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Abstract
Prediction of ligand-receptor complex structure is important in both the basic science and the industry such as drug discovery. 
We report various computation molecular docking methods: fundamental in silico (virtual) screening, ensemble docking, 
enhanced sampling (generalized ensemble) methods, and other methods to improve the accuracy of the complex structure. 
We explain not only the merits of these methods but also their limits of application and discuss some interaction terms 
which are not considered in the in silico methods. In silico screening and ensemble docking are useful when one focuses 
on obtaining the native complex structure (the most thermodynamically stable complex). Generalized ensemble method 
provides a free-energy landscape, which shows the distribution of the most stable complex structure and semi-stable ones 
in a conformational space. Also, barriers separating those stable structures are identified. A researcher should select one of 
the methods according to the research aim and depending on complexity of the molecular system to be studied.

Keywords  Free-energy landscape · Energy basin · Molecular binding · Conformation sampling · Thermodynamic 
integration · Weighted ensemble analysis method · Enhanced sampling · Drug discovery

Introduction

Computations together with X-ray, NMR, and electron 
microscopy have been used to study the tertiary structure of 
biologically important proteins and to develop drugs (Kyo-
goku et al. 2003). Haruki Nakamura and his group have con-
tributed to development of computational approaches and 
the PDBj database (https://​pdbj.​org/). As known, PDB is 
the starting point to study a single biomolecular system and 

structural genomics, and those studies contribute to develop-
ment of drug-discovery technologies.

The human genome includes 23,000 coding genes 
(International Human Genome Sequencing Consortium 
2001; Venter et al. 2001). Data-driven deep learning mod-
els based on the Protein Data Bank, such as Alpha fold 
(Jumper et al. 2021; Mosalaganti et al. 2022), succeeded to 
predict precise 3D protein structures from the amino-acid 
sequences. Recent 76% of human-protein tertiary structures 
was predicted (Porta-Pardo et al. 2022). The mouse genome 
project elucidated the time-dependent RNA expression in 
each organ from embryo, ES cell, and mature mouse. The 
genes and other sequence data were annotated in FAN-
TOM activities (Kawai et  al. 2001; Abugessaisa et  al. 
2021). The ENCODE project showed the gene expression 
in each organ of human, and the time-dependent and organ-
dependent RNA expression data were published as human 
cell atlas, brain atlas etc. (Regev et al. 2017; Kita et al. 
2021). These approaches have indicated that transcription 
factors are coded in about 2000 genes (10% of genes) and 
that 1000 promotors exist on our genome. The transcrip-
tion factors bind to other proteins and form functional 
transcription-factor complexes. Then, these complexes 
bind selectively to the promotors, and finally this selective 
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binding controls pathways, which consist of functionally 
related proteins (Khambata-Ford et al. 2003; Babu et al. 
2004). The KEGG pathway database includes about 500 
pathways, and response of RNA expression patterns against 
1000 chemicals were archived in the Broad Institute as a 
connectivity map (Kanehisa et al. 2021; Lamb et al. 2006; 
Musa et al. 2018). These progresses in research give new 
definitions of diseases, healthy, and ageing states of life. 
The combination of data-driven protein-complex modelling 
and genome-wide association study (GWAS) elucidates the 
structures and functions of organelles, nuclear pore, tran-
scription factors, and membrane systems (Uffelmann et al. 
2021; Mosalaganti et al. 2022).

The inter-disciplinary studies reveal multiple pathway 
control by a combination of approved medicines. One of 
the successes from the inter-disciplinary studies is “chimeric 
antigen receptor T cell” (CAR-T cell) therapies. The genetic 
engineering has enabled designing artificial antibodies tar-
geting specific antigens and these artificial genes introduced 
in the T cells isolated from the patient’s blood. These per-
sonalized medicines have succeeded mainly in cancer treat-
ments. Although CAR-T cell therapies are always facing a 
risk of un-controlled proliferation of the CAR-T cells, some 
studies suggested how to control CAR-T by high-selective 
kinase inhibitors (Mestermann et al. 2019). Since the aging 
and healthy states are clearly distinguished by transcriptome 
and pathway analysis, some rational anti-senescence thera-
pies have been proposed by using a pair of high-selective 
kinase inhibitor and Bcl-xL inhibitors (Fig. 1) (Campisi 

et al. 2019; Kirkland and Tchkonia 2020; Gasek et al. 2021; 
Shafqat et al. 2022).

The novel therapies mentioned above suggest that the 
state-of-the-art technology can be developed based on 
atomic-level interactions between the high-selective drug 
molecules and target proteins in solvent. This review, there-
fore, focusses on the computations to study the molecular 
interactions. How can small or medium-sized drugs and 
proteins bind to their target molecules selectively? The pre-
vious studies showed that each cell expresses only several 
thousand genes and that the produced proteins are local-
ized in organelles (i.e., nucleus, mitochondria, endoplas-
mic reticulum, etc.) divided by membranes in a cell where 
innumerable molecules are crowded (Delarue et al. 2018; 
Mourão et al. 2014). As described above, these proteins 
bind selectively to their binding partner and form functional 
complexes.

The protein surfaces are mainly hydrophilic to avoid 
aggregation. Recently, “cryptic site” was proposed as a 
case of the selective binding mechanisms (Cimermancic 
et al. 2016; Beglov et al. 2018; Vajda et al. 2018). The cryp-
tic site is hidden in the apo form and opened in the holo 
form, which is an example of polymorphism. This type of 
molecular recognition mechanism is understood by combi-
nation of database analysis and molecular simulations as will 
discussed later. The molecular simulation becomes more 
important when we study a binding mechanism between an 
intrinsically disordered protein (or domain) and its binding 
partner. Because a conformational motion of the intrinsically 

Fig. 1   Schematic representation 
of systems biology, medication 
by drug molecules, and dif-
ficulty. Genome, transcriptome, 
proteome, pathway analysis, 
and atomic-level molecular 
simulation enable us to find and 
analyze new understandings of 
life and new medications
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disordered protein is considerably large and complicated, 
a more efficient sampling method (enhanced sampling) is 
required, as discussed later.

