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Abstract
Cardiopulmonary resuscitation (CPR) is one of the most critical emergency interventions for sudden cardiac arrest. In this 
paper, a robust sinusoidal model-fitting method based on a Evolution Strategy inspired algorithm for CPR quality parameters 
– naming chest compression frequency and depth – as measured by an inertial measurement unit (IMU) attached to the wrist 
is presented. The proposed approach will allow bystanders to improve CPR as part of a continuous closed-loop support system 
once integrated into a smartphone or smartwatch application. By evaluating the model’s precision with data recorded by a 
training mannequin as reference standard, a variance for the compression frequency of ±2.22 compressions per minute (cpm) 
has been found for the IMU attached to the wrist. It was found that this previously unconsidered position and thus, the use of 
smartwatches is a suitable alternative to the typical placement of phones in hand for CPR training.

Keywords  Cardiopulmonary Resuscitation · Sinusoidal Model · Evolutionary Algorithm · Evolution Strategy · Inertial 
Measurement Unit · Smartwatch · Parameter Estimation

1  Introduction

Sudden cardiac arrest (SCA) is one of the most prominent 
diseases (350,000-700,000 individuals a year in Europe are 
affected [1–3]). SCA can significantly affect the independ-
ent living of the victims if medical treatment is not available 
within a few minutes [4, 5]. In the case of cardiac arrest, 
the transport of oxygen and glucose to the human body’s 
cells stops immediately due to the disrupted heart function. 
This leads to irreparable cell damage if blood circulation is 
not quickly reestablished, e.g. supported by cardiopulmo-
nary resuscitation (CPR). If the blood circulation is inter-
rupted, the cells of the nervous system, including the brain, 
reduce their functionality after 10 seconds, which leads, 

for example, to unconsciousness [6]. The death of the cells 
begins after about 3 minutes without blood circulation [6].

Medical personnel such as paramedics are trained in 
Advanced Life Support (ALS) [7] methodology that includes 
CPR. Unfortunately, paramedics are usually not immediately 
available if a cardiac arrest occurs in the field. The typical 
median reaction time of paramedics is about 5-8 minutes [5] 
and with every minute the chances of survival of the victims 
without CPR decrease. Thus, victims rely on the initial CPR 
support of bystanders within the first so-called golden minutes 
after cardiac arrest to prevent long-term adverse effects or death. 
Since these bystanders can offer essential initial resuscitation 
support, corresponding technical solutions to support them with 
online feedback regarding the quality of CPR are beneficial.

For the following discussion, the optimal Basic Life Sup-
port (BLS) [5] procedure (the methodology aiming for non-
specialists) is worthwhile to be briefly recapitulated (see 
Fig. 1): In case of a cardiac arrest, it is essential to ensure 
sufficient oxygenation of the nerve cells via correctly con-
ducted cardiac massages (chest compressions) as the most 
critical countermeasure. During this cardiac massage, the 
heart is compressed by orthogonal pressure onto the breast-
bone. In order to sustain a minimal blood circulation, a chest 
compression frequency (CCF) of the cardiac massage should 
range within 100-120 compressions per minute (cpm), and a 
chest compression depth (CCD) of 5-6 cm is required. With 
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a CCF below 100 cpm, blood circulation is insufficient to 
fullfill the essential tissue oxigenation, while with a CCF 
over 120 cpm the heart complete refillment with blood is not 
assured, thus resulting in to little amount of blood being cir-
culated in the next compression. Ideally, but not necessarily, 
the procedure is combined with rescue breathing, to improve 
the chance of survival and reduce neurological deficits [5].

While typical bystanders can develop a sufficient feeling 
of semi-ideal compression depth, the consistent application 
of the correct compression frequency and depth is challeng-
ing, especially for extended periods of cardiac massage with 
the associated muscle-fatigue and mental pressure. Thus, 
instant feedback regarding the correct execution (regarding 
CCD and CCF) during a cardiac arrest will be beneficial for 
untrained bystanders. Such feedback could be derived from 
online monitoring of the quality of the cardiac massage from 
the vertical acceleration measured by inertial measurement 
units (IMUs) and giving continuous feedback and adjust-
ment hints. Corresponding smartphone applications are well 
suited for this purpose due to their high availability [8, 9]. 
Renshaw et al. have confirmed the general benefit regarding 
CCF/CCD for the BHF PocketCPR application and recog-
nized an improved performance (from 66 to 91 cpm) and 
increased confidence of bystanders [10]. However, for such 
CPR training apps, accurate CPR information (regarding 
CCF and CCD) is an essential requirement [8], which is 
achieved partially by the existing implementations (as sum-
marized in Table 1).

