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Abstract
This article aims to provide a thorough overview of the use of Artificial Intelligence (AI) techniques in studying the gut 
microbiota and its role in the diagnosis and treatment of some important diseases. The association between microbiota and 
diseases, together with its clinical relevance, is still difficult to interpret. The advances in AI techniques, such as Machine 
Learning (ML) and Deep Learning (DL), can help clinicians in processing and interpreting these massive data sets. Two 
research groups have been involved in this Scoping Review, working in two different areas of Europe: Florence and Sarajevo. 
The papers included in the review describe the use of ML or DL methods applied to the study of human gut microbiota. In 
total, 1109 papers were considered in this study. After elimination, a final set of 16 articles was considered in the scoping 
review. Different AI techniques were applied in the reviewed papers. Some papers applied ML, while others applied DL 
techniques. 11 papers evaluated just different ML algorithms (ranging from one to eight algorithms applied to one dataset). 
The remaining five papers examined both ML and DL algorithms. The most applied ML algorithm was Random Forest and 
it also exhibited the best performances.

Keywords Microbiota · Microbiome · Artificial intelligence · Machine learning · Deep learning · Clinical decision support 
systems

1 Introduction

The idea for this work came from the recent authors’ efforts 
in transnational scientific networks and research projects on 
the microbiome. In the last few years, the concept of apply-
ing computer-based algorithms for assessing medical prob-
lems has become a trending topic. The availability of large 
amounts of data, often referred to as big data, is a crucial 
enabling factor for this approach.

This article strives to provide a thorough overview of the 
use of Artificial Intelligence (AI) techniques in studying the 
gut microbiota and its role in the diagnosis and treatment of 
some important diseases.

The term microbiota refers to all microorganisms liv-
ing in the same place, while microbiota habitat, the larg-
est eukaryotic organism where the microbiota is located, is 
termed the host [1]. In animals, the site in which the largest 
amount of microorganisms resides is the gastro- digestive 
tract (mainly large intestine) [2].

A complex ecosystem consisting of bacteria, viruses, 
fungi and protozoans, is a human microbiota. It contains 
more than 100 times the human genome and gives us the 
functional properties we do not possess. It is composed by 
a number of genes (the microbiome). According to a recent 
estimation, the amount of bacteria contained in it could be 
higher than the amount of eukaryotic cells in the human 
body [3]: some 30 to 400 trillion microorganisms live in the 
gastrointestinal tract [4, 5]. Any surface exposed to the exter-
nal environment, such as skin and mucosa (gastrointestinal, 
respiratory, and urogenital), is populated with the commen-
sal microbiota, with the colon containing over 70% of all 
the bacteria in our body. An ecological connotation is thus 
assumed by the entire organism, which can now be redefined 
as a network of interactions and connections between vari-
ous organisms (both eukaryotes and prokaryotes) [6].
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Gut microbiota has essential dietary and metabolic func-
tions (such as fermentation and digestion of carbohydrates, 
xenobiotic metabolism and vitamin synthesis) [7, 8]. It helps 
to safeguard against pathogenic issues. It is also important 
for the growth of the lymphoid tissue associated with the 
gut (GALTs) and the maturation of the innate and adaptive 
immune systems [9, 10]. The commensal bacteria are sym-
biotic, but they can cause a pathological state after trans-
location through the mucosa or in specific conditions such 
as immunodeficiency. The microbiota composition varies 
substantially between individuals, but it is also dynamic 
and susceptible to change. Moreover, the composition of the 
human microbiota is strictly personal, but the diversity in the 
structure of the bacterial population among the body sites 
is greater than it is between individuals. To date, although 
there have been over 50 bacterial phyla described, only two 
of them dominate the human gut normal flora: the Bacteroi-
detes and the Firmicutes, whereas Actinobacteria, Proteo-
bacteria, Fusobacteria, Verrucomicrobia and Cyanobacteria 
appear in minor proportion [11].

Interestingly, a wide proportion of the human microbiota 
(about 70%) is composed of microbes that cannot be cul-
tivated by common microbiological methods. Today, the 
advent of new molecular microbiota profiling tools, such as 
genomic Next-Generation Sequencing (NGS) and metagen-
omics shotgun sequencing, allows us to obtain more infor-
mation about the microbiota impact in both healthy and 
pathological conditions [12]. As these techniques generate 
large amounts of data, they have sprung the development of 
bioinformatics techniques. However, the association between 
microbiota, diseases, and clinical relevance, is still a chal-
lenge. In this scenario, the advances in AI techniques, such 
as Machine Learning (ML) and Deep Learning (DL), can 
help clinicians in processing and interpreting information 
that can be extracted from these data sets.