Many organs (mainly brain) secrete chemicals and 
peptides for inter-organ cross talks. The secretions of 
molecules (e.g., adrenalin, histamine, insulin, endothelin) 
mainly work for signal transduction as stress response. 
In our body, most of these molecules are generated from 
stocked materials like amino acids, lipids, and nucleic 
acid. For instance, adrenalin, histamine, and dopamine 
are respectively generated from Phe, His, and Trp, and 
their chemical formulas are similar mutually. Nonethe-
less, the secreted chemicals are selectively recognized 
by their receptors (Joedicke et  al. 2018). To uncover 
such a high selective binding mechanism, an atom-based 
approach is mandatory.

As mentioned above, the pathway is controlled by the 
protein–ligand complex formation, and then a molecule, 
which binds to a pathway-relating protein, can be a drug 
candidate. In this review, we focused on various the com-
putational approaches from in silico (virtual) screening to 
enhanced sampling (generalized ensemble) to elucidate the 
molecular-recognition mechanism. Before that, however, 
we present in the next chapter a simple and fundamental 
framework to consider the most thermodynamically stable 
complex structure and semi-stable complex structures.

Stable states

Before explaining the complex-structure prediction methods 
actually, we mention the complex formation fundamentally. 
Suppose that ligand and receptor are distant to each other in 
solution at a physiological temperature. Molecular binding 
is a process where the ligand approaches the ligand-binding 
site of the receptor and eventually the native complex is 
formed. In a conformational space, the binding is a pro-
cess where the system’s conformation moves from a high 
free-energy region to a low free-energy one and finally the 
conformation falls in the lowest free-energy basin (native 
complex basin) (Fig.  2a). Contrarily, if the lowest free 
energy is marginally lower than the others, the system may 
exhibit a fuzzy complex state (Fig. 2b) (Tompa and Fuxreiter 
2008), and consequently a single complex conformation is 
not determined experimentally because the conformation is 
fluctuating among multiple conformations. In this case, the 
aim of the computation is to find these multiple basins.

A free-energy landscape shows distribution of low free-
energy basins (Fig. 2a, b). The system’s conformation r 
is originally a multi-dimensional quantity expressed as: 
r = [x1, y1, z1,⋯ , xN , yN , zN] where [xi, yi, zi] is the Carte-
sian coordinates of the i th atom and N  is respectively 

the number of constituent atoms of the system (biologi-
cal molecules, solvent molecules and other atoms in the 
system). Denoting the potential energy of a conformation 
(microscopic state) as E(r) , the statistical weight (thermo-
dynamic weight) at thermal equilibrium assigned to r at a 
temperature T  is given formally by

where Rgas is the gas constant (the energy unit is kcal/mol). 
We omit a kinetic energy in Eq. 1 to make explanation sim-
ple. The normalization factor (partition function) is also 
omitted because N , system’s volume and T are constant here. 
A fractional free energy Gbj

 assigned to a basin j (denoted 
as bj in Fig. 2c) is defined by

(1)�(r) ∝ exp

[

−
E(r)

RgasT

]

(2)Gbj
= −RgasTln

[

∫ R(bj)

�(r)dr

]

Fig. 2   a Scheme of free-energy landscape. X-axis represents molecu-
lar conformation one-dimensionally, although it is high dimensional 
originally. Y-axis represents free energy (PMF) of conformation at 
physiological temperature. The lowest free energy is remarkably 
lower than the others. Broken lines show complex formation process. 
b System with multiple complex basins, whose free energies are simi-
lar mutually. The conformation fluctuates among the basins. c Poten-
tial energy surface E(r) , where r is position of the system. Two basins 
bj and bk are mentioned in text, whose territories are R(bi) and R(bk) , 
respectively
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The multi-dimensional integral is taken in a region R(bj) 
(i.e., territory of bj ), which is occupied by microscopic 
states belonging to bj . Figure 2c is presented so that bj is 
more stable than bk at equilibrium: Gbj

< Gbk
.

Equation 2 is a formal expression to assess the stability 
of each basin. However, this multidimensional integral is not 
achievable for many biological systems because the high-
dimensional space is fractioned into basins of complicated 
shapes. Instead, a ratio Gbj

∕Gbk
 is computable numerically 

by an enhanced sampling simulation, whereas each of the 
fractional free energies Gbj

 and Gbk
 is not computable. 

Although rigorous determination of territory R(bj) is diffi-
cult, exp[− E(r)

RgasT
] around an inter-basin boundary is small. 

Therefore, an error caused by uncertainty of R(bj) may be 
negligible.

It is helpful to convert the position r defined in the Carte-
sian-coordinate space to a low-dimensional position q , refer 
to as “reaction coordinate”: q = [q1, q2,… , qn] , where n is 
dimensionality of the reaction-coordinate space ( n < N  ). 
Note that the function form of q = q(r) is known for the 
coordinate conversion. Accordingly, the weight �(r) is con-
verted to P(q) as:

where �
(

q(r), q(r
′

)
)

 is a delta function that is non-zero only 
when r′ is involved in a range q − dq ≤ q(r

′

) ≤ q + dq set 
in the reaction-coordinate space: ∫ ∞

−∞
�(q(r);q(r

′

))dr
′

= 1 . 
In a real sampling, the number of sampled conforma-
tions is finite. Then, �(r − r

′

) is replaced by a function 
D
(

q(r);q(r
′

)
)

 in Eq.  3: D
(

q(r);q(r
′

)
)

= v in a range of 
q − Δq ≤ q(r

′

) ≤ q + Δq and D
(

q(r);q(r
′

)
)

= 0 outside the 
range with condition of ∫ ∞

−∞
D(q(r);q(r

′

))dr
′

= 1 . Then, 
P(q) =

∑

i wiD(q(r);q(ri
′

)) , where wi is a statistical weight 
assigned to the i th snapshot determined from the sampling.

