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Abstract
Acoustofluidics is an emerging interdisciplinary research field that involves the integration of acoustics and microfluidics 
to address challenges in various scientific areas. This technology has proven to be a powerful tool for separating biological 
targets from complex fluids due to its label-free, biocompatible, and contact-free nature. Considering a careful designing 
process and tuning the acoustic field particles can be separated with high yield. Recently the advancement of acoustofluidics 
led to the development of point-of-care devices for separations of micro particles which address many of the limitations of 
conventional separation tools. This review article discusses the working principles and different approaches of acoustoflu-
idic separation and provides a synopsis of its traditional and emerging applications, including the theory and mechanism of 
acoustofluidic separation, blood component separation, cell washing, fluorescence-activated cell sorting, circulating tumor 
cell isolation, and exosome isolation. The technology offers great potential for solving clinical problems and advancing 
scientific research.
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Introduction

The separation of bioparticles in mixtures has several 
important applications in various fields, such as biotech-
nology and pharmaceuticals, including purification of 
biological molecules, cell separation and analysis, envi-
ronmental analysis, food and agriculture, as well as diag-
nostic and clinical applications (Yohannes et al. 2011, 
Vitorino et al. 2021). The separation of bioparticles in a 
mixture can be achieved through various methods such as 
centrifugation (Li et al. 2014), chromatography (Persson 
et al. 2004), filtration (Jubery et al. 2014; Hossein 2020; 
Salipante 2023), and flocculation (Van Hee et al. 2006). 
Centrifugation is a technique in which bioparticles of dif-
ferent sizes and densities can be separated by spinning 
them at high speeds. The centrifuge applies a power-
ful force to the mixture, which causes denser (heavier) 
bioparticles to separate and sediment at the bottom, while 
lighter particles remain in the supernatant. Chromatogra-
phy is a separation technique in which bioparticles can be 

separated based on their physical and chemical properties, 
such as size, charge, and affinity, by passing their mixture 
through a stational phase. Filtration utilizes membranes 
with suitable pore sizes to retain the larger molecules while 
allowing smaller ones to pass through. These techniques 
can be used to obtain high-purity fractions of bioparti-
cles. Recently, there has been a focus on the isolation of 
cells and bioparticles for various biological and biomedi-
cal purposes by using acoustic techniques. Acoustics can 
advance production in biotechnology by enhancing separa-
tion of cells and particles in complex mixtures (Martens 
and Demain 2017; Ventola 2015; Ramos et al. 2017). Wu 
et al. (2019) discuss the principles and various approaches 
of acoustofluidic separation, along with their traditional 
and emerging applications, including blood component 
separation, and cell washing. The authors emphasize the 
potential of acoustofluidics for solving clinical problems 
and advancing scientific research as a solution to clinical 
problems. Acoustofluidic systems have been designed to 
isolate particles with different sizes (Barani et al. 2016; 
Connacher et al. 2018; Wang 2021; Hall 2020) as well as 
particles with various mechanical properties (Friend and 
Yeo 2011; Laurell et al. 2007). Acoustic techniques could 
damage the cells or particles if the frequency of propa-
gated waves is not carefully selected. This can be avoided 
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by selecting frequencies in a similar ranges to those used 
in ultrasound imaging (Hossein 2019). Combining acous-
tic techniques with microfluidics, researchers have cre-
ated compact systems that can effectively isolate, concen-
trate, and filter bioparticles (Haber and Velculescu 2014; 
Sajeesh and Sen 2014; Tauro et al. 2012). These systems 
have numerous benefits such as increased precision in sep-
aration, low power and reagent usage, small size separa-
tions, and minimal sample volume requirements, reduced 
costs, as well as the potential for disposability. Conse-
quently, they have the potential to serve as point-of-care 
diagnostic tools (Wei et al. 2023; Rufo et al. 2022). Com-
mon separation methods can typically be categorized into 
either labeled or label-free techniques, as well as active or 
passive methods depending on the separation mechanism 
employed (Surendran et al. 2021; Alnaimat et al. 2018). 
Passive methods for separation include filtration, pinch 
flow margination, deterministic lateral displacement, and 
surface affinity-based separation (Gossett et al. 2010). 
Usually, passive methods involve more straightforward 
equipment setups, but active methods offer greater flex-
ibility and can achieve superior separation resolution by 
leveraging differences in mechanical, electric, magnetic, 
and acoustic properties (Al-Ali et al. 2022). The integra-
tion of microfluidics and acoustofluidics allows for the 
precise sorting and separation of different types of bio-
particles, such as cells, bacteria, or viruses. By applying 
acoustic forces to the fluid sample within the microchan-
nel, these particles can be directed to different regions 
depending on their size, shape, or other properties. One 
key advantage of this combination is the ability to achieve 
high-throughput separation in a rapid and efficient man-
ner. A comparison of available microfluidic methods for 
separating exosomes from blood or other biological fluids 
is presented in Table 1.

Overall, Table 1 is offering insight into the yield, purity, 
biocompatibility, and throughput (flow rate) of different 
approaches and how they compare in a given application 
(Wu et  al. 2017). Acoustofluidic separation has found 
extensive use in many applications, ranging from the isola-
tion of rare circulating biomarkers to the differential focus-
ing and separation of nanoparticles. The applications of 
acoustofluidic separations includes:

(1) Medical diagnosis and research: Acoustofluidic sepa-
rations can be used for the separation of cells and biomol-
ecules of different sizes and densities, which is useful for 
medical diagnosis and research (Li and Huang 2018). (2) 
Drug discovery: Acoustofluidic separations can be used for 
high-throughput drug discovery by separating target cells or 
molecules from a complex mixture (Nasiri et al. 2020). (3) 
Environmental monitoring: Acoustofluidic separations can 
be used for the separation of microorganisms and pollutants 

in environmental monitoring (Akiyama et al. 2020). (4) 
Food processing: Acoustofluidic separations can be used 
for the separation and purification of food ingredients, such 
as proteins and enzymes (Xie et al. 2020). (5) Industrial 
production: Acoustofluidic separations can be used for the 
separation and purification of various industrial materials, 
including chemicals, metals, and nanoparticles (Xie et al. 
2020). (6) Water treatment: Acoustofluidic separations can 
be used for the removal of particles and impurities from 
water, such as bacteria, viruses, and microplastics (Chen 
et al. 2020). Acoustofluidic separation can effectively handle 
bioparticles of varying sizes, ranging from tens of nanom-
eters to several hundred micrometers, which is significant 
for applications (Hao et al. 2020). Many biological targets, 
including those targeted for liquid biopsy development, fall 
within this size ranges. Liquid biopsies are non-invasive 
blood tests that are an alternative to traditional tissue biop-
sies (Hao et al. 2020; Yang et al. 2018). Liquid biopsies 
can not only diagnose diseases at an early stage but also 
identify specific genetic mutations, enabling doctors to tai-
lor treatments and monitor patients’ responses (Siravegna 
et al. 2017).

Acoustofluidic separation techniques, have high precision 
and versatility, and have the potential to expand the separa-
tion capabilities in traditional applications (Xie et al. 2019b). 

This review aims to introduce acoustofluidic separation 
to a wider audience and presents the underlying theory, 
and comparisons with different technologies, and discusses 
current and future applications of acoustofluidic separation. 
Rather than encompassing a wide range of applications in 
the biomedical and bioanalytical fields, this review focuses 
on the acoustofluidic separation of cells and bio nanoparti-
cles. It begins with an introduction to the basics of the theory 
and mechanism of acoustofluidic separation, before shed-
ding light on the recent advancements of the technology in 
biological applications, and finally, discussing the challenges 
and prospects of this field. Table 2 presents the introduction 
of the physical quantities and experimental parameters used 
in this review.

