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Abstract
Wearable devices are increasingly prevalent in research environments for the estimation of energy expenditure (EE) and heart rate
(HR). The aim of this study was to validate the HR and EE estimates of the Fitbit charge 2 (FC2), and the EE estimates of the
Sensewear armband mini (SWA). We recruited 59 healthy adults to participate in walking, running, cycling, sedentary and
household tasks. Estimates of HR from the FC2 were compared to a HR chest strap (Polar) and EE to a stationary metabolic
cart (Vyntus CPX). The SWA overestimated overall EE by 0.03 kcal/min−1 and was statistically equivalent to the criterion
measure, with a mean absolute percentage error (MAPE) of 29%. In contrast, the FC2 was not equivalent overall (MAPE =
44%). In household tasks, MAPE values of 93% and 83% were observed for the FC2 and SWA, respectively. The FC2 HR
estimates were equivalent to the criterion measure overall. The SWA is more accurate than the commercial-grade FC2. Neither
device is consistently accurate across the range of activities used in this study. The HR data obtained from the FC2 is more
accurate than its EE estimates and future research may focus more on this variable.

Keywords Energy Expenditure . Heart Rate .Wearables . Accelerometer . Validation

Abbreviations
ANOVA Analysis of variance
BPM Beats per minute

DBP Diastolic blood pressure
EE Energy expenditure
FC2 Fitbit Charge 2
FM Fat mass
FFM Fat-free mass
HR Heart rate
MAE Mean absolute error
MAPE Mean absolute percentage error
PA Physical activity
RMR Resting metabolic rate
RHR Resting heart rate
RMSE Root mean squared error
SWA SenseWear Armband Mini
SBP Systolic blood pressure

1 Introduction

An increased participation in physical activity (PA) and a
more active lifestyle is associated with a reduced risk of obe-
sity and prevention of weight regain following weight loss
[1–6]. Increases in PA can not only elevate energy expenditure
(EE), but also influence the control of appetite and energy
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intake [7]. Thus, the quantification of PA and EE represent
primary areas of interest in the study appetite and energy bal-
ance. Wearable devices, relying primarily on accelerometery,
have been available for the assessment of PA and EE in re-
search environments for some time [8–10]. Commercial-grade
wearable devices are increasingly used in large-scale PA and
dietary research, but their use in such environments is depen-
dent on their ability to accurately and precisely track and es-
timate the energy cost of a wide range of activities.

The ability to estimate EE using cost effective and practical
wearable devices has long been of scientific interest [11–13]
as such devices would help overcome limitations associated
with currently available techniques. For example, indirect cal-
orimetry methods are generally limited to laboratory environ-
ments and expensive stable isotopic criterion techniques pro-
vide mean estimates of daily EE over 10–14 days and do not
capture daily variation in EE [14]. These issues constrain their
use in large-scale research and limit their utility for the collec-
tion of continuous EE data over long-term periods of time in
free-living individuals. Accurate estimates of EE from discrete
wearable devices would add a new dimension to the assess-
ment of free-living EE across a range of activities and popu-
lation groups in health and disease. Recent developments in
wearable technology and cloud storage capacity means it is
now theoretically possible and practical to continuously mon-
itor EE patterns in the free-living individual [15]. However,
inaccurate instruments are undesirable as they may bias inter-
pretation of data outcomes [16].

A body of literature validating wearable devices exists [17,
18] but product release is often faster than validation studies [19]
and thus, the accuracy of newer devices remains uncertain.
Physiological sensors, including heart rate (HR) sensors [20]
are commonplace in newer activity monitors [21] and such in-
novation may be bringing the accuracy of commercial devices in
line with more established research-grade devices [22]. A linear
relationship exists between oxygen consumption (VO2) and HR
duringmoderate to high intensity activities [23, 24] and therefore
monitoring HR at the minute-level enables relative PA intensity
[25, 26] or EE [27] to be estimated. It seems that combination
approaches, in which physiological and movement variables are
incorporated into predictive algorithms, improves the estimation
of PA or EE relative to accelerometery alone [21, 28]. For HR to
be used to monitor PA or EE in wearable activity monitors it is
imperative that HR estimates are valid in populations and activ-
ities of interest.