A force F(q) acting on the system at q in the reaction-
coordinate space is expressed formally as:

where the i th element Fi is the force acting on the system at 
q parallel to the qi axis and defined as:

where ei is the unit vector parallel to the qi axis, and f (r) is 
the force acting on the system at r in the Cartesian space: 
f (r) = −grad[E(r)] , where derivatives are calculated with 
respect to the Cartesian coordinates r . Equation 5 indicates 
that F(q) is related to the thermal average of force f (r) at q 
because the thermodynamic weight �(r) is used for averag-
ing f (r) . Therefore, F(q) is called a “mean force.” Then a 

(3)P(q) = ∫ �

(

r
′

)

�(q(r), q(r
′

))dr
′

(4)F(q) =
[

F1(q),F2(q),… ,Fn(q)
]

(5)Fi(q) = ei ∙

[

∫ �(r − r
′

)f (r
′

)�
(

r
′

)

dr
′

]

potential function computed from a line integral of F(q) is 
called “potential of mean force” (PMF) (Tuckerman 2010). 
However, instead of executing the line integral, PMF is com-
putable directly from P(q) as:

The fractional free energy Gbj
 is computed by integrating 

P(q) in its territory R(bj):

where wbj

i
 is a statistical weight assigned to the i th snapshot 

in bj , and nj is the number of snapshots in bj . Although it 
is difficult to calculate wbj

i
 by a conventional MD simula-

tion in a wide conformational space, a generalized ensemble 
method provides wbj

i
 naturally.

Here, we define the word “free-energy landscape” clearly. 
Originally, the word “free energy” is used to express an 
entire statistical property of the system: G = −RgasTln[Z] . 
The term Z is the, so-called, partition function defined as 
Z = ∫ entire

�(r)dr = ∫ entire
P(q)dq , where the integral is 

taken over the entire conformational space. On the other 
hand, the word “free-energy landscape” is usually used to 
show the spatial patterns of the probability P(q) or PMF(q) 
in the reaction-coordinate space. Therefore, the free-energy 
landscape may be called “PMF landscape” or “probability 
landscape.” We note that the formulations of the free energy 
and PMF have a similarity: When P(q) in Eq. 6 is replaced 
by Z , PMF becomes G.

Now we outline the computational methods and their 
limits of applications. If the intra-molecular deformation in 
each of receptor and ligand is small upon binding, a sim-
ple in silico docking is useful: A chemically stable ligand 
structure and the receptor’s apo form are combined as build-
ing brocks to generate various complex poses. As explained 
later, the ligand conformational varieties caused by rotata-
ble-bond rotations are considered in the in silico docking. 
Then, the plausibility of each pose is assessed by a physi-
cal interaction energy or an empirically introduced scoring 
function, which is given later. Because this procedure can 
be done very quickly, many ligands can be tested by repeat-
ing this procedure (high-throughput screening). Details are 
explained later.

If the receptor undergoes a large intra-molecular 
deformation during the complex formation, preparation of 
various receptor’s conformations (ensemble) in advance is 
useful: The docking procedure is performed between the 
ligand and many conformations in the receptor’s ensemble. 
This procedure is called “ensemble docking” (Carlson 
et al. 1999; Amaro et al. 2018; Falcon et al. 2019). If this 

(6)PMF(q) = −RgasTln[P(q)]

(7)
Gbj

= −RgasTln
�∫

R(bj)
exp[−

PMF(q)

RT
]dq

�

= ∫
R(bj)

P(q)dq

=
∑nj

i
w
bj

i
,
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procedure works well, the complex formation accords 
probably to “conformation selection” (Bosshard 2001; James 
and Tawfik 2003; Yamane et al. 2010). The ensemble is 
generated from the receptor’s apo form using conventional 
molecular dynamics (MD), Monte-Carlo (MC) sampling, or 
enhanced sampling (generalized ensemble method).

If both the receptor and ligand undergo large conforma-
tional deformations during the complex formation, prepara-
tion of a ligand’s conformational ensemble as well as the 
receptor’s conformational ensemble may be useful. How-
ever, this procedure might be inefficient when the generated 
ensembles do not contain ligand and receptor conformations 
appropriate for constructing the lowest free-energy form (the 
native complex structure). This suggests that the complex 
formation accords with the “induced fit” (Monod et al. 1965; 
Spolar and Record 1994). Furthermore, a difficulty appears 
when conformational fluctuations (i.e., entropy) and a sol-
vent effect contribute to the complex stability.

An extreme case is found in an intrinsic disordered seg-
ment binding to its binding partner (Wright and Dyson 
1999). This segment is disordered in the unbound state and 
may fold in a tertiary structure when binding to the partner 
(coupled folding and binding) (Dyson and Wright 2005; 
Sugase et al. 2007). To predict the complex structure, all 
molecules should be involved in a single system using a 
completely flexible model. Therefore, a powerful sampling 
method, a generalized ensemble method (an enhanced sam-
pling method), is required.

It is fundamentally interesting to distinguish the popula-
tion selection and the induced fit in the complex formation 
(Hammes et al. 2009). Many works argued the population-
selection vs induced-fit problem (Okazaki and Takada 2008; 
Hammes et al. 2009; Silva et al. 2011; Bucher et al. 2011; 
Vogt and Cera 2012; Nussinov et al. 2014; Ravasio et al. 
2019; Vauquelin and Maes 2021). A generalized-ensemble 
study by Nakamura and his coworkers (Higo et al. 2011) 
reproduced a coupled folding and binding phenomena, 
which is expressed by an intrinsically disordered segment 
NRAF/REST binding to the paired amphipathic helix (PAH) 
domain of mSin3B (Nomura et al. 2005). The study con-
cluded that the population selection and the induced fit 
works together in a coupled manner. It is natural to consider 
that the binding mechanism depends on the system because 
of the variety of the biological system.

Receptor‑ligand docking and in silico 
screening

Receptor–ligand docking software that predicts the recep-
tor–ligand complex structures and the binding free energies 
ΔG , has been a key technology of the in silico (virtual) drug 
screenings and the rational drug designs from 1990, and still 

now a number of reports has been published on the recep-
tor–ligand docking programs and the combinations of them 
(Pagadala et al. 2017; Salmaso and Moro 2018; Amaro et al. 
2018; Bender et al. 2021; Pinzi and Rastelli 2019). Haruki 
Nakamura and his coworkers are developers of docking soft-
ware (sievgene/myPresto) and a basic method for docking 
study (Fukunishi et al. 2005). Part of his work is now avail-
able as “myPresto program suite” (https://​www.​mypre​sto5.​
jp/​en/) where about 20 programs can be downloaded under a 
LGPL v2 license. A member of myPresto software develop-
ers is allowed to use them under FreeBSD license.