Most of these approaches use Fast Fourier Transforma-
tion (FFT) to determine the regular frequencies from the 
inertial data and identify the frequency spectrum’s central 
frequencies via peak detection. While being straightforward, 

this approach is susceptible to erroneous peak selection and 
a resulting frequency shift of the CCFs by orders of magni-
tudes. Also, the double-integration of the acceleration signal 
– a standard processing step to determine the displacement-
vector as a preprocessing step for the CCD – is challenging 
due to the signal drift if the accelerometer is not perfectly 
aligned with the gravity axis [17]. Consequently, the typi-
cal integration process is inherently unstable and leads to 
relevant errors unless boundary conditions are applied for 
each compression cycle (e.g. in very short windows) [14].

The motion in cardiopulmonary resuscitation is primarily 
a rhythmic movement that approximates the natural rhythm 
of the human heartbeat. Thus, the use of a robust sinusoidal 
model, i.e., sine curve, might not suffer from disadvantages 
of the FFT and its subsequent effects on the derived CPR 
parameters (see Fig. 2), due to its implicit periodic accord-
ance with the CPR. A concept that was shown for depth-
image based motion capture of CPR movements [21] but 
still needs to be confirmed for use with acceleration data 
recorded directly via IMUs at rescuers.

Furthermore, the discussed algorithms have been mainly 
evaluated for the use of IMUs in a grasp-in-hand use (i.e., the 
sensor or smartphone is held between the back of the lower 
hand and the palm of the upper hand during the procedure). 
A position that has been reported to be a slightly uncomfort-
able and disturbing positioning for bystanders [18], which 
as well might mislead them into learning incorrect postures 
[19]. To overcome this drawback, Park et al. [18] proposed 
the fixation of smartphones via an armband on the dorsum 
manus or at the arm and had shown an increased conveni-
ence compared to the common grasp-in-hand approach. 
However, they reported a reduced sensitivity, which they 

Fig. 1   Basic Life Support 
Algorithm. AED is automated 
external defibrillator

Table 1   Accuracies of existing on-body chest-compression

Pos. Algorithm / System CCF Error [cpm] CCD Error [mm] Reference System Ref.

Chest Spectral techniques on short acceleration intervals (FFT-
based)

< 1.5 < 2 photoelectric distance sensor [11]

Chest Butterworth HP filter, 2x integration, manual reset - 1.6 (within 95%) mannequin potentiometer [12]
Chest Weighted smoothing, double 2x (transient component 

emphasizing + integration), peak detection (U-CPR)
- 1.43 mean (SD 1.04) mannequin potentiometer [13]

Chest PocketCPR, method unknown - 1.01 mean (SD 0.74) mannequin potentiometer [13]
Chest Spectral analysis of acceleration 0.9 median 1.3 median displacement sensor [14]
Wrist SamCPR, method unknown - - - [15]
Wrist Smart-watch life saver App - - - [16]
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explained with the amplified inertial forces resulting from 
the additional device’s swing. Similarly, Ruiz de Gauna 
et al. [20] compared sensor placement at the dorsum manus 
with one fixed to the forearm 7 cm above the wrist. They 
confirmed a significantly increased error for the forearm 
placement.

Consequently, while IMUs have generally proven to be a 
precise and practical approach to measuring chest compres-
sion depth and frequency during CPR, user-friendliness via 
smartphones is a challenging task as it affects the quality of 
CPR for bystanders. Smartwatches hold benefits over the use 
of smartphones regarding usability. They could be expected 
to achieve higher reliability towards arm-movements because 
they are potentially less affected by hand movements and rig-
idly attached to the wrist. Furthermore, they overcome chal-
lenging aspects of reduced tactile pressure sensation at the 
hands. However, the use of IMUs on alternative placements 
was repetitively found challenging for sufficient accuracy. 
The suitability of smartwatches for CPR training and online-
support regarding the sensitivity of CCD and CCF detection 
has yet to be investigated.

