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Abstract
Neurodevelopmental disorders (NDDs) and cancer share proteins, pathways, and mutations. Their clinical symptoms are 
different. However, individuals with NDDs have higher probabilities of eventually developing cancer. Here, we review the 
literature and ask how the shared features can lead to different medical conditions and why having an NDD first can increase 
the chances of malignancy. To explore these vital questions, we focus on dysregulated PI3K/mTOR, a major brain cell growth 
pathway in differentiation, and MAPK, a critical pathway in proliferation, a hallmark of cancer. Differentiation is governed 
by chromatin organization, making aberrant chromatin remodelers highly likely agents in NDDs. Dysregulated chromatin 
organization and accessibility influence the lineage of specific cell brain types at specific embryonic development stages. 
PAK1, with pivotal roles in brain development and in cancer, also regulates MAPK. We review, clarify, and connect dys-
regulated pathways with dysregulated proliferation and differentiation in cancer and NDDs and highlight PAK1 role in brain 
development and MAPK regulation. Exactly how PAK1 activation controls brain development, and why specific chromatin 
remodeler components, e.g., BAF170 encoded by SMARCC2 in autism, await clarification.
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Introduction

Clinically, neurodevelopmental disorders (NDDs) and can-
cer are vastly different. From the standpoint of cell life, 
they are tightly linked, albeit in adversarial ways. The cell 

cycle is motorized by two major incoming signals. One 
controls cell division primarily via MAPK/ERK (mito-
gen-activated protein kinase/extracellular signal-regulated 
kinase) and the Hippo (via YAP/TAZ) pathways. The cell 
growth is mediated by PI3K/AKT (phosphoinositide 
3-kinase/protein kinase B) and Wnt/β-catenin pathways. 
All are related to cancer (Nussinov et al., 2016a, 2017; 
Nussinov et al., 2016b) and to NDDs (Caracci et al., 2021), 
raising the enigmatic question of exactly how the same 
pathways, proteins, and mutations can lead to these dis-
tinct clinical manifestations. NDDs result from dysfunc-
tion of the nervous system during embryo development. 
They may have emerged from dysregulation of neuron dif-
ferentiation, or evolve during other critical neurodevelop-
mental stages, such as synapse formation and maturation 
(America’s Children and the Environment, 2022; Nussinov 
et al., 2022d; Parenti et al., 2020; Sahin and Sur, 2015; 
Song et al., 2019; Zhang et al., 2020). The development of 
the central nervous system in the embryo where malforma-
tions may occur encompasses a series of critical processes 
(Park and Saint-Jeannet, 2010). These include the produc-
tion of neurons from progenitor cells, the determination of 
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the phenotypes of the neurons, the migration of the newly 
formed neurons into their positions in the brain, and the 
formation of the specific synaptic contacts, resulting in 
precisely wired neuronal circuits. Defects in this complex 
process can result in NDDs.

Here, we connect dysregulated signaling in the MAPK 
and PI3K/PDK1/AKT/mTOR (where PDK1, phospho-
inositide-dependent protein kinase 1; mTOR, mamma-
lian target of rapamycin) pathways with dysregulated cell 
cycle subverting normal cell proliferation and differen-
tiation, resulting in NDDs or cancer. MAPK is the major 
pathway in cell division, PI3K/PDK1/AKT/mTOR in cell 
growth (Torii et al., 2006). Both act in the G1 stage and 
are required for physiological progression of the cell cycle. 
Mutations affecting either pathway will damage the normal 
cell cycle coordination and passage through its stages (Fru-
man et al., 2017; Vitucci et al., 2013). Mutation strength, 
the brain cell type, and timing of the expression of the 
respective gene determine the NDD or cancer outcome 
(Nussinov et al., 2022b, c). We suggest that the muta-
tions involved in NDDs are weaker than those in cancer, 
although this may not always be the case, likely since sig-
nal strength is determined by additional elements, which 
can be controlled by the status of chromatin remodeling 
and gene accessibility (Nussinov et al., 2022c, d). Data 
suggests that NDDs are relatively common (Frances et al., 
2022; Hansen et al., 2018; Udin et al., 1989), likely even 
more frequent than the statistics indicate (Zhou et  al., 
2022) (Fig. 1). Some NDD mutations are germline; others 
emerge during the embryo development along with uniden-
tified background mutational load (Sahin and Sur, 2015). 
Coupling with inherited germline mutations can result in 
phenotypic clinical presentation, not observed in the parent 
(Liljenwall et al., 2022).

Below, we discuss cell proliferation and differentia-
tion, and how mutations can lead to signaling aberrations 
influencing the critical coordination in the cell cycle 
resulting in NDDs (Jang et al., 2023; Nussinov et al., 
2022e). We connect NDD manifestations and cancer with 
their respective mutations and the perturbations in cell 
expression, through the strength of the signaling that the 
mutations initiate. Chromatin remodeling is an impor-
tant factor in both cancer and NDDs. NDDs are con-
nected to cell differentiation in embryonic development 
through cell lineage restriction by chromatin organization 
and gene accessibility which determine gene expression 
(Ding, 2015; Maussion et al., 2015). However, not all 
genes which are involved are protein-coding (Lozano-
Urena and Ferron, 2019). This leads us to believe that 
mutations in chromatin remodelers, which determine gene 
accessibility, could be more consequential and common 
in NDDs than in cancer.