Before starting the docking procedure, the ligand-binding 
site must be indicated (this identification is discussed later). 
In general, a docking method consist of two or three steps. 
The first step is the ligand-allocation scheme on the receptor 
surface around the indicated ligand-binding site and gives 
many receptor–ligand complex structure candidates (“dock-
ing poses”). The second step is an evaluation of the dock-
ing poses by applying a scoring function, which estimates 
roughly the ΔG values of given docking poses and selects 
some probable or stable docking poses. The third step is 
the re-scoring of the selected poses by using a more precise 
scoring function than the rough scoring function used above. 
The final docking poses correspond to ΔG values.

Usually, the scoring function is classified into three 
types (Li et al. 2019): physico-chemical, knowledge-based, 
and empirical scoring functions. We focus on the docking 
methods based on the physico-chemical scoring function 
because this scoring function can incorporate readily new 
elements, such as boron (Soriano-Ursúa et al. 2014) and 
silicon (Franz and Wilson 2013). The popular docking 
software based on the physico-chemical scoring is Dock 
(Kuntz et  al. 1982), AutoDock (Goodsel et  al. 1996), 
Glide (Friesner et al. 2004; Halgren et al. 2004) etc. The 
knowledge-based scoring function is calculated from a 
pairing distribution function between two atom-groups 
recorded in a database. The popular docking software based 
on the knowledge-based scoring function are GOLD (Jones 
et al. 1997; Verdonk et al. 2003). The empirical one is from 
parameter tiffing in a function to reproduce the experimental 
ΔG (Pereira et al. 2016; Ragoza et al. 2017). The popular 
docking software based on the empirical base is GOLD 
chemscore, FlexX (Rarey et al. 1996), PRO-LEAD (Baxter 
et al. 1998), rDock(Ruiz-Carmona et al. 2014) etc.

Binding‑free energy estimation is the core 
technology of docking software

Receptor–ligand binding free energy is one of the major 
factors determining the activities of drug molecules, 
signal transductions, and many other physiological phe-
nomena. Both the molecular simulation and experimental 
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approaches can give the ΔG values. Suppose that one 
receptor has only one ligand-binding site (or region) 
and that one receptor molecule can bind only one ligand 
molecule to form one receptor-ligand complex. Let the 
ligand-binding region ( RB ) be clearly distinguishable 
from the other region ( RU ) in the conformational space. 
Equations 3 and 7 gives ΔG (= GRB

− GRU
) as follows,

where PB and PU are the probabilities of the bound ( RB ) and 
unbound ( RU ) states, respectively: PB =

[∫
RB
�(r)dr

]

 and 

PU =
[∫

RU
�(r)dr

]

 using Eq. 3.
On the other hand, the popular experimental methods 

for ΔG evaluation are the isothermal titration calorimetry 
(ITC) and the surface plasmon resonance (SPR) experiments 
that give the binding constant Ka (Rich and Myszka. 2007; 
Wiseman et al. 1989). When the system is in the equilibrium 
state under the standard condition (298 K and 1 atm), the 
dissociation constant KD(= 1∕Ka) gives the standard molar 
Gibbs free energy change of binding ΔG0 as follows,

where C0 is a reference concentration of 1 mol/L (Gilson 
et al. 1997; Deng and Roux 2009).

Since the ΔG value depends on the experimental con-
ditions (temperature, pressure, and the other experimen-
tal conditions), ΔG0 is useful for comparing the stabil-
ity of complexes among multiple receptors and ligands 
measured from different experiments. Therefore, ΔG0 is 
adopted in the scoring functions.

Besides the binding-constant observation experiments, 
there have been many experimental methods, which provide 
the binding affinity of ligand. Namely, the half maximal 
inhibitory concentration ( IC50 ), percent inhibition, 
inhibition constant ( Ki ) etc. These quantities could be 
somehow translated to the binding free energy differences 
by using the Cheng-Prusoff equation (Yung-Chi and Prusoff 
1973) and the other equations. These affinity data have been 
useful for developing the scoring functions.

As mentioned, the accurate calculation of ΔG is still 
a very time-consuming and expensive task. On the other 
hand, in silico screening is usually applied to many com-
pounds. Preparation of large ligand library and usage of 
many computation nodes are effective to increase the 
efficiency of the in silico screening (Gentile et al. 2022; 
Gorgulla et al. 2020; Lyu et al. 2019). Therefore, approxi-
mation of ΔG with maintaining a certain accuracy is cru-
cially important for docking software.

(8)ΔG = −RgasTln

[ ∫
RB
P(q)dq

∫
RU
P(q)dq

]

= −RgasTln

[

PB

PU

]

(9)ΔG0 = RgasTln

[

KD

C0

]

Receptor–ligand docking as supporting tool 
for X‑ray crystallography

In 1983, Kuntz group published the first docking program 
DOCK for assisting the X-ray crystallographic coordinates 
of small molecules in the protein–ligand complex (Kuntz 
et al. 1982). The docking procedure of DOCK was follow-
ing four steps. (1) DOCK puts various size of spheres that 
represent the ligand on the receptor surface to search the 
ligand-binding position with avoiding atomic conflictions. 
(2) The second step is a trial-and-error ligand-docking cycle. 
DOCK locates the ligand molecule in various conformations 
on the predicted ligand-binding position indicated by Step 
1. (3) DOCK evaluates the stability of each conformation 
by applying a binding-enthalpy function. (4) Finally, DOCK 
selects the candidate most-stable receptor-ligand conforma-
tion. DOCK estimates the binding enthalpy ( ΔE ) by Eq. 10 
instead of Eq. 11 which is the classical force field for an MD 
simulation.

or

where subscripts i and j designate the i th atom of receptor 
and the j th atom of ligand, respectively. The parameters rij , �ij , 
and �ij are the inter-atomic distance (Å), van der Waals (vdW) 
radius (Å), and a coefficient for the vdW interaction assigned 
to the atom pair of i and j . The parameters qi and qj are atomic 
partial charges (atomic unit) assigned to atoms i and j , respec-
tively. The number “332.0” is to set the energy in kcal/mol unit. 
The first and second terms of Eq. 10 correspond respectively to 
the soft-core vdW interaction and the Coulomb interaction in 
implicit-water solvent. In general, a receptor–ligand complex 
with a strong affinity shows good interface complementarity. 
A slight coordinate error of the ligand causes atomic conflicts, 
which result in a strong repulsion and a large error in the dock-
ing score. Therefore, most receptor–ligand docking programs 
have adopted the soft-core vdW potential.

