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Abstract
I review recent technological advancements in coupling single-cell transcriptomics with cellular phenotypes including 
morphology, calcium signaling, and electrophysiology. Single-cell RNA sequencing (scRNAseq) has revolutionized cell 
type classifications by capturing the transcriptional diversity of cells. A new wave of methods to integrate scRNAseq and 
biophysical measurements is facilitating the linkage of transcriptomic data to cellular function, which provides physiologi-
cal insight into cellular states. I briefly discuss critical factors of these phenotypical characterizations such as timescales, 
information content, and analytical tools. Dedicated sections focus on the integration with cell morphology, calcium imaging, 
and electrophysiology (patch-seq), emphasizing their complementary roles. I discuss their application in elucidating cellular 
states, refining cell type classifications, and uncovering functional differences in cell subtypes. To illustrate the practical 
applications and benefits of these methods, I highlight their use in tissues with excitable cell-types such as the brain, pan-
creatic islets, and the retina. The potential of combining functional phenotyping with spatial transcriptomics for a detailed 
mapping of cell phenotypes in situ is explored. Finally, I discuss open questions and future perspectives, emphasizing the 
need for a shift towards broader accessibility through increased throughput.

Keywords Single-cell · Morphology · Phenotypes · Patch-seq · Imaging · Calcium · Transcriptomics · Cell-type · 
Excitability · Function

Introduction

Single-cell RNA sequencing (scRNAseq) is a unique tool 
to perform cell type classifications based on their tran-
scriptional profile (Manno et al. 2016; The Tabula Muris 
Consortium 2018; Villani et al. 2017; S. R. Quake 2021; 
Regev et al. 2017). This technique provides increasingly 
accurate cell type classifications in diverse organs, by meas-
uring the transcriptome of individual cells (Fig. 1A). It has 

transformed our understanding of cellular diversity and het-
erogeneity, enabling the identification of rare and previously 
unknown cell types and states. However, challenges persist 
in directly attributing physiological properties in a cell to its 
measured transcriptome and in contextualizing this informa-
tion within the tissue structure and microenvironment (Mayr 
et al. 2019; Kravets and Benninger 2020). For instance, it 
remains unclear whether distinctions based on molecular 
methods such as scRNAseq align with those obtained using 
morphological profiling and physiological and functional 
assays.

In this review, I discuss methods that aim to bridge this 
gap by integrating single-cell transcriptomics with bio-
physical measurements of cellular function in the same cell 
(Fig. 1B). An essential application of these multimodal tech-
nologies is the ability to identify physiologically relevant 
cellular states. They can also refine cell type classifications 
and identify cellular subtypes that are overlooked by indi-
vidual modalities—hence contributing to a more compre-
hensive understanding of tissue and cell heterogeneity.
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Enhancing scRNAseq with cellular 
phenotypes

A critical aspect when designing a multimodal single-
cell experiment is the extent to which information of ‘cell 
state’ can be extracted with each new data modality. Three 
factors to guide this selection are (i) the timescale of fluc-
tuations in gene expression in relation to the measured 
phenotypes, (ii) the shared information content between 
modalities, and (iii) the analytical tools required to retrieve 
this information. Table 1 provides an overview of pheno-
typical characterizations that have been combined with 
scRNAseq, along with their respective strengths and limi-
tations. Further discussion on cell morphology, calcium 
 (Ca2+) imaging, and electrophysiology is presented in the 
following sections.

Timescales

Various techniques are employed to track phenotypical 
changes in cells across different timescales. Morphodynam-
ics, for instance, monitors changes occurring over minutes to 
days (Copperman et al. 2023).  Ca2+ imaging measures oscil-
lations from tens of milliseconds to minutes, and electro-
physiology records cellular activity down to the millisecond, 
such as action potential firing (Clapham 2007; Kulkarni and 
Miller 2017). Other methods such as electron microscopy 
and mass spectroscopy can capture a high-resolution view 
of organelle morphology and chemical species respectively. 
However, these are destructive methods and less suited for 
capturing cell dynamics (Table 1).

Most of these biophysical properties are predominantly 
shaped by the cell’s molecular constituents—metabolites, 

Fig. 1  Coupling single-cell RNA sequencing (scRNAseq) to bio-
physical measurements of cellular physiology. (A) Technologies for 
molecular phenotyping of cells in the context of the central dogma of 
molecular biology. The advent of next-generation sequencing enabled 
high sensitivity multiplexed measurements of DNA and RNA in bio-
logical samples at single-cell resolution. Overall, scRNAseq provides 
a trade-off between (i) the ability to perform a precise molecular char-
acterization of many cells and (ii) being a proxy of protein expres-
sion (which is closer to molecular function).This has been mostly 

used to construct reference atlases of cell types across organisms and 
to identify transcriptomic variability within cell types. (B) Interpreta-
tion of these molecular characterizations is challenging. Combination 
of direct measurements of cellular responses (as a proxy of function) 
and scRNAseq enables the direct identification of candidate genes 
and pathways with functional roles using unbiased transcriptome-
wide analysis. Some of these methods allow to perform these meas-
urements in situ, where cell-to-cell interactions are preserved
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mRNA, proteins—each characterized by different turnover 
speeds. The mRNA pool in a cell is determined by its tran-
scription, splicing rates (minutes) and nuclease degrada-
tion (hours) (Milo and Phillips 2015). Positioned between 
faster-turning metabolites and longer-lived proteins, 
mRNA serves as a versatile tool for capturing molecular 
snapshots of cellular ‘states’. Additionally, by estimating 
the abundance of spliced and unspliced mRNAs, termed 
RNA velocity, it becomes possible to capture longer 
dynamical processes or transient cellular states (Manno 
et al. 2018). While the focus of this review centers on scR-
NAseq, complementary techniques such as scATAC-seq 
could provide valuable insight into biophysical properties 
and phenotypes with slower fluctuations.