NDDs comorbidity and cancer

NDDs share commonalities (Chow et al., 2019; David 
et al., 2022; Dewey, 2018; King, 2016; Wagner et al., 
2015). They also share commonalities with cancer (Li 
et al., 2020; Mogavero et al., 2020; Morgan et al., 2021; 
Nussinov et al., 2022c, d; Qi et al., 2016; Roston et al., 
2021; Stephenson et al., 2022; Yang et al., 2021; Yehia 
et al., 2022). Examples of NDDs include attention-def-
icit/hyperactivity disorder (ADHD), autism spectrum 
disorder (ASD), learning disabilities, intellectual dis-
ability, cerebral palsy, and damaged vision and hearing 
affecting speech, motor skills, behavior, memory, and 
learning. An estimated 15% of children in the USA ages 
3 to 17 years are affected. Phenotypic presentations of 
NDDs typically have more than one of these conditions, 
for example, ADHD and a learning disability (America’s 
Children and the Environment, 2022; Pastor and Reuben, 
2008) and autism and ADHD (Grupp-Phelan et al., 2007; 
Kelleher et al., 2000; US Department of Education, 2007). 
The considerable comorbidity, phenotypic overlap, and 
genetics suggest that intellectual disability, ASD, ADHD, 
schizophrenia, bipolar disorder, and other NDDs exist in 
neurodevelopmental continuum (Morris-Rosendahl and 
Crocq, 2020). CNVs (copy number variants) in ASD (e.g., 
CDH8, 16p11.2 deletion syndrome, SCN2A) and intellec-
tual disability and ASD associations support a genotype 
connection (Rein and Yan, 2020; Rylaarsdam and Gue-
mez-Gamboa, 2019; Siu et al., 2019). Common under-
lying pathway dysregulation, as in the case of the Ras/
MAPK RASopathies, also exhibit overlapping phenotypic 
features. However, risk factors, including psychosocial and 
environmental, can also play a role (America’s Children 
and the Environment, 2022). The statistics of children 
with NDDs is relatively high (Fig. 1). From 2011 to 2019, 
between 1.0 and 1.7% were diagnosed with intellectual 
disability, increasing from earlier years, likely due to diag-
nosis tests and setting and adherence to criteria. Between 
2014 and 2019, the rates of reported autism ranged from 
2.3 to 2.9%. A total of 7.1% of children ages 5 to 17 years 
had been diagnosed with a learning disability. From 1997 
to 2019, the proportion of children ages 5 to 17 years 
reported to have been diagnosed with ADHD increased 
from 6.3% in 1997 to 9.9% in 2019.

With the immune and nervous systems coevolving as the 
embryo develops, immunity serves as the link between NDDs 
and cancer (Nussinov et al., 2022d). NDDs and cancer share 
proteins, and patients with NDDs have a higher risk of can-
cer. More than a third of the cancer driver genes have been 
cataloged as risk genes for NDDs (Nussinov et al., 2022c; 
Su et al., 2021). NDDs and cancer signal through common 
cellular pathways, including MAPK and PI3K/ PDK1/AKT/
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mTOR with phosphatase and tensin homolog (PTEN) (Jang 
et al., 2021), critical in cell division and growth, thus pro-
liferation and cell differentiation (Crawford et al., 1994; 
Jang et al., 2023; Qi et al., 2016). Current data suggest that 
mutations can be shared as well. NDDs and cancer were 
also shown to be invariably connected with dysregulation 
of the networks of small GTPases, including Ras (Cirstea 
et al., 2022), RhoA, Rac, Cdc42, and Rap. Examples include 
dysregulation of Rho GTPase (Fig. 2), e.g., ARHGAP10, a 
gene for schizophrenia risk, encoding Rho GTPase-activating 
protein 10 (Sekiguchi et al., 2020), which also plays a role in 
the proliferation, migration, and invasion of lung cancer cells 

(Teng et al., 2017), and prostate cancer (Gong et al., 2019). 
ASD (Amar et al., 2021; Busch et al., 2019; Iakoucheva 
et al., 2019) and cerebral palsy (Jin et al., 2020) have also 
been associated with dysregulation of Rho GTPase levels 
and signaling. PROS (PIK3CA-related overgrowth spectrum) 
[e.g., (Martinez-Lopez et al., 2017; Venot et al., 2018; Venot 
and Canaud, 2017)] appears associated with cell positioning 
mediated by Rho GTPase (Torroba et al., 2018), whereas 
PI3K’s contribution to cell proliferation can take place 
through a major Ras pathway, PI3K/PDK1/AKT/mTOR, a 
dominant contributor to cell growth. Cognitive impairment 
was associated with Rab (Ginsberg et al., 2011). Rab has 

Fig. 1  General statistics from genomic and epidemiological stud-
ies. A denovo-db (https:// denovo- db. gs. washi ngton. edu/ denovo- db/) 
deposits mutation profiles of 9736 samples from 20 different neurode-
velopmental disorders (NDDs), including attention-deficit/hyperactiv-
ity disorder (ADHD), autism spectrum disorders (ASD), intellectual 
disability, cerebral palsy, etc. These samples have 14,133 point muta-
tions (missense and nonsense mutations) on 7907 genes, where only 
(i) 0.28% of them are driver mutations (Cancer Genome Interpreter 
provides 5307 oncogenic mutations). (ii) The upset plot shows the 
number of genes from different categories among all mutated genes 
in denovo-db. A black dot represents that the bar includes informa-
tion about the category described on the left; if two black dots are 
connected, the corresponding bar size gives the number of genes 
belonging to both categories on the left. Among 7907 mutated genes, 

the number of transcription factors and chromatin remodelers is 712 
and 50, respectively. Similarly, the proportion of the genes belonging 
to PI3K/mTOR and MAPK pathways are 239 and 159, respectively. 
(iii) Gene cloud plot shows some of the genes from PI3K/mTOR and 
MAPK pathways that have at least three mutated positions on the cor-
responding protein sequence. The larger font indicates a larger num-
ber of mutated residues; for example, PTEN, LAMA5, and BRAF have 
12, 11, and 9 mutated residues, respectively. B The matrix shows the 
fraction (%) of the children by age and sex with ADHD, ASD, and 
intellectual disability between 2016 and 2019, retrieved from Amer-
ica’s Children and the Environment (ACE). ADHD and ASD inci-
dence among the boys are higher than the girls in all age intervals 
5–17, 5–10, and 11–17

https://denovo-db.gs.washington.edu/denovo-db/
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also been identified as a major regulator of the intracellular 
positioning and of cell growth, survival, and programmed 
cell death or apoptosis (Gopal Krishnan et al., 2020). RASo-
pathies (Rauen, 2013), including, e.g., neurofibromatosis 
type 1 (NF1), Noonan family of syndromes (NS), Costello 
syndrome (CS), NS with multiple lentigines (NSML, for-
merly known as LEOPARD syndrome), Legius syndrome 
(LS), capillary malformation-arteriovenous malformation 
(CM-AVM) syndrome, and cardio-facio-cutaneous (CFC) 
syndrome, have been associated with proteins in the Ras/
MAPK signaling network, including Ras, Raf, mitogen-
activated protein kinase kinase (MEK), ERK, and SHP2 
(SH2 domain-containing protein tyrosine phosphatase 2), 
their regulators, effectors, and components of their signal-
ing pathways (Rauen, 2013). Nodes in the Ras signaling 
network are all associated with RASopathies and with can-
cer. Cyclin-dependent kinases (CDKs) were also connected 
with rare developmental disorders (Colas, 2020). Pathways 
related to cytokines, toll-like receptors (TLRs), and fibro-
blast growth factor receptor (FGFR) are also common in 
NDDs and cancer. TLRs, IL-1 (interleukin-1), GIT1 (ARF 
GTPase-activating protein GIT1), and FGFR, which activate 
RhoA (Manukyan et al., 2009; Oda and Kitano, 2006), are 

also common, acting through Src family kinases and NF-κB 
(nuclear factor kappa B). NDDs are however associated with 
expression of mutant proteins encoding germline mutations 
or mutations that emerge during embryonic development, 
or deletions of key protein players, as can be in the case of 
autism (Chau et al., 2021; Urresti et al., 2021). In contrast, 
mutations associated with cancer are largely sporadic, emerg-
ing throughout life.