There is considerable interest in measuring HR and EE
with accuracy and precision in research, clinical and consumer
environments. The purpose of the present study is to evaluate
the validity the HR and EE estimates of the Fitbit Charge 2
(FC2), a modern commercial grade wearable device and the
EE estimates of the research-grade SenseWear Armband Mini
(SWA) during sedentary, household, ambulatory and cycling
tasks in a heterogeneous population.

2 Methods

2.1 Participants

A diverse sample (n = 59) was enrolled in the study (age
range: 22–73 years, weight range 49.2–105.99 kg) and partic-
ipant characteristics are presented in Table 1. Participants were
primarily recruited from the Leeds centre of the NoHoW trial
(n = 44), a randomized controlled trial testing the efficacy of
an ICT based toolkit for weight loss maintenance across three
European centres: United Kingdom, (Leeds), Denmark
(Copenhagen), and Portugal (Lisbon). The main trial is regis-
tered with the ISRCTN registry (ISRCTN88405328).
Participants recruited from the NoHoW trial were provided
with their own FC2. In addition, 15 participants were recruited
from the local area. Exclusion criteria for the present study
included: pregnancy, medications associated with alteration
to metabolic rate, the inability to ambulate without assistance,
the presence or sign of cardiovascular, metabolic, renal disor-
ders, illness or injury that provide an increased risk of medical
events during PA [29]. This study was conducted at the
Appetite Control and Energy Balance research laboratory at
The University of Leeds, and participants provided written
informed consent for this specific study prior to participation.
The experimental protocol was approved by TheUniversity of
Leeds, School of Psychology ethics committee (PSC-407, 18/
08/2018).

2.2 Study protocol

Following body composition and RMR measurements (de-
scribed below), participants transitioned to the exercise labo-
ratory where the PA protocol was performed. Participants
were initially seated for 5 min, followed by 5 min standing.
Next participants performed 5 min of treadmill walking
(4 km/h), incline walking (4 km/h, 5% incline), running (6–
8 km/h, 5% incline) and incline running (6–8 km/h, 5% in-
cline). Participants were then given a 3-min resting period and
then transitioned to a cycle ergometer and performed 5 min of
low-intensity (30 watts), and moderate intensity cycling (60
watts). Lastly, after another resting period, participants per-
formed a 5-min folding task and a 5-min sweeping task.
Throughout this protocol, participants wore a polar HR mon-
itor, FC2 and a SWA at all times whilst breath by breath
respiratory data was collected using a stationary metabolic
cart.

2.3 Physical measurements

Participants arrived at the laboratory in a fasted state having
refrained from the intake of food, caffeine and exercise in the
12 h prior to testing. After completing a medical screening
questionnaire and providing informed consent, height was
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measured without shoes using a stadiometer (Leicester height
measure, SECA; UK). Blood pressure and resting HR were
measured using an automatic sphygmomanometer (Microlife
BP A2 Basic, Gentle Technology, Microlife, Clearwater, FL,
USA, Inc.). Next, body composition was estimated using a 2-
compartment model via air displacement plethysmography
(BodPod, Life Measurement, Inc.; USA). The Siri equation
[30] was used to derive absolute and percentage fat mass (FM)
and fat-free mass (FFM), while body weight was obtained
from the BodPod scales. The BodPod has been demonstrated
to show excellent accuracy for the estimation of body compo-
sition [31].

2.4 Resting metabolic rate

Resting metabolic rate (RMR) was measured in a dimly lit
room, in the supine position for 30 min by an indirect calo-
rimeter fitted with a ventilated hood (GEM, Nutren
Technology Ltd.; UK). The GEM was calibrated in accor-
dance with manufacturer’s instructions prior to each measure-
ment. Resting metabolic rate was calculated from VO2 and
VCO2 in the steady state, defined as the 5 min block with
the lowest coefficient of variation, after the removal of the first
5 min of data [32]. If RMR data were unavailable (n = 2),
RMR was estimated a body mass index specific RMR algo-
rithm of Müller [33].

2.5 Instruments

2.5.1 Polar HR monitor

HR was assessed during the PA protocol using a Polar m400
HR Monitor Watch (Polar Electro, Kempele, Finland) and a
Polar H7 chest strap (Polar Electro, Kempele, Finland), which
transmitted second-level data via a Bluetooth connection.
Data were uploaded to the Polar flow online application, then
downloaded and aggregated to minute-level for analysis. The
Polar H7 served as a criterion measure of HR in the present
study and it has been shown to have near perfect correlation
with electrocardiogram during many exercise modalities [34].