Information content

Quantifying the relationship between mRNA abundance 
and emerging cellular phenotypes is technically challenging 
and remains relatively unexplored. In a study conducted on 
human cell lines, various features of global cell state—such 
as cell size, cell cycle state, and  Ca2+ signaling—were meas-
ured alongside single-cell gene expression (Foreman and 
Wollman 2020). A linear model incorporating 13 of these 
features could explain between 15 and 85% of the measured 

variance in gene expression, with a median explanation of 
62%. Notably, cell size exhibited the highest explanatory 
power, followed by  Ca2+ signaling and cell cycle state. 
Although some  Ca2+ features had a modest effect on the 
explained variance, most genes exhibited significant correla-
tions with at least one  Ca2+ feature, suggesting non-random 
associations (Foreman and Wollman 2020).

In a subsequent study, information theory was employed 
to reveal that, conversely, 60% of  Ca2+ signaling dynam-
ics could be explained by 83 genes, each contributing up to 
17% of the signal. This highlights substantial redundancy 
within gene expression networks, hinting that cell state may 
be effectively represented by a few latent dimensions (Maltz 
and Wollman 2022). While cell lines may display consider-
able fluctuations in phenotype and RNA abundance, they 
are isogenic populations representing generally homog-
enous groups (Emert et al. 2021). Consequently, exploring 
transcriptome-wide measurements alongside functional 
phenotyping in primary cells may shed new light into this 
question.

Analysis

Integrating scRNA-seq with functional phenotypes presents 
challenges due to the sparsity and intrinsic noise of the data. 

Table 1  Overview of phenotyping techniques combined with scRNAseq or spatial transcriptomics

a Fluorophores targeting other measurements of cell function could be used in other cell types
b Requires a contiguous tissue slice (or equivalent cell) for transcriptomics
c Usually accesible in core facilities

Phenotypical 
characterization

Methods Tissues / cell 
types

Time-reso-
lution of cell 
activity

Throughput Co-registration 
in same cell 
or tissue slice 
possibe

Barriers to entry Other considera-
tions

Morphology Optical imaging Most tissues Low Low/Medium Yes Low Most accesible 
method

EM ultrastruc-
ture

No High Destructive 
method b 
Specialized 
equipment c

Chemical com-
position

Raman Spectros-
copy

Most tissues Low Low/Medium Yes High Specialized 
equipment c

MALDI-MSI No High Destructive 
method b

Ca2 + imaging 
and fluores-
ence

Ca2+ dyes Excitable cell 
types or cells 
with  Ca2+ 
signaling a

Medium/High Medium/
High (with 
FACS)

Yes Low Lower specific-
ity than other 
methods

Voltage or 
TRAP sensors

Yes Medium Genetically 
encoded

Electrophysi-
ological meas-
urement

patch-seq Excitable cell 
types (e.g. 
neurons, car-
diomyocites, 
islets, retina)

High Low Yes High Specialized 
equipment
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A prevalent strategy is employing unsupervised methods 
such as principal component analysis, followed by hierarchi-
cal clustering or low-dimensional embeddings (e.g. UMAP) 
to segregate data into distinct phenotypical clusters. Subse-
quent steps involve using differential expression analysis and 
statistical tests to identify transcripts enriched in each clus-
ter. In some cases, the reverse approach also proves fruitful. 
For instance, exploring functional differences between cells 
selected on their expression of lineage transcription factors 
led to the discovery of dysfunctional cell subtypes in dia-
betes (Dai et al. 2022). Sparse regression (similar to PCA) 
has also been proposed for obtaining interpretable visualiza-
tions of paired transcriptomic and electrophysiological data 
(Kobak et al. 2021).

Correlative analysis between functional phenotypes and 
gene expression data is another valuable tool (Camunas-
Soler et al. 2020). The large number of genes can complicate 
obtaining meaningful results due to the numerous hypoth-
eses tested. To address this, selecting highly variable genes 
or employing biology-based gene curation can refine the 
initial gene pool. Non-parametric tests like Spearman cor-
relation help mitigate issues related to outlier genes. Lever-
aging information theory tools, such as mutual information, 
can identify features with non-monotonic trends (Maltz and 
Wollman 2022). Typically, these approaches yield a subset 
of target genes that can be validated in independent experi-
ments or used for modeling.

Training of machine learning models is another useful 
tool to identify features with predictive power across data 
modalities (Wang et al. 2023a). Linear models with intrinsic 
feature selection (such as Lasso) are a useful starting point. 
More complex non-linear models such as random forests or 
neural nets can refine modeling once an initial set of genes 
is determined. A challenge usually arises from the extensive 
gene space (more features than samples) which is even larger 
when combined with the functional phenotype data, making 
overfitting likely. This challenge can be addressed through 
cross-validation methods and holding an independent set. 
Lastly, network-based analysis can be used to leverage cor-
relation structures between gene modules to enhance the 
predictive power of models (Camunas-Soler et al. 2020).

Cell morphology

Cell morphology is a fundamental feature to distinguish cell 
types and is the basis for modern neuronal taxonomy (S. 
Ramon y Cajal, L. Azoulay 1955). Morphological properties 
of cells such as size, shape, granularity, and density of sub-
cellular compartments dynamically respond to external per-
turbations (Chen et al. 1997). Hence, cell morphology has 
been extensively used in biomedical applications, including 
cell type classification, compound toxicity screening, and 

assessing metastatic capacity and responses to drug treat-
ments (S. Ramon y Cajal, L. Azoulay 1955; Loo et al. 2007; 
Zink et al. 2004; Minn et al. 2005). Accessible through tech-
niques like bright-field microscopy, morphological charac-
terization does not require highly specialized equipment. 
However, in specific fields such as neuroscience, morpho-
logical analysis often involves patch-clamp electrophysiol-
ogy, which is discussed in a separate section below.