Recently, we asked how same-gene mutations can lead to 
both cancer and NDDs and why individuals with NDDs have 
a higher risk of cancer (Nussinov et al., 2022c). We suggested 
that the first question can be addressed by considering the muta-
tion strength, the timing windows, and the cell type-specific 
perturbation levels of the expression of the respective protein, 
and of proteins in the respective signaling pathway, and their 
regulators. These latter elements, the expression levels and tim-
ing windows, point to the vital role of chromatin reorganization.

Our hypothesis that mutation strength, the timing win-
dows, and the cell type-specific perturbation levels of 
expression of the respective protein are key factors deter-
mining clinical outcome is consistent with observations: As 
to mutation strength, our statistics indicate that strong hot 
spots mutations tend to be correlated with cell proliferation 

Fig. 2  The role of RhoA in neurodevelopmental disorders (NDDs). 
Hyperactivation of RhoA can induce NDDs as well as cancers. In 
neural cells, the activation of Rac1 and Cdc42 increases immature 
spines (Zhang et al., 2021a). Some synapses are eliminated by RhoA-
dependent signal, while other synapses will grow into mature forms 
through Rac1-dependent pathway. RhoA is activated by guanine-
nucleotide exchange factors (GEFs) through GDP-to-GTP exchange 
and deactivated by Rho GTPase activating protein 10 (ARHGAP10) 

via GTP hydrolysis. A severe psychiatric disorder, schizophrenia, is 
associated with rare exonic copy number variants (CNVs) in ARH-
GAP10 or with both CNVs and a missense variant S490P in the 
RhoGAP domain of ARHGAP10 (Sekiguchi et al., 2020). In synapse, 
dysfunction of ARHGAP10 fails to suppress the RhoA activation, 
resulting in the hyperactivation of RhoA. Hyperactive RhoA activates 
Rho-associated protein kinase (ROCK) that regulates actin cytoskel-
eton destabilization, leading to the elimination of synapse
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in cancer, whereas weak/moderate mutations with NDDs 
(e.g., see mutation statistics in Fig. 1). As to timing win-
dows, cancer emerges from somatic mutations throughout 
life, whereas NDDs arise from germline mutations expressed 
during embryonic development. As to cell type-specific 
perturbation levels of expression of the respective protein, 
NDDs are connected to certain brain cell types. Especially, 
brain cells are not homogeneous, and genes of different cell 
types can be expressed at different times, influenced by tem-
poral chromatin reorganization during brain development. A 
recent census of types of cells in the brain (Brain Initiative 
Cell Census Network, 2021) reported that the number of 
cell types varies depending upon the method used for sort-
ing them. Still, 25 classes of cells were identified, including 
16 different neuronal classes and 9 non-neuronal classes, 
with each composed of multiple subtypes of cells. Within 
this framework, as an example, consider that cerebral palsy 
is caused by abnormal development of part of the brain (or 
by damage to parts of the brain) that control movement, 
which likely differs from that of intellectual disability, which 
relates to a different part of the brain. However, intellectual 
disability can co-occur with cerebral palsy, suggesting some 
common or adjoining genes partaking in a common chromo-
somal deletion, or CNVs as in ASD 16p11.2 deletion. The 
mutations may be harbored on genes, which in the different 
cell types, may or may not co-express at the same time win-
dow during embryonic brain development.

Chromatin structure, thus gene accessibility, is dynamic, 
varying during embryo development and between embry-
onic and adult differentiated cells. Since gene accessibility 
is a key factor in protein expression (Nussinov et al., 2021c; 
Zhang et al., 2021b), it is a major determinant of cell lineage 
and cell types. Consider that for a signal to propagate down-
stream to activate (or repress, in repressors) expression, the 
presence of an activating mutation is not enough (Nussinov 
et al., 2022e). The level of the protein should also be high 
(Nussinov et al., 2022b). Recall that even without a muta-
tion, a high- (or low-) enough protein level, through, e.g., 
gene duplication or dysregulation of its level, for example 
through feedback loops (Nussinov et al., 2022e), can already 
initiate the signal, drive cancer (Nussinov et al., 2021b), 
and promote NDDs. As to why individuals with NDDs have 
a higher risk of cancer, we suggested that since the same 
genes (and sometimes the same mutations) are involved, 
preexisting embryonic NDDs mutations already predispose 
the individual to cancer. Somatic mutations can collaborate 
with the preexisting weak/moderate chromatin remodeling 
embryonic mutations, resulting in protein activation of a suf-
ficiently large protein population.

Here, we address questions that relate to the clinical pres-
entation. Among these is why the relatively high statistics 
of children with NDDs. We delve into the origin of the dif-
ferences between cancer and NDDs and among NDDs. We 

discuss the dysregulation of the cell cycle, focusing on cell 
proliferation and differentiation, connecting them with dys-
regulated signaling of the MAPK and PI3K/PDK1/AKT/
mTOR pathways and NDDs. We also discuss the pivotal 
role of chromatin remodelers, whose modification in the 
healthy cell or dysfunction in disease can be decisive in 
aberrant differentiation, and with chromatin regulators play-
ing a key role, as shown in ASD, intellectual disability, and 
other brain developmental disorders (Brookes, 2016; Chen 
et al., 2016; Cotney et al., 2015; Davis, 2023; De Rubeis 
et al., 2014; Gabriele et al., 2018; Hoffmann and Spengler, 
2019; Hsieh and Gage, 2005; Iwase et al., 2017; Larizza and 
Finelli, 2019; Larrigan et al., 2021; Lasalle, 2013; Lim et al., 
2022; Markenscoff-Papadimitriou et al., 2021; Marshall and 
Brand, 2017; Medrano-Fernandez et al., 2019; Sokpor et al., 
2017; Suliman et al., 2014; Tabolacci and Neri, 2013; Yauy 
et al., 2019; Zhao et al., 2018). This can be understood in the 
framework of its biophysical properties, making the interac-
tions of its compartments liquid-like and highly dynamic 
(Belaghzal et al., 2021; Hansen et al., 2021; Itoh et al., 2021; 
Nussinov et al., 2021a), with the intrinsic chromatin con-
densates displaying liquid-like material properties (Gibson 
et al., 2021), but also described as having a solid-like behav-
ior at mesoscales (Strickfaden et al., 2020; Zidovska, 2020). 
It was also observed to be fluid-like in the crowded nucleus, 
readily responding to magnetic forces applied to a genome 
locus, by displacement by several micrometers (Keizer et al., 
2022; So and Tanner, 2022).