Our approach is the combination of a wrist-worn IMU 
with a sinusoidal model. To fit the accelerometer data to 
the sine curve of the model, an appropriate optimization 
algorithm is required. Evolutionary methods have already 
been found to be principally suitable for a similar approach: 
Lins et al. [21] use a Differential Evolution (DE) algorithm 
to fit optical motion capture data to a sinusoidal model. In 
this context DE is used for continuous window-based curve 
fitting of the model by optimizing the parameters of a sine 
function. The article at hand proposes a Evolution Strategy 
(ES) inspired algorithm for the continuous model-fitting 
(i.e., without complete reinitialization of the population) 
with IMU data.

Nature-inspired algorithms such as a Genetic Algorithm 
(GA) have also already proven useful in signal processing 
[22–24]. In addition, there is already some work that has 
used GAs for curve fitting, e.g. Zhao et al. use a GA to fit 
the parameters of a Bezier curve [25]. GAs have also been 
used to fit polynomials [26]. In the recent work of Jiang 
et al. a modified GA is used to optimize the parameters of 

sine signals [27, 28]. Consequently, in this study, we aim to 
investigate the following two research questions: 

1.	 How suitable are wrist-worn inertial sensors (e.g. smart-
watches) for the online detection of the chest compres-
sion during CPR regarding the accuracy of resulting 
CCF and CCD parameters compared to both the Resusci 
Anne training mannequin and the typical hand-holding 
as the gold standard?

2.	 How suitable is the algorithmic approach for fitting a 
sinusoidal model of the chest compression during CPR 
regarding the accuracy of resulting CCF and CCD 
parameters for the considered sensor placements com-
pared to the Resusci Anne training mannequin as refer-
ence system?

In Section 2, our system approach, details of the used algo-
rithm, study design, and applied evaluation methodology 
is introduced. In Section 3, the results of the study are pre-
sented and discussed in Section 4. The article is concluded 
in Section 5.

2 � Materials and Methods

2.1 � System Approach

In the proposed system (Fig. 3), the curve of chest compressions  
during CPR is analyzed from data of a wrist-worn (and hand-
held as reference) three-dimensional inertial sensor contain-
ing accelerometer, gyroscope, and magnetometer (9DOF). 
The accelerometer signal contains earth gravity as a constant 
component distributed among all three accelerometer axes, 
depending on the sensor orientation. For fitting the model 
function, only the acceleration caused by the orthogonal pres-
sure on the patient’s chest is relevant. Unfortunately, when 
placed on the wrist, the orientation of the sensor is never 
entirely orthogonal to the chest. So the earth’s gravity is dis-
tributed over all three axes with different magnitudes. The 
approach to handle this is to consider only the total accelera-
tion a, i.e. the Euclidean distance over all axes and subtract the 

Fig. 2   Basic approach of a sinusoidal model for CPR quality parameter estimation (see Section 2.1 and Fig. 3 for more details). The accelerom-
eter data is measured by an IMU sensor and then window-based fitted to a sine function, which in turn provides the CCF/CCD parameters sought
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constant gravity ( 9.81 m

s2
 ) from the total acceleration, which is 

one-dimensional (see Equation 1).

This one-dimensional time-series data are window-based 
(window length Slen ) fitted to a sinusoidal function model. 
The fitting generates adapted models per fU−1 seconds, from 
which the CPR parameters frequency (CCF) and compres-
sion depth (CCD) can be derived (recap Fig. 3).

(1)ai =

√(
ai,x

2 + ai,y
2 + ai,z

2
)
− 9.81

m

s2
, i ∈ {1,… , Slen}

2.2 � Model function

The approach is to fit the time series of the accelerometer 
readings to a sinusoidal function. This is possible because 
of the periodic nature of CPR (see Fig. 4). The sought CPR 
quality parameters can then be derived directly from the 
parameters of the sinusoidal function. The generic param-
eterized sine function can be written as follows:

(2)f̂ (t) = A ⋅ sin(𝜔t + 𝜌) + D

Fig. 3   Flow diagram of the 
proposed system approach

Fig. 4   Fitting of the sinusoid 
model to the accelerometer data
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Parameter A and � are of primary interest: A is the amplitude, 
� the angular frequency (D is the vertical displacement, � the 
phase shift). A,�, � are adapted so that the sine curve fits the 
accelerometer data. Assuming that the arms of a person perform-
ing CPR are orthogonal (and rigid) on the patient’s chest, the 
relative movements of the bystanders’ arms are equal to the chest 
compression depth. It is also assumed that the chest is wholly 
relieved after each compression (full chest recoil as recom-
mended by ALS/BLS guidelines). Additionally, the frequency 
of low to high to low compression depth represents one compres-
sion cycle. Since it is not applicable to fit the accelerometer data 
(total acceleration) directly to the sine curve (see Equation 2) and 
derive the displacement of the arm from it, the accelerometer data 
must be integrated twice to determine the vertical displacement 
( ∫ ∫  acceleration → ∫  velocity → displacement). However, the 
double integration of the acceleration values induces errors since 
the accelerometer can not be assumed to be perfectly calibrated, 
so this is rarely a practical way. To avoid this integration errors, 
we use the second derivative of the sine function as a model 
function. Thus, the analytical solution of the double integration 
is already known ( f̂  , see Equation 2):