2.5.2 Fitbit Charge 2

The FC2 (Fitbit Inc., San Francisco, CA, USA) is a wrist-worn
activity monitor which estimates HR, steps, EE and PA, based
on data obtained from incorporated sensors via proprietary
algorithms. HR estimates are obtained through a patented
technology called ‘PurePulse’, which uses light-emitting di-
odes on the surface of the skin to monitor blood volume con-
tinuously [35]. Data are aggregated to the minute-level and
synced via the Fitbit mobile application to Fitbit servers
through an application programming interface. Participants
used the devices provided to them as part of the NoHoW trialTa
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and if participants were not part of this trial a FC2 was pro-
vided for the duration of this study. The device was fitted a
finger’s width above the non-dominant wrist and was config-
ured with participant weight, height, sex and date of birth.

2.5.3 SenseWear armband Mini

The SWA (BodyMedia Inc., Pittsburgh, PA) is a research-
grade device which utilises a tri-axial accelerometer, heat-
related sensors (heat flux, skin temperature, near body ambi-
ent temperature) and galvanic skin response to estimate EE.
Data were downloaded and processed using the SenseWear®
Pro 8.0 software, algorithm v5.2. The SWAwas fitted with an
elastic strap around the non-dominant arm and initialised
using participant weight, height, sex, date of birth and
smoking status.

2.5.4 Vyntus CPX

A stationary metabolic cart fitted with a respiratory facemask
(Vyntus CPX, Jaeger-CareFusion, UK) was used as the crite-
rion measure of EE in the present study. The Vyntus CPX has
been demonstrated to be valid and to have excellent reliability
(coefficient of variation <0.5%) [36] and is therefore used as a
reference for the validation of portable systems [37]. The unit
was calibrated prior to each lab visit in accordance with man-
ufacturer’s instructions. Breath by breath data from the device
were aggregated to minute level and EE (kcal/min−1) values
were calculated from VO2 and VCO2 data assuming a mini-
mal contribution of protein oxidation [38].

2.6 Statistical analysis

All analyses were conducted in R version 3.5.1 and Rstudio
Version 1.1.447. Statistical significance was accepted at
p < 0.05 for all analyses. Descriptive statistics (mean ± SD)
were calculated for age, weight, height, FM, FFM and
RMR. Data from the devices and criterion measures were
averaged to provide mean HR in beats per minute (BPM) or
EE (kcal/min−1) for each participant. Data for each of the
outputs were matched by time for each participant. Next, the
first minute of data from each activity performed in the activ-
ity protocol was removed leaving minutes 2–5, which we
considered as steady-state. These data were then averaged
for each participant’s activity bout and this figure was used
in analyses.

Analyses for each of the devices, HR and EE were con-
ducted separately. In line with previous research [39] we
employed a range of statistical tests. Firstly, agreement be-
tween criterion measure and devices was assessed with
Pearson’s correlation coefficient. The method of Bland-
Altman [40] was used to investigate mean difference between
criterion and device estimates, with limits of agreement set to

± 1.96 x standard deviation of mean difference, using the
‘BlandAltmanLeh’ package in R. Root mean squared error
(RMSE), mean absolute error (MAE) and mean absolute per-
centage error (MAPE), were calculated with the R package
‘metrics’. Lastly, equivalence tests were conducted to com-
pare dev ices and cr i t e r ion es t ima tes us ing the
‘TOSTpaired.raw’ function within the ‘TOSTER’ package
in R. For estimates to be considered equivalent, the 90% con-
fidence interval needed to fall within the equivalence zone,
which was considered to be ±10% of the criterion mean
[41]. Lastly, the absolute percentage error, defined as the ab-
solute value of the percentage error relative to the criterion
were explored. Differences in absolute percentage error for
sex were investigated with a one-way analysis of variance
(ANOVA) and a post-hoc Tukey honest significant difference
test, conducted using ‘aov’ from the ‘stats’ package in R. We
investigated the relationship between continuous variables
(age, RMR, height, weight, FM, FFM, resting HR, systolic
and diastolic blood pressure) and absolute error rate in EE
and HR estimates with Pearson’s correlations, using the
‘cor’ function from the ‘stats’ package in R.