A common method for conducting morphological analy-
sis is high-content image-based screening or morphologi-
cal profiling. Morphological profiling uses automated digital 
microscopy to quantify thousands of morphological features 
across multiple cells. This approach has been valuable in 
characterizing genes and compounds in both genetic and 
chemical perturbation assays (Loo et al. 2007; Bray et al. 
2016; Liberali et al. 2014; Yin et al. 2013; Laufer et al. 
2013; Caicedo et al. 2017). Integration with independent 
gene expression screens, through bulk RNA sequencing, 
enables the creation of extensive compendia of perturbation 
experiments and systematic functional studies (Nassiri and 
McCall 2018; Subramanian et al. 2017; Wawer et al. 2014). 
However, until recently, the combination of morphological 
imaging with scRNAseq has not been systematically used 
due to the complexity to co-register both measurements. 
Despite technical challenges, simultaneous morphological 
and molecular analysis within the same cell can illuminate 
fundamental mechanisms of cell function and homeosta-
sis. An early scRNAseq study, for example, uncovered a 
scaling factor between global transcriptional activity and 
cell volume in mammalian cells using paired imaging and 
transcriptomics (Padovan-Merhar et al. 2015). Since then, 
the relationship between cell morphology and gene expres-
sion has been explored in greater detail, incorporating more 
general morphological features of cell state (Foreman and 
Wollman 2020).

Methodological aspects

In a typical workflow, cells are initially imaged using bright-
field microscopy, and subsequently each cell is indepen-
dently collected for scRNAseq. However, this requirement 
for individual cell isolation hinders throughput and scalabil-
ity. Some approaches for cell picking and processing include 
micropipette aspiration methods (Camunas-Soler et al. 2020; 
Cadwell et al. 2016; Tang et al. 2009), capture microdis-
section (Espina et al. 2006), microwells (Gong et al. 2010; 
Yuan et al. 2018), optofluidic transport (Berkeley Lights) 
(Jorgolli et al. 2019), hydrogel-well embedding (Lee et al. 
2022), magnetic rafts (Gach et al. 2011), classic microfluidic 
valve-based system (Marcus et al. 2006; Wu et al. 2014), and 
image-based single-cell isolation (Shomroni et al. 2022). 
A comprehensive review of these approaches can be found 
in Fung et al. (2020). The choice of the optimal system for 
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cell picking depends on the microscopy setup and the cell 
type under investigation. Micropipette aspiration methods 
are well-suited to detach adherent cells from microplate sur-
faces, while nanowells and microfluidic chambers excel at 
confining and processing free-floating cells in suspension. 
Several semi-automated cell-picking systems, inspired by 
earlier cell colony pickers, have achieved commercial suc-
cess (e.g. CellCellector, Cellenion) (Shomroni et al. 2022; 
Nelep and Eberhardt 2018).

An elegant alternative to pairwise measurements in the 
same cell, is the coupling of droplet-based single-cell tran-
scriptomics to image-based screens of organoids. In this 
approach organoids are classified based on their morpho-
logical profile (morphotype) and subsequently dissociated 
to perform scRNAseq in cells from each morphotype (Jain 
et al. 2023). Applying this methodology, Liberali and col-
leagues screened thousands of intestinal organoids against 
301 compounds to identify 15 characteristic organoid phe-
notypes by imaging (Lukonin et al. 2020). In this way, they 
found a compound that induces a fetal-like regenerative 
state in enterocytes and measure its transcriptomic profile. 
A limitation of this approach is that it cannot establish direct 
correlations between morphology and gene expression in 
each cell but rather only at the population level. However, 
it is a powerful approach to identify transcripts enriched 
in rare cell populations present in morphologically defined 
organoids.

Towards high‑throughput methods

An exciting frontier in this field is the development of high-
throughput approaches for multidimensional morphologi-
cal analyses in real-time, coupled with single-cell sorting. 
Recently, deep-learning-assisted image-activated cell sorting 
demonstrated real-time sorting of algal and blood cell popu-
lations based on intracellular proteins (Nitta et al. 2018). 
This method, akin to an imaging version of FACS, relies on 
fast software-hardware infrastructure to minimize latency 
time for cell sorting (i.e. the time needed to analyze each 
cell image and deflect the cytometry stream to sort the cell) 
(Isozaki et al. 2020). This enables the sorting of cells based 
on morphological and biological characteristics such as 
size, shape, subcellular structures, blebbing or pigmenta-
tion. An in-depth review on image-based live-cell sorting 
can be found in LaBelle et al. (2021). Image-activate cell 
sorting extends beyond single-cell studies, and can be used 
to track cell-to-cell interactions. For example, it has served 
as a platform for screening T cell activation and binding 
to target tumor antigens (Segaliny et al. 2018). A similar 
method has recently been combined with the analysis of sur-
face molecular markers using cytometry (Mavropoulos et al. 

2023), and in principle, scRNAseq of pre-sorted morpho-
logically defined cell subpopulations is also possible (Salek 
et al. 2022). To our knowledge, live-cell image-based cell 
sorting has not been coupled to single-cell sequencing on a 
cell-by-cell-basis yet.

In silico integration

Methods aiming to integrate single-cell transcriptomics 
and morphology in silico seek to overcome the technical 
challenge of experimentally coupling both measurements. 
An illustrative example is the augmentation of imaging cell 
cytometry datasets using scRNAseq data (Chlis et al. 2020). 
In silico integrations are not multimodal experiments, as 
both data modalities are measured in independent sets of 
cells. In some cases, these cells could have been collected 
on different days or from different labs. Nevertheless, they 
are useful to characterize well-defined cell types or subtypes.

A crucial step in in silico integrations is the approach 
used to overlay both datasets together. Typically, this is 
achieved by co-registering both datasets using a common 
subset of cell surface markers. These markers must be avail-
able in both imaging and transcriptomic datasets, and are 
used to align cells with their nearest neighbors in marker 
gene expression (Chlis et al. 2020). The limited number of 
shared marker genes across both datasets poses a challenge 
for these bioinformatic integrations. For instance, in Chlis 
et al. (2020) only two cell surface marker genes could be 
used (CD34 and FcgR). The development of large panels of 
marker genes that can be registered in both data modalities 
would improve the applicability of these methods.