ML and DL are two approaches to AI. However, defining 
the relation between them is not an easy and unambiguous 
task. Indeed, nowadays the field of AI is flourishing and the 
different techniques are continuously evolving. This results 
in a very dynamic scenario, within which the limits between 
one approach and another are evanescent. For example, in 
this paper DL is considered a subset of ML techniques [13] 
as Fig. 1 shows. However, this is not the only and most com-
prehensive representation of the field of AI and the reader 
can find other interpretations in the scientific literature.

1.1  Machine learning

Since the dawn of the technological era, computers’ capa-
bilities have been exploited for computer gaming and AI. 
The expression machine learning dates back to 1959 when 
Arthur Samuel used it for the first time in the IBM Journal 
of Research and Development [14]

ML approach is grounded on algorithms for solving prob-
lems of classification or prediction of patterns from data 
(regression models). It is common to talk about “learning 
from data” [15]. A typical distinction can be made between 
supervised or unsupervised ML algorithms. In the former 
approach, a number of input measures are used to predict the 
value of the output or for selecting one of the output classes. 
Unsupervised learning, instead, aims to “describe associa-
tions and patterns among a set of input measures” [15].

We can also say that in supervised algorithms we need 
some labels used during the training phase to instruct the 
machine on how to properly interpret the input. A typical 
label, in medicine, could be the diagnosis (healthy vs. ill, 
disease A vs. disease B, etc.). Conversely, the unsupervised 
approach is used to examine the data, searching for struc-
tures and patterns previously unknown (no labeled data 
needed).

As highlighted by us in a recent review article on machine 
learning methods for microbiome host trait predictions, 
several ML methods have been applied in the latest years 
for microbiome prediction. The microbiome data are often 
arranged into Operational Taxonomic Units (OTUs) [16], 
each collecting similar sequences representing a specific 
bacteria [17]. A taxonomy is used to represent the relation-
ship among the microbes and each OTU. This relationship 
can be used in ML for the taxonomy-informed feature selec-
tion. This approach facilitates the selection of features to 
be used as input for ML algorithms. A detailed description 
of these methods and techniques is out of the scope of this 
work, but the reader can find a comprehensive overview in 
[17].

An example of the use of taxonomy can be found in 
the paper by Vangay et al. (2019). They created a publicly 
available repository, being comprised of 33 curated regres-
sion and classification tasks involving human microbiome 
data from 15 public datasets [18]. The repository has been 
developed as a powerful tool for two different types of 

Fig. 1  The figure shows the relation between AI, ML and DL through 
a Venn diagram
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users: ML algorithms developers owing a limited knowl-
edge of microbiome and, on the other hand, microbiome 
researchers who want to find new datasets for performing 
a meta-analysis.

Many different algorithms can be used, alone or in combi-
nation, to perform automated data analyses. Some are statis-
tical models, such as the Logistic Regression (LR), and are 
often used in ML to predict the risk of developing a certain 
disease. This method cannot be considered a classifier, since 
it models the probability of output, given an input, but it can 
be used as such by setting cutoff thresholds [15]. Another 
algorithm for performing a regression analysis is the Least 
Absolute Shrinkage and Selection Operator (LASSO) [15]. 
Some more algorithms can be used both for regression and 
for classification. This is the case of Support Vector Machine 
(SVM), K-Nearest Neighbor (KNN), Decision Tree (DT) 
and Gradient Boosting Decision Tree (GBDT), which are 
some of the most popular supervised algorithms.

In DTs, each internal node is associated with a variable, 
also known as property. Each arch linking a node to other 
children nodes represents a decision (e.g. a possible value 
for that variable). DTs are often used in ensemble methods 
[19], techniques that combine multiple models or algorithms 
to achieve better predictive performances. The concept of 
“boosting” is also common, and used to convert the weak 
learners to the strong ones (e.g. Logitboost) [20]. Recent 
evolution is represented by the C5.0 algorithm, improving 
DT with feature selection and reduced pruning error [21, 
22].

GBDT combines the predictions from a series of deci-
sion trees which are used as the base learners. A new deci-
sion tree is trained at each step. EXtreme Gradient Boosting 
(XGBoost) is an open-source implementation of the gradient 
boost algorithm that uses a second-order gradient to guide 
the boosting process. Adaptive Boosting (ADA) is also a 
boosting algorithm which is used both for classification and 
regression problems, where the “weak learners” are decision 
trees with a single split [20].

Logistic Model Tree (LMT) can also be considered an 
ensemble method since it combines LR and DT [15]. Some 
very simple classifiers are the Naïve Bayes (NB) probabil-
istic classifiers, grounded on the well-known Bayes’ theo-
rem, and used in ML since the very first approaches. Despite 
their simplicity, they are still often used in clinical deci-
sion support systems and can provide good performances. 
A variation of NB is the Multinomial Naïve Bayes (MNB) 
classifier, where the features represent the frequencies with 
which some events have been generated by a multinomial 
distribution. Both the above classifiers are widely used for 
text classification purposes as well [23].