3 Results

The PA protocol was performed by all participants (n = 59)
however the running task (n = 49), the 5% incline run (n = 30)
and the moderate cycling tasks (n = 58) were not performed by
all participants due to ranges in physical fitness within the
sample.

3.1 Energy expenditure

3.1.1 Fitbit Charge 2

Synchronisation errors occurred for two participant’s FC2 data
and therefore 57 participant’s data were included in FC2 anal-
yses. The pooled result of all available bouts was a mean
overestimation by the FC2 of 0.8 (kcal/min−1), RMSE = 2.3
(kcal/min−1), correlation coefficient of r = 0.77, MAPE = 44%
and a non-significant equivalence test (p > 0.05) indicating
that the FC2 was not equivalent to the criterion measure over-
all. The activity specific statistics, and the number of bouts
included in the analyses are presented in Table 2. The poorest
accuracy was observed in the folding and sweeping tasks, in
which the FC2 overestimated with MAPE values of 93% and
81%, respectively (Fig. 1). The best accuracy, and statistical
equivalence was observed in incline running tasks (MAPE =
12%). A Bland-Altman plot of the overall error is shown in
Fig. 2, for which the 95% limits of agreement were: −3.52,
5.14 (kcal/min−1).

Health Technol. (2020) 10:637–648640



3.1.2 SenseWear Armband

EE data were available for all participants from the SWA and
thus 59 participant’s data were included in the SWA analyses.
The pooled result of all available bouts was a mean

overestimation of 0.03 (kcal/min−1), RMSE = 1.7 (kcal/min−1)
correlation coefficient of r = 0.82, MAPE = 29% and a signif-
icant equivalence test (p < 0.001), indicating that the SWAwas
equivalent to the criterion measure overall. The activity spe-
cific statistics, and the number of bouts included in the

Table 2 Statistics detailing the validity of EE estimates obtained from the FC2 (above) and SWA (below)