Spatial transcriptomics integration 
with morphology and chemical analysis

The combination of spatial transcriptomics and histologi-
cal imaging is enabling a new generation of approaches to 
study the connection between transcriptome and cell mor-
phology in situ (Ståhl et al. 2016). Spatial transcriptomics 
can circumvent some of the outlined difficulties to isolate 
single cells after morphological characterization. It also 
provides additional information such as orientation, cellular 
interactions, and tissue microenvironment. Some challenges 
and limitations of spatial transcriptomics are as follows: (i) 
achieving single-cell resolution and screening large tissue 
sections simultaneously, (ii) cell segmentation, (iii) slice 
preparation and conservation, (iv) the trade-off between 
multiplexing capacity and sensitivity, and (v) its higher price 
point when using commercial options. From an experimental 
perspective, the choice of spatial transcriptomics technology 
is critical and will determine if the morphological analysis 
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can be performed in the same slice or in an adjacent slice. A 
comparison of current methods can be found in Vandereyken 
et al. (2023), and new technologies with increased sensitivity 
and resolution are emerging fast.

Most spatial transcriptomics methods require thin slice 
preparations (10 μm) to access the RNA content of individual 
cell layers. This means that co-registration in consecutive 
tissue slices provides information of the same morphologi-
cal structures and cellular neighborhood. However, when an 
adjacent slice needs to be used to collect both data modalities, 
data overlaying becomes complex. Artifacts related to tissue 
shearing, damage, and anisotropic deformation during thin 
slice preparation complicate data integration. Large structural 
features can be used for alignment, but the lack of a ground 
truth reference in short length scales is a common challenge. 
Methods borrowed from computed tomography, such as dif-
feomorphic metric mapping, are being used to align slices 
in the presence of tissue tearing (Clifton et al. 2023). Other 
developments in the analysis of these datasets include the use 
of deep-learning architectures. These architectures aim to 
learn low dimensional joint representations of gene expres-
sion and morphology. These are being used to improve the 
prediction of cell type annotations (Bao et al. 2022; Monjo 
et al. 2022), perform the reconstruction of cell morphology 
from gene expression data (Lee and Welch 2022), and to infer 
single-cell transcriptomic profiles from histology staining data 
(Comiter et al. 2023).

Spatial transcriptomics has also been combined with other 
microscopy modalities. Its combination with cryo-electron 
microscopy merges ultrastructure morphology with spatial 
transcriptomics. In mouse brain preparations, this approach 
unveiled transcripts enriched in reactive microglia, character-
ized by a high lysosomal content (Androvic et al. 2023). Infor-
mation of genes correlated to other subcellular units such as 
mitochondria, endoplasmic reticulumm, or secreted vesicles 
could give insight into human diseases. Similarly, its combi-
nation with mass spectroscopy imaging (MSI) merges spatial 
transcriptomics with metabolomics. A caveat of these meth-
odologies is that both techniques are destructive and require 
using two adjacent tissue slices. However, a new spatial mul-
timodal protocol might allow for the performance of MALDI-
MSI and spatial transcriptomics in the same tissue slice (Vicari 
et al. 2023). Finally, Raman Spectroscopy is also being used to 
measure the vibrational spectra of histological samples (Chen 
et al. 2022a). An advantage of Raman Spectroscopy is that it 
is a non-destructive, label-free approach to measure chemical 
species in cells (Cao et al. 2016). So far, this approach has 
been combined with spatial transcriptomics in cell cultures 
(Kobayashi-Kirschvink et al. 2021). Its extension to tissue 
slices would enable the sampling of the chemical properties 
of a tissue—such as its lipid composition—and link them to 
its transcriptional profile.

Calcium imaging

Most morphological characteristics discussed earlier 
represent stable features that change more slowly than 
the dynamic regulation of gene expression. To adapt to 
their environment, cells utilize intracellular messengers 
to signal and orchestrate complex responses. Among 
these molecules,  Ca2+ ions play a crucial role, regulat-
ing nearly every cellular process, including cell morphol-
ogy (Clapham 2007).  Ca2+ signaling can influence both 
transcriptomic regulation, directing the synthesis of RNA 
transcripts, and epigentic modifications, ensuring a lasting 
response (Hernández-Oliveras and Zarain-Herzberg 2024).

Consequently, the concentration of  Ca2+ ions in a cell’s 
cytoplasm is tightly regulated (~ 100 nM); and intracel-
lularly,  Ca2+ is stored in compartments such as the endo-
plasmic reticulum and mitochondria. Upon stimulation, 
its concentration rises quickly through the opening of 
voltage-gated  Ca2+ channels. This activation initiates 
signal transduction through multiple molecular path-
ways (Clapham 2007; Bootman 2012). Fluctuations in 
intracellular  Ca2+ levels can be tracked in real-time with 
fluorescence microscopy. Therefore, measurements of 
cell activity using high-speed  Ca2+ imaging and confo-
cal microscopy make it possible to monitor fast responses 
in cellular and tissue homeostasis. Despite being faster 
than morphological changes,  Ca2+ responses are slower 
than electrophysiological activity (Kulkarni and Miller 
2017). However, measuring  Ca2+ activity does not require 
specialized patch-clamp equipment, and it is therefore a 
more accessible approach for most labs. This is further 
simplified with automated microfluidic devices that cap-
ture dissociated cells in individual chambers and perform 
sequential fluorescence imaging and scRNAseq (Ramal-
ingam et al. 2016). An earlier work used this method to 
measure functional maturation of progenitor cells during 
their differentiation into neuronal types (Fig. 2) (Mayer 
et al. 2019). Limiting factors when using  Ca2+ imaging to 
study tissue slices include tissue-penetration depth and the 
size of the field of view in high-resolution measurements.

Measurements using calcium dyes

The simplest approach to combine scRNAseq with  Ca2+ 
imaging is to use fluorescence microscopy and commer-
cially available  Ca2+-binding indicators. Most technical 
aspects discussed in the previous section (Cell Morphol-
ogy) can be extrapolated to  Ca2+ imaging by implement-
ing the specific requirements for fluorescence microscopy. 
A difference with cell morphology is that  Ca2+ imaging 
provides access to rapid changes in cell state and activity. 
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Given the large dynamic range of intracellular  Ca2+ oscil-
lations in cells (milliseconds to minutes), it is important to 
consider the frequency of  Ca2+ fluctuations and its relation 
to the  Ca2+ indicator kinetics (Smedler and Uhlén 2014). 
Overall, the selection of an appropriate  Ca2+ indicator is 
usually a trade-off between its (i) kinetics, (ii) signal-to-
noise ratio, (iii) sensitivity, (iv) cellular or subcellular 
resolution, and (iv) penetration depth (for in situ meas-
urements) (Grienberger and Konnerth 2012). A popular 
choice for measurements in the millisecond timescale is 
Cal-520 due to its signal-to-noise ratio and high temporal 
resolution (Lock et al. 2015).