Cell proliferation and differentiation, chromatin 
remodeling, and the cell cycle

During development, cells proliferate and differentiate into 
specialized cell types (Cooper, 2000). Proliferation results 
from cell division (MAPK) and cell growth (e.g., PI3K/
PDK1/AKT/mTOR pathway) (Kaldis, 2016). Normal cell 
differentiation results from regulated gene expression, which 
is largely governed by chromatin remodeling and the con-
sequent gene accessibility (Lopez-Jimenez and Gonzalez-
Aguilera, 2022). Cell proliferation increases the number of 
cells. Differentiation, also acting at the G1 stage, sets their 
function and influences their morphology. Successive dif-
ferentiation events are constrained by chromatin organiza-
tion, which largely determines the cell lineage. Physiological 
cell proliferation is balanced by apoptosis and differentia-
tion, with progenitor cells differentiating into cell types that 
belong to the same tissue or organ, e.g., hematopoietic stem 
cells in the bone marrow can differentiate into blood cells, 
including myeloid and lymphoid progenitor cells, which can 
only differentiate into distinct cell types within this blanket. 
Chromatin pre-organization constrains the evolution of the 
three-dimensional genome structure during the cell differ-
entiation process (Blanco et al., 2021; Dong and Cheung, 
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2021). Making compactly packed genes available for tran-
scriptional programs faces energy barriers (Ferreiro et al., 
2014, 2018; Maeshima et al., 2020) enforcing an irreversible 
mammalian cell fate decision (Blanco et al., 2021). Cell line-
age proceeds through local chromatin modulation, making 
the chromatin remodelers and the associated transcription 
factors highly susceptible to mutations. In differentiating B 
lymphocytes from a quiescent state, chromosome reorgani-
zation in the late G1 phase remains stable through clonal 
expansion. However, conformational changes were observed 
in the G1 phase as the cells differentiate, pointing to gene 
expression (Chan et al., 2021). Chan et al. suggested that a 
shortened G1 phase might be possible with minor genome 
restructuring. The recent description of the locally fluidic 
state of the interactions suggests the feasibility of such reor-
ganization upon some cues.

Remodeling of chromatin structure is a critical factor 
in gene expression, including cell cycle-associated genes, 
thus cycle progression (Ma et al., 2015). CDKs drive cell 
cycle entry. Precursor cells divide prior to becoming fully 
differentiated. Differentiation, thus lineage, is constrained by 
chromatin accessibility. Full differentiation is coupled with 
proliferation arrest and permanent exit from the cell cycle 
(Ruijtenberg and van den Heuvel, 2016). Chromatin remod-
elers, such as SWI/SNF (switch/sucrose non-fermentable) 
complexes (Alver et al., 2017), collaborate with transcrip-
tion factors to regulate the cell cycle and execute the cell 
type-specific gene expression (Fig. 3), which coordinate 
cell cycle exit with terminal differentiation. Among these 
is the chromatin-remodeling complex Brahma-related gene 
1 (BRG1)-associated factor (BAF), a SWI/SNF component 
(Barutcu et al., 2016; Ronan et al., 2013). BAF is a non-
specific minor groove phosphate backbone DNA-binding 
protein that can cross-bridge two double-stranded DNA 
segments, thereby contributing to chromatin compaction 
(Marcelot et al., 2021). It also binds nuclear envelope pro-
teins bridging the inner nuclear membrane and the nucle-
oskeleton formed by lamins. Despite minor-groove nonspe-
cific binding, the multi-subunit BAF complex with histone-/
DNA-binding domains only binds a subset of genomic DNA 
sites (Ho et al., 2019). Although recently increasingly elu-
cidated, the details of the complex mechanism explaining 
this selectivity are still not entirely clear. BAF also binds 
multiple transcription factors, some of which can recruit 
it (Marcelot et al., 2021). Mutations in BAF can promote 
NDDs including intellectual disability, developmental delay 
(Kosho et al., 2014; Santen et al., 2013; Van Houdt et al., 
2012; Vandeweyer et al., 2014), autism (Neale et al., 2012), 
and schizophrenia (Loe-Mie et al., 2010) [for comprehen-
sive descriptions, see Machol et al. (2019) and references 
therein]. The changes in accessibility are dependent on the 
subunit that is lost (Schick et al., 2019). Accessibility is 
reduced in ARID1A, SMARCC1, and SMARCA4 knockout 

cells and is higher in ARID1B mutants. BAF170, a common 
core BAF subunit, is encoded by SMARCC2. SMARCC2 is 
among the high-confidence candidates involved in regulating 
ASD (Ben-David and Shifman, 2013), intellectual disability, 
and developmental delay. Carriers of these disorders often 
have missense variants in the SWIRM (SWI3, RSC8, and 
MOIRA) and SANT (SWI3, ADA2, N-CoR, and TFIIIB) 
domains of BAF170. Function-wise, the SWIRM domain 
binds di-nucleosome structures and is involved in protein-
protein interactions related to gene expression (Aravind 
and Iyer, 2002). The SANT domain appears to function 
as a histone tail in DNA binding (Yoneyama et al., 2007). 
Disordered tails protrude from the DNA-wrapped core and 
are critical in chromatin regulation (Ghoneim et al., 2021). 
Members of the ATP-dependent CHD (chromodomain 
helicase DNA-binding) family of remodelers have tandem 
chromodomains in the N-terminal region and a central 
SNF2-like ATPase domain. Many of them have clear NDD 
links and etiology (Alendar and Berns, 2021). They are also 
involved in the dynamic regulation of chromatin accessibil-
ity. Mutations in these helicases can promote DNA copy 
number alterations leading to aberrant expression in NDDs 
and cancer.