Device Activity Bouts ID Device Criterion RMSE MAPE MAE Correlation Equivalence

FC2 sit 228 57 1.08 ± 0.24 1.30 ± 0.31 0.32 19 0.26 0.66

stand 228 57 1.15 ± 0.29 1.47 ± 0.35 0.44 24 0.37 0.56

walk 228 57 7.10 ± 1.97 4.27 ± 0.86 3.35 69 2.83 0.39

walk incline 228 57 7.32 ± 2.39 5.66 ± 1.02 2.56 31 1.75 0.59

run 191 48 9.91 ± 1.91 9.18 ± 1.83 1.61 15 1.29 0.70

run incline 120 30 10.61 ± 2.57 11.14 ± 2.22 1.58 12 1.27 0.81 Equivalent

cycle low 225 57 3.78 ± 2.17 4.49 ± 1.23 2.15 40 1.70 0.38

cycle mid 217 56 4.35 ± 2.50 5.59 ± 1.54 2.69 39 2.14 0.37

folding 228 57 5.57 ± 1.88 2.96 ± 0.61 3.11 93 2.70 0.42

sweeping 228 57 5.98 ± 1.69 3.38 ± 0.83 2.94 81 2.64 0.58

SWA sit 236 59 1.43 ± 0.31 1.29 ± 0.31 0.25 17 0.20 0.75

stand 236 59 1.67 ± 0.36 1.47 ± 0.34 0.33 20 0.26 0.71

walk 236 59 4.47 ± 0.79 4.28 ± 0.85 0.73 14 0.59 0.62 Equivalent

walk incline 236 59 5.12 ± 0.82 5.67 ± 1.00 1.02 13 0.78 0.56

run 195 49 9.73 ± 1.99 9.18 ± 1.81 1.60 15 1.34 0.69

run incline 120 30 9.69 ± 1.94 11.14 ± 2.22 2.14 15 1.76 0.71

cycle low 233 59 3.17 ± 1.19 4.51 ± 1.22 1.63 31 1.40 0.70

cycle mid 225 58 4.13 ± 1.98 5.60 ± 1.52 2.42 35 1.93 0.41

folding 236 59 5.31 ± 2.18 2.97 ± 0.60 3.06 83 2.43 0.43

sweeping 236 59 4.33 ± 1.70 3.37 ± 0.82 1.80 41 1.30 0.43

Activity is laid out in the order dictated by the physical activity protocol. ‘Bouts’ refers to the number of activity bouts included and ‘ID’ refers to the
number of participants included in each comparison. ‘Correlation’ refers to Pearson’s R. ‘Equivalence’ refers to the results of the equivalence tests and
the absence of text implies a non-significant equivalence test. Data are shown as means ± SD. MAPE =Mean absolute percentage error, RMSE =Root
mean squared error, MAE=Mean absolute error
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Fig. 1 A bar plot detailing the
mean absolute percentage error
(MAPE) of EE estimates from the
SWA (yellow) and the FC2 (grey)
for each of the activities per-
formed in this study
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analyses are presented in Table 2. The SWA demonstrated the
poorest accuracy in the folding task, in which it overestimated
EE (MAPE= 83%). The lowest MAPE values were observed in
the walking (MAPE = 14%) and walk 5% incline tasks
(MAPE= 13%), which were overestimations and underestima-
tions relative to the criterion measure, respectively (Fig. 1).
Equivalence testing showed statistical equivalence between the
SWA and the criterion measure during walking only. A Bland-
Altman plot of the overall error is shown in Fig. 2, for which the
95% limits of agreement were: −3.33, 3.38 (kcal/min−1).

3.1.3 Heart rate (HR)

Polar HR connectivity error occurred for one participant and thus
HR analyses were conducted with 56 of the 57 participants with
FC2 data. The pooled result of all available bouts was 98 ± 27
BPM (polar) vs 99 ± 29 BPM (FC2), RMSE= 20 BPM, corre-
lation coefficient of r = 0.75, MAPE = 13% and a significant
equivalence test (p < 0.001), indicating statistical equivalence.
A Bland-Altman plot for errors in HR illustrates the agreement
between criterion HR and FC2 HR by displaying the mean dif-
ference and 95% limits of agreement (Fig. 3) and the 95% limits
of Agreement were: −37.94, 39.73 (BPM). Activity specific

Bland-Altman plots are presented for all tasks in Fig. 4 and
accuracy statistics are presented in Table 3.

3.2 Predictors of absolute percentage error

Using the available data, no significant correlations were ob-
served for any continuous variables and the absolute percentage
error for HR and EE. ANOVA tests for the sex differences were
not significant for EE absolute percentage errors for the SWAand
FC2. In the HR comparison, a significant difference was ob-
served between male bouts (n = 184) and female bouts (n =
348), with the absolute percentage error for males being signifi-
cantly higher (F = 4.158, p = 0.042).

4 Discussion

This study investigated the validity of EE and HR estimates from
the FC2 and EE estimates from the SWA in a heterogenous
population performing a variety of tasks by comparing HR esti-
mates to a HR chest strap (Polar) and EE estimates to a stationary
metabolic cart (Vyntus CPX). The principal findings are i) the
research-grade SWAwas observed to be more accurate than the
commercial-grade FC2 overall ii) the HR estimates of the FC2
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are generally in closer agreement with the criterion measures
compared to EE estimates.

The FC2, one of the newest Fitbit activity monitors, has been
investigated previously for its validity in estimating EE, relative
to indirect calorimetry [19, 42], but this study provides a direct
comparison with the SWA, a more established and commonly
used research-grade device, using a range of activities. Our re-
sults substantiate previous research concluding that the SWA is
more valid for the estimation of EE when compared to commer-
cial activity monitors [21, 22]. This being said, the FC2 nor the
SWAwere consistently equivalent across the range of activities
performed, with MAPE values >25% in some activities.

Large overestimations were observed for the FC2 during the
household tasks. This most likely originates from the reliance on
wrist accelerometery and this is a recognised limitation of devices
located at this wear site [43]. Movements such as folding and
sweeping, which involve rapid movements of the hand but are
not particularly energetically demanding (typically ~4 metabolic
equivalents) [44] were overestimated. This is opposite to the
issue faced by more traditional devices, which were worn on
the hip and underestimate the energy cost of tasks with limited
ambulation (i.e. household tasks) [45, 46]. Notably, the MAPE
values for the FC2 were lowest in running activities (indicating a
high degree of accuracy) and higher during walking activities.
This finding is reflective of the results of a recent meta-analysis
published by our group, in which the pooled results from five
comparisons for the Fitbit Charge HR (prior model to the FC2)
showed significant, moderate to large overestimation relative to
criterionmeasures of EE during ambulation and a non-significant
overestimation during running [21]. Whilst we are limited in our
ability to comment on the underlying cause of this error due to
the proprietary nature of the algorithms, it is interesting to note
that the greatest overestimate in HR estimates was observed in

thewalking tasks. If HR is incorporated in the FC2EE prediction
algorithm, this could partially explain this result.