On a fitted function, parameter � is the CPR frequency 
(CCF), and 2 ⋅ A is the compression depth (CCD). To fit 
the function f (t) , we minimize the root mean squared error 
(RMSE). Thus, we formulate the minimization problem 
(loss function L) as follows:

(3)f (t) =
�2

�t2
(A ⋅ sin(�t + �) + D)

(4)f (t) = −A�2
⋅ sin(�t + �)

(5)L = min

√√√√ 1

|a|

T∑

t=0

(a(t) − y(t))2

In Equation 5, a is the T-dimensional tuple of accelerometer 
measurements (total acceleration or vertical acceleration), |a| is  
the dimension of the tuple a, i.e., its number of elements. T is  
derived from the window length Slen (e.g., Slen = 3s with 100  
Hz → T = 300 ), which has been optimized in [blinded citation].

2.3 � Evolutionary fitting of the model function

Lins et al. [21] use the Differential Evolution (DE) algorithm 
with a comparatively large population of candidate solutions 
that are evaluated in each generation. Population-based algo-
rithms such as DE can use the diversity of their population 
to optimize several local minima (in case of a minimization 
problem) in parallel over generations. In the case of the sine 
model, there are not several different local minima (only 
periodic ones), so only � individuals of the population are 
mutated and recombined per generation G. This reduces the 
computational effort per generation. The approach of working 
with only a few candidate solutions is thus better suited for 
use on an embedded device that operates under more difficult 
constraints in terms of performance and energy consumption.

In order to estimate the three variables �,A, � of the sine 
function f (Equation 4), herein a Evolution Strategy inspired 
algorithm is applied (see Algorithm 1). The algorithm uses 
also elements from GA, e.g. it is population-based and opti-
mizes the population throughout several generations ( � + �) 
-Evolution-Strategy based on [29] but with a GA-like popu-
lation). The population-element of the algorithm is used as 
archive for possible good solutions.

The optimization is done between a transition from one gen-
eration G to the next generation G + 1 . Within each transition 
from one generation to the next, the algorithm comprise the 
steps mutation, crossover, and selection, which are discussed 
in the next sections. Algorithm 1 is continuously applied on Slen 
long data windows while retaining fractions of the population 
until G = Gmax or the convergence of G is smaller than cmin.
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2.3.1 � Initialization of the parameter space

Be xi,G a 3-dimensional vector (containing sought parameter 
A,�, � ) of individual i for generation G:

In every generation G � = 1 + 1 + 3 = 5 individuals are 
newly generated ( ̂x𝜇+1 to x̂𝜇+𝜆 ). Every of the � individuals 
represents a possible solution to the minimization problem 
(see Equation 5).

At the first start, the population is initialized by drawing 
parameters from an uniform random distribution (explora-
tion). In the optimization process, individual solutions will 
move closer and closer to the optimum, and the variance 
within the population will decrease (exploitation). Every 
new individual of the population is also initialized taking 
random variables from a uniform random distribution to fos-
ter the exploitation of the parameter space. For the specific 
task of fitting a sinusoidal function, the interval of the ran-
dom distribution can be restricted to the problem’s bounds. 
Table 2 summarizes the parameter space over all dimensions 
for the given task of fitting the CPR sinusoidal model.

2.3.2 � Mutation

In the applied approach, mutation occurs in two ways. The 
first child x̂𝜇+1 is simply a newly generated random indi-
vidual. This ensures that the algorithm can still exploit the 
parameter space. Then, in each generation G, the currently 
best individual x0 is mutated minimally and forms the sec-
ond child x̂𝜇+2 of the current generation. This mutation is a 
fine-tuning element to optimize the current solution. The 
following � − 2 offspring are created as follows (with con-
stant M = 0.999 ), where U generates a random value from a 
uniform random distribution within the interval:

k is the index of the 3-dimensional solution vector (see 
Table 2).