Theory and mechanism of acoustofluidic 
separation

This section aims to introduce the various types of acoustic 
waves utilized, the principle behind acoustic excitation, and 
several crucial parameters that determine the migration of 
sorting targets. These parameters include the Rayleigh angle, 
Stokes force, and acoustic radiation force. The second part 
of this section aims to provide mechanisms of acoustofluidic 
separation.
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Acoustic waves

Mechanical waves known as acoustic waves are produced 
through the high-frequency vibration of piezoelectric 
materials such as quartz, lithium tantalite, or lithium nio-
bate, when these materials are stimulated by alternating 
current (AC) (Mehmood et al. 2022). Acoustic waves are 
classified as—bulk acoustic waves (BAWs) and surface 
acoustic waves (SAWs)—based on whether the entire body 
or just the surface of the material undergoes vibration. 
Moreover, in the field of acoustics, traveling waves and 
standing waves are also distinguished from each other. 
Traveling waves move unidirectionally with uniform 
propagation, while standing waves are composite waves 
that propagate bilaterally (Maksymov et al. 2022; Singh 

et al. 2022). Standing waves that propagate within the 
microchannel and define the resonance chamber or cav-
ity are known as BAWs (see Fig. 1b). Upon activation 
of the piezoelectric material, acoustic waves propagate 
into the microchannel via the solid-liquid interface. These 
waves resonate inside the channel only when the channel 
width is equal to an integer multiple of half-wavelength 
of the acoustic wave. BAWs emerge due to the reflec-
tion of acoustic waves from the channel wall (Ozcelik 
et al. 2022). Soft polymer materials like polydimethyl-
siloxane (PDMS) are not ideal for channel materials due 
to the formation of BAWs relying on channel wall reflec-
tion. On the other hand, materials like silicon and glass 
with superior acoustic properties are more appropriate for 
channel fabrication (Safaee et al. 2022; Karaman 2022). 
For the propagation of BAWs, the acoustic impedance 
of the substrate and the quality factor of the resonator 
are crucial factors to consider (Kvashnin et al. 2022; Xie 
et al. 2023). Significant attenuation of BAWs can result 
from both the inhomogeneity of the acoustic impedance 
of the piezoelectric substrate and the low-quality factor 
of the resonator (Xie et al. 2023; Alekseev et al. 2023). 
Based on differences in acoustic vibration modes and 
boundary conditions, they can be further classified into 
various types, including Lamb waves, Love waves, surface 
transverse waves, horizontal shear waves, leaky surface 
acoustic waves, Rayleigh waves, and electroacoustic waves 
(Zhang 2022; Ba Hashwan et al. 2023). By stimulating 
interdigitated transducers (IDTs) fabricated on a piezo-
electric crystal, it is possible to produce vibrations on the 
surface of the material known as surface acoustic waves 
(SAWs). The wavelength of these SAWs (λ) is determined 
by the width and spacing between the fingers of the IDT.

Figure 1a depicts a typical SAW generator consisting 
of a substrate made of piezoelectric material and metal 
interdigital transducers (IDTs) deposited on it (McKibben 
et al. 2023). In Fig. 1a, the upper section illustrates an inter-
digital transducer (IDT) consisting of a series of metallic 
fingers. The characteristics of the generated surface acoustic 
wave (SAW) are determined by the structure of the IDT, 
including its bandwidth and directivity. By altering the 
number, spacing, and aperture (overlapping length) of the 
metallic fingers, one can modify the properties of the result-
ing SAW.

For instance, a focused IDT consists of pairs of annu-
lar electrodes that concentrate SAW energy to a small, 
localized focal point. On the other hand, a chirped IDT 
exhibits a gradient in the width of the electrode fingers 
along the SAW propagation direction, enabling it to gen-
erate SAWs across a wide frequency range. Meanwhile, a 
slanted finger IDT possesses a gradient in electrode fin-
ger width perpendicular to the SAW propagation direc-
tion, resulting in the generation of narrow SAW beams 

Table 2  Physical quantities and experimental parameters

Parameters Descriptions Units

AC Alternative current Volt
IDTs Interdigital transducer mm
f Frequency Hz
C Speed of sound m/s
C1 Acoustic wave velocity in fluid m/s
Cs Acoustic velocity in piezoelectric substrate m/s
λ Wavelength m
Zp Acoustic impedance of particle Pa·s/m3

Zm Acoustic impedance of surrounding medium Pa·s/m3

Ktr Dimensionless coefficient -
Rp Radius of the particle nm
Rb Bubble radius nm
FPRF Pulse reputation force Newton
k Wave number 1/m
ρl Density of surrounding fluid kg/m3

ρp Density of particle kg/m3

Fa Axial force on particle Newton
Fd Stokes force Newton
ϕ Acoustic contrast factor dB
P0 Acoustic pressure amplitude Pa
x Axial distance of the particle from the pressure 

node
m

Vp Particle volume m3

v Relative velocity between the fluid and the 
particle

-

u Fluid viscosity m/s
βp Particle compressibility GPa/m3

βl Fluid compressibility GPa/m3

θR Rayleigh angle -
FSRF Surface radiation force Newton
d Distance between particles m
ω Angular frequency Rad/s
Ab Amplitude of bubble oscillation m
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with varying frequency along the length of the fingers. 
The yellow dots in the wavy section of Fig. 1a represent 
the number of metallic fingers present in the IDT.

Figure 1b depicts the fundamental elements of a SAW 
sensor. It consists of a piezoelectric substrate that is capa-
ble of converting mechanical force into electrical charges 
and vice versa. Additionally, the sensor includes at least one 
interdigital transducer (IDT) that converts electromagnetic 
waves into acoustic waves and vice versa. Furthermore, the 
sensor encompasses a propagation area, commonly known as 
a delay line, which facilitates the transmission and propaga-
tion of the acoustic wave.

Figure 1c is showing the bulk acoustic wave filter. Filter 
technology plays a crucial role in the RF (radio frequency) 
signal chain as it enables signal selectivity. Both SAW and 
BAW filters rely on piezoelectric transduction to operate. 
SAW filters work by transducing an electrical signal into 
a piezoelectric material, causing it to vibrate at a specific 
natural frequency. These vibrations carry only a subset 
of frequencies from the input to the output transducer, 
effectively filtering out unwanted frequencies and return-
ing the desired signals to the electrical domain. The signal 
is transduced laterally along the surface of the piezoelec-
tric material between interdigital transducers. On the other 
hand, BAW filters consist of two main designs: FBAR 
(thin-film bulk acoustic wave resonator) and SMR (solidly 
mounted resonator). In an FBAR, there is a cavity beneath 

the support substrate, and careful design is required to 
minimize boundary leakage of the device. In contrast, the 
SMR incorporates Bragg layers as an acoustic reflector, 
reducing leakage within the substrate. Both designs aim 
to achieve efficient channel filtering using piezoelectric 
material vibrations.

Applying a sinusoidal AC signal to the IDTs causes sub-
tle mechanical deformations to occur on the surface of the 
piezoelectric substrate. Consequently, mechanical SAW is 
produced and travels along the solid-air surface in the direc-
tion of deformation (Liu et al. 2023). The wavelength of 
SAWs is determined by the spacing and width between IDT 
fingers. To calculate the acoustic frequency, the following 
equation is used:

where C is the speed of sound in the material, and λ is the 
wavelength of the sound.

Bulk acoustic wave (BAW), surface acoustic wave 
(SAW), and traveling acoustic wave (TSAW)

Bulk acoustic wave (BAW)

It operates within the bulk of a piezoelectric material, such 
as a crystal or a thin film. The waves travel through the 

(1)f =
c

�

Fig. 1  Exhibits multiple schematic diagrams, including a a surface 
acoustic wave generator (Jiang et  al.  2021), b a schematic diagram 
of acoustic wave sensor (Zhou et al. 2011), c bulk acoustic wave fil-

ter (Qualcomm C, 2023), and d diagram of standing surface acoustic 
waves (Fan et al. 2022)
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thickness of the material. BAW devices typically consist 
of two electrodes sandwiching the piezoelectric material to 
generate and receive the waves. BAW filters offer excellent 
performance in terms of frequency stability, high power 
handling, and low insertion loss. They are commonly used 
in applications such as wireless communication systems, 
frequency control devices, and sensors.