The performance of the SWA for the estimation of total daily
EE is well recognised [47–49]. However, its accuracy in specific
activity types is less established [50]. Indeed, significant under-
estimations relative to indirect calorimetry in running at higher
speeds (> 9.9 km/h) have been reported [51] and in a validation
study involving cycling, the SWA again significantly
underestimated EE [52]. Data from the CALERIE study showed
a mean bias in total daily EE estimates of − 1.6 ± 261 kcal/d
when compared with doubly labelled water, yet when the data
were tertiled by total daily EE an underestimation of 162 kcal/d
in the highest total daily EE group was observed [53]. The com-
plimentary results overall and in comparisons to doubly labelled
water may be largely influenced by the accuracy of the resting
EE equations selected by the manufacturers, which are derived
from participant characteristics [46]. The present results offer
some support for this supposition and indicate that the SWA
accuracy is dependent on the PA level of the individual.

The conclusion that the estimates of HR from the FC2 are
typically more accurate than EE estimates is reflective of pre-
vious research [54, 55]. When HR estimates were aggregated
across all available bouts, the HR estimates of the FC2 were
statistically equivalent to the criterion measure. Error in spe-
cific activity types was greater but the FC2 was statistically
equivalent in most activity types. A recent study reported that
erratic movements and a greater HR were associated with an
increased error in HR [56] and another concluded that the error
was exacerbated with increasing exercise intensity [57]. In con-
trast, our results showed the highest error in the walking task, yet
the greatest accuracy in the running and sedentary tasks. The
observation of the greatest error in walking is similar to that
reported in a previous study investigating the Fitbit Surge device
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which showed a greater error in HR during ambulatory tasks
[55]. In contrast, two other studies investigating the FC2 report
small underestimations in HR during walking [42, 56].

We identified no significant continuous correlates of the
error for each device and this includes body composition,
which we believe to be a novel investigation within this field.
However, the percentage error in HR was significantly greater
in males, when compared to females. Whilst the proprietary
nature of the smoothing algorithms makes understanding the
observed error challenging, photoplethysmography technolo-
gy is likely to be influenced by device position and skin con-
ditions which may differ between males and females [58].
Prior to the exercise condition the position and tightness of
the FC2 were standardised for all participants and it therefore
seems unlikely that this played a role in the observed error. It
remains to be seen whether the free-living performance of the
FC2 will differ between participants in less controlled envi-
ronments and this should be addressed in future research.

4.1 Implications

The seeming inability of the ‘out of the box’ FC2 estimates to
accurately estimate EE is a primary limitation for energy bal-
ance research, particularly when the numerous benefits of

cost, cloud storage and acceptance from participants are con-
sidered [59, 60]. Our data indicate that it may be more appro-
priate to use commercial activity trackers, in their current for-
mat, to infer PA from step counts or to estimate HR, which are
generally observed to be more valid than EE estimates [17].
Alternatively, the application of metrics such as the heart rate
reserve [26], which can be used to define minute level relative
intensity from HR data may be preferred. These findings are
important for studies utilising the FC2 for longitudinal data
collection.

An accurate and objective estimate of EE, in combination
with an estimate of change in energy storage, can be used to
estimate energy intake [61] and therefore determine
misreporting through the ‘solving’ of the energy balance equa-
tion [53]. Given the centrality of energy intake and EE to the
development of obesity, it is vital to be able to estimate energy
intake and EE with precision and accuracy in free-living indi-
viduals. Self-reported energy intake is still widely used in
research, yet it is well established that this approach is limited
by issues of misreporting [16]. Mathematical models to esti-
mate energy intake from body weight have been developed
and validated [62]. However, these models make assumptions
about the EE levels, which are unlikely to be constant between
and within individuals during weight loss and maintenance
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interventions [1]. An inexpensive, objective estimate of EE
will therefore improve energy intake estimates from mathe-
matical models and whilst devices such as the FC2 show large
inaccuracies, it is likely that in their current form, they would
be superior than an estimation of constant PA EE.