The antagonism of cell proliferation and differentiation 
influences the clinical outcome. Strong driver mutations in 
transcription factors lead to uncontrolled cell proliferation in 
cancer. Weak mutations in chromatin remodelers and transcrip-
tion factors are associated with dysregulated differentiation in 
NDDs. The more sluggish expression of cell cycle-associated 
genes can extend the time the cell spends in the G1 phase, 
influencing cell differentiation and NDDs clinical presentation. 
In rapid proliferation, G1 is short. PI3K, Myc, E2F (a tran-
scription factor), and CDK2 are hyperactivated in embryonic 
stem cells in high serum or in the presence of leukemia inhibi-
tory factor, and MAPK, CDK4, p16 family, p21 family, and 
retinoblastoma protein (pRb) are inhibited, leading to such an 
outcome (Li and Kirschner, 2014). Differentiation follows inhi-
bition of the cell cycle. Initiation of differentiation coincides 
with cell cycle arrest; terminal differentiation is linked to the 
G1/S transition. In healthy somatic cells, cell cycle-associated 
factors interact with transcription factors such as MyoD (myo-
blast determination protein 1), which regulates the expression 
of muscle-related genes, committing undifferentiated cells 
to the muscle. Upon cell cycle exit, the transcription factors 
activation is terminated, with a shift toward insulin signaling, 
maintaining glucose homeostasis, away from survival and 
growth. In proliferating cancer cells, the coordination between 
proliferation and differentiation is damaged (Ballabeni et al., 
2011; Hanahan and Weinberg, 2011; Li and Kirschner, 2014; 
Ruijtenberg and van den Heuvel, 2016). However, overexpres-
sion of  p21Cip1 (cyclin-dependent kinase inhibitor 1),  p27Kip1 
(cyclin-dependent kinase inhibitor 1B),  p14ARF (ARF tumor 
suppressor), and  p16INK4A (cyclin-dependent kinase inhibitor 
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2A) cell cycle inhibitors was observed to not only inhibit pro-
liferation but be sufficient for inducing differentiation in some 
cancer cells (Adachi et al., 1997; Kranenburg et al., 1995; 
Matushansky et al., 2000). In the Drosophila wing, changes in 
chromatin accessibility of cell cycle genes result in cell cycle 
exit during terminal differentiation (Ma et al., 2019b).

Transcription factors can stimulate differentiation and lead 
to cell cycle arrest, and this double action has been exploited 
to treat leukemia (Rosenbauer and Tenen, 2007). Whereas an 
increase in the expression levels of most transcription fac-
tors increases the frequency of transcriptional bursts of the 
genes they regulate, c-Myc’s overexpression was observed 
to increase the duration rather than the frequency (Patange 
et al., 2022). Surprisingly, variations in Myc’s dwell time on 

the order of seconds result in changes on the order of minutes 
in transcription duration burst time. How the extended duration 
impacts transcription is still unclear, although it was suggested 
that Myc changes the binding dynamics of transcription factors 
involved in RNA polymerase II.

PI3K/mTOR and MAPK pathways are connected, 
complementary, and critical in proliferation 
and differentiation

For the cell to proliferate, both Ras/ERK (MAPK) and PI3K/
mTOR pathways are essential. Neither pathway is a linear 
phosphorylation cascade. They are connected, they cross-
talk, and they are complementary (Fig. 4). They regulate 

Fig. 3  A nucleosome is the basic unit of chromatin, which is formed 
by DNA wrapping around a histone octamer. This compact struc-
ture regulates the stability of genome and prevents its accessibility 
toward machineries. SWI/SNF (switch/sucrose non-fermentable) 
is one of chromatin remodeler that regulates DNA transcription. In 
human cells, SWI/SNF remodeler has three subfamilies, canonical 
BAF (cBAF), polybromo-associated BAF (PBAF), and non-canonical 
BAF (ncBAF). To conduct transcription, the wrapped DNA needs to 
be loosened, and the promotor site should be accessible by machin-

eries. Modifications of histone tails, such as methylation, acetylation, 
and phosphorylation, mediate tightness of DNA twining around the 
histone core. Some subunits of SWI/SNF can recognize modifica-
tions of histone tails. A catalytic subunit utilizes the energy from ATP 
hydrolysis to reshape nucleosome, which relaxes the DNA chain and 
induces the exposure of the promoter site. SWI/SNF remodeler dis-
assembles nucleosome, causing DNA stretching to open the binding 
site toward transcription machinery (TM). Thereby, the movement of 
transcription can occur
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each other through feedback loops and coregulate cell func-
tions. Both feed into the cell cycle (Mendoza et al., 2011). 
ERK is at the bottom of the MAPK (Mebratu and Tesfaigzi, 
2009). Under physiological conditions, its activation initiates 
through stimulation of RTKs (receptor tyrosine kinases) or 
GPCRs (G protein-coupled receptors) which recruit adap-
tor protein Grb2 (growth factor bound protein 2) and on to 
GEF (guanine nucleotide exchange factor, e.g., SOS, Son of 

Sevenless). Ras activation by SOS leads to activation of Raf, 
which in turn activates MEK1/2. These series of events are 
at the membrane. Allostery acts to relieve their autoinhibi-
tion. MEK1/2 phosphorylates ERK1/2 on both threonine and 
tyrosine. ERK phosphorylation of MEK negatively regulates 
MAPK. Phosphorylated ERK1/2 translocate into the nucleus 
within 15 min of activation. There ERK1/2 along with ribo-
somal S6 kinase (S6K) phosphorylate transcription factors 