Investigating cell networks

Calcium signaling can propagate as waves through gap 
junctions across interacting cells. Consequently, another 
feature of  Ca2+ imaging is its applicability in study-
ing emergent features such as cell network connectivity 
(Gosak et al. 2022; Šterk et al. 2023). An illustrative exam-
ple is insulin secretion by pancreatic β cells. These cells 
use electrical coupling among themselves and with other 
cell types through connexin-36 gap junctions. In this way 
they establish coordinated insulin release in a glucose-
dependent manner. Heterogeneity in β cell responses has 
been well established (Rorsman et al. 2012; Janjuha et al. 
2018; Benninger et al. 2014; Kravets et al. 2022; Johnston 
et al. 2016), and some of this variability is attributed to 
β cells with higher network connectivity (Johnston et al. 
2016).  Ca2+ recordings revealed that specific β cells initi-
ate  Ca2+-waves in response to a glucose increase, with 
other cells following suit (Kravets et al. 2022). Despite 
this evidence, the molecular characteristics of these cells 
remain unknown. A combined approach using high-speed 
confocal  Ca2+ imaging and scRNAseq has been employed 

to characterize these cell populations (Chabosseau et al. 
2023). To do so, β cells were labeled with a genetically 
encoded  Ca2+ reporter (GcaMP6f) and photolabelled 
based on their connectivity. Consequently, photolabelled 
cells could be collected using FACS and sequenced (Cha-
bosseau et al. 2023). Although a challenge remains in 
improving the recovery rate of these ‘photopainted’ cells, 
this approach demonstrates that  Ca2+ recordings can be 
integrated with scRNAseq in closely interacting cells, 
enabling the measurement of the transcriptome of cells 
that have been phenotypically characterized based on their 
network properties.

Increasing throughput with cell tagging 
and genetically encoded calcium indicators

Cell tagging based on  Ca2+ is a promising approach to cou-
ple single-cell transcriptomics to cellular activity in vivo on 
a larger scale. Transcriptional reporter systems, such as the 
TRAP system, have undergone significant improvements 
in sensitivity and kinetics (Guenthner et al. 2013). These 
advancements allow researchers to use these systems for 
probing the molecular profiles of activated cellular ensem-
bles while simultaneously conducting optogenetic manipula-
tion. For example, scFLARE and FLICRE use a light-gated 
 Ca2+ integrator to gain stable genetic access to transiently 
activated cells (Sanchez et al. 2020; Kim et al. 2020a). To 
record cell activity, cells are transiently illuminated with 
blue light for seconds to minutes to uncage the  Ca2+ indi-
cator (Sanchez et al. 2020). Cells exhibiting  Ca2+ activ-
ity during the illumination window become fluorescently 
and transcriptionally labeled for FACS and scRNAseq. 
These methods can bridge functional phenotyping and high 
throughput scRNAseq.

Fig. 2  Microfluidics approach to combining Ca2 + imaging with scR-
NAseq. Individual progenitor cells are captured in individual cham-
bers and treated with neurotransmitter receptor agonists. Isolated 
cells are then processed to obtain scRNAseq libraries, sequenced, and 

clustered to identify cell types.  The percentage of cells showing  Ca2+ 
responses to each agonist is identified for each cell type. Reproduced 
from Lock et al. (2015)
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Electrophysiology (patch‑seq)

Patch-seq was first developed in 2016 (Cadwell et al. 2016; 
Fuzik et  al. 2016; Földy et  al. 2016) and represented a 
tour-de-force in neuroscience. It fuses traditional insights 
gained from morphological and electrophysiological stud-
ies with a comprehensive molecular analysis. These seminal 
papers focused on interneurons and pyramidal cells in the 
mouse cortex (Cadwell et al. 2016; Fuzik et al. 2016) and 
the hippocampus (Földy et al. 2016).They were followed 
by additional studies on other neuronal subtypes and brain 
regions by the same labs (Scala et al. 2019; Que et al. 2021; 
Oláh et al. 2020; Muñoz-Manchado et al. 2018), and others 

(Ellender et al. 2019; Luo et al. 2019), and studies using 
isolated iPSC-derived neurons (Bardy et al. 2016; Chen et al. 
2016). Patch-seq’s resurgence is linked to the Allen Insti-
tute’s brain atlas initiative (Marx 2022), aimed at creating a 
taxonomy of cell types in the brain (Milo and Phillips 2015; 
Manno et al. 2018). A detailed review on the application 
of patch-seq in neuroscience is available in Lipovsek et al. 
(2021). In addition to neuroscience, the technique has been 
applied to study cellular heterogeneity in other cell types that 
regulate their physiology through electrical activity, such as 
pancreatic islet cells (Kravets and Benninger 2020; Foreman 
and Wollman 2020; Maltz and Wollman 2022) and retinal 
cells (Emert et al. 2021) (Fig. 3A). Table 2 summarizes the 
largest patch-seq studies organized by tissue type.