In the Coulomb interaction term, 4rij represents an effec-
tive dielectric constant �eff  . Assuming that �eff  depends on 
the distance Rp from the protein surface to the ligand, the 
simplest form is �eff = 4Rp (Mallik et al. 2002). In Eq. 10, 
Rp is approximated by rij.

(10)
ΔE =

∑

i∈rec

∑

j∈rec
4�ij

{

(

�ij

rij

)9

−

(

�ij

rij

)6
}

+ 332.0
∑

i∈rec

∑

j∈rec

qiqj

4rij
2

(11)
ΔE =

∑

i∈rec

∑

j∈rec
4�ij

{

(

�ij

rij

)12

−

(

�ij

rij

)6
}

+ 332.0
∑

i∈rec

∑

j∈rec

qiqj

rij
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Because the initial version of DOCK was designed for 
crystal-structure analysis, this version did not involve an 
entropy term. DOCK has been modified frequently last 
few decades, and the current ligand-allocation scheme 
and the scoring function are different from those of the 
initial version.

Toward receptor‑ligand docking in implicit 
aqueous solvent

Present docking software is designed to the recep-
tor–ligand docking in implicit water solvent at the room 
temperature. Equation 12 is one of the AutoDock scor-
ing functions, and many other scoring functions are sim-
ilar to this function more or less (Goodsel et al. 1996). 
Note that ΔG in Eq. 12 is regarded as an approxima-
tion of the free energy change caused by the ligand-
receptor complex formation. The enthalpy part of ΔG is 
expressed by the first three terms: the receptor–ligand 
vdW, hydrogen-bonding, and Coulomb interactions. The 
entropy part of ΔG consists of the fourth and last terms. 
The fourth term represents the entropy loss of ligand 
molecule in binding: the ligand can have multiple con-
formations in bulk water (unbound state), although it is 
fixed to a single conformation in the binding site. The 
last term represents the receptor–ligand hydrophobic 
interaction in water.

where fvdW, fhbond, fele, fsol , and fvdW are respectively fitting 
coefficients for terms of vdW, hydrogen bond, Coulomb, 
entropy-loss, and the dehydration free energy to remove a 
hydration shell from the receptor–ligand interface. A clas-
sical MD force field gives the values of coefficients Aij , 
Bij , Cij , and Dij . Ehbond , qk ( k = iorj ), �

(

rij
)

 , ΔGtor , and Nrot 
are respectively a correction term for a hydrogen bond, an 
atomic charge for atom k , the distance-dependent dielectric 
constant for atom pair i and j , the entropy loss with respect 
to a rotatable bond, and the number of rotatable bonds in 
the ligand. Sk , Vk , and � are respectively an atomic-solvation 
parameter for atom k , an occupied atomic volume for atom k , 
and an average vdW radius of heavy atom except hydrogen 
atom. The fitting coefficients are determined to reproduce 
the experimental ΔG values from many receptor–compound 
complexes.

The parameters in the scoring function ΔG are 
determined from a thermodynamic cycle, which is a 
well-known cycle in computational field as shown in 
Fig. 3a and b. Figure 3a shows that ΔG is given by the 
molecular interaction in vacuum ( E1 ) and the aqueous 
solvation free energies ( ΔG2

solv
 and ΔG3

solv
 ). Since clas-

sical force field gives the E1  value, the unknown factor 
is only the solvation free energy. Figure 3b shows that 
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Fig. 3   Schematic representation 
of molecular interaction energy 
calculation. a Thermodynamic 
cycle to calculate ΔG . E1 , 
ΔG2

solv
 and ΔG3

solv
 are transfer 

energies and arrows represent 
the transfer directions. Boxes 
in blue represent solvent water. 
Red, green, and blue circles 
represent the receptor, ligand, 
and water molecules, respec-
tively. Void volume is colored 
in orange between the receptor, 
ligand, and water molecules. 
b Schematic representation of 
scaled-particle theory. Point 
insertion, cavity formation, 
and solute–solvent interaction 
energy are shown. Small arrows 
in orange represent the solute–
solvent interaction

1429Biophysical Reviews (2022) 14:1423–1447



1 3

the solvation process consists of the cavity formation and 
solute–solvent interaction processes. Broadly speaking, 
the works for cavity formation and the short-range sol-
ute–solvent interaction energy are approximately propor-
tional to the surface area of the cavity. The fitting param-
eters of the surface area are determined to reproduce the 
experimental solvation free energy values of various 
compounds. Thus, the physico-chemical docking scor-
ing function is, in general, a combination of surface area 
term and the classical force field used in the conventional 
molecular simulation.

Estimation of cavity formation energy 
in aqueous solvent

The scaled particle theory (SPT) has been one of the basic 
theories for solvation energy calculation and most of the 
docking software adopts the SPT or variations of SPT 
(Pierotti 1976). The original SPT explains the solvation 
of one spherical particle in the solvent and the SPT was 
extended to estimation of solvation energy of receptor-
ligand systems. Namely, the result obtained by the SPT 
shows that the solvation free energy is approximately 
proportional to the solute surface area. By replacing the 
radius of spherical solute by the solvent-accessible sur-
face area, the approximation formula of solvation free 
energy given by SPT is extended for solvation of polya-
tomic molecules. Finally, the approximation formula is 
extended to estimation of solvation-free energy of the 
receptor-ligand systems.

