Care Div Abbott Laboratories Inc

FreeStyle Libre Flash Glucose Monitoring System
Dexcom Inc
G6 CGM System

Medtronic Diabetes 
USA Div Medtronic Inc
Guardian Sensor 3 with 
Guardian Connect

SAMPLE TYPE Interstitial fluid Interstitial fluid Interstitial fluid
MEASUREMENT 
RANGE, mg/dL

40–500 40–400 40–400

SENSOR
Life, days ≤ 14 ≤ 10 ≤ 7
Type Filament Transcutaneous Transcutaneous
Placement Back of upper arm Abdomen (adult), abdomen and upper 

buttocks (paediatric)
Abdomen and arm

TRANSMITTER
Water resistant Submerged ≤ 1 m (3 ft) and 30 min Submerged ≤ 2.4 m (8 ft) and ≤ 24 h, 

IP28
IPX8

Operating time, 
hr

348 3 months 170

RECEIVER
Smartphone 
compatible

Yes Yes Yes

Display type LCD Not specified NA (depends on phone)
Frequency of 
glucose readings 
shown

Every min (stored every 15 min) Every 5 min Every 5 min

Rechargeable/
replaceable 
Battery

Rechargeable Rechargeable NA (depends on phone)

Life, days 7 2 NA (depends on phone)
Memory: Number 
of stored readings 
with timestamp

90 days of normal use including continuous glucose 
readings (stored every 15 min) and daily blood 
glucose results

30 days of data 90 days via Mobile App

DATA 
MANAGEMENT

Software FreeStyle Libre Dexcom Clarity (web-based diabetes 
management software, automatically 
uploads data when using a smart 
device)

CareLink Professional

Patient input Food, insulin, exercise, medication, ≤ 6 customiz-
able notes; reminders, 3 predefined (check glucose, 
take insulin, alarm) and ≤ 9 reminders customizable 
through software

Carbohydrates, exercise, insulin, health 
events

Event markers for 
meals, insulin injec-
tions, exercise, blood 
glucose

ALERT INDICA-
TORS, TYPE

Audible or vibrating Audible, vibrating, visual Audible or vibrating

ALARMS
High/low glucose 
concentration

No Yes Yes

Rate of change No Yes Yes
Predictive No Yes Yes
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2.6.2  Secondary outcomes

Clinical outcomes will be assessed through the analysis of 
glycaemic values collected from CGM device. The condi-
tion of each patient is evaluated according to glycated hae-
moglobin level (HbA1c), mean glucose level and glycaemic 
variability, along with the frequency of glycaemic events 
(severe hypoglycaemia, hypoglycaemia, hyperglycaemia, 
and severe hyperglycaemia) and the time spent by subjects 
(minutes per day) in a specific range of glycaemic values 
(severe hypoglycaemia, hypoglycaemia, hyperglycaemia, 
and severe hyperglycaemia). Table 3 shows complete list of 
glycaemic variables with their measure’s units and cut-off 
criteria.

Furthermore, the quality of life of recruited patients with 
T1D will be assessed through PedsQL questionnaire. The 
health-related quality of life questionnaire for paediatric 
age follows the World Health Organization (WHO) recom-
mendation from 1948 for investigating the quality of life of 
children through the physical, psychological (emotional and 
cognitive aspects), and social health dimensions [38, 39].

2.7  Data management

The data collected will be biomedical signals (including 
ECG, Breathing), continuous glucose levels, biomechanical 
variables (3D trunk accelerations), and personal informa-
tion (age, gender). All study data will be anonymized and 
stored on the secure Bambino Gesù Children’s Hospital 
server. The data will be securely stored in a folder accessible 
only by researchers involved in the study with username and 
password.