(6)xi,G with i ∈ [1,�],G ∈ [1,Gmax]

(7)mk = U(M, 2 −M)

(8)x̂𝜇+2(k) = mk ⋅ x0(k) for k ∈ [0, 1, 2]

2.3.3 � Crossover

The crossover step is used to transfer information, i.e., pos-
sible solutions, from the current generation to the next gen-
eration and to recombine it. In the approach chosen here, 
three ( � − 2 ) offspring per generation are generated from 
two randomly selected parent individuals.

This crossover method corresponds to the blended crossover 
(or BLX-� or heuristic crossover) with � = 0 [30, 31].

2.3.4 � Selection

The selection step determines which individuals are passed 
to the next generation by evaluating them against the cost 
function. Herein, the RMSEs are summed up for every solu-
tion candidate xi,G as cost function:

with a being a T-dimensional tuple S of samples (acceler-
ometer data) and fxi,G the parameterized sinusoidal function 
of individual xi,G . After the steps mutation and crossover 
� + � individuals exist. The population is therefore reduced 
to the � fittest individuals after the evaluation of the popula-
tion. Once the optimization has finished, i.e. when Gmax or 
cmin has been reached, the individual with the lowest RMSE 
represent the parameter of the sinusoidal model ( x0 ). From 
these parameters, the CCF and CCD can be obtained with 
CCF =

�

2�
⋅ 60 cpm and CCD = 2A cm.

2.4 � Reconsideration of the population

Herein, the algorithm is initially only executed for a small 
window of 3 seconds ( Slen = 3 ) of IMU data. Once a sub-
sequent data-window is available (next 3s with 2s overlap 
→ fU = 1s−1 ), the algorithm is executed for a new fitting run. 
In a previous approach [21], the evolutionary optimization 
was performed with a completely new population. Possible 
solutions that are very similar to the current solutions must 
always be found and optimized anew. In contrast, herein a 
part of the population is retained and only one fraction � is 
completely reinitialized. On the one hand, a large diversity 
of the initial population can be ensured. On the other hand, 
good solutions from the past are retained in the expectation 
that they will also fit the current data window with a few 

(9)xa with a = U(1,�)

(10)xb with b = U(1,�), b ≠ a

(11)
x̂𝜇+i(k) = U(min(xa(k), xb(k)),max(xa(k), xb(k))) with k ∈ [0, 1, 2]

(12)
T∑

t=0

(
a(t) − fxi,G(t)

)2

Table 2   Parameter limits for every dimension used for initialization. 
The individuals are initialized by drawing random numbers from the 
given intervals using a uniform random distribution

Individual x Function Parameter 
Interval

CCF/CCD

x
i,G
(0) A ∈ [0.1, 5.0] CCD is 2A in cm

x
i,G
(1) � ∈ [�, 7�] CCF is �

2�
⋅ 60 in cpm

x
i,G
(2) � ∈ [0, 2�] only used for model fitting
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adjustments. Fraction � is being optimized in the hyperpa-
rameter optimization step (see Section 1).

Initially, the favorable hyperparameters of the algorithm 
( �,Gmax, �, cmin ) are determined based on simulated data of 
sinusoidal curves (see Section 1). With these specific hyper-
parameters, the algorithm is then evaluated within a study 
with human participants.

Based on the results of Monte Carlo simulations, we 
select � = 400 , Gmax = 10 , � = 0.5 , cmin = 0.05 as suit-
able hyperparameters for further evaluation with human 
participants.

2.5 � Experimental setup

The Laerdal Resusci Anne Simulator mannequin1 was 
used as a reference system and was placed on the floor 
(see Fig. 5). Within the Resusci Anne simulator, sensors 
measure the depth of thorax compression and decompres-
sion, the frequency of the compressions, and the volume 
of ventilation.

While conducting CPR trainings on the Recusci Anne, 
the participants have been equipped with two IMU sensors 
(see Fig. 6) to evaluate the relevance of their placement. 
One IMU sensor was placed at the left wrist of the partici-
pant with a bracelet, and the other one was placed between 
the hands of the participant (between the back of the hand 

of the first hand and the palm of the second hand). Other-
wise, no specific arm or upper body posture was explicitly 
required. The sensors and the training mannequin were 
collecting data that was synchronized manually after the 
recording via visual inspection of the accelerometer signal. 
The Resusci Anne recording starts and stops automatically 
with the first and last chest compressions. The rising and 
falling edges of the accelerometer signal are clearly visible 
on a plot and were synchronized with the start of the chest 
compressions.