Surface acoustic wave (SAW)

It propagates along the surface of a piezoelectric substrate, 
such as quartz or lithium niobate. The waves travel par-
allel to the surface, inducing particle motion primarily 
in the horizontal plane. SAW devices utilize interdigital 
transducers (IDTs) to generate and detect the waves. SAW 
filters offer high-frequency selectivity, low insertion loss, 
and compact size.

Traveling surface acoustic wave (TSAW)

It is a variant of SAW that combines both longitudinal 
and shear wave components. The waves propagate along 
the surface, inducing particle motion in both horizon-
tal and vertical directions. TSAW devices often employ 
metal gratings or arrays to generate and receive the 
waves. TSAW filters provide enhanced frequency selec-
tivity, improved performance, and reduced insertion loss 
compared to traditional SAW filters. They are suitable for 
applications such as wireless communication systems and 
high-frequency signal processing.

In summary, BAW operates within the bulk of a material, 
SAW propagates along the surface, and TSAW combines 
both longitudinal and shear wave components for improved 
performance.

Acoustic radiation forces (ARFs)

The ARF, or acoustic radiation force, is generated by the 
nonlinear propagation of sound waves in the fluid medium, 
resulting in an acoustic pressure gradient. This gradient 
exerts a force on particles present in the medium, causing 
them to experience a displacement or motion. The three 
ARFs (acoustic radiation forces) can be defined as follows:

1. Primary acoustic radiation force (PRF): This force arises 
from the interaction between the acoustic wave and the 
particles in the medium. It can be further divided into 
two components.

• Axial component (Fa): This component acts along the 
direction of sound propagation and is responsible for 
particle displacement in that direction.

• Transverse component (Ft): This component acts perpen-
dicular to the direction of sound propagation and causes 
particles to move closer together.

2. Secondary acoustic radiation force (SRF): This force 
emerges from the interaction between particles and 
other scatterers present in the medium, such as bub-
bles or other particles. It can be attractive or repulsive, 
depending on the configuration and characteristics of the 
particles or scatterers involved.

The interrelationships between these three ARFs are as 
follows:

• The PRF arises directly from the acoustic wave and is 
primarily responsible for particle displacement due to 
the acoustic pressure gradient generated by the wave.

• The SRF emerges from the scattered sound waves by 
the particles or scatterers, and it can enhance or coun-
teract the effects of the PRF on particle motion.

• Both PRF and SRF contribute to the overall movement 
and aggregation of particles in an acoustic field, but 
they arise from different mechanisms and interactions 
within the medium.

It is important to note that the specific calculations 
and formulas for these forces may vary depending on 
the experimental setup, particle properties, and medium 
characteristics.

The emergence of ARF acting on particles is due to the 
nonlinear propagation of sound within the fluid medium, 
which generates an acoustic pressure gradient. As illus-
trated in Fig. 2, the traveling and standing surface acous-
tic waves generate acoustic streaming (TSAW) effects 
that influence the particles and cells within the medium 
(Mitchell 2022).

Within TSAWs, the paths of particles are influenced by 
the balance between the drag force induced by acoustic 
streaming and the acoustic radiation force ARF. Skow-
ronek et al. (2013) introduced a dimensionless coefficient 
(Ktr) to determine the dominant force.

where Rp is the radius of the particle and λ is the sound 
wavelength.

(2)Ktr =
2�Rp

�
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If Ktr < 1, the acoustic streaming-induced drag force will 
be the dominant force, causing the particle to move towards 
the acoustic streaming vortex. On the other hand, if Ktr > 1, 
the acoustic radiation force (ARF) will be the primary force 
that propels the particle, causing it to move away from the 
IDT. King et al. (1943) formulated the PRF (pulse reputation 
force) acting on particles in a TSAW using the following 
equation:

Were �p =
�l

�p
where A denotes the complex amplitude of 

velocity potential, k represents the wavenumber of acoustic 
radiation, Rp represents the radius of the particle, and ρl 
and ρp are the densities of the surrounding fluid and the 
particle, respectively.

In SSAW (standing surface acoustic waves), the pri-
mary acoustic radiation force (PRF) can be further divided 
into two components: the axial component (Fa) and the 

(3)FPRF = 2��l|A|2
(
kRp

)6 9 + 2
(
1 + �p

)

9
(
2 + �p

)

transverse component (Ft). The axial component, (Fa), is 
calculated using the following equation:

were �(�, �) = 5�p−2�l

2�p+�l
−

�p

�l
.

The axial force exerted on particles by Fa is influenced by 
several factors. These includes the following:

• The acoustic contrast factor (ϕ)
• Acoustic pressure amplitude (P0)
• Axial distance of the particle from the pressure node (x)
• Particle volume (Vp) and compressibility (βp)
• Fluid compressibility (βl)

Particles can be driven towards pressure nodes or 
antinodes through Fa, with the acoustic contrast factor 
(ϕ) playing a crucial role in determining the direction of 
particle motion. When ϕ is greater than zero, particles 

(4)Fa =

(
�P2

0
Vp�l

2�

)
�(�, �) sin(kx)

Fig. 2  The different types of acoustic waves, including bulk acoustic 
wave (BAW), standing surface acoustic wave (SSAW), and traveling 
surface acoustic wave (TSAW) (Ai et al. 2013). On the left side, there 
are three illustrations. a the BAW-based separation technique for 
polystyrene and polydimethylsiloxane (PDMS) particles with varying 
acoustic contrast factors. b The TSAW-induced acoustic streaming 

method for density-based separation. With TSAW actuation, lighter 
particles are dispersed towards the periphery, while more dense 
particles accumulate in the center. c The cross-section visual repre-
sentation of SSAW-induced particle separation. Pressure nodes are 
positioned at the two sidewalls, where the two particles are mutually 
attracted to each other (Gao et al. 2020)
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move towards the pressure nodes. On the other hand, 
when ϕ is less than zero, particles move towards the pres-
sure antinodes. When particles are directed towards the 
nodal plane, the axial force becomes negligible, and the 
transverse pressure force (Ft) becomes dominant; this is 
calculated as follows.

where ∇<E> denotes the acoustic energy gradient, <> 
represents the time average, and dp represents the distances 
between particles.

The transverse pressure force in SSAW systems acts 
to push particles closer to each other. As the distance 
between the particles decreases, the force gradually 
becomes weaker. Ultimately, the particles tend to aggre-
gate together at either the pressure node or the pressure 
antinode of the standing surface acoustic wave. This 
phenomenon occurs due to the spatial variation of the 
acoustic pressure field, which leads to the attraction and 
gathering of particles in specific regions of the wave.

While the PRF mainly influences the migration of a single 
particle, the SRF becomes important when multiple cells or 
particles aggregate. When the distance between particles is 
small, the trajectory of the particles is significantly influ-
enced by the SRF (Blackburn et al. 1991). Silva and Bruus 
(2014) showed that when the acoustic wavelength is much 
greater than the particle size, two particles in close proxim-
ity can either attract or repel each other perpendicular to 
the wave propagation within the Rayleigh limit. The inter-
particle ARF is proportionate to the size of particles (Meng 
et al. 2019). The SRF equation was derived by Weiser et al. 
(1984) for two particles with identical acoustic properties 
and radius in the Rayleigh limit as

In the given context, the variables v(x) and p(x) represent 
the particle velocity and acoustic pressure, respectively. The 
angle θ represents the angle between the centerline that con-
nects two particles and the direction of acoustic wave propa-
gation. The angular frequency of the sound wave is denoted 
by ω, and d represents the distance between the centers of 
the two particles.