In SPT, the solvation consists of two processes 
(Fig. 3b). The first process is a vacuum cavity formation 
for insertion of solute in the solvent, and the second pro-
cess is calculation of a solute–solvent interaction when the 
solute exists in the cavity. The cavity formation energy Ecav 
is approximated by a polynomial as follows.

where R is the radius of the cavity, and ck ( k = 1, 2,… ) is a 
coefficient assigned to each term. This equation is an expan-
sion of a general equation Ecav = −RgasTln[�] , where � is the 
atomic packing factor.

Each term of Eq. 13 has its own physico-chemical sig-
nificancy although we do not explain in detail: See paper 
by Pierotti (1976) for instance. When the solvent is water 
at pressure 1 atm and when it consists of a spherical-rigid 
water model, SPT shows that the radius of solvent molecule 
and the density of solvent determine the c0 , c1 , c2 and c3 val-
ues and the other higher order coefficients are zero, and the 
third term ( c2R2 ) is dominant. Then, Eq. 13 is rewritten as

(13)Ecav = c0 + c1R + c2R
2 + c3R

3 + c4R
4 +⋯ ,

where csurf  and ASA are the coefficient of atomic surface 
tension and the solvent-accessible surface area (ASA) of 
the given solute, respectively. R is replaced by R′ , which is 
sum of R and the vdW radius of a water molecule. While 
ASA is a quantity difficult to be computed for a solute of 
general shape, Richmond provided an analytical computa-
tion method (Richmond 1984). However, the computation 
was still time consuming by a computer. Then, Stouten et al. 
proposed a simple and fast approximation method without 
conditional branch (Stouten et al. 1993) as follows.

Note that this expression appears in the last term of 
Eq. 12. Now, this approximation and the variations have 
been widely used, e.g., AutoDock (Goodsel et al. 1996) and 
sievgene (Fukunishi et al. 2005).

Solvation free energy

Major inter-molecular interactions for biomolecules are the 
vdW and Coulomb interactions. Ooi et al. assumed that the 
vdW interaction is a short-range interaction and that the 
major contribution of the electrostatic interaction is from 
the first hydration shell (Ooi et al. 1987). Then, both Ecav 
and the solute–solvent interaction energy, Esolute−solvent , are 
proportional to ASA approximately, and the solvation free 
energy ΔGsolv is given simply as

where c is, so-called, an atomic solvation parameter. Divid-
ing ASA into contribution from individual atoms, Eq. 16 is 
transformed as

where ci and ASAi are the atomic solvation parameter and the 
ASA of the i th atom, respectively, and N is the number of 
atoms in the receptor and ligand. The parameter ci depends 
on the atomic partial charge and vdW parameter of each 
atom. Various modified ASA methods have been proposed 
(Kang et al. 1987).

To improve the accuracy of ΔGsolv , the electrostatic 
energy was further considered because this energy is long 
range by nature. The Poisson-Boltzmann (PB) equation 
provides the electrostatic energy in a cell of the 3D real space 
consisting of multiple small volumes with different dielectric 

(14)Ecav ≈ c2R
�2
= csurf × ASA,

(15)Ecav = fsol

∑

i,j

(

SiVj + SjVi

)

exp

[

−
r2
ij

2�2

]

(16)ΔGsolv = Ecav + Esolute−solvent ≈ c × ASA,

(17)ΔGsolv ≈
∑N

i=1
ci × ASAi,
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constants. On the other hand, the PB equation should be 
solved in a large cell to consider the long-range property 
of the electrostatic energy (Gilson et al. 1988). Although 
Nakamura et  al. succeeded in solving the PB equation 
precisely in a small cell, the computation was still time 
consuming (Nakamura and Nishida 1987; Nakamura 1988). 
The generalized Born (GB) method is a fast approximation 
method for the electrostatic energy, which is designed to 
mimic the results from the PB equation (Hawkins et al. 1996; 
Onufriev et al. 2002). In the framework of the GB method, 
the short-range interaction is only the vdW interaction 
( EvdW ), and ΔGsolv is given as

where ECoulomb is the electrostatic energy and EGB the 
approximated electrostatic energy from the GB equation. 
The atomic surface tension parameter ci in Eq. 17 is constant 
in Eq. 18, which is set to 10 cal/mol/Å2 in aqueous solvent 
in general. The combination of the PB equation and SPT is 
called a PBSA method, and Eq. 18 is called a GBSA (gener-
alized-Born accessible-surface area) method. Currently, the 
GBSA method with a quantum mechanics (QM) method in 
the reaction field has succeeded in reproducing the solvation 
free energies and pKa for various solutes (Irisa et al. 1995; 
Cramer and Truhlar 2008).

As mentioned in Eq. 18, the atomic surface tension 
parameter c is constant. However, the solvent structure 
and dynamics (entropy and enthalpy) depend on the site 
around protein (Suzuki et al. 1997; Assaf and Nau 2018; 
Salis and Ninham 2014; Nakamura et al. 1988; Lumry and 
Rajender 1970; Freire 2008; Kabir et al. 2003). This means 
that c is not constant. Still now, the solvent structure on 
the solute–solvent interface and the change of entropy and 
enthalpy upon the receptor-ligand binding are unclear.

Additional effect not included in many 
scoring functions: void‑volume effect

The effect of a void volume to ΔG is not considered in 
Eq.  12. The void is defined by a volume between the 
Conolly and vdW surfaces in a system consists of solutes 
and water molecules (Fig. 3a). The contribution of the 
void volume to free energy is well explained by physics 
and the behavior of PMF by changing the void volume was 
computed accurately (Rashin 1989 and 1990; Fukunishi 
and Suzuki 1996; Gallicchio et al. 2000; Trzesniak et al. 
2007). However, the estimation of the void volume 
contribution to ΔG is time consuming and ignored in many 
docking programs.