A sensor system (humotion2 sensor belt) was chosen and 
modified for the intended use, which allows the raw sensor 
data to be recorded unfiltered and in a wide variety of for-
mats. This 9DOF IMU sensor system consists of a triaxial 
accelerometer with sensitivity ranges from 1G up to 16G 
(Bosch BMA180, Bosch Sensortec GmbH, Reutlingen, Ger-
many), gyroscope (STMicroelectronics L3GD20H, STMi-
croelectronics, Geneva, Switzerland), and a magnetometer. 
A sampling rate of 100 Hz was selected, which is considered 
a typical sampling rate on smartwatches and also represents 
a reasonable compromise between computing effort and 
precision.

The participants were asked to place themselves on any 
side of the training mannequin and perform the CPR within 
80-140 cpm. The study director monitored the correct imple-
mentation of the CPR and, where necessary, corrected with 
verbal advice. The recording lasted for two minutes.

Fig. 5   Resusci Anne training 
mannequin

Fig. 6   IMU sensor used in the 
study unpacked (left) and with 
bracelet (right)

1  Details on the Laerdal Resusci Anne Simulator mannequin can be 
found at https://​laerd​al.​com/​en/​produ​cts/​simul​ation-​train​ing/​emerg​ency-​
care-​trauma/​resus​ci-​anne-​simul​ator/ 2  See https://​humot​ion.​net/
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2.6 � Statistical analysis

For every compression cycle recognized by the reference 
system, a 3-second window S ( SLen = 3s ) of the sensor data 
is used to fit the sinus model every second ( fU = 1s−1 ) as 
recommended by [21]. Here, it is Slen > f −1

U
 , so the used 

datasets S are interleaved (see Fig. 7).
Also, one Resusci Anne event E (a complete compres-

sion/decompression cycle) may be smaller, equal, or larger 
than f −1

U
 so that we must combine one or more model pre-

dictions before comparing it with E (Equation 13). Thereby, 
the weighted mean of n subsequent model predictions within 
each interval (EStart,EEnd) is calculated with the overlap ratio 
� representing the weight:

For each compression event E, a corresponding prediction p 
is determined according to Equation 13.

The measurement-error is calculated as the absolute dif-
ference between predicted CCF/CCD and the CCF/CCD of 
the reference system for every CCF/CCD prediction over 
every participant.

For comparison with the predictions of the sine models, 
one-dimensional 1000-point Discrete Fourier Transforma-
tions (DFT) were calculated for the identical windows using 
the FFT algorithm.

(13)p(t) =
1∑n

i=1
�i

n�

i=1

�ifi

3 � Results

The study cohort consisted of 18 participants, aged 19-48, 
12 male, 6 female. The participants were recruited amongst 
students and staff of the University of Oldenburg, Ger-
many. The study received ethics approval number “Drs.
EK/2018/31” of the IRB of the University of Oldenburg.

Table 3 contains the overall results of the comparison 
between model predictions and reference data. The results 
show the least error ( ±2.22 cpm) for CCF prediction for 
the sinusoidal model based on the sensor data from the 
wrist-worn sensor. The alternative method FFT shows a 
much higher error with ±7.42 cpm. When predicting the 
compression depth CCD, the wrist sensor’s data with 
±0.69 cm show an slightly higher error as the hand-held 
sensor, which median error is ±0.64 cm.

The statistical significance of the differences between 
the sensor positioning at hand versus at wrist was tested 
with the Wilcoxon Rank Sum Test (one-sided). The differ-
ences in absolute errors between wrist and hand ( H1 : wrist 
position produces lower error) are not significant for CCD 
prediction ( p = 0.999 ), whereas the differences for CCF 
prediction are significant ( p = 0.001).

Figure 8 shows the error distribution of the CCF predic-
tion of the sine model versus FFT considering the two sen-
sor positions. The sine models’ errors are predominantly in 
the area of [0, 5] cpm showing little outliers. The error dis-
tribution for the FFT variants is mainly in the area of about 
[0, 15] showing more outlier sets between [25, 50] cpm.