Another classification method for high-dimensional data, 
such as microarray data, is the Nearest Shrunken Centroids 
(NSC). It calculates centroids for each class and somehow 

compresses them to zero, using a thresholding technique 
[24].

1.1.1  Support vector machines

SVMs are among the most adopted and best-performing 
algorithms, used as supervised binary classifiers. They were 
first introduced by Boser et al. in [25]. The space of features 
is separated into two regions that correspond to the binary 
classes of the training data. This is done by using a linear 
hyperplane of equation [26]:

The above equation (Eq. 1) is obtained as a result of a 
training process that optimizes the geometric margin (to 
achieve the best separation between classes). When an 
elementary hyperplane is used, it is common to talk about 
“linear-SVM”.

1.1.2  Artificial Neural Networks

Artificial Neural Networks (ANNs), often simply referred to 
as Neural Networks (NNs), have been extensively used for 
many years as automated classifiers [27]. Today, they are 
living a new youth thanks to their wide use in DL.

Inspired by the biological neurons, which are connected 
by synapses and neurotransmitters, NNs are made of at 
least two layers of nodes: one dedicated to host the input 
values and the other for the classifier’s output. Very often 
they are also provided with one or more intermediate layers, 
between the input and the output ones, named hidden layers 
(see Fig. 2).

The connections between nodes belonging to different 
layers are obtained through numerical weights. A nonlinear 
activation function, named transfer function, rep- resents the 
action potential firing in the cell [28]. During the supervised 
training process, these weights are fine-tuned to achieve sat-
isfactory classification performances, i.e. a robust connec-
tion between an array of input and the corresponding output 
(label). For training NNs, an iterative method is commonly 
used to optimize parametric functions, named Stochastic 
Gradient Descent (SGD) [29].

1.1.3  Random Forest

Random Forest (RF) is an ensemble method introduced by 
Breiman in 2001 [30]. As mentioned in Section 1.1, ensem-
ble methods are the combination of several algorithms 
for classification or regression. The overall result is the 
enhancement of the performances. Thus, RF improves the 
predictive power of a single DT, by training multiple trees 
and combining their outputs [31]. The training process of 

(1)wtx + b = 0
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each tree selects a random subset from the training set. This 
procedure is called bagging, i.e. bootstrap aggregating. The 
final prediction is obtained as the average or the majority 
of the trees’ estimations. RF splits the sample into groups, 
using features and associated thresholds. It shows very good 
performance, with only a few parameters to tune [32].

Thanks to their optimal characteristics, RFs are widely 
used and strongly applied also in the field of bioinformatics, 
metagenomics, and genomic data analysis [33–35].

1.2  Deep Learning

The term Deep Learning identifies a subset of ML algo-
rithms, characterized by multiple layers of representation 
between input and output. DL has been developed to over-
come the limitations of the ML techniques. Indeed, one of 
the issues arising with the use of ML is the so-called “Curse 
of dimensionality” [16]. It refers to the extremely growing 
complexity of the ML algorithms when the number of the 
dimensions of the input data is high. The DL techniques can 
be supervised or unsupervised as well.

The majority of DL algorithms are built upon ANNs, a 
class of learning algorithms composed of multiple intercon-
nected layers for reproducing the way the brain processes 
and spreads information, as explained in Section 1.1.2. Thus, 
Deep Neural Network (DNN) refers to the high number of 
layers that compose the net- work of the DL algorithm. Such 
a high number of levels and units enable higher complexity 
of function representation if compared to ML.

Convolutional Neural Networks (CNNs) are a wide class 
of DNNs, often applied to image analysis. These networks 

apply convolution to at least one of their layers. Fioravanti 
et al. [36] have developed a particular DL approach, based 
on CNNs, for the classification of metagenomics data. This 
algorithm is called Phylogenetic CNN (Ph-CNN).

Multilayer Perceptron Neural Networks (MLPNNs), also 
called deep forward neural networks or feedforward neural 
networks, are a particular class of ANNs that perform unsu-
pervised learning, with no feedback connections: the output 
of the model is not fed back to the network [13].

Deep Belief Networks (DBNs) are a subset of DNN algo-
rithms. DBNs are characterized by the connection between 
different layers, but not between the units within each layer.

One last type of DNN is the Autoencoder Neural Network 
(AutoNN). An autoencoder is the combination of an encoder 
function and a decoder function. This algorithm reproduces 
the input in a more compressed representation (i.e. with a 
lower number of features needed), allowing a dimensional-
ity reduction.