Fig. 3  Patch-seq and its applications. (A) Patch-seq can be performed 
in (i) dissociated primary or cultured cells, (ii) acute slices, or (iii) 
in  vivo. Tissues in which each methodology has been applied is 
shown. (B) Overview of experimental patch-seq methodology. After 
whole-cell patch-clamp electrophysiology, the cell content is aspi-
rated into a microtube with lysis buffer for subsequent library prepa-
ration and sequencing. (C) In neuronal studies patch-seq can obtain 3 
layers of information connected to cell identity: morphology, electri-

cal activity and gene expression. (D) In islets patch-seq can be used to 
infer the secretory capacity of endocrine cells by measuring exocyto-
sis (normalized cell capacitance). (E) Patch-seq data in human cells 
from donors with and without diabetes shows a shift in gene corre-
lations that might be indicative of β cell compensation in T2D. (F) 
Changes in β cells towards a T2D phenotype could take place through 
a global shift of the entire pool of β cells or through an abundance 
shift of two distinct β cell subpopulations
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Table 2  Patch-seq datasets with experimental details of each study. Sample size is the number of cells passing QC filters according to the 
authors (if provided). For studies where we could not find this information we based it on the number of cells available in GEO

Tissue Species # Cells # Donors Region/Cell types Assay type scRNAseq 
library prepara-
tion

Year Ref Dataset

Brain Mouse 58 (10 in vivo) - L1 interneurons 
and pyramidal 
cells

Acute-slice & 
In vivo

Smart-seq2-
based protocol

2016 Cadwell et al. 
2016)

E-MTAB-4092

Brain Mouse 83 - L1-2 
CCK + interneu-
rons and pyrami-
dal cells

Acute-slice Smart-seq2-
like protocol 
(STRT-seq/
C1)

2016 Fuzik et al. 
2016)

GSE70844

Brain Mouse 41 - Hippocampal 
interneurons and 
pyramidal cells

Acute-slice SMARTer Ultra 
Low Input 
RNA kit

2016 Földy et al. 
2016)

GSE75386

Brain Human 56 - iPSC-derived 
neurons

Dispersed cells SMARTer Ultra 
Low Input 
RNA kit

2016 Bardy et al. 
2016)

NA

Brain Human 20 - iPSC-derived 
neurons

Dispersed cells NEBNext Ultra 
DNA library 
Prep Kit

2016 Chen et al. 
2016)

GSE77564

Brain Mouse 98 - interneurons from 
striatum

Acute-slice Smart-seq2-
like protocol 
(STRT-seq/
C1)

2018 Muñoz-Man-
chado et al. 
2018)

GSE119248

Brain Mouse 7 - GABAergic 
neurons in hip-
pocampus

Acute-slice SMART-Seq 
v4 ultra low 
input RNA kit

2019 Luo et al. 2019) GSE109755

Brain Mouse 110 - L4-5 neurons from 
neocortex

Acute-slice SMART-Seq 
v4 ultra low 
input RNA kit

2019 Scala et al. 
2019)

GSE134378

Brain Mouse 370a - Neural progentior 
cells in neocor-
tex

Acute-slice Smart-seq2-
based protocol

2019 Ellender et al. 
2019)

NA

Brain Mouse 65 - apical progenitor 
cells in neocor-
tex

Acute-slice SMART-Seq v4 
3′ DE Kit

2019 Oberst et al. 
2019)

GSE122644

Brain Mouse 53 - primary visual 
cortex

In vivo Smart-seq2-
based protocol

2020 Liu et al. 2020) GSE115997

Brain Rat 17 - CCK + interneu-
rons from hip-
pocampus

Acute-slice SMART-Seq 
v4 ultra low 
input RNA kit

2020 Oláh et al. 
2020)

GSE133951

Brain Mouse 220 - Cortical neurons Acute-slice Smart-seq2-
based protocol

2020 Cadwell et al. 
2020)

GSE140946

Brain Mouse 128 - Parvalbumin-
interneurons 
from hippocam-
pus

Acute-slice SMART-Seq 
v4 ultra low 
input RNA kit

2021 Que et al. 2021) GSE142546

Brain Mouse 4,270b - Cortical GABAer-
gic interneurons

Acute slice SMART-Seq 
v4 ultra low 
input RNA kit

2020 [101 Brain-Mapf

Brain Mouse 1,237c - primary motor 
cortex

Acute slice Smart-seq2-
based protocol

2021 109, 111] BICCNg

Brain Human 25 11 L5 pyramidal 
neurons

Acute slice SMART-Seq 
v4 ultra low 
input RNA kit

2021 Kalmbach et al. 
2021)

Brain-Mapf

Brain Human 385 56 L2-3 pyramidal 
neurons from 
neocortex

Acute slice SMART-Seq 
v4 ultra low 
input RNA kit

2021 Berg et al. 
2021)

Brain-Mapf
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Methodological aspects

The main principle behind patch-seq is to aspirate the cel-
lular content (or soma for neurons) of a single patch-clamp-
recorded cell and then collect it into a PCR tube containing 
lysis buffer. This process allows for in-tube reverse tran-
scription and PCR amplification using scRNAseq (Fig. 3B) 
(Fuzik et al. 2016). In neuroscience, electrophysiological 
measurements are usually performed in acute slice prepara-
tions, although in vivo patch-seq measurements are possi-
ble (Cadwell et al. 2016; Liu et al. 2020). In islet research, 
measurements are commonly performed in dispersed islet 
cells due to specific challenges in pancreatic tissue slice 
preparations, the main issues being its high RNAse content 
and the small size of endocrine α and β cells. In general, it is 
important to maintain RNase free conditions during sample 
collection to avoid mRNA degradation. This can be achieved 
by using RNase inhibitors in the intracellular solution and 
lysis buffer and by decontaminating lab surfaces. The for-
mer may require adjusting the osmolarity of the intracellular 
solution (Cadwell et al. 2017a; Lipovsek et al. 2020). For 
in situ measurements, it is possible to add a dye to visual-
ize the pipette tip and surrounding cells, and to fill in the 
target neuron with biocytin for subsequent immunostain-
ing and morphological reconstruction (Cadwell et al. 2016; 

Scala et al. 2019; Gouwens et al. 2020). Another common 
approach is to increase the size of the patching pipette and 
use reduced volumes of intracellular solution to facilitate the 
aspiration of the cell content. This also minimizes dilution of 
the mRNA into the pipette. A critical aspect to obtain high 
quality mRNA is to aspirate the cell nucleus (Cadwell et al. 
2017a; Tripathy et al. 2018). Once the cell is collected, it is 
dispensed in a lysis buffer tube and processed with stand-
ard plate-based scRNAseq protocols such as SmartSeq2 
(Fig. 3B) (Picelli et al. 2014).