When considering a particle in close proximity to a bub-
ble, the secondary acoustic radiation force (SRF) can be 
calculated using the following equation:

(5)Ft = 3d3
p

𝜌p − 𝜌l

2𝜌p + 𝜌l
∇ < E >

(6)

FSRF(x) = 4r6

[(
�p − �l

)2(
3 cos2� − 1

)

6�ld
4

v2(x) −
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9d2
p2(x)

]

(7)FSRF = 4��l

�p − 2�l
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−
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b
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P
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�2A2

b

The direction of the force acting on a particle is deter-
mined by several factors, including the densities of the sur-
rounding fluid (ρl) and particles (ρp), the distance between 
the particle and the bubble (d), the angular frequency (ω), 
the amplitude of bubble oscillation (Ab), and the radii of 
the bubble (Rb) and particle (Rp). The nature of the force—
whether it is attractive or repulsive—is determined based on 
the specific values of ρl and ρp.

Stokes force

Acoustic streaming refers to a stable flow within a fluid that is 
induced by the absorption of high-frequency and high-ampli-
tude acoustic waves. The generation of acoustic streaming is 
attributed to the fluid’s viscous attenuation characteristic of 
the fluid. The particles and cells within acoustic streaming 
experience a resistance force, known as the Stokes force (Fd) 
calculated from (Garrett and Garrett 2020, Pralle et al. 1998):

In the formula, u represents the fluid viscosity, v denotes 
the relative velocity between the fluid and particles, and Rp 
represents the radius of particle.

Rayleigh angle

Surface acoustic waves (SAWs) experience an exponential 
decline in amplitude during their transmission through the 
channel wall. The acoustic waves that persist effectuate 
propagation along the substrate until the acoustic streaming 
coupling phenomenon occurs. Consequently, the formation 
of “leakage surface acoustic waves” happens in the micro-
channel (Gutiérrez Ramos 2018). The propagation velocities 
of SAWs in the fluid and substrate exhibit dissimilarities 
owing to the variation in their viscosity. As a result, the 
acoustic waves undergo refraction at the fluid-solid interface 
and penetrate the fluid medium at a distinct angle which is 
called Rayleigh angle (Andersen and Au 1999).

C1 and Cs represent the acoustic wave velocities in the 
fluid and piezoelectric substrate, respectively. The acoustic 
speed of the piezoelectric material varies with respect to 
different tangential directions, as influenced by its aniso-
tropic nature. The tangential direction of the piezoelectric 
substrate governs the Rayleigh angle. This angle triggers 
the “anechoic corner effect, where the upper corner of the 
microchannel experiences insufficient ARF, thereby hav-
ing minimal impact on the particles situated there (Wong 
et al. 2019).

(8)Fd = 6�uRpv

(9)�R = arcsin

(
C1

Cs

)
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Bulk acoustic waves have emerged as a valuable tool for 
microfluidic separations due to their advantageous features 
such as flexible transducer placement and simple and versa-
tile setups (Zhao et al. 2023). In a BAW-based microfluidic 
device (Fig. 2a), bulk acoustic standing waves are generated 
within a microchannel that lies between two parallel opposite 
walls. Through the utilization of a piezoelectric transducer, 
BAWs can be induced in a fluid-filled microchannel, lead-
ing to resonance when encountering acoustically contrast-
ing materials like silicon, polydimethylsiloxane (PDMS), 
or glass (Ng 2020). Compared to SSAW-based separation 
devices (Fig. 2c), BAW-based systems typically employ 
lower frequencies and longer wavelengths. This character-
istic enables them to handle larger particles effectively. By 
applying BAW to the system, the acoustic streaming-induced 
drag force selectively transported smaller particles to the 
desired location, while larger particles were predominantly 
influenced by the acoustic radiation force. TSAW-based 
separation (Fig. 2b) has been extensively utilized for sort-
ing microparticles of different sizes, including polystyrene 
(PS) particles, fused silica (FS) particles, and polymethyl 
methacrylate (PMMA) particles (Destgeer and Sung 2015, 
Liu et al. 2023).

Acoustic impedance

Acoustic impedance (Z) of a medium is determined by 
multiplying the density (ρ) of the medium and the speed 
of sound (c) within the specific medium. Mathematically, 
it can be expressed as follows (Hossein 2019):

The density (ρ) of a material refers to how much mass it 
possesses per unit volume. It quantifies the compactness of 
the material. Higher density materials have more closely 
packed particles, while lower density materials have more 
dispersed particles.

Acoustic impedance (Z) quantifies the resistance that 
sound waves encounter when propagating through a 
medium. It is important to note that the acoustic imped-
ance of different media can vary significantly, impacting 
the transmission and reflection of sound waves at the inter-
face between different materials. For example, if sound 
waves pass from a medium with a low impedance to a 
medium with a high impedance, a significant portion of the 
sound energy may be reflected back rather than transmitted 
through. According to Eq. 10, an increase in the acoustic 
impedance of the medium will result in an increase in the 
sound speed, assuming that the density remains constant. 
Similarly, a decrease in the sound speed will result in a 
decrease in the acoustic impedance.

(10)z = �c

It is important to note that the relationship between 
sound speed and density is influenced by various factors, 
such as temperature, pressure, and the composition of 
the medium (Marsh et al. 2002). Additionally, different 
materials can have distinct relationships between sound 
speed and density, so it may not be a universal relationship 
across all substances (Dalmont 2001).

The relationship between acoustic impedance, density, 
and bulk modulus (B) can be given as follows:

where B is the bulk modulus, and ρ is the density of the 
medium.

Compressibility, on the other hand, is a measure of how 
easily a material can be compressed or deformed under the 
application of external forces. It is typically represented by 
the bulk modulus (B), which relates the stress applied to a 
material to the resulting strain. Low compressibility indi-
cates that a material is stiff and resistant to deformation, 
while high compressibility suggests that a material can be 
easily compressed or deformed (Karthick et al. 2018).

The correspondence between acoustic impedance and the 
mechanical properties of an object, such as density and com-
pressibility, is crucial in acoustofluidic methods, particularly 
in particle separation techniques like exosome separation. By 
exploiting differences in the mechanical properties of various 
substances or particles, acoustic waves can induce displace-
ment or motion of particles within a fluid medium. The par-
ticles experience different acoustic radiation forces based on 
their acoustic impedance, density, and compressibility. This 
allows for selective separation and manipulation of particles 
based on their mechanical properties. When sound waves 
travel from one medium to another, such as from air to water, 
the acoustic impedance mismatch between the two mediums 
can result in the reflection or transmission of sound waves. If 
the acoustic impedance of the two mediums is similar, such 
as in the case of air and helium, there is minimal reflection, 
and the sound waves are transmitted without significant energy 
loss. However, when there is a significant acoustic impedance 
mismatch, such as when sound waves travel from air to water, 
a portion of the energy is reflected back and not transmitted. 
This can result in a decrease in sound intensity in the fluid. 
Furthermore, the acoustic impedance of a fluid also affects the 
overall propagation of sound waves through it. In a fluid with 
a higher acoustic impedance, the speed of sound is generally 
lower, leading to a decrease in the sound intensity. Conversely, 
in a fluid with a lower acoustic impedance, the speed of sound 
is generally higher, resulting in an increase in the sound inten-
sity (Ozcelik et al. 2022). The acoustic impedance and sound 
speed of different materials in relation to their physiochemical 
properties are given in Table 3.