Fig. 4  Crosstalk between MAPK and PI3K/AKT/mTOR path-
ways for cell proliferation, differentiation, and growth. Extracellular 
stimulation of epidermal growth factor receptor (EGFR) recruits the 
growth-factor receptor bound protein 2 (Grb2) and guanine nucleo-
tide exchange factor (GEF), i.e., Son of Sevenless (SOS), to activate 
Ras. The activated GTP-bound Ras promotes the activations of the 
MAPK and PI3K/AKT/mTOR pathways. In the MAPK pathway, 
ERK is located at the bottom of the pathway, which translocates into 
the nucleus and activates the transcriptional factors including c-Myc, 
c-Jun, and Elk-1, leading to cell proliferation and differentiation. It 
also phosphorylates CDK2 to regulate cell cycle. The lipid kinase, 
PI3K, is activated by the insulin receptor (IR) and insulin recep-
tor substrate (IRS), phosphorylating the signaling lipid  PIP2 to  PIP3. 
AKT is recruited to the  PIP3-enriched microdomain of plasma mem-

brane and activated by PDK1 and mTOC2. AKT activates mTORC1 
that phosphorylates the downstream ribosomal S6 kinase (S6K) and 
eukaryotic translation initiation factor 4E (eIF4E)-binding protein 
1 (4E-BP1). The ribosomal protein S6 (eS6) and RNA helicase are 
activated by phosphorylated S6K, and the eIF4E is released from 
the phosphorylated 4E-BP1, promoting the translation initiation 
and elongation for cell growth. Both pathways are regulated by the 
negative feedback loops (red lines). ERK may inhibit Raf and MEK, 
decreasing ERK’s activation in the MAPK pathway. ERK activates 
RSK that phosphorylates SOS1, negatively regulating the MAPK 
pathway. ERK also phosphorylates EGFR, downregulating EGFR 
signaling. Phosphorylations of IRS and Rictor in mTORC2 by S6K 
decrease AKT and mTORC1 signaling in the PI3K/AKT/mTOR 
pathway
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leading to cell type-specific protein synthesis (Mebratu and 
Tesfaigzi, 2009). The activity peaks at 5–10 min after acti-
vation. This is followed by a 6-h long second wave of lower 
activity, lasting until the late G1 cell cycle stage (Kahan et al., 
1992; Meloche, 1995; Meloche et al., 1992; Yamamoto et al., 
2006). Signal strength is a key determinant of the outcome. 
If the signal is strong and sustained, the likely outcome is 
cell proliferation. Translocation to the nucleus is required 
for the G1 to S (synthesis) cell cycle progression (Brunet 
et al., 1999; Cheng et al., 1998; Jones and Kazlauskas, 2001; 
Treinies et al., 1999). ERK1/2 are inactivated during the 
G1/S passage (Meloche, 1995). Nuclear translocation of 
ERK1/2 dimer is helped by integrin-mediated organization 
of the actin cytoskeleton (Aplin et al., 2001; Danilkovitch-
Miagkova et al., 2000), and the nuclear pore complex (Adachi 
et al., 1999; Khokhlatchev et al., 1998; Kondoh et al., 2005; 
Matsubayashi et al., 2001; Whitehurst et al., 2002), although 
the monomer can diffuse passively. Cytosolic ERK1/2 inhibit 
survival and proliferation and mediate proapoptotic proteins, 
promoting cell death. ERK also regulates Thr160 phospho-
rylation of cyclin-E/CDK2 (Lents et al., 2002). It collaborates 
with AKT to phosphorylate Myc and increase its expression, 
critical for cell cycle entry, and repress  p27kip1 (Chambard 
et al., 2007). ERK activity promotes the proliferation of 
muscle myoblasts and the terminal differentiation of myo-
cytes (Michailovici et al., 2014). The subcellular localiza-
tion of ERK determines whether it stimulates skeletal muscle 
proliferation or differentiation. ERK1/2 phosphorylation is 
required for early neuronal differentiation and survival of 
embryonic stem cells (Li et al., 2006).

The PI3K/PDK1/AKT/mTOR is also a phosphorylation 
pathway cascade (Fig. 4), and it influences the cell cycle at 
the G1 phase. It is a cell growth pathway. To divide, cells 
must first reach a critical size. None of the kinases that 
compose it cross the membrane into the nucleus. Instead, 
the mTOR complex 1 (mTORC1) regulates cell growth 
through phosphorylation with its substrates involved in pro-
tein synthesis, including the eukaryotic translation initiation 
factor 4E (eIF4E)-binding proteins (4E-BPs) and S6K1/2 
(Cargnello et al., 2015). 4E-BP phosphorylation inhibits 
its binding to eIF4E, allowing the initiation of translation. 
Phosphorylated S6K acts on transcription factors, the riboso-
mal protein S6, RNA helicases, and additional proteins act-
ing in translation initiation and elongation (Mendoza et al., 
2011; Sengupta et al., 2010). Thus, PI3K regulates the cell 
cycle through AKT, mTOR, and S6K. The mTOR inhibitor 
rapamycin action on G1 cell cycle progression resembles the 
inhibition exerted by cyclin-D1, CDK4, and pRb phospho-
rylation. Hence, PI3K promotes G1 cell cycle progression 
and cyclin expression through its pathway (Gao et al., 2003). 
Growth rates are higher in small cells and lower in large cells 
(Ginzberg et al., 2018). Cell size and mass are controlled by 
cell cycle progression and the PI3K/mTOR pathway through 

its S6K1 and 4E-BP1/eIF4E substrates. Cell growth is criti-
cal for sustained cellular proliferation (Fingar et al., 2002). 
Inhibition of mTOR/S6K signaling results in reduced cell 
size (Fumarola et al., 2005).

The intensity and duration of pathway activation are regu-
lated by the strength of the stimulus and by feedback loops 
(Mendoza et al., 2011). In disease, dysregulated Ras/ERK 
signaling can take place through a combination of multi-
ple mutations and overexpression. Strong driver mutations 
in these pathways, as well as in transcription factors, lead 
to uncontrolled cell proliferation in cancer; moderate/weak 
mutations in these pathways, chromatin remodelers, and 
transcription factors are associated with dysregulated dif-
ferentiation in NDDs. A combination of very strong hotspot 
driver mutations or overexpression can lead to oncogene-
induced senescence (OIS) (Lemmon and Schlessinger, 2010; 
Meloche and Pouyssegur, 2007). At the same time, mutation 
strength does not necessarily imply highly potent signal-
ing (Nussinov et al., 2022e). Negative feedback loops can 
depress Ras/ERK and PI3K/mTORC1 signaling (Fig. 4). 
Through phosphorylation, ERK can inhibit Raf and MEK1, 
decreasing ERK’s activation, providing one example for 
the Ras/ERK pathway (Dhillon et al., 2007). S6K phos-
phorylation of insulin receptor substrate protein and Ric-
tor decreases AKT and mTORC1 signaling, providing an 
example for PI3K/mTORC1 pathway (Dibble et al., 2009; 
Julien et al., 2010; Sengupta et al., 2010; Treins et al., 2010). 
A third example concerns c-Myc. c-Myc is a transcription 
factor that can bind to Max to promote growth and sur-
vival. The Mad1 transcription factor competes with Max 
for c-Myc, which depresses transcription. c-Myc is a highly 
unstable protein, functioning as an obligate heterodimer with 
Max to bind DNA and perform its oncogenic activity. Phos-
phorylation of newly synthesized c-Myc protein at position 
Ser62 is mediated by ERK, resulting in c-Myc stabilization 
(Sears et al., 2000).