A key aspect is that index information needs to be pre-
served to match the electrophysiological and sequenc-
ing data. This makes patch-seq incompatible with high-
throughput droplet-based methods such as 10X or Drop-seq 
(Macosko et al. 2015). It is also important to collect posi-
tive and negative controls to verify matching between both 
data modalities and to monitor contamination. The whole 
protocol is time-consuming, and in optimal conditions, a 
skilled electrophysiologist can collect 6–7 in situ cells with 
morphological reconstruction, and up to 40 cells using short 
recording protocols in cell cultures (Camunas-Soler et al. 
2020; Marx 2022). A detailed overview of the patch-seq 
methodology can be found in previous review articles (Lipo-
vsek et al. 2021), and in book chapters (Dallas et al. 2188). 
Additionally, step-by-step protocols are available for neurons 

a For this study, we inferred the number of cells by adding the information provided across figures
b Also a number of macaque (Mayr et al. 2019) and human cells (Mayr et al. 2019)
c Companion paper contains 133 (mouse), 6 (macaque), 391 (human)
d Additional dataset with > 100 mouse cells
e This study uses  Ca2+ imaging and tagging instead of patch-seq
f https:// portal. brain- map. org/ explo re/ class es/ multi modal- chara cteri zation
g https:// www. biccn. org/ data
h https:// hpap. pmacs. upenn. edu/

Table 2  (continued)

Tissue Species # Cells # Donors Region/Cell types Assay type scRNAseq 
library prepara-
tion

Year Ref Dataset

Pancreas Human 1,369 34 Endocrine islet 
cells and other 
pancreatic cells

Dispersed cells Smart-seq2-
based protocol

2020 Camunas-Soler 
et al. 2020)

GSE124742

Pancreas Human 640d 19 Endocrine islet 
cells and other 
pancreatic cells

Dispersed cells Smart-seq2-
based protocol

2022 Dai et al. 2022) GSE164875

Pancreas Human 189 3 Cryopreserved 
endocrine islet 
cells

Dispersed cells Smart-seq2-
based protocol

2022 Marquez-Curtis 
et al. 2022)

PancDBh

Pancreas Mouse 23e - Pancreatic β cells Intact islets NEBNext 
single-cell/
low input 
RNA kit

2023 Chabosseau 
et al. 2023)

NA

Retina Mouse 472 - Retinal ganglion 
cells

Retinal whole-
mount

Smart-seq2-
based protocol

2022 Huang et al. 
2022)

GSE137400

https://portal.brain-map.org/explore/classes/multimodal-characterization
https://www.biccn.org/data
https://hpap.pmacs.upenn.edu/
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(Cadwell et al. 2017b), small interneurons (Lipovsek et al. 
2020), and cultured human (iPSCs) (Hurk et al. 2018). An 
end-to-end experimental workflow with benchmarked soft-
ware and data analysis tools is found in Lee et al. (2021).

Patch‑seq in neuroscience

In neuroscience, patch-seq resolves transcriptome-wide 
gene expression variation in morphologically defined neu-
rons. This is uncovering cell-type-specific determinants of 
neuronal cytoarchitecture and can enhance neuronal clas-
sification (Fig. 3C) (Fuzik et al. 2016). The Allen Institute 
and the BRAIN Initiative Cell Census Network (BICCN) are 
using patch-seq to create a multimodal cell census and Brain 
Atlas (Table 2) (Gouwens et al. 2020; BRAIN Initiative Cell 
Census Network (BICCN) 2021; Berg et al. 2021). These 
large-scale initiatives have succeeded at obtaining patch-
seq data for thousands of neurons in the primary motor 
and visual cortex in rodents (Gouwens et al. 2020; BRAIN 
BRAIN Initiative Cell Census Network (BICCN) 2021; Bak-
ken et al. 2021) as well as human pyramidal neurons (Berg 
et al. 2021; Kalmbach et al. 2021). Patch-seq is also used by 
individual labs. A recent study investigated cortical organi-
zation during development in the mammalian cortex. This 
has revealed that clonally-related neurons are more likely 
to be connected vertically across layers than within layers 
(Cadwell et al. 2020). Patch-seq has also been combined 
with in situ hybridization techniques (FISH) to investigate 
synaptic connections between excitatory and inhibitory neu-
rons in the human cortex (Kim et al. 2020b). An advantage 
of patch-seq over standard scRNAseq methods in the brain 
is its capability to correlate gene expression with neuronal 
electrophysiological features. This has revealed correlations 
between transcriptome and neuronal position (Gouwens 
et al. 2020; Scala et al. 2021), and a transcriptional gradient 
in striatal interneurons that correlates to fast-spiking patterns 
(Muñoz-Manchado et al. 2018; Stanley et al. 2020). Overall, 
patch-seq refines cell-type classifications and validates find-
ings across data modalities in neuroscience.

Patch‑seq in pancreatic islet research

In pancreatic islet research, patch-seq can be used to study 
the main cell types regulating glucose homeostasis, namely 
α and β cells (Dai et al. 2022; Camunas-Soler et al. 2020). 
Functional heterogeneity in islet cells has been long rec-
ognized, with variations in β cell insulin release, electro-
physiological activity and  Ca2+ flux (Rorsman et al. 2012; 
Pipeleers 1992; Salomon and Meda 1986). In parallel to this, 
single-cell studies found substantial molecular heterogene-
ity within islet cells, reporting multiple subtypes of β cells 
(Dorrell et al. 2016; Segerstolpe et al. 2016; Muraro et al. 
2016; Baron et al. 2016; Tritschler et al. 2017). It has proved 