2.8  Data analysis and modelling

2.8.1  Data processing

The effect of glycaemic events (both hypoglycaemia and 
hyperglycaemia) on the ECG signals across different times 
of the day will be examined. Before performance of data 
analytical methods, we aim to deploy data pre-processing 
methods to extract relevant patterns from raw ECG sig-
nals. The extracted ECG signals may be affected by noise 
occurred due to body movement, respiration, and device 
electrodes. Therefore, we will perform baseline wander 
removal [40, 41] in order to remove low frequency noise 
followed by signal normalization at zero mean and unit 
variance. We will then perform the ECG segmentation in 
order to segment ECG beats and detect fiducial points using 
our segmentation tool developed in a recent study for car-
diovascular disease detection [42]. We will divide the ECG 
data into five to fifteen minutes excerpts in order to annotate 

trained according to glucose measurements from the CGM 
and the cutoff-criteria for different glycaemic events: severe 
hypoglycaemia (glucose level < 50  mg/dl), hypoglycaemia 
(50  mg/dl < glucose level < 70  mg/dl), normal glycaemia 
(70  mg/dl < glucose level < 180  mg/dl), hyperglycaemia 
(180  mg/dl < glucose level < 240  mg/dl), severe hypergly-
caemia (glucose level > 240 mg/dl).

The difference in ECG signals for different glycaemic 
events can be quantified through the assessment of the ECG 
variables (heart rate (BPM), physical activity and posture 
(lying, standing, walking, running) and Heart Rate Variabil-
ity (HRV) features.[31] These features can be categorized 
as:

	● Interval across different fiducial points (millisecond): 
We have five fiducial points (P.Q.R,S,T) and we can 
have total of 9 intervals among them.

	● Slope across different fiducial points (mV/ms): We have 
five fiducial points (P.Q.R,S,T) and we can have total of 
9 slopes among them.

	● Absolute power (ms2/Hz): The signal energy can be 
determined for 5  min ECG excerpt within Ultra Low 
Frequency (ULF) (≤ 0.003  Hz), Very Low Frequency 
(VLF) (0.0033–0.04 Hz), Low Frequency (LF) (0.04–
0.15 Hz) and High Frequency (HF) (0.15–0.4 Hz).

Table 3  Glycaemic Variables with their Measures/Units and Cut-off 
Criteria
Glycaemic variables Measures-Unit Cut off Criteria
Glycated haemoglobin 
level (HbA1c)

(%, mmol/mol) -

Mean glucose level mg/dL -
Glycaemic variability mg/dL -
Frequency of severe hypo-
glycaemic events

Frequency (%) Glucose 
level < 50 mg/dl

Time in severe 
hypoglycaemia

Min/day Glucose 
level < 50 mg/dl

Frequency of hypoglycae-
mic events

Frequency (%) 50 mg/dl < Glucose 
level < 70 mg/dl

Time in hypoglycaemia Min/day 50 mg/dl < Glucose 
level < 70 mg/dl

Normal time in range Min/day 70 mg/dl < Glucose 
level < 180 mg/dl

Frequency of hyperglycae-
mic events

Frequency (%) 180 mg/dl > Glucose 
level > 240 mg/dl

Time in hyperglycaemia Min/day 180 mg/dl > Glucose 
level > 240 mg/dl

Frequency of severe 
hyperglycaemic events

Frequency (%) Glucose 
level > 240 mg/dl

Time in severe 
hyperglycaemia

Min/day Glucose 
level > 240 mg/dl
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2.9  Ethics approval

The study protocol adheres to the ethical principles stated 
in the Declaration of Helsinki and the National Health and 
Medical Research Council statement and was approved by 
the Ethical Committee of Bambino Gesù Children’s Hospi-
tal, Rome, Italy (2260_OPBG_2020). All participants and 
their parents or caregivers will be provided with complete 
information related to their future participation to the study. 
They will be required to fill in a written consent form, where 
the methods, advantages and disadvantages in taking part to 
the experiment will be explained. This will provide a clear 
understanding of the procedure, assure that their informa-
tion will be kept strictly confidential, that their participa-
tion is voluntary, and that they have a right to withdraw at 
any time during the study. This study participation will not 
impose any risks for patients and will not affect in any way 
the clinical path of the recruited patients, as they will con-
tinue to receive their usual diabetes care, and they will con-
tinue to manage diabetes as usual.

3  Results

Data collection is expected to be completed approximately 
by June 2023. It is expected that sufficient data will be col-
lected to develop and validate the generalized AI algorithm. 
Study results will be disseminated through peer reviewed 
journals, a doctoral thesis and conference presentations.

4  Discussion

The main purpose of this study is the development of auto-
mated methods for non-invasive detection of hypoglycae-
mic and hyperglycaemic events among paediatric patients 
suffering from Type 1 Diabetes (T1D). Although glycaemic 
events can result in acute complications among children and 
adolescent more frequently than in adults, however their 
effective management can be helpful in avoiding chronic 
conditions that could also result in death. Under current 
clinical setup, the glycaemic events are determined using 
invasive and cumbersome finger prick methods, which can 
lead the paediatric population not to be fully compliant with 
the diabetic management protocols. Therefore, the develop-
ment of non-invasive methods is pivotal for optimal T1D 
management among paediatric population.