(11)z =
√
�B
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Mechanisms of acoustofluidic separation

Acoustofluidic separations refer to the use of acoustic 
waves to manipulate and separate particles or cells in a fluid 
medium. This technology enables the precise and gentle 
separation of cells based on their physical properties, such 
as size, density, and compressibility (Charan et al. 2023). 
Acoustofluidic separations have been used widely in bio-
logical and medical research, as well as in the development 
of diagnostic and therapeutics devices. They have several 
advantages over traditional separation methods, includ-
ing high throughput, low cost, and compatibility with 
sensitive biological samples (Devendran and Neild 2022, 
Rasouli 2022).

The acoustic waves create pressure variations within 
the fluid that give rise to acoustic radiation forces (Tang 
and Huang, 2022), acoustic streaming forces (Hellemann 
et al. 2022), and acoustic standing waves (Pavlic et al. 2022). 
These forces can be modulated by manipulating the fre-
quency, amplitude, and phase of the acoustic waves to 
selectively act on particular particles or cells based on their 
physical or mechanical properties, such as size, density, 
compressibility, or deformability (Dholakia et al. 2020; 
Toftul et al. 2019). The use of piezoelectric transducers ena-
bles the precise control and manipulation of these forces, 
making acoustofluidic separation a highly efficient and 
versatile technique (Ozcelik and Huang 2021; Hossein and 
Wang 2020; Hossein et al. 2021; Hossein et al. 2022). Sur-
face acoustic waves (SAW) occur when the electric signal is 
applied to the edges of the piezoelectric material, inducing a 
wave that propagates along its surface (Huang et al. 2021). 
SAW modes are typically used to generate acoustic forces at 
the microscale, where their small wavelength enables higher 
resolution and greater sensitivity compared to BAW modes 
(Rufo et al. 2022). SAW can be further classified based on 
the direction of the wave propagation and the orientation of 

the piezoelectric substrate, with the most common modes 
being Rayleigh, Sezawa, and Love waves (Ba Hashwan 
et al. 2023). Rayleigh waves, which propagate in a direction 
perpendicular to the surface, are widely used in microfluidic 
systems due to their relatively low attenuation and high sen-
sitivity to surface confinement. Rayleigh waves are particu-
larly useful for fluid and particle manipulation, as they can 
induce both acoustic radiation and streaming forces to act on 
particles, while minimizing the risk of damage or cell lysis. 
Sezawa waves, which propagate in a direction parallel to the 
surface, are less commonly employed, but they can provide 
enhanced sensitivity to mechanical and electrical properties 
of inclusions within fluids (Liu et al. 2023). Love waves, 
which are a combination of Rayleigh and Sezawa waves, are 
also used in microfluidic systems for their high sensitivity 
to changes in the surface properties of the substrate, par-
ticularly for biosensing applications (Song et al. 2022). By 
selecting a specific acoustic mode and tuning its parameters, 
acoustofluidic separation can achieve precise and selective 
manipulation of particles and cells in a fluid sample, making 
it a powerful tool for a range of biomedical and biotechno-
logical applications (Rasouli et al. 2023). The separation 
based on size can be achieved with various designs and posi-
tions of interdigital transducers (see Fig. 3).

Figure 3a shows focused interdigital transducers (FIDTs) 
placed next to a microchannel to generate high-energy-den-
sity traveling surface acoustic waves (SAWs) for particle 
separation. The schematic illustration in Fig. 3a introduced 
by Collins et al. (2016) demonstrates the device design, 
a sheath configuration was utilized to hydrodynamically 
focus the sample before the FIDTs. This force field enables 
single-particle level sorting, and due to the high-frequency 
nature of the device, even particles as small as 2 μm can be 
separated. This system has potential applications in various 
fields such as diluting particle/cell mixtures on demand and 
selective cell sorting.

 Figure 3b illustrates the use of two slanted interdigitated 
transducers (SIDTs) with different frequencies in a miniatur-
ized acoustofluidic device. This device enables size-selective 
separation and medium exchange around polystyrene par-
ticles in a continuous, label-free, and contactless manner. 
The SIDTs generate tunable traveling surface acoustic waves 
(TSAWs) that create an anechoic corner inside a microchan-
nel. By using different frequencies, larger particles are lat-
erally deflected to the top-left corner, while medium-sized 
particles are deflected to the right, leaving smaller particles 
in the middle of the microchannel. This achieves particle 
separation. Additionally, the anechoic corner can be used 
to deflect a particle not originally present there, enabling 
medium exchange. The study successfully demonstrates 
three-way separation of polystyrene particles with differ-
ent diameters and showcases multimedium exchange around 
specific particle sizes.

Table 3  Acoustic impedance and sound speed of different materials 
in relation to their densities

Material Density 
ρ(kg.m−3)

Speed 
c(m.s−1)

Acoustic impedance 
Z(kg.m−2).s−1) ×  106

Water 1000 1480 1.5
Blood 1060 1570 1.62
Bone 1380–1810 4080 3.75–7.38
Brain 1030 1558 1.55–1.66
Fat 920 1450 1.35
Kidney 1060 1560 1.62
Liver 400 650 1.64–1.68
Liver 1070 1584 0.26
Muscle 1070 1584 1.65–1.74
Spleen 1060 1566 1.65–1.67
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Another device for separating particles as shown in 
Fig. 3c consists of a microchannel made of polydimethyl-
siloxane (PDMS) attached to a piezoelectric substrate. A 
mixture of two different-sized particles is injected through 
one inlet, while a sheath fluid is introduced through another 
inlet. The sheath fluid helps create a double-layered flow and 
focuses the particles close to the bottom of the microchan-
nel. The fluid is pumped out through one outlet, while the 
remaining fluid is collected through another outlet. When the 
power is off, the particles flow through the lower streamlines 
and can be collected together. However, when an AC signal 
is applied to the device, it generates an acoustic wave that 
affects the larger particles, causing them to move against the 
flow direction and be collected through the first outlet. The 
smaller particles continue to flow unaffected and are col-
lected through the second outlet. This allows for continuous 
separation of particles based on their size difference (Ahmed 
et al. 2018).

A recent device for continuous separation of particles with 
different sizes by TSAW (traveling surface acoustic wave) is 
shown in Fig. 3d. The device utilizes the vertical component 
of the ARF (acoustic radiation force) to push selected particles 
upwards in the microchannel. The horizontal component of the 
ARF is used to slow down separated particles laterally, giving 
them more time for vertical migration and improving separa-
tion efficiency. Wu et al. (2021) demonstrated the successful 
separation of 4.8 μm Polystyrene particles from 2.0 and 3.2 μm 
particles with high purity (>99%) and recovery.

To overcome limitations of traditional acoustofluidic 
sorting devices, where IDTs (interdigital transducers) are 
placed parallel to the microchannel, a new layout was intro-
duced (Wang et al. 2021), where the IDTs are positioned 
at an angle to the channel, allowing for increased particle 
deflection. Two types of devices were developed using this 
approach—tilted-angle traveling surface acoustic wave 

Fig. 3  a For particle separation, interdigital transducers that focused 
parallel to the microchannel were positioned to generate surface 
acoustic waves with high energy density (Collins et  al.  2016). b In 
reference (Destgeer et  al.  2015), particle separation was achieved 
using a pair of slanted interdigitated transducers that were positioned 
on opposite sides of the microchannel and activated with different 

frequency signals. c Vertical migration separation of polystyrene par-
ticles of distinct sizes was accomplished using an interdigital trans-
ducer positioned beneath the microchannel (Ahmed et  al.  2018). d 
Cell deflection was improved in the microchannel by using a couple 
of tilted-angle interdigital transducers (Wu et al. 2021)
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(taTSAW) devices and tilted-angle standing surface acoustic 
wave (taSSAW) devices.

For taTSAW devices, the IDTs are placed on one side of 
the channel at a tilted angle to generate a traveling SAW. 
Ahmed et  al. (2018) developed a taTSAW device that 
achieved sheathless focusing and separation of microparti-
cles in continuous flow. Two IDTs were set at angles of 210° 
and 150° relative to the principal axis of the substrate wafer. 
The first IDT pushed all particles to one side of the micro-
channel using a frequency of 194 MHz, and the second IDT 
successfully separated 4.8 μm fluorescent PS particles from 
3.2 μm particles with a purity above 99% using a frequency 
of 136 MHz.