Zhou and Feng [37] proposed multi-Grained Cascade 
Forest (gcForest), a novel decision tree ensemble approach, 
consisting of a combination of a traditional ML algorithm 
and DL. It exhibits excellent performance in a broad range 
of tasks, being comparable to a DNN. In particular, gcForest 
is less sensitive to the changes of the network parameters 
(hyper-parameters) and thus it is more robust to hyperparam-
eter settings if compared to other DL algorithms.

1.3  Article structure

Following an overview in Section 1 on the main ML and 
DL algorithms, Section 2 of this article provides detailed 

Fig. 2  Schematic representation 
of an ANN with a single hidden 
layer. Source: www.learn datas 
ci.com
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information about the sources of information, and the meth-
ods for analyzing the results. Section 3 provides an accurate 
synthesis of the results, thoroughly discussed in Section 4. 
Finally, Section 5 provides the reader with considerations 
on the use of ML and DL for analysis of microbiome, from 
a clinical standpoint.

2  Materials and methods

2.1  Information sources and literature search

Two research groups have been involved in this Scoping 
Review, working in two different areas of Europe: Florence 
(Italy) and Sarajevo (Bosnia and Herzegovina). The scop-
ing review has been conducted according to the PRISMA1 
Guidelines for Scoping Reviews [38].

The research strategy has been defined jointly by the two 
teams and the literature search has been performed in paral-
lel on the main biomedical databases: MEDLINE (Ovid2) 
and PubMed.3

The keywords used for the search are consistent with the 
scope of the review and are the following: artificial intel-
ligence, machine learning, deep learning, transfer learning, 
neural network/s, expert system/s, automatic classifier, deep 
network/s, classification, clustering, regression, prediction, 
microbiota, microbiome, gut, colorectal, colon, Chron.

2.2  Eligibility criteria

The papers to be included in the review had to describe the 
use of ML or DL methods, applied to the study of human gut 
microbiota. Moreover, the following limitations have been 
adopted: publication year from 2004 to current and English 
language only. In particular, limiting the publishing time 
allows focusing on the techniques and algorithms developed 
in the latest years.

2.3  Selection of sources of evidence

After the literature search, all the records retrieved have been 
screened using the eligibility criteria. Two reviewers (D.B. 
and R.F.) independently screened the titles and abstracts of 
all the records in the output of the literature search. The 
ones considered as non-pertinent to the extent of the review 
have been removed. The results obtained separately by the 
two reviewers have been compared: the articles which both 

considered eligible for the study have been directly included 
in the list for full-text download. A third reviewer (A.A.), the 
immunologist participating as a clinical partner, was asked 
for a decision about those papers selected by only one of the 
two reviewers.

The full texts of the above-mentioned list of papers poten-
tially eligible for the review have been downloaded. Once 
more, the two reviewers read the full texts and excluded 
some more papers not consistent with the objectives of the 
review. In this way, the final list of papers to be included in 
the review was created.

The reviewers made use of a collaborative worksheet in a 
shared Google Drive folder. The process described above is 
presented in a dedicated flowchart in Section 3.

2.4  Data Charting Form

The Data Charting Form (DCF) was developed to select the 
variables to be extracted and analyzed from the papers. The 
two groups independently created a DCF based on the read-
ing of a small subset of papers. Then, the two forms have 
been compared and merged in the final DCF, used for the 
analysis.

The analyzed variables concern article characteristics 
(i.e. first author name, year and country of publication, pub-
lisher), method’s scope and limitation, sample (i.e. type, 
size, age), application (e.g. microbiota body site, diseases 
considered), analysis technique (e.g. algorithms), validation 
and metric used to assess the performance. A detailed list 
of all the variables can be found in the tables in Section 3. 
As for the other steps, Data Collection was also performed 
by the two groups independently. Two DCFs were compiled 
and then the results were discussed to agree on the final data 
form to be included in the review.

2.5  Synthesis of methods for results handling

The combined DCF was the source of the results that are 
reported in this paper. We included a number of useful vari-
ables that describe the different research results in great 
detail. For readability purposes, the variables were spread 
across three tables. 

Different metrics can be applied to evaluate the perfor-
mance of a binary classifier. These metrics are presented in 
Table 1 and outlined in the following work by Flach [84]. 
Four outcomes of binary classification are used to produce 
constituents for defining more complex performance met-
rics: True Positive (TP), True Negative (TN), False Positive 
(FP), and False Negative (FN).

Precision specifies the proportion of positive identifica-
tions that are correct.

1 PRISMA: Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses.
2 https ://www.ovid.com/
3 https ://www.ncbi.nlm.nih.gov/pubme d/
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True Positive Rate (TPR), or Sensitivity, or Recall, speci-
fies the proportion of actual positives that were correctly 
labeled.