Figure 9 shows the error distribution of the CCD predic-
tion of the sine models for the two considered sensor posi-
tions. The distribution of the model based on the hand-held 
sensor is centered around 0.5 cm with no notable outlier 
groups (some outliers up to 4 cm). The wrist-worn sensor’s 
distribution is also centered around 0.5 cm, also with no 
notable outlier groups but some outliers up to 5 cm.

In Figs. 10 and 11 – unique forms of point diagrams (Bland-
Altman plots) – the differences between the predictions of the 
sinusoidal models and the measurement of the reference system 
are plotted against the mean value of the two methods. For the 
compression frequency (Fig. 10) the error is within one standard 
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Fig. 7   How model predictions and reference values are compared

Table 3   Results summary: 
Absolute median [min, max] 
errors between predictions 
and reference values (lesser is 
better)

Position Hand Wrist

Abs. Err. 95% CI Abs. Err. 95% CI

CCF (Sine Model) 2.38 [0.0-108.7] cpm [0.70, 1.27] 2.22 [0.0-110.8] cpm [0.33, 0.83]
CCF (FFT) 8.05 [0.0-127.9] cpm [6.17, 7.61] 7.42 [0.0-120.0] cpm [6.94, 8.32]
CCD (Sine Model) 0.64 [0.0-3.89] cm [-0.38, -0.33] 0.69 [0.0-5.03] cm [0.35, 0.41]
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deviation in most cases. A closer look reveals a linear relation-
ship between increasing error and measured frequency (diag-
onal arrangement of data points). In case of the compression 
depth (Fig. 11) most measurements and predictions are between 
4-6.5 cm and within two standard deviations and few outliers.

4 � Discussion

In this study, two research questions have been inves-
tigated. To clarify the suitability of smartwatch-like 
inertial sensors for the detection of the chest compres-
sion frequency (CCF) and depth (CCD) during CPR in 

comparison to the typical hand-held smartphone sensor, 
both sensor positions were evaluated with the Resusci 
Anne training mannequin as reference system.

With an error of ±2.22 cpm, the CCF accuracy of the 
wrist sensor was slightly more accurate compared to an 
error of ±2.38 cpm for the common grasp-in-hand use. 
Both errors remain in the same order of magnitude, con-
firming the algorithm’s robustness and the general suitabil-
ity of the sinusoidal model-based approach. Consequently, 
we could confirm the suitability of the smartwatch-related 
wrist positioning for CCF calculation.

Considering the CCD, we found a slightly higher error 
(0.69 cm) for the wrist sensor when compared to the 
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grasp-in-hand use (0.64 cm). Nevertheless, even with the 
relatively high error of the wrist sensor, a fundamental 
qualitative statement can be made about the compression 
depth, since relevant deviations from the optimal compres-
sion depth of 5-6 cm (e.g., too low compression depths of 3 
cm) might be still detectable. However, it should be noted 
that the CCD prediction errors are probably too high for 
quantitative statements.

Concerning the second research question, the applica-
bility of the evolutionary approach for curve-fitting of the 
chest compression during CPR was examined, especially 
regarding the accuracy of resulting CCF and CCD parame-
ters for the considered two sensor placements in comparison 
to the Resusci Anne as a reference system. The predictions 
of the sinusoidal model were compared to the FFT method 

and achieved significantly low error values both for sensor 
position hand (Sine Model: ±2.38 cpm, FFT: ±8.05 cpm) 
and sensor position wrist (Sine Model: ±2.22 cpm, FFT: 
±7.42 cpm).

With an error of ±2.22 cpm in predicting the CCF, it is 
higher than the range given in the literature. Even though 
Ruiz de Gauna et al. [14] reported a lower median error of 
0.9 cpm for their approach, differences among both stud-
ies could as well be affected by variations among reference 
system (photoelectric sensor) and IMU sensor (ADXL330, 
Analog Devices, USA). It thereby might not only be related 
to the algorithmic specifics. In any case, the error of 2.22 
cpm is far below the critical target range of 100-120 cpm 
and thereby does not affect the practical applicability of the 
algorithm.

In comparison to the related approaches, the proposed 
system achieves a comparable CCF accuracy within the ERC 
guideline requirements of ±10 cpm [5]. However, we found 
a high inter-subject variability of the sensitivity to measure 
the CCD. In contrast to the CCD prediction results here, 
Lu et al. [32] used the accelerometer data to fit a polyno-
mial model to predict the CCD with high accuracy (about 
0.03 ± 0.5 cm within 95%-CI). González-Otero et al. [33] 
report an CCD prediction error below 0.35 cm in 95% of 
2-s-windows of accelerometer data using the peak-to-peak 
value of the reconstructed compression signal.