BAW devices can be designed with variety of geometries, 
including straight, curved or spiral channels, to optimize the 
acoustic fields and enhance the separation efficiency (Shiri 
et al. 2022, Mahboubidoust et al. 2023). In addition, BAW 
devices can be integrated with other microfluidic compo-
nents, such as pumps and valves, to create complex microflu-
idic systems for sample preparation and analysis. For SAW-
based devices, the microfluidic channel is typically made of 
materials with high acoustic impedance, such as polymers 
or thermoplastics (Stoukatch et al. 2022, Gharib et al. 2022).

Acoustic waves are reflected perfectly by the channel 
walls due to the significant impedance mismatch between 
the channel material and fluid medium (Ren et al. 2022). By 
adjusting the width or depth of the channel to match multi-
ples of the acoustic wavelength, an acoustic resonator is cre-
ated, allowing for the formation of a standing acoustic wave 
field using two pairs of interdigital transducers (IDTs) in 

SAW-based devices (Mazalan et al. 2021). The interference 
of counter-propagating SAWs generates a standing SAW 
field that can be transmitted through a microfluidic channel 
to excite longitudinal acoustic waves in the liquid and cre-
ate nodes and antinodes of pressure (Richard et al. 2019). 
These periodic pressure fluctuations induce forces that are 
utilized for particle and cell separations. Both standing and 
traveling SAWs can be used to achieve separation, with the 
latter utilizing differential effects to separate various parti-
cles and cells (Lemma 2022). Primary acoustic radiation 
forces move particles towards pressure nodes or antinodes 
in the acoustic field, while secondary forces drive particle 
aggregation or segregation.

Figure 4A is describing a method for efficiently isolat-
ing circulating tumor cells (CTCs) from peripheral blood 
mononuclear cells (PBMCs) using acoustophoresis. By cre-
ating an inhomogeneous liquid flow configuration, acoustic 
standing waves relocate high impedance liquids to the center 
of the channel and low impedance liquids to the sides, creat-
ing a stable configuration. For CTCs with higher impedance 
than PBMCs, they are suspended in a matching medium and 
passed through side inlets while higher impedance sheath 
fluid is passed through the center inlet. This causes the 
CTCs to migrate laterally towards the center of the channel, 
while PBMCs continue along the streamlines in the match-
ing medium. This is called positive impedance sorting. For 
CTCs with lower impedance than PBMCs, the configuration 
is reversed. CTCs are suspended in the matching medium 
and passed through the center inlet, while lower impedance 
sheath fluid is passed through the side inlets. This causes 

Fig. 4  A The acoustic impedance contrast is utilized to isolate HeLa 
and MDA-MB-231 cells from peripheral blood mononuclear cells 
(Karthick et al. 2018). B A traveling surface acoustic wave device is 

utilized to differentiate polystyrene and polymethyl methacrylate par-
ticles with identical diameters, based on variations in particle density 
and sound propagation speed (Ma et al. 2016b)
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the CTCs to migrate laterally towards the sides of the chan-
nel. PBMCs continue along the streamlines in the match-
ing medium. This is called negative impedance sorting. If 
the impedance of CTCs overlaps with that of PBMCs, a 
size-based sorting technique can be used instead (Karthick 
et al. 2018).

Figure 4B shows the schematic and photograph of an 
acoustophoretic microfluidic system used for particle separa-
tion based on mechanical properties. The system consists of 
a transducer with interdigital transducers (IDTs) on a lithium 
niobate (LN) substrate. The IDTs are fabricated using a lift-
off technique, and the width of the electrode elements is 
equal to 1/4 of the acoustic wavelength. The transducer gen-
erates a traveling surface acoustic wave (TSAW) that couples 
into a disposable polydimethylsiloxane (PDMS) channel. 
The channel has three inlets and two outlets, and particles 
flowing through the channel are transferred in different dis-
tances based on their mechanical properties and collected in 
different outlets. The PDMS channel can be easily peeled off 
and discarded while the TSAW device is retained for reuse. 
When an AC signal is applied to the IDTs, the TSAW is 
generated and transfers the desired particle population into 
different outlets.

In most current SAW devices, the microchannel lay-
ers and IDT layers are permanently fused together. (Chen 
et al. 2022). Although single-use devices are suitable for 
many biomedical applications, the high cost of fabrication 
of IDTs results in high test expenses (Witek et al. 2019). A 
disposable separation device based on TSAW was developed 
by Ma et al. (2016a), which was capable of effectively segre-
gating PS particles measuring 10 and 15 μm in size.

Separation methods based on nonsize 
properties

While size-based separation techniques have proved highly 
effective at separating varying-sized particles or cells, they 
are incapable of isolating particles of similar sizes or those 
that differ only slightly in size (Li et al. 2013). Acoustic 
impedance (Z), which is directly connected to a material’s 
density and sound speed, has been identified as a suitable 
property for sorting cells or particles. It has been demon-
strated that under specific circumstances, the impedance 
difference between the particle and medium can determine 
the direction of particle migration (Levi and Aurbach 1997). 
If the acoustic impedance of particles is higher than that of 
the surrounding medium (Zp > Zm), the particles will move 
toward the pressure node. Conversely, if the impedance is 
lower than that of the medium (Zp < Zm), they will move 
toward the pressure antinode. When there is no impedance 
variation between the particle and medium, acoustic stream-
ing is the only force experienced by the particles.

Applications of acoustofluidic separation

Acoustofluidic separation has found extensive use in many 
applications, ranging from the isolation of rare circulating 
biomarkers to the differential focusing and separation of 
nanoparticles. The applications of acoustofluidic separations 
include the following:

1. Medical diagnosis and research: Acoustofluidic sepa-
rations can be used for the separation of cells and 
biomolecules of different sizes and densities, which 
is useful for medical diagnosis and research (Li and 
Huang 2018).

2. Drug discovery: Acoustofluidic separations can be used for 
high-throughput drug discovery by separating target cells 
or molecules from a complex mixture (Nasiri et al. 2020).

3. Environmental monitoring: Acoustofluidic separa-
tions can be used for the separation of microorganisms 
and pollutants in environmental monitoring (Akiyama 
et al. 2020).

4. Food processing: Acoustofluidic separations can be used 
for the separation and purification of food ingredients, 
such as proteins and enzymes (Xie et al. 2020).

5. Industrial production: Acoustofluidic separations can 
be used for the separation and purification of various 
industrial materials, including chemicals, metals, and 
nanoparticles (Xie et al. 2020).

6. Water treatment: Acoustofluidic separations can be 
used for the removal of particles and impurities from 
water, such as bacteria, viruses, and microplastics 
(Chen et al. 2020).