Even though here we focus on MAPK and PI3K/mTOR 
signaling cascades and the impact of their dysregulation, 
we note that the Hippo signaling pathway (Fig. 5) similarly 
feeds into the cell cycle and has been implicated in cell 
development and cancer (Fu et al., 2022; Ma et al., 2019a; 
Zheng and Pan, 2019). Like MAPK, the Hippo pathway, 
especially YAP/TAZ (Cunningham and Hansen, 2022), is 
critical in cell division, thus may rescue debilitating MAPK 
inhibition, collaborating with PI3K/mTOR in cell prolifera-
tion (Nussinov et al., 2016b).

Thus, the critical factor is the number of active mole-
cules, not the mutation strength (Nussinov et al., 2022b). A 
stronger mutation will lead to more molecules being acti-
vated as compared to a moderate/weaker mutation. How-
ever, a high expression level can increase the population of 
active molecules harboring moderate mutations, strengthen-
ing the signal, and negative feedback loops may lower the 
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population of active molecules harboring strong mutations, 
dampening the emitted signal. Thus, a better measurement 
of the transformation potential is the number of activated 
molecules rather than the mutation strength.

PAK1 is a key autism candidate gene 
that also regulates the MAPK pathway

The p21-activated kinase 1 (PAK1), an effector of both 
Rac1 and Cdc42 RhoGTPases (Leone et al., 2010), is a 
critical kinase in the cell. Cdc42 has a key role in the polar-
ity and proliferation of radial glial cells in the ventricular 
zone. Rac1 contributes to the normal proliferation and 

differentiation of progenitor cells in the subventricular zone 
and in the survival of both progenitors. Progenitor cells in 
the ventricular zone and in the developing forebrain give 
rise to neurons and glial cells, clarifying why PAK1 dys-
regulation can be involved in NDDs. PAKs are critical in 
cytoskeletal organization in neuronal development as well 
as synaptic function. Their pro-survival signals control neu-
ronal cell fate (Civiero and Greggio, 2018). PAK1 is active 
as a monomer. Normally, in neurons, PAK1 dimers are in 
a trans-inhibited conformation, with the autoinhibitory 
domain of one monomer covering the kinase domain of the 
other. Binding to Cdc42 or Rac1 promotes dissociation of 
the dimers and conformational change. Recent experimental 

Fig. 5  The Hippo pathway. Acting as a tumor suppressor, Ras asso-
ciation domain family 5 (RASSF5) coupled with Ras dimer and the 
Hippo pathway inhibit cell proliferation. RASSF5 is an adaptor pro-
tein, promoting dimerization of mammalian sterile 20-like kinase 1/2 
(MST1/2). Cross-phosphorylated MST1/2 by each kinase domain 
phosphorylates MOB kinase activator 1 (MOB1) and large tumor 
suppressor 1/2 (LATS1/2), leading to phosphorylation of YAP/TAZ 
(Yes-associated protein/transcriptional coactivator with PDZ-binding 

motif) proteins. Phosphorylation of YAP/TAZ stimulates proteolytic 
degradation. In the absence of Hippo signal, the unphosphorylated 
YAP/TAZ translocate into the nucleus to stimulate the transcription 
factor TEAD to activate downstream target genes, leading to cell pro-
liferation. In the presence of Hippo signal, MST1/2 in complex with 
a scaffolding protein, salvador homolog 1 (SAV1), is phosphorylated 
by multiple upstream signals, leading to phosphorylation cascade to 
YAP/TAZ and resulting in proteolytic degradation
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and clinical data and modeling suggested that PAK1 vari-
ants can interfere with the trans-inhibition of PAK1 dimers, 
reducing autoinhibition, enhancing the active monomeric 
state, autophosphorylation, and activation. This was pro-
posed to influence neurite outgrowth, leading to moderate-
to-severe intellectual disability, macrocephaly caused by 
the presence of macrocephaly and ventriculomegaly, with 
the larger ventricles. This can occur when cerebrospinal 
fluid is trapped in the spaces, causing them to grow larger, 
promoting seizures and autism-like behavior (Horn et al., 
2019). PAK1 regulates inhibitory synaptic strength. It is a 
potent, positive regulator of GABA (gamma-aminobutyric 
acid) transmission, independent of actin regulation. PAK1 
inhibitors can rescue some deficiencies associated with 
NDDs, including the neurofibromatosis model of autism, 
fragile X syndrome, and schizophrenia (Xia et al., 2018). In 
cancer, PAK’s overexpression contributes to proliferation. It 
was suggested that this involves OIS, cell cycle arrest at the 
G1/S phase, and downregulation of cyclin-A, cyclin-D1, and 
cyclin-E (Du et al., 2016), especially in cancers arising from 
PAK1-expressing tissues, such as brain, pancreas, colon, or 
ovary (Grebenova et al., 2019).

Cellular pathways crosstalk (Liu et al., 2021), and PAK1 
may mediate it between MAPK and PI3K/AKT. PAK1 is 
regulated by PI3K (Chan et al., 2008). PI3K regulates the 
activation of RhoGEFs that can activate Rac, AKT, and 
PAK1 (Fruman et al., 2017). PAK1 can activate MAPK 
(phosphorylates Raf1 at Ser338, MEK1) (El-Baba et al., 
2014; Jin et al., 2005; Magliozzi and Moseley, 2021; Qing 
et al., 2012; Tse and Ching, 2014; Yao et al., 2020). PAK1 
phosphorylates MEK1 at Ser218/Ser222 (Wang et al., 2013) 
and Ser298 (Slack-Davis et al., 2003), and MEK1 activates 
ERK promoting fibronectin-stimulated MAPK activation 
(Slack-Davis et al., 2003). In turn, Raf1 can activate PAK1 
(El-Baba et al., 2014).