(18)
ΔGsolv = Ecav + EvdW + ECoulomb ≈ c

∑N

i=1
ASAi + EGB,

Ligand conformation generation and force 
field

Before starting ligand docking, most of docking software 
prepares the multiple conformations of ligand with respect 
to rotatable bonds. Designating the number of rotatable 
bonds as Nrot and supposing that the number of energy 
minima regarding the bond rotation is three, e.g., trans, 
gauche+ and gauche−, the number of possible stable con-
formations is 3Nrot . If the receptor-ligand complex adopts 
only one binding pose, the ligand selects one conformer 
out of the 3Nrot ones and the ligand loses entropy of ln

[

3Nrot

]

.
The force fields (FFs) for small compounds were 

estimated from X-ray diffraction data and infrared (IR) 
spectrums. A GF matrix (or FG) method translates the 
IR spectrum to the force constants of the bonds, angles, 
bond-angle cross terms of the molecule (Wilson 1941; 
Boyd 1968). Allinger et al. constructed the force fields 
of small compounds and developed the MM2/MMP2 and 
MM3 programs. MMP2 calibrates the force fields around 
aromatic rings by the semi-empirical QM (Allinger 1976, 
1977; Allinger et  al. 1994). The Quantum Chemistry 
Program Exchange (QCPE) distributed the programs of 
MM2/MMP2, ECEPP and many program-source codes 
to computer chemists all over the world by free (Halgren 
1996a, 1996b; Boyd 2013). Halglen et al. applied the high-
level ab-initio QM to many compounds and developed 
MMFF94 force field (Halgren 1996a, 1996b). Namely, 
MMFF94 force field parameters were derived from 500 
molecular structures optimized at the HF/6-31G* level, 
475 structures optimized at the MP2/6-31G* level, 380 
MP2/6-31G* structures and 1450 structures partly derived 
from MP2/6-31G* geometries. The MM2/MMFF94 force 
fields and MM2 software have been widely used still now. 
Since the research purpose and force-field formula are dif-
ferent between the small chemical compounds and pro-
teins, several groups have developed new force fields like 
the general AMBER force field (GAFF) and CHARMm, 
which are applicable to various biological systems includ-
ing protein, RNA, DNA and drug molecules (Wang et al. 
2004; Zhu et al. 2012; Kumar et al. 2020).

These force fields can be used for the conformer gen-
eration of small molecules, and conformation generators 
CONCORD, Corina and CONFLEX have been developed 
(Gasteiger et al. 1990; Osawa et al. 1989; Kotev et al. 
2005). Whereas conformer generation of chain structures 
is easy, treatment of ring puckering (conformer genera-
tion of cyclic structure) is a difficult problem (Cremer 
and Pople 1975; Cremer 1990). Recent cluster analysis 
revealed that the number of ring conformers is consider-
ably smaller than 3Nrot , that the possible torsional angles 
of the ring main chain are limited, and that the number of 
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typical ring conformers increases slowly with increasing 
the ring member atoms (Friedrich et al. 2019; Chan et al. 
2021). Such study may enable the fast ring-conformer 
generation including macrocycles and cyclic peptides. 
However, the conformers of bi-cyclic compounds are still 
unclear. Steric hindrance restricts the rotation around 
rotatable bonds (atropisomers). Use of atropisomers is 
an effective technique to increase the binding affinities 
of drug molecules, although atropisomers make the esti-
mation of the entropy change, ΔS , upon binding difficult 
(Toenjes and Gustafson 2018).

Problem omitted in this chapter

In this chapter, we did not explain the solvation accompa-
nying with quantum effects. Namely, charge transfer com-
plexes, covalent drugs, halogen bonding, S–O interaction, 
metal bindings and so on. Currently, some docking pro-
grams can be applied to the covalent drugs, halogen bond-
ing and metal binding. Chemical reactions of approved 
covalent drugs are mainly mild with targeting OH and SH 
groups of receptors and improve the drug potency and 
clearance (Bauer 2015).

Heavy halogen atoms (I, Br, and Cl) of ligand mol-
ecules can bind to both positively and negatively charged 
atoms. Each halogen atom of the molecules has one chemi-
cal bond in general and the opposite side of the halogen 
atom becomes positively charged, while the other part is 
done negatively (sigma hole effect). Thus, halogen atoms 
can bind to both positively and negatively charged atoms. 
The halogen bond is an electrostatic interaction and could 
be estimated in the framework of classical force fields 
(Harder et al. 2016).

S–O interaction is an intra-molecule � orbital interac-
tion between sulfur and oxygen atoms. S–O interaction is 
useful to fix the ligand conformer to the active coordinates 
for increasing the receptor-ligand binding free energy. S–O 
interaction is a quantum effect, and there is no classical 
force field that can represent this effect currently (Nagao 
et al. 1998).

One of the most important interactions is the metal bind-
ings, since many enzymes contain soft metal atoms, e.g., 
Zn, Cu, and Fe that can change the number of valence elec-
trons with a small energy change in the reaction centers. In 
general, lone-pair electrons of ligand bind to metal atoms 
of enzyme, and additional point charges representing the 
lone-pair electrons of ligand atoms can reproduce the met-
alloprotease–ligand complex structure. But the covalency 
of the metal binding makes the binding energy prediction 
difficult comparing to the vdW and Coulomb interactions.

Docking scores as descriptors 
of the receptors and ligands: ensemble 
receptor‑ligand docking and other 
applications

Numerous receptor-ligand associations and dissociations 
support life activities. Therefore, the receptor-ligand 
docking results can be useful descriptors for predicting 
various biological phenomena. Let think about the dock-
ing results among all receptors and all compounds in our 
body, where each docking result is a pair of the docking 
score (or ΔG ) and the docking pose. Figure 4a is an inter-
action table between five receptors and five ligand mol-
ecules, and Fig. 4c is an interaction table between five 
conformers of a single receptor and the five ligand mol-
ecules. Assume that a matrix element d(i, j) is assigned 
to the i  th receptor and the j th compound in Fig. 4a. 
Similarly, a matrix element d(i, j) is assigned to the i th 
conformer of a single receptor and the j th compound in 
Fig. 4c. The element d(i, j) represents a pair of the dock-
ing score sij and the docking pose. The docking pose is 
described in many ways: The 3D Cartesian coordinates of 
the receptor-ligand complex structure, vector representa-
tions that represent receptor-ligand interactions, 3D and 
4D grid representations that represent the distribution of 
ligand’s substructures and so on (Deng et al. 2004; Fujita 
and Orita 2008). Here after, we call the docking results 
among the multiple-receptor structures and multiple-
compounds summarized in Fig. 4a and b as “interaction 
table” and discuss some applications of the tables.