Separation of blood components

Separation of different blood components is crucial for diag-
nostics, as abnormal levels of each component may indicate 
various disease states (Greening et al. 2010). In therapeu-
tic applications, transfusions of specific components can 
be used to address deficiencies. The purity and viability of 
separated cells are essential for accurate diagnostics and 
effective therapy (Plouffe et al. 2014). The primary com-
ponents of blood include red blood cells (RBCs, 6–8 μm in 
diameter), white blood cells (WBCs, 12–15 μm in diameter), 
platelets (1–5 μm in diameter), and plasma. RBCs are the 
most abundant cells in the blood, with approximately 4–6 
million cells per microliter (Fukushima et al. 2011). There 
are typically 4500 to 11,000 WBCs and 150,000 to 450,000 
platelets per microliter of blood. Plasma, the liquid part of 
blood, contains various proteins, antibodies, and molecules. 
Each of these blood components has its unique functions and 
can serve as targets for diagnostic and therapeutic purposes 
(Ansari et al. 2018).
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Conventional centrifugation is the method of choice 
for separating blood components, where blood is spun 
under a 3000x g force, resulting in three fractions: plasma, 
a buffy coat containing WBCs and platelets, and RBCs 
(Rutkowski 2008). Filtration is also used in some cases. 
However, centrifugation and filtration-based technologies 
are bulky and unsuitable for point-of-care applications. In 
addition, their efficiency and biocompatibility are limited 
(Yang et al. 2020). Acoustofluidic separation technologies 
have been demonstrated to continuously and biocompat-
ibly separate blood components (Wu 2018). The processing 
acoustofluidic technologies have been found effective in the 
separation of blood components, including platelets, RBCs, 
and WBCs (Antfolk and Laurell 2019). Acoustofluidic sepa-
ration has also been used to separate lipid particles carrying 
the risk of clogging in blood circulation (Ding et al. 2021).

Acoustofluidic separation techniques have demonstrated 
efficacy in various blood component separation applications, 
with some studies showing their biocompatibility in terms of 
low levels of platelet activation and preserving cell functions 
(Gu et al. 2019). Despite significant progress over the past 
decade, acoustofluidic-based blood component separation 
still has limitations. One of the primary drawbacks is the low 
throughput, typically in the μL/min range (Xie et al. 2019b). 
The medical technology apheresis is FDA-approved and 
widely used for the treatment of many diseases. Apheresis 
requires high-throughput processing of blood (30–80 mL/
min) in a biocompatible manner, while simultaneously 
returning some blood components back into circulation. 
Unfortunately, current acoustofluidic separation techniques 
do not have the high throughput required for apheresis (Zhou 
and Papautsky 2020). Additionally, some acoustofluidic 
techniques require the modification of the carrier medium, 
making it challenging to return the blood components back 
into the body. Therefore, it is crucial to improve the through-
put and precision of acoustofluidic techniques and avoid the 
use of undesirable carrier media to increase their clinical 
relevance (Wu 2018).

Separation of bioparticles

Separation of viruses

Viruses consist of genetic material enveloped by a protein 
coat and are typically small, ranging from 20 to 400 nm 
in diameter (Gelderblom 1996). They can invade host cells 
and result in illnesses like AIDS, hepatitis, and COVID-19 
(Liu et al. 2020a). Currently, virus detection is considered 
successful through polymerase chain reaction (PCR) and 
enzyme-linked immunosorbent assays (ELISAs). Although 
both methods accurately detect viruses, they both require 
extensive time for detection, sophisticated equipment, and 

expert operation, making them not always ideal choices (De 
Paula and Fonseca 2004). Thus, it is crucial to explore novel 
approaches for swift and accurate virus detection and isola-
tion. The use of acoustofluidic technology in virus isola-
tion has been researched extensively (Xie et al. 2020). Since 
viruses are too small to be affected by ARFs, the process 
involves concentrating viruses by extracting them from a 
virus-cell mixture using ARF. In one example, Jung et al. 
(2021) exhibited a microfluidic BAW-based device with 
the ability to isolate Saccharomyces cerevisiae (S. cerevi-
siae) and MS2 bacteriophage. The H-filter device received 
the sample mixture and deionized water through the two 
inlets, forming a standing wave with a pressure node locat-
ing at the channel’s center. The ARF propelled the larger 
S. cerevisiae cells towards the pressure node, while the 
unaffected MS2 bacteriophage was directed towards a dif-
ferent outlet. The findings indicated that over 90% yields 
of MS2 were obtained while 80% of the S. cerevisiae were 
eliminated. Additionally, Fong et al. (2014) devised a novel 
channel structure for extracting cell-free dengue viruses 
(50 nm) from human lymphocytes (5–8 μm) using BAWs 
(Locatelli 2021). Another fluidic channel was constructed 
adjacent to the primary channel, forming a thin silicon wall 
referred to as a “transparent wall” to uncouple the acous-
tic and fluidic boundaries (Fong et al. 2014). This created 
asymmetrical pressure nodes in the fluidic channel, pushing 
cells further into the other half-channel, leading to improved 
separation. The outcome showed 98% separation purities for 
dengue viruses and 70% for human lymphocytes.

Separation of proteins

Proteins exhibit a broad spectrum of biological functions 
as a class of macromolecules. Efficient protein sorting and 
aggregation are critical objectives in the realm of protein 
biotechnology (Chiti and Dobson 2006). In traditional 
acoustofluidic platforms, acoustic radiation force (ARF) 
is inadequate for manipulating proteins directly due to their 
small size. In contrast, Ding et al. (2013) utilized surface 
acoustic waves (SAWs) on supported lipid bilayers (SLBs) 
to rearrange proteins on planar SLBs effectively. Coupling 
SAWs with SLBs resulted in the modulation of membrane 
density, facilitating lipid transport and accumulation (Ding 
et al. 2013). The same setup could be employed for pat-
terning proteins that were immobilized onto the SLB using 
binding methods such as biotin-avidin, electrostatic, and 
hydrophobic interactions. SAW pattern shifts were accom-
plished by tuning the two interdigital transducers with 
slightly different frequencies, leading to lipid and protein 
transport (Janshoff et al. 2000). Additionally, protein sepa-
ration occurred when two different proteins were depos-
ited onto the same SLB, possessing differing molecular 
weight, isoelectric point, and crystallization ability. Their 
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competition for the antinode position caused the observed 
separation, even for similar-sized proteins such as strepta-
vidin and avidin that differed in their crystallization abil-
ity. As an example, Ahmad et al. (2017) accomplished 
the separation of thrombin from mCardinal2 and human 
serum samples by utilizing aptamer-functionalized PS 
beads to trap the proteins in a TSAW device successfully. 
The authors could release the separated proteins from the 
microparticles for subsequent analysis by decreasing the 
solution’s temperature to below the solubility temperature 
of the polypeptides (Hassouneh et al. 2012). They demon-
strated the efficacy of their technique by using streptavidin 
spiked in blood plasma as a model protein, achieving a 
separation efficiency over 90% with a detection limit of 
0.75 nM and a release efficiency greater than 75% (Materón 
et al. 2021). While thrombin and IgE proteins were cap-
tured by two types of PS microparticles coated with apt15 
and aptD17.4, respectively, mCardinal2 proteins remained 
unbound. The mixture was infused into the microchannel, 
and ARF separated the three proteins based on their size 
differential (Afzal et al. 2021).

Separation of exosomes

Exosomes are small extracellular vesicles that cells secrete 
containing components of the parent cells, such as RNA, 
DNA, and protein, making them essential to intercellu-
lar communication (Meldolesi 2018, Xie et  al.  2019a). 
Exosomes present in various body fluids are crucial for dis-
ease diagnosis and therapeutic purposes. Researchers have 
increased their focus on exosome separation technology 
from complex biofluids (Meldolesi 2018). Unlike traditional 
ultracentrifugation and filtration methods that encompass 
multiple operation steps, the acoustofluidic-based method 
enables continuous separation with less sample loss and 
lower potential for structural damage, offering a promis-
ing approach for exosome separation (Husseini et al. 2022). 
The small size of exosomes (40–160 nm) necessitates a high 
ARF for efficient separation in acoustofluidic and devised an 
SSAW nanofilter for effectively isolating exosomes (<200 
nm) from larger extracellular microvesicles (MVs) present 
in cell culture media and stored RBC products101 (Lee 
et al. 2015). The cutoff size and separation performance 
were optimized by adjusting parameters such as channel 
design, acoustic transducer design, and flow rate. Wu et al. 
(2017) developed a multistage acoustofluidic device with 
two pairs of tilted-angle IDTs generating taSSAWs to isolate 
exosomes directly from whole blood102. The first module 
removed large blood components while the second exosome-
isolation module achieved a 98.4% purity of exosomes from 
MV mixtures. The two modules working together achieved 
a 99.999% blood cell removal rate. The same device was 
used to study the impact of liquid viscosity on exosome 

separation103. It was also applied to successfully segregate 
exosomes from saliva samples.