Accuracy is a percentage of correctly identified samples 
(either as positive or negative) and is not a good metric if 
sizes of two groups are unbalanced.

Specificity measures classifier’s ability to correctly label 
negatives.

False Positive Rate (FPR) is calculated as the ratio 
between false positive and the total number of actual 
negatives.

The Receiver Operating Characteristic (ROC) curve is 
a plot of FPR (x-axis) vs. TPR (y-axis). The Area Under 
the ROC Curve (AUC), is a threshold invariant aggregated 
measure of binary classifier performances that takes into 
account all possible threshold values. AUC values range 
from 0 to 1.

F1-score is a metric that combines recall and precision 
using harmonic mean:

F1-macro is a metric used by Lo and Marculescu [48] and 
described as follows: “We estimate F1macro by calculating 
the accuracy for each class and then finding their unweighted 
mean”.

The Matthews Correlation Coefficient (MCC) is, in 
essence, a correlation coefficient between the actual and 
predicted binary classifications and it assumes a value in 
[− 1, 1]. A value of 1 represents a complete agreement of 
prediction and observation, 0 a random prediction, and − 1 
means opposite values of prediction and observation.

(2)Precision =
TP

TP + FP

(3)TPR∕Sensitivity∕Recall =
TP

TP + FN

(4)Accuracy =
TP + TN

TP + TN + FP + FN

(5)Specificity =
TN

TN + FP

(6)FPR = 1 − TNR =
FP

TN + FP

(7)F1 − score =
2 ∗ Precision ∗ TPR

Precision + TPR

(8)MCC =
TP × TN − FP × FN

√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

3  Results

3.1  Selection of sources of evidence

The output of the literature search sums up to 1109 arti-
cles in total. After the screening, based on title and abstract, 
22 papers were assessed as eligible: their full-texts have 
been downloaded and read. Further 10 articles have been 
excluded after reading. Among these, the work by Zhou and 
Gallins [17] is a review. Although it has been excluded from 
the study, it provided four new articles [48, 52, 53, 85] to 
be added in full-text to the list of the eligible papers. Also, 
the paper [18] has been excluded as it is also a review. It 
presents a repository of classification and regression tasks 
from human microbiome datasets publicly available and, as 
for the previously mentioned review, this paper has been 
read and some of the studies it reviews have been considered 
for the assessment.

The remaining excluded articles were eliminated either 
because they did not apply ML or DL algorithms but just 
performed statistical analysis on microbiota data [86–88], 
or because the analysis was not focused on microbiota (e.g. 
enzymes profiles or metagenomics were analyzed). A detailed 
list of the reasons for exclusion for each of the ten articles is 
discussed in Section 4.

Records a�er removalof 
duplicates
n = 1109

Records iden�fied by 
literature search

n = 1131

Addi�onal ar�cles from 
the review

n = 4

Full text to be assessed for 
eligibility

n = 22

Studies included in the 
scoping review

n = 16

Ar�clesexcludeda�er 
reading
n = 10

Fig. 3  The figure summarizes the process of selection of sources of 
evidence for the study
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The final set of articles included and examined in this scop-
ing review is made up of 16 articles. The process of selection of 
sources of evidence is reported in the flowchart in Fig. 3.

3.2  Synthesis of results

Table 1 gives a high-level overview for all the studies. 
For each study it states its type, cross-validation method, 
examined taxonomy level, and studied trait (if applica-
ble). Table 2 summarizes all the data sets that were used 
in the examined studies while Table 3 summarizes all the 
different algorithms that have been used together with 
indicators of their performances.

4  Discussion

A total of 26 papers have been reviewed for this study. 
Out of those on the final list, 10 papers were identi-
fied as cases whose findings are not fit for this review. 
Table 4 lists those papers that were excluded together 
with the reasons for their exclusion. The remaining 16 
papers were fully examined. The high-level data from 
Table 1 shows that 4 papers reported new methods that 
can be used to analyze the gut microbiota data while 
the remaining 12 papers applied the existing methods to 
analyze gut microbiota of humans with different traits. 
All papers performed some cross-validation methods: 
10-folds cross-validation was the most common.