NDDs pathological manifestations, synaptic 
impairments, and mutations

NDDs are connected to defects in the patterns of neuronal 
assembly during development (Batool et al., 2019). Defec-
tive patterns are associated with dysfunctional learning, 
memory, cognition, social behavior, and more (Zoghbi and 
Bear, 2012). To function, the ensemble of the proliferated 
and migrated neurons in the developed brain extends their 
axonal (which are long, unbranched, and presynaptic) and 
dendritic (short, highly branched, postsynaptic) protein 
spines to span the gap separating them from their targets. 
The dendrites receive information. The stimulus signal 
propagates through dynamic, possibly allosteric, confor-
mational changes to the axon to the target. The alteration 
of the neurons’ structures upon interaction with the targets 
is the synapse (Dunn et al., 2018; Liu and Wang, 2014; 

Matsunaga and Aruga, 2021; Pelkey et al., 2007). The 
chemical signal is transferred between neurons through 
interactions. The synapse connections are “plastic,” chang-
ing with the environment. While these processes take place 
throughout life, they are especially impactful during brain 
development. Regulation of neuronal structural changes 
is critical for proper neuronal migration, maturation, and 
synapse formation. Mechanistic details are still unclear.

Mutations are suspected to be a common cause of syn-
aptic impairments in neurodevelopmental diseases. Cited 
examples include epilepsy, intellectual disability, devel-
opmental delay, attention deficit-hyperactivity disorder, 
schizophrenia, bipolar disorder and obsessive-compul-
sive disorder, tuberous sclerosis, NF1, Angelman syn-
drome (UBE3A), Rett syndrome (MECP2), PTEN hamar-
toma tumor syndrome, and Phelan-McDermid syndrome 
(SHANK3), with more suspected but to date unidentified 
(Zoghbi and Bear, 2012) [for reviews, see Betancur (2011) 
and Guang et al. (2018)]. The mutations are in proteins 
that are critical regulators of synaptic function. In non-
syndromic ASD, mutations appear to be rare, possibly due 
to a lack of identification. In agreement with this, they 
have been identified in tuberous sclerosis complex and the 
Angelman syndrome, both with presentations shared with 
ASD. That ASD and intellectual disability are associated 
with defective synapse patterns is further supported by 
the frequent occurrence of mutations in proteins associ-
ated with synaptic structure and function (Zoghbi and 
Bear, 2012). Furthermore, altering the expression of Rho 
GTPases affects spine formation in developing neurons 
(Zhang et al., 2021a) (Fig. 2). Rho GTPases are critical 
in synaptic regulation (Duman et al., 2021). In neurons, 
the Rho GTPase Rac1 promotes the growth of axons and 
dendrites and of spines/synapses, whereas RhoA elicits 
axonal and dendritic retraction and spine/synapse loss 
(Luo, 2000; Mulherkar et al., 2017). RhoA is a substrate 
of Cul3 ubiquitin ligase. In autism, inhibition of RhoA 
rescued dendrite length and network activity phenotypes 
(Amar et al., 2021). Finally, dysregulation of Rho GTPases 
plays critical roles in neurodegenerative disorders, includ-
ing Alzheimer’s disease (Duman et al., 2021). Several 
transcription factors have been shown to regulate RhoA 
expression, including c-Myc, Max, and SMAD4 (mothers 
against decapentaplegic homolog 4) (Schmidt et al., 2022).

Conclusions

NDDs and cancer are connected (Nussinov et al., 2022d). 
They share proteins, pathways, and mutations. Their phe-
notypic presentations are vastly different, although can be 
still connected. Individuals with NDDs have somewhat 
higher probabilities of eventually coming down with 
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cancer. Understanding the similar and distinct hallmarks 
of the two conditions is vastly important and has been 
attracting increasing attention in the community. Insight 
into these may help in pharmacological intervention, with 
the key question being whether drugs used in cancer can 
also be useful in NDDs (Nussinov et al., 2022f). Here, our 
aim is to delve deeper into these questions, integrating 
experimental and clinical data with conceptual grasp and 
knowledge (Nussinov et al., 2022a).

Cell differentiation and proliferation are key processes 
in higher organisms. They fulfill complementary func-
tions. Proliferation increases the number of cells. Dif-
ferentiation is responsible for the functional specializa-
tions of the proliferated cells. In a normal cell cycle, the 
two processes are coordinated. To date exactly how has 
been unclear. Especially confounding are the relations 
between these and the distinct clinical presentations. Cell 
proliferation is a hallmark of cancer. Cell differentiation, 
largely constrained and driven by chromatin remodeling, 
is a hallmark of NDDs. It sets the cell lineage, that is, 
which specialized cells develop from which progenitor 
cells. Chromatin remodeling is a key factor determin-
ing gene expression, which varies across cell types and 
developmental time windows. Recently, it has been shown 
that chromatin is fluid-like (Itoh et al., 2021) within the 
crowded nucleus when probed in a living cell (Keizer 
et al., 2022). In contrast to the prevailing entrenched view 
of a dense, entangled chromatin description, recent meas-
urements of the response of chromatin to force applied at 
a certain genomic location showed that interphase chroma-
tin, which is the phase of the cell cycle in which a typical 
cell spends most of its life, is liquid-like, with moderate 
barriers to overcome topological effects. This updated 
description is consistent with chromatin remodelers and 
transcription factors, facilely altering the local chromatin 
during cell lineage and gene expression.

The differential regulation of gene expression leads to 
changes in the morphology and function of the proliferated 
cells, with the critical factor in cell differentiation being 
the expression levels of the cell-specific proteins at the 
specific differentiation state. Dysregulation of expression 
of specific proteins, including RhoA/Rac, may underlie 
synapses malfunction in NDDs. Uncoordinated prolifera-
tion/differentiation may underlie microcephaly pathogen-
esis. Microcephaly may arise from changes in the rela-
tive rates of symmetric and asymmetric divisions or in 
the differentiation of the neuronal cells, both the outcome 
of cell cycle defects in timing and progression (Siskos 
et al., 2021). The increased growth rate in stem cells could 
be part of the reason for the macrocephaly or abnormally 
large head size (Thomas, 2020). Defective G1/S phase 
transition during early stages of brain development 
appears to correlate with brain maldevelopment in ASD 

(Chen et al., 2015). Despite these apparent associations, 
exactly how these processes on the molecular, cellular, 
and organismal levels are connected and regulated is still 
enigmatic (Engler et al., 2021; Fidan et al., 2021; Gremer 
et al., 2011; Pantaleoni et al., 2017), and await resolution.
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