Figure 5a is showing a schematic diagram in which dem-
onstrates a method for isolating and detecting the Japanese 
encephalitis virus (JEV). Carboxy polystyrene microspheres, 
conjugated with an anti-JEV antibody, are used to capture 
the JEV in a virus solution. The solution is then pushed 
into a microchannel where interdigital transducers gener-
ate a high-frequency surface acoustic wave. This causes 
the PS-mAb-JEV composites to be deflected into another 
outlet. The separated composites are collected and labeled 
with FITC-conjugate anti-JEV antibody. Finally, the labeled 
composites are analyzed under a confocal microscope. This 
method allows for the isolation and detection of JEV using 
acoustofluidic driving and fluorescent labeling techniques.

Figure 5b illustrates an acoustofluidic method for tri-
separation of proteins conjugated with aptamer-coated 
microparticles in a microchannel. A slanted-finger inter-
digital transducer (SFIT) generates traveling surface acous-
tic waves (TSAWs) that exert an acoustic radiation force 
(ARF) on protein-loaded microparticles of different sizes. 
The acoustofluidic device consists of an SFIT deposited 
on a lithium niobate substrate and a polydimethylsiloxane 
(PDMS) microfluidic channel on top. The TSAWs propagate 
through the PDMS microchannel, interacting with the sus-
pended protein-conjugated microparticles. The ARF varies 
depending on the size of the microparticles, causing them to 
flow along different streamlines and enabling triseparation 
of the proteins. The aptamers, attached to the microparticles 
via streptavidin-biotin linkage, were able to capture their tar-
get proteins (thrombin and immunoglobulin E). The result-
ing complexes, along with another protein (mCardinal2), 
were used to demonstrate the acoustofluidic triseparation 
of the proteins. This method achieved simultaneous separa-
tion of three different proteins (thrombin, immunoglobulin 
E, and mCardinal2) for the first time using TSAW-driven 
ARF in the acoustofluidic device (Afzal et al. 2021, Ahmed 
et al. 2018).

Figure 5c shows the concept of size-based isolation using 
an acoustofluidic device with two separation modules. The 
acoustic radiation force induced by the acoustic fields gen-
erated by the interdigital transducers (IDTs) around the 
channel is the driving force for this size-based isolation. 
The device includes two modules to remove particles larger 
than exosomes in a sequential manner. The IDTs in the first 
module generate a lower frequency acoustic field that is 
optimized for removing cell components and platelets. It is 
important to remove larger particles first as the higher fre-
quency acoustic field of the second separation module has 
a greater influence on micrometer-sized particles, causing 
them to experience a larger acoustic radiation force. If larger 
particles are not removed first, they can block the channel 
and hinder the smooth operation of the device. Therefore, the 
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first separation module is necessary to eliminate large par-
ticles before proceeding to the second module. The second 
module generates a higher frequency acoustic field designed 
to remove apoptotic bodies and microvesicles, which are 
larger than exosomes (Wang et al. 2021, Wu et al. 2021).

Conclusions

In this article, an overview of the theories and mechanisms 
of acoustofluidic separation technology is presented. Most 
separation methods are relying on variations in particle 
sizes, but acoustofluidic separation is based on impedance 
and density which is feasible for particles of similar size. 
This technology has been widely demonstrated in biologi-
cal fields, including separating different types of cells and 
bionanoparticles. While acoustofluidic devices have several 
advantages, such as being contactless, biocompatible, and 
having high sorting efficiency, there are still challenges to 
overcome in clinical practice, basic research, and commer-
cialization. Acoustofluidic separation has great potential 
in in vitro diagnosis and point-of-care testing, but current 
devices have inadequate throughput for quick processing of 

large amounts of samples. Optimization of the microchannel 
structure and 3D acoustic field design offers potential solu-
tions to this problem. There are still technical limitations in 
bionanoparticle sorting, but integrating other methods such 
as immunoaffinity may be feasible. Numerical simulation 
and machine learning can assist in experimental design. 
Although a few acoustofluidic technologies have been com-
mercialized, the production cost is still a significant factor 
for companies. Universal systems that are compatible with 
different sorting chips may attract more business investment 
to develop commercialized products. Currently, acoustoflu-
idic separation devices and platforms have high efficiency, 
but many still require the use of pretreated samples, which 
can complicate the process and negatively affect sample 
quality. It is essential to separate targets directly from raw 
samples like whole blood, which not only simplifies the pro-
cess but also establishes a direct link to relevant diseases, 
thus advancing the clinical application of this technology. 
In vitro diagnosis (IVD) and point-of-care testing (POCT) 
are the primary clinical applications of acoustic separa-
tion techniques, but developing a complete solution that 
can handle sample preparation, target separation, and bio-
marker detection is still required. The all-acoustic platform 

Fig. 5  Acoustofluidic separation for bioparticles. a Isolation of 
Japanese encephalitis virus from intricate biological samples (Liu 
et al. 2020b). b Aptamer-coated microparticles and TSAW employed 

for triseparation of proteins from a mixed sample (Afzal et al. 2021). 
c A multistage acoustofluidic device used for separating exosomes 
from plasma samples (Wang et al. 2021)
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holds immense promise for instance, CTCs can be isolated 
directly from a patient’s whole blood sample using ARF, and 
then, the CTCs are lysed using the strong acoustic energy 
of the subsequent sonication module to expose DNA. The 
acoustic bubble microstreaming effect can also improve the 
fluid pumping and sample-reagent mixing, facilitating the 
detection process. However, current acoustofluidic devices’ 
throughput is insufficient for rapid processing of a large 
number of samples, which is a fundamental requirement for 
clinical applications. Optimizing the microchannel structure 
to increase the flow rate and parallelizing multiple units can 
potentially solve this issue. However, excessive throughput 
may reduce separation efficiency, so it is vital to balance 
sorting performance and throughput. Current acoustofluidic 
devices mainly focus on 2D (vertical or horizontal) separa-
tion, but 3D separation has not been extensively explored. A 
possible solution is to design a 3D IDT array that can focus 
3D acoustic fields on the microfluidic channel, which can 
improve the accuracy and flexibility of particle manipula-
tion, especially for separating multiple targets in complex 
samples. With the development of acoustic metamaterials 
with unique acoustic parameters such as negative refractive 
index, integrating them into microfluidic devices can manip-
ulate and control sound waves in novel ways, further improv-
ing the accuracy and spatial resolution of acoustic separa-
tion. Sorting submicron bioparticles remains challenging as 
the current method of removing larger particles is ineffective 
with smaller bioparticles. Hence, combining it with other 
techniques like the immunoaffinity method can facilitate 
specific sorting. New approaches to enhance the separation 
resolution of submicron bioparticles must be developed. 
Evaluating performance with repeated experiments can be 
burdensome and take significant time. Although simulation 
models like numerical simulations have partially solved this 
issue, there are still discrepancies between simulations and 
experiments. Recently, Talebjedi (2023) showed the poten-
tial of using machine learning methods like artificial neural 
network (ANN) prediction platform and multiobjective opti-
mization to optimize acoustic separation, aiding experimen-
tal design. Presently, only a few acoustofluidic devices are 
commercially available. Translating laboratory technology 
into practical instruments is also challenging as operating 
acoustofluidic separation requires auxiliary tools like func-
tion generators, power amplifiers, and fluid control equip-
ment. While developments in electronic integrated circuit 
technology have allowed for the high integration of these 
components, the technology’s relatively specific and nar-
row application scenarios and limited market size are other 
reasons why companies hesitate to invest in it.
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