Table 1  High level information on studies

Paper Study type Cross- validation method Taxonomy level Trait

[39] Dataset study Tenfold, 10,000 times Species Fibromyalgia (FM)
[40] Dataset study Tenfold, 3 times Genus Stroke
[41] Dataset study Tenfold, 20 times Species Primary Sclerosing Cholangitis (PSC)

Ulcerative Colitis (UC)
[36] New methods Fivefold, 10 times Phylum Crohn’s Disease flare (iCDf)

colon Crohn’s Disease flare (cCDf)
ileal Crohn’s Disease remission (iCDr)
colon Crohn’s Disease remission (cCDr)
Ulcerative Colitis flare (UCf)
Ulcerative Colitis remission (UCr)

[42] Dataset study Tenfold Species Inflammatory Bowel Disease (IBD)
Two body sites (skin vs gut)

[43] New methods 80–20% split Various Three body sites
[44] Dataset study NA Species Liver Cirrhosis

Fivefold Type 2 Diabetes (T2D)
Fivefold Obesity
NA IBD

[45] Dataset study Tenfold Genus Obesity
[46] New methods Tenfold, 10 times Species 5 body sites

24 environments
Colorectal cancer

[47] New methods Tenfold Genus Classification of body site
Classification of subjects
Classification of disease states

[48] Dataset study Tenfold Species Colorectal Cancer (CRC) and Colorec-
tal Adenoma (CRA)

[49] Dataset study NA Genus Crohn’s Disease (CD)
[50] Dataset study Tenfold, 10 times Species Colorectal Polyps
[51] Dataset study Leave-one-out Species Colorectal Adenoma

Colorectal Cancer
[52] Dataset study Fivefold, 5 times Genus Type 2 diabetes (T2D)

Liver Cirrhosis
Rheumatoid Arthritis (RA)

[53] Dataset study Leave-one-out Genus Oral malodour

Health Technol. (2020) 10:13 –135843 1349
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Table 2  Description of data sets 
that each study used

Paper Dataset Samples Site Study design Cases Controls

[39] [39] 156 Gut Case–control 77 79
[40] [54] 233 Gut Case–control 141 92

[55] 58 Gut Case–control 29 29
[56] 88 Gut Case–control 49 39
[57] 224 Gut Case–control 191 33
[58] 404 Gut Case–control 263 141
[59] 73 Gut Case–control 29 44

[41] [41] 48 Saliva Case–control 24 24
[41] 40 Saliva Case–control 16

[36] [60] 82 Gut Case–control 44 38
[60] 54 Gut Case–control 16
[60] 97 Gut Case–control 59
[60] 56 Gut Case–control 18
[60] 79 Gut Case–control 41
[60] 82 Gut Case–control 44

[42] [42] 112 Gut Case–control 56 56
[42] 94 Skin and Gut Classification NA NA

[43] [61] 1,967 Gut, oral, skin Classification NA NA
[44] [62] 232 Gut Case–control 118 114

[63] 344 Gut Case–control 170 174
[64] 253 Gut Case–control 164 89
[65] 110 Gut Case–control 25 85

[45] [45] 66 Gut Classification NA NA
[46] [66] 4,485 Different body sites Case–control NA NA

[67] 10,101 Different environments Classification NA NA
[68] 182 Gut Case–control 90 92
[69] 60 Gut Case–control 30 30

[47] [70] 552 Different body sites Classification NA NA
[70] 357 Different body sites Classification NA NA
[66] 1,025 Different body sites Classification NA NA
[70] 140 Different body sites Classification NA NA
[71] 104 Different body sites Classification NA NA
[71] 98 Skin Classification NA NA
[72] 1,025 Gut Case–control 500 500
[73] 200 Gut Case–control 172 28

[48] [48] 141 Gut Case–control 97 52
NA 141 Gut Case–control 80 61

[49] [49] 217 (45subjects) Gut Cohort study NA NA
[50] [50] 552 Gut (231 rectal swab, 

183 stool, 138 
biopsy)

Case–control 316 236

[51] CA,CC 509 Gut Case–control 79 235
[63, 68, 69, 73–82] Gut Case–control 195

[52] [65] 170 Gut Case–control 170 383
[62] 130 Gut Case–control 130
[83] 123 Gut Case–control 123

[53] [53] 90 Saliva Case–control 45 45
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Table 3  Studies’ algorithms and 
their performance

Paper Data set—trait Algorithm Metric Performance

[39] [39]—FM LASSO AUROC 0.8720
SVM AUROC 0.8780

[40] [54]—Stroke LogitBoost Accuracy 0.9832
SVM Accuracy 0.9875
KNN Accuracy 0.9655
LMT Accuracy 0.9832

[55]—JIA LogitBoost Accuracy 0.9852
SVM Accuracy 0.9828
KNN Accuracy 0.9727
LMT Accuracy 0.9895

[55]—ME/CFS LogitBoost Accuracy 0.9693
SVM Accuracy 0.9646
KNN Accuracy 0.9473
LMT Accuracy 0.9626

[55]—HIV1 LogitBoost Accuracy 0.9971
SVM Accuracy 0.9885
KNN Accuracy 0.9727
LMT Accuracy 0.9866

[57]—CRC LogitBoost Accuracy 0.9684
SVM Accuracy 0.9559
KNN Accuracy 0.9028
LMT Accuracy 0.9593