The primary aim of this observational study is to vali-
date and improve a non-invasive method for the detection of 
blood glucose levels, developed during a pilot work in 2020 
[43]. This pilot work was based on detection of hypogly-
caemic events based on ECG signals from healthy subjects. 

them as normal, severe hypoglycaemic or severe hypergly-
caemic events [43]. Population will be described in terms of 
demographic and clinical characteristics. For CGM signals, 
considering the different frequencies of glucose readings 
across the devices (Table 2), we perform linear interpola-
tion to estimate blood glucose measurements at every sec-
ond with respect to real time ECG signals.

2.8.2  Data analysis

Processed data will be analysed using statistical software 
(e.g., SPSS) and programming languages (such as Python or 
R) using descriptive statistics and inferential statistics. We 
aim to determine HRV parameters using the fiducial points 
determined from our ECG segmentation tool. The HRV 
parameters can be categorized into time-domain features, 
frequency domain features and non-linear features [31]. 
Time-domain features include the length and slope among 
the fiducial points (P, Q, R, S and T). The frequency-domain 
features include power spectrum in different frequency 
bands of the short-term ECG excerpts. Other nonlinear fea-
tures include fluctuations and entropy of ECG excerpts. We 
will use the packages from Python such as neurokit2 [44] 
and heartpy [45] in order to determine frequency-domain 
features and other nonlinear features. We will perform sta-
tistical tests such as ANOVA, Mann-Whitney U Test and 
Wilcoxon signed tests to determine the statistical significant 
difference among HRV features from different glycaemic 
events [46, 47].

2.8.3  Data modelling

The inherent part of the project is to develop the mathe-
matical models in order to predict and detect the glycaemic 
events based on ECG signals. The mathematical model-
ling will lead to development of the artificial intelligence-
based models. The artificial intelligence based models vary 
from traditional machine learning models (such as Support 
Vector Machines (SVM), Decision Trees, Artificial Neural 
Networks (ANN) etc.) to advanced deep learning based 
models [48]. The traditional machine learning models have 
the capability to train the static features extracted in both 
time and frequency domains. However, before training the 
model, we need to apply a features selection step in order to 
determine the most suitable features relevant to the glycae-
mic event classification [49]. On the other hand, deep learn-
ing models have the capability to train ECG beat features 
along with their temporal context without prior requirement 
of feature selection methods [50]. For modelling purposes, 
we aim to use well-known frameworks and packages such 
as tensorflow, theano, keras, torch, spark, pandas, scikit-
learn, matlab etc. [51].
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Results of the pilot study showed that the developed per-
sonalized classifiers based on deep-learning artificial intel-
ligence algorithms, can perform automatic detection of 
hypoglycaemic events using the morphology and the short-
term ECG intervals recorded with wearable devices in free-
living conditions. This study is designed to improve the 
efficiency and robustness of the personalized model towards 
Type 1 Diabetes patients.

5  Conclusion

This study approved by the Ethical Committee on March 
2021 (2260_OPBG_2020). Recruitment started on May 
2021 and is expected to be completed approximately by 
June 2023.

The primary aim of this study is the development of the 
generalized AI model for detection of hypoglycaemic and 
hyperglycaemic events in both healthy and diabetic patients. 
The generalized model needs to be trained and tested in a 
variety of healthy and diabetic subjects for accurate detec-
tion of glycaemic events. The development of the accurate 
and robust generalized model is pivotal for efficient man-
agement of the diabetes in paediatric population, drastically 
reducing pain and discomfort of using invasive methods to 
continuously measure glucose levels.

As secondary outcomes, this study aims at investigating 
clinical variables and quality of life of patients recruited. 
These variables will be investigated in order to provide a 
database for paediatric patients. Publicly available data on 
paediatric diabetes patients are still lacking, and this study 
will also aim at collecting clinical and quality of life data for 
this category of patients.

We believe that this intervention will strongly support 
and progress diabetes care research for children and young 
adults with type 1 diabetes, improving glycaemic control 
and consequently the quality of life.
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