Consequently, wrist-worn devices can accurately pre-
dict the CCF, while CCD measure can be expected to hold 
an error of up to 0.69 cm. Although CCD prediction still 
shows potential for improvement (e.g. with modified model 
function), the results are sufficient for practical applications 
in smartwatches to make qualitative statements about the 
quality of the CPR. Smartwatches are therefor a well suited, 
unobtrusive, and high available alternative platform for giv-
ing CPR feedback for bystanders in emergencies.

While the proposed CPR modeling via a sinusoidal model 
is intended for an online system, it was tested as an offline 
system for evaluation purposes. Due to its iterative nature, 
the sine model fitting can probably be used well on (mobile) 
embedded devices. In contrast, the population-based optimi-
zation of the evolutionary algorithm is well suited for par-
allelization on multi-core systems, which become defacto-
standard in current mobile devices. As the algorithm can 
be dynamically adapted to varying processing power condi-
tions, e.g. by adjusting hyperparameters such as number of 
generations and individuals the given approach is well suited 
for use in smartwatch application where even with cheaper 
hardware good results can be achieved, albeit not with the 
highest precision. The convergence ensures that each off-
spring generation is at least as good as the previous one, and 
even in limited generations, models can be expected to be 
fine-tuned to the physiological characteristics of the users 
and the sensor environment.

Fig. 10   Bland-Altman plot of differences against mean CCF meas-
urements using wrist-worn sensor with the corresponding 95% confi-
dence interval (shaded line)

Fig. 11   Bland-Altman plot of differences against mean CCD meas-
urements using wrist-worn sensor with the corresponding 95% confi-
dence interval (shaded line)
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A more complex sine function, such as a linear combina-
tion of several sine terms, may be also an appropriate model 
function. For the usage scenario here, namely to determine 
the frequency and compression depth of the CPR in a 
straightforward way, a more complex function would be a 
hindrance, even though it might fit better to the data. There-
fore a comparatively simple sine function was chosen here.

5 � Conclusion

The article introduces and evaluates an approach to pre-
dict frequency and depth parameters of CPR training via 
accelerometer data of a wrist-worn IMU in comparison to 
a hand-held IMU. The sinusoidal models for estimating the 
compression frequency and depth were dynamically adapted 
using a Evolution Strategy inspired evolutionary algorithm. 
The approach was evaluated with 18 human participants for 
both hand-held and wrist-worn sensor positions. The chest 
compression frequency (CCF) was predicted with a median 
error of ±2.22 cpm and the compression depth (CCD) with a 
median error of ±0.69 cm for the wrist sensor position. The 
CCF prediction is considered suitable for practical applica-
tions whereas the CCD requires refinement of the approach. 
Thus, our work represents an essential step towards com-
plete and precise modeling of the CPR using mobile sen-
sors as can be found in smartwatches. While focusing on the 
algorithmic aspects of the detection of the CPR parameters, 
the general feasibility of smartwatches for CPR feedback 
(e.g. via a full-featured smartwatch application) has to be 
investigated further. The next steps are the development of 
a corresponding smartwatch application with a refined CCD 
prediction model, its evaluation, and subsequent usability 
studies to show that the application is of value in CPR train-
ing and emergency scenarios.

Evaluation with simulated data

For the simulation-based optimization, periodic accelera-
tion data for ten random frequencies were generated within 
the interval [1, 3] Hz (60-180 cpm). For each frequency, a 
three-second sample was generated using the model func-
tion (see Equation 4) and normal-distributed Gaussian noise 
was applied. The amplitude of the function was randomly 
selected from [0.01, 0.05] m. This one test round with ten 
random frequencies was considered as one individual for a 
meta evolution using the Differential Evolution (DE) algo-
rithm (Python/scipy implementation).

A cost function was chosen that considers the number of 
individuals and the maximum number of generations (less 
is better):

with M being the number of model predictions and F and 
D the random frequency and depth values. The DE algo-
rithm was optimizing with a population size of 100 and 100 
iterations.

Simulation Data Results
The meta-optimization of the hyper parameters using 

the DE algorithm produced the near optimal values shown 
in Table 4. Since the results of heuristic algorithms are 
subject to random fluctuations, the meta-optimization 
was performed 100 times in total and the deviations were 
noted. Table 4 gives mean and median deviations of the 
optimizations.
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