[57]—MS LogitBoost Accuracy 0.9828
SVM Accuracy 0.9808
KNN Accuracy 0.9641
LMT Accuracy 0.9818

[41] [41]—PSC RF AUROC 0.7423
[41]—UC RF AUROC 0.875

[36] [60]—iCDF Ph-CNN MCC 0.944

RF MCC 0.89

linear-SVM MCC 0.941

MLPNN MCC 0.901

[60]—eCDF, cCDF Ph-CNN MCC 0.572

RF MCC 0.72

linear-SVM MCC 0.595

MLPNN MCC 0.648

[60]—iCDr Ph-CNN MCC 0.91

RF MCC 0.82

linear-SVM MCC 0.907

MLPNN MCC 0.837

[60]—cCDr Ph-CNN MCC 0.89

RF MCC 0.765

linear-SVM MCC 0.88

MLPNN MCC 0.788
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Table 3  (continued) Paper Data set—trait Algorithm Metric Performance

[60]—UCf Ph-CNN MCC 0.628

RF MCC 0.76

linear-SVM MCC 0.565

MLPNN MCC 0.606

[60]—UCr Ph-CNN MCC 0.346

RF MCC 0.4

linear-SVM MCC 0.408

MLPNN MCC 0.489
[42] [42]—IBD SVM Accuracy 0.81

RF Accuracy 0.81
NSC Accuracy 0.79
LR Accuracy 0.78

[42]—skin/gut SVM Accuracy 0.98
RF Accuracy 0.99
NSC Accuracy 0.99
LR Accuracy 1.00

[43] [61]—3 body sites RNN Accuracy 0.8313
RNN Accuracy 0.8418
DBN Accuracy 0.9685
DBN Accuracy 0.9721
MLPNN Accuracy 0.8844
RF Accuracy 0.9914
CNN-1D Accuracy 0.9467
CNN-2D Accuracy 0.9947

[43] [62]—Cirrhosis NA NA NA

[63]—T2D SVM Accuracy 0.643

RF Accuracy 0.657

XGBoost Accuracy 0.64

gcForest Accuracy 0.655

autoNN Accuracy 0.663

[64]—Obesity SVM Accuracy 0.637

RF Accuracy 0.648

XGBoost Accuracy 0.635

gcForest Accuracy 0.64

autoNN Accuracy 0.624

[65]—IBD NA NA NA
[45] [45]—Obesity Ensemble method Sensitivity 0.64

Specificity 0.86
SVM Sensitivity 0.57

Specificity 0.83
C5.0 Sensitivity 0.71

Specificity 0.86
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Table 3  (continued) Paper Data set—trait Algorithm Metric Performance

[46] [66]—5 body sites DT AUROC 0.985
NB AUROC 0.995
RF AUROC 0.999

[67]—24 environments DT AUROC 0.96
NB AUROC 0.949
RF AUROC 0.999

[68]—CRC DT AUROC 0.678
NB AUROC 0.721
RF AUROC 0.795

[69]—CRC DT AUROC 0.657
NB AUROC 0.583
RF AUROC 0.975

[47] [70]—different body sites SVM F1-macro 0.78

RF F1-macro 0.73

GB F1-macro 0.74

MNB F1-macro 0.66

LR1 F1-macro 0.41

LR2 F1-macro 0.17

[70]—different body sites SVM F1-macro 0.63

RF F1-macro 0.58

GB F1-macro 0.48

MNB F1-macro 0.49

LR1 F1-macro 0.26

LR2 F1-macro 0.24

[66]—different body sites SVM F1-macro 0.97

RF F1-macro 0.97

GB F1-macro 0.95

MNB F1-macro 0.95

LR1 F1-macro 0.94

LR2 F1-macro 0.93

[70]—different subjects SVM F1-macro 0.88

RF F1-macro 0.87

GB F1-macro 0.74

MNB F1-macro 0.76

LR1 F1-macro 0.16

LR2 F1-macro 0.19

[71]—different subjects SVM F1-macro 0.94

RF F1-macro 1.00

GB F1-macro 0.91

MNB F1-macro 0.98

LR1 F1-macro .60

LR2 F1-macro .58
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Table 3  (continued) Paper Data set—trait Algorithm Metric Performance

[71]—different subjects SVM F1-macro 0.68

RF F1-macro 0.63

GB F1-macro 0.55

MNB F1-macro 0.50

LR1 F1-macro 0.17

LR2 F1-macro 0.17

[72]—IBD SVM F1-macro 0.68

RF F1-macro 0.57

GB F1-macro 0.65

MNB F1-macro 0.43

LR1 F1-macro 0.47

LR2 F1-macro 0.43

[73]—PDX SVM F1-macro 0.29

RF F1-macro 0.28

GB F1-macro 0.35

MNB F1-macro 0.18

LR1 F1-macro 0.15

LR2 F1-macro 0.15

[48] [48]—CRC/CRA BN AUROC 0.93

RF AUROC 0.94

SL AUROC 0.975

LMT AUROC 0.975

NA BN AUROC 0.858

RF AUROC 0.86

SL AUROC 0.714

LMT AUROC 0.762
[49] [49]—CD RF AUROC 0.87
[50] [50]—Colorectal polyps NB AUROC 0.86