generally challenging to establish connections between 
both types of measurements (Kravets and Benninger 2020; 
Wang and Kaestner 2018). Due to the main role of β cells 
in progression to T2D (Ashcroft and Rorsman 2012) most 
attention has been devoted to these cells. A distinctive fea-
ture of patch-seq in islet research is its ability to measure 
correlations with exocytotic function (Fig. 3D). Exocytotic 
function is a hallmark property of β cells that is impaired 
in T2D. Therefore, measuring correlations between exo-
cytotic function and gene expression helps identify genes 
involved in T2D progression. In the first patch-seq study in 
islet-cells (Table 2), new genes that correlate to β cell exocy-
tosis were discovered and used to build predictive models of 
electrophysiology. By comparing gene correlations between 
healthy donors and those with T2D, this work identified a 
transcriptional shift in T2D, hinting at an underlying mecha-
nism of islet compensation under metabolic stress (Fig. 3E) 
(Camunas-Soler et al. 2020). In parallel, this work also 
showed that patch-seq can be performed in cryopreserved 
samples (Camunas-Soler et al. 2020), making it possible to 
study bio-banked samples (Lyon et al. 2016; Marquez-Curtis 
et al. 2022). A second patch-seq study focused in α-cells, 
whose (dys)regulation is also important in diabetes (Mac-
Donald et al. 2007; Girard 2017; Gromada et al. 2018). This 
work showed that α-cells in T2D show a heterogeneous loss 
of function, which is linked with the cell maturation state 
and to dysregulation of P/Q-type  Ca2+ channels (Dai et al. 
2022). Overall, patch-seq data from islet cells is continually 
being uploaded to the PancDB site as part of the Human 
Pancreas Analysis Program – T2D (K. H. Kaestner et al. 
2019; Shapira et al. 2022).

Patch-seq data from these studies has also been used to 
map and infer electrophysiological function from standard 
scRNAseq datasets. Using this approach, co-expression of 
two islet-specific transcription factors (MAFA/MAFB) has 
been suggested to be predictive of functional maturation in β 
cells (Shrestha et al. 2021). The converse also holds true, and 
hypotheses derived from patch-seq datasets are being inves-
tigated in scRNAseq atlases. Recently, a mouse islet atlas 
has identified a mechanism of insulin secretion and diabetic 
compensatory response compatible with T2D patch-seq data 
(Hrovatin et al. 2022). An unresolved question in patch-seq 
studies has been whether compensatory mechanisms in T2D 
would affect all or only a subset of β cells (Fig. 3F) (Wang 
et al. 2023b). The second option could indicate that a sub-
type of β cells, which is prone to dysfunction and metabolic 
stress, becomes enriched in T2D. A recent integration of 
patch-seq data with single-cell multiomics suggests that the 
latter may be true (Fig. 3F) (Wang et al. 2023b). Overall, 
patch-seq in islet research can inform candidate gene selec-
tion for in-depth mechanistic studies. It can also characterize 
cellular subtypes with specific functional signatures related 
to pathophysiology.
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Patch‑seq in the retina

The retina is a relatively accessible tissue with a high diver-
sity of cell types that can be defined based on morphology, 
function, or transcriptional profile (Rheaume et al. 2018). 
Additionally, it can be studied in flat preparations, making 
it an ideal tissue for multimodal methods. Recently, mouse 
retinal ganglion cells (RGCs) have been characterized with 
patch-seq (Table 2) (Huang et al. 2022). Another unique fea-
ture of retinal studies is that the retinal whole-mount prepa-
ration can be used to study a neural circuit under external 
light stimulations (Masland 2012). Patch-seq has been used 
in this case to characterize the light response of RGCs under 
spotlight stimuli which improved cell type annotations, and 
made it possible to identify genes that characterize RGCs 
that respond either to light increments or decrements (Huang 
et al. 2022).

Conclusions and future directions

Single-cell technologies are revolutionizing the way we 
approach biology and our ability to measure cellular diver-
sity and heterogeneity. Differences in molecular composi-
tion, structure, and morphology of cells are a critical aspect 
of cell identity and are connected to its physiological func-
tion. Methods to merge single-cell transcriptomics with 
other cellular phenotypes such as morphology or electro-
physiological activity enable a more complete understanding 
of cellular heterogeneity and function, improving our ability 
to classify cell types and states.

Neuroscience has pioneered the development of mul-
timodal profiling to survey the vast diversity of neuronal 
cell types. Among these methods, patch-seq is a powerful 
approach due to its ability to merge transcriptome-wide 
molecular analysis with morphology and electrophysiology. 
Other fields are following suit, and multimodal integration of 
cell physiology and transcriptomics is being used in multiple 
tissues. For instance, patch-seq is becoming a popular tool 
in pancreatic islet research. A caveat of patch-seq in islet 
cells is that it has only been performed in dissociated cells, 
in contrast to in situ and in vivo studies in neuroscience. 
Improvements in methods for long-term culture of tissue 
slices and new phenotyping tools should enable in situ meas-
urements in the future (Speier and Rupnik 2003; Marciniak 
et al. 2014; Huang et al. 2011). The development of soft-
semiconductor electronics and microelectrode array systems 
might enable the recording of tissue-wide electrophysiology 
(Floch et al. 2022; Li et al. 2021) in parallel to single-cell 
transcriptomics in multiple tissues. These systems could 
also be used to quantify the functional development deep 
inside 3D organoids. Additionally, given that soft micro-
electronic devices can record the electrical activity of a cell 

without perforating the cell membrane, the measurement is 
non-destructive, and the cell properties can be followed over 
time. This could be combined with cytoplasmatic sampling, 
which makes it possible to sample the RNA content of the 
same cell at different time points (Chen et al. 2022b). This 
approach could be used to simultaneously track morphologi-
cal and transcriptional dynamics of cell populations during 
development or under external perturbations.

Currently, the use of approaches that integrate functional 
phenotyping and single-cell transcriptomics has remained 
predominantly limited to specialized laboratories, primarily 
due to the demanding nature of obtaining both measure-
ments from the same cell. However, new methods to increase 
throughput, such as automation or cellular tagging and bar-
coding, holds the potential to broaden the accessibility of 
these technologies across a wider range of researchers in 
genomics in physiology. Additionally, progress in combin-
ing functional phenotyping with spatial transcriptomics 
will offer new possibilities for a detailed mapping of cell 
phenotypes in situ and advance our understanding of tissue 
physiology.

Limitations of this study

Single-cell genomics is an extremely fast-paced field, and 
although I have tried to cover the most recent literature it 
is inevitable that some relevant references might have been 
unduly omitted. I apologize in advance to these colleagues 
whose work might have been overlooked.
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