Considering that it is possible to access minute-level data
from commercial wearables in many instances, this raises the
possibility of the application of non-linear modelling to im-
prove estimates of EE from commercial wearable devices.
Advanced statistical learning techniques are being used to
estimate EE and PA of tasks with better accuracy than linear
regression approaches [63–65] and future research should in-
vestigate whether data from commercial activity monitors can
be used to more accurately predict EE from sensor outputs.
The incorporation of body composition and participant char-
acteristics to non-linear models could improve estimates of EE
beyond the estimates of current activity monitors [66].

4.2 Limitations

In this study, a number of different FC2 devices were used and
data were synced with each participant’s mobile phone appli-
cation. The lack of standardisation of devices may be consid-
ered a limitation, as different firmware could have been
employed for different participants. However, this reflects
the use of wearable devices in research environments, in
which a study population are each provided with their own
activity tracker and data are collected via an application pro-
gramming interface.

Secondly, whilst this study provides analysis of the accu-
racy of two activity monitors for a relatively limited series of
prescribed activities, it provides little insight into the ecolog-
ical validity of these devices. Substantial over and underesti-
mations from the FC2, depending on the specific activity in

question, were observed and therefore the error observed in
free-living individuals is likely to vary depending on the ac-
tivities performed. Given that wearable devices will be used in
free-living research, validation studies in free-living condi-
tions are urgently required. Thirdly, this study was conducted
in healthy, ambulatory individuals who were not pregnant,
using medications associated with alteration to metabolic rate,
and did not have cardiovascular, metabolic, renal disorders,
illness or injury. It is possible that results would vary as the
characteristics of study populations differ, however, with the
exception gender difference in HR error, we found no evi-
dence that this is the case.

5 Conclusion

The SWA is more valid for the estimation of EE when com-
pared to the commercial grade FC2, yet neither activity mon-
itor can consistently estimate EE with equivalence to a crite-
rion measure. The FC2 provides better estimates of HR than it
does EE, which are broadly, but not always, equivalent to
criterion estimates across a broad range of activity types. It
may therefore be more appropriate to focus on HRmetrics for
the assessment of PA, rather than EE in the FC2.
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Table 3 Statistics detailing the validity of HR estimates obtained from the FC2, measured in beats per minute

Activity Bouts ID Device Criterion RMSE MAPE MAE Correlation Equivalence

sit 224 56 62.29 ± 8.38 64.80 ± 10.25 4.52 4 2.79 0.94 Equivalent

stand 224 56 66.44 ± 9.49 69.54 ± 11.54 5.51 4 3.31 0.92 Equivalent

walk 224 56 101.80 ± 20.59 84.40 ± 12.95 27.63 25 19.50 0.23

walk incline 224 56 108.06 ± 22.94 97.19 ± 14.84 25.68 17 16.10 0.29

run 191 48 136.15 ± 19.12 131.04 ± 20.93 17.16 8 10.02 0.66 Equivalent

run incline 120 30 142.13 ± 19.00 142.26 ± 20.15 11.85 5 6.81 0.81 Equivalent

cycle low 217 55 95.09 ± 20.55 105.40 ± 17.40 20.80 12 13.12 0.55

cycle mid 209 54 97.29 ± 24.44 114.73 ± 19.68 26.25 16 18.17 0.62

folding 224 56 106.67 ± 12.91 102.03 ± 17.94 19.20 15 14.38 0.29 Equivalent

sweeping 224 56 102.27 ± 14.76 98.55 ± 18.78 20.17 16 14.40 0.31 Equivalent

Activity is laid out in the order dictated by the physical activity protocol. ‘Bouts’ refers to the number of activity bouts included and ‘ID’ refers to the
number of participants included in each comparison. ‘Correlation’ refers to Pearson’s R. ‘Equivalence’ refers to the results of the equivalence tests and
the absence of text implies a non-significant equivalence test. Data are shown as means ± SD. MAPE =Mean absolute percentage error, RMSE =Root
mean squared error, MAE=Mean absolute error
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