NN AUROC 0.87
[51] [63, 68, 69, 73–82]—

CRC/CRA 
RF AUROC 0.80

[52] [62, 65]—T2D, Cirrhosis, 
RA

KNN F1-score 0.8602
LR F1-score 0.9142
RF F1-score 0.8341
SVM F1-score 0.9138
GBDT F1-score 0.8741
SGD F1-score 0.836
ADA F1-score 0.8959

[53] [53]—Oral malodour Deep learning Accuracy 0.9670
SVM Accuracy 0.7890
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The majority of the examined papers used species 
level as the final taxa resolution. This is consistent with 
findings in the literature: species is the last taxonomic 
level at which 16 s rRNA sequencing technique is accu-
rate. As for the traits examined, there is a great variance, 
but datasets of individuals with either Chron’s disease 
or Colorectal cancer have been examined multiple times.

As reported in Table 2, most of the studies examined 
multiple datasets, counting from one to eight. All but 
two papers (that examined saliva microbiota) analyzed 
gut microbiota data. Classification of different body 
sites is a problem that has been examined in two studies. 
While three other papers included different classifica-
tion problems, and one used cohort study as the design 
method, the overwhelming majority was either fully or 
partially based on the case–control design method. This 
is due to AI techniques being suitable for the design of 
computational classifiers that can distinguish the sam-
ples from case and control groups with high probability. 
The total number of samples in a single dataset varied 
from 40 to 10, 101. In the articles that used case–con-
trol study design, the case groups contained 16 to 500 
samples, while the control groups were made up of 24 
to 500 samples.

A different range of AI algorithms was applied in the 
reviewed papers. Some of them were from the ML group 
while the others were from DL. 11 papers evaluated just 
different ML algorithms (ranging from one to eight algo-
rithms applied to one dataset). The remaining five papers 
examined both ML and DL algorithms.

The most often applied ML algorithm was Random 
Forest. This algorithm had also most often the best per-
formance reported. For the papers that applied both ML 
and DL algorithms, it is inconclusive which ones per-
formed better.

When it comes to reporting the performance of AI 
algorithms on microbiome data, as summarized in 
Table 3, the metrics that were reported most frequently 

were AUC  and Accuracy. Additional metrics include Sen-
sitivity, Specificity, MCC, F1-score and F1-macro.

5  Conclusion

It is commonly accepted that the “ecosystem” microbiome 
plays a central role in health and disease development. 
The human microbiome consists of promising biomarkers 
for various pathological states and there is an overflow of 
metagenomics results. Translating these data into clinical 
practice is now a big challenge for the future. Microorgan-
isms and host cells communicate by producing and sharing 
metabolites and generating metabolic networks that we can 
use to develop meta- metabolic network models. Studying 
network biology using ML represents a great opportunity for 
exploring the “human health condition”.

Some models could be used for understanding the micro-
bial-host interplay, as well as for predicting and gaining 
insights into the synergistic and dysbiotic connections. Some 
models could be used to inspect how the abnormal growth 
of a specific microbial species might perturb the metabolic 
balance of the ecosystem by secreting beneficial metabo-
lites that promote health or, conversely, toxic ones that could 
damage the host tissues. Some models could also be used to 
foster the development of innovative diagnostic applications. 
The huge amount of data produced by these models is often 
referred to as big data.

However, such a big amount of data needs to be reported 
in an intelligible way. Each prediction allows for more exten-
sive analysis, which in turn may let clinicians make informed 
and accurate decisions. Using a method for explaining indi-
vidual classifier decisions for complex microbiota analysis 
may assist in performing treatment management for every 
single patient. This approach can also help the physician 
in improving his/her clinical expertise (with new and fine 
stratification of patients’ sub-types), thus opening new per-
spectives on personalized therapy.

Table 4  Excluded papers with 
the reason for exclusion

Paper Reason for exclusion

[86] No AI algorithms, only statistical analysis performed
[17] A review for non-experts
[18] Technical note
[89] ML was used solely for the unknown OTU discovery (taxonomic assignment)
[87] No AI algorithms, only statistical analysis performed
[88] No AI algorithms, only statistical analysis performed
[90] ML performed on a database of substrate molecules, not microbiome data
[85] Did not use human microbiome
[48] Findings reported from [48] version of the paper
[91] ML solely used for feature subset selection
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