Let the first receptor in Fig. 4a be the target receptor. 
The red solid-line frame in Fig. 4a represents the dock-
ing results of the ligands to the target receptor. Sorting 
d(1, j) ( j = 1 to 5) in descending order of s1j is the con-
ventional docking screening by the score. Note that once 
the set of multiple docking data is described as a matrix, 
we can apply various mathematical matrix operations to 
the matrix. These operations correspond to the chemi-
cal applications of the interaction table. In the following 
section, we introduce some applications of the interac-
tion table.

Docking screening for choosing 
target‑selective molecules based 
on the interaction table

Because many kinds of receptors exist in our body, drug 
molecules must bind specifically to its target receptor. 
Otherwise, the low selectivity and off-target binding 
may cause a side effect or adverse effect. Suppose that 
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Molecules A and B bind to a target receptor, and that the 
binding energy for Molecule A is stronger than that for 
Molecule B. If we select the molecule with the strongest 
binding energy, Molecule A should be the hit compound. 
However, if Molecule A bind to other receptors much 
more strongly than to the target receptor and if Molecule 
B does not bind to other receptors, we should select Mol-
ecule B as the hit compound. This example suggests that 
the in silico screening for a target receptor needs some 
additional docking studies for other receptors.

The multiple target screening (MTS) method is an in 
silico screening method to choose the target-selective 
molecules (Fukunishi et al. 2006b). This method is sim-
ple. Each molecule in the compound database (DB) is 
docked to proteins of a protein set (each column of the 
interaction table: Fig. 4a). The molecules with a higher 
score to the target than that to the other receptors are 
considered as target-selective molecules.

Figure 4a exemplifies that the fourth compound by the 
blue solid-line frame is the candidate hit molecule for the 
first receptor indicated by the red solid-line frame. If the 
rank of the docking score between the target receptor and 
the ligand represents the target-selectivity to the ligands, 
we can select the ligand whose docking score to the tar-
get receptor is top-ranked as candidate hit molecule.

The other method is to use a deviation of docking 
score (MASC score) instead of the intact docking score 
(Vigers and Rizzi 2004). The MASC scoring method 
assumes that each ligand molecule has its own average 
docking score to a set of receptors. Target-selective mol-
ecules should show strong docking scores to the target 
receptor, while the same molecules should show weak 
docking scores to the other receptor. Thus, the target-
selectivity of a ligand molecule should correspond to 
the z-score (deviation) of the docking score to the target 
receptor among the docking scores to many receptors. 
The MASC scoring method selects the highest z-score 
molecules as the hit compounds.

Improvement of docking results 
by machine‑learning approaches based 
on the interaction table

Similar receptors tend to bind to similar ligands: Sub-
types of receptors belonging to the same protein family 
bind to the same or similar ligand (i.e., Kinase family, 
GPCR family etc.). Thus, we can expect that a weighted 
average of the docking scores of over multiple receptors 

Fig. 4   a Interaction table. A 
matrix element d(i, j) , is dock-
ing results (docking score and 
docking pose) between the i th 
receptor and the j th ligand mol-
ecule obtained from the multi-
ple-target screening and MASC 
scoring methods. In this table, 
i or j = 1,… , 5 . Ligand mol-
ecules in blue solid-line frame 
and in blue dotted-line frame 
are similar to each other. Recep-
tors in red solid-line frame and 
in red dotted-line frame are 
similar to each other. In this 
panel, a darker tone assigned to 
d(i, j) represent a higher score 
(higher affinity). b Red-colored 
circles indicate partial areas of a 
single receptor. Ligand docking 
is restricted in the red circles. c 
Interaction table for ensemble 
docking. Elements of this table 
are the docking results between 
conformers of a single target 
receptor in ensemble and a set 
of ligand molecules
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is more reliable than that based on a single receptor 
structure. The weight for each receptor depends on the 
degree of the similarity among the receptors. Then an 
averaged docking score, Sa

i
 , between a receptor a and a 

ligand i is defined as

where sb
j
 is the docking score for complex of receptor a and 

ligand i (i.e., the score in the interaction table), and wa
b
 is a 

weight representing the contribution of sb
j
 to the averaged 

docking score Sa
i
 . The determination of wb

a
 can be achieved 

by machine-learning approaches when teaching data sets are 
available, which are experimental assay results (Fukunishi 
et al. 2006a; Fukunishi 2009).

In fact, the Nakamura group applied the docking-score 
QSAR method to 107 kinase assay results registered in 
ChEMBL database, made the prediction models for the 
107 kinases based on total 20,000 ligand molecules, and 
reported that the average error of ΔG prediction was 
0.7 kcal/mol (Fukunishi and Nakamura 2012; Fukunishi 
et al. 2017). Interestingly, they started the study from a 
general equation for Sa

i
 (i.e., Sa

i
= f ({wa

b
sb
j
}) ) and con-

cluded that the simple linear equation (i.e., Eq. 19) is a 
good expression for Sa

i
.

ChEMBL and PubChem are the most widely used pub-
lic molecular-interaction repositories (Kim et al. 2021; 
Gaulton et al. 2017). ChEMBL31 includes the 20 mil-
lion molecular interactions among 2.3 million chemicals 
and 15,072 proteins. PubChem does the 297 million bio-
activities of 112 million compounds. Many prediction 
models have been developed based on these repositories 
(Fukunishi 2009).

Similarity searches of molecules, receptor 
binding sites and ligand‑based drug 
screening based on interaction table

The interaction table determines both the similarities among 
receptors and those among ligand molecules. If the struc-
tures of the a th and b th receptors are similar, the vector for 
the a th receptor Va =

{

sa
1
, sa

2
, sa

3
,… , sa

Nmol

}

 is similar to that 

for the b th receptor Vb =
{

sb
1
, sb

2
, sb

3
,… , sb

Nmol

}

 , where Nmol 
is the number of ligand molecules in the interaction table. 
Thus, the ensemble of the vectors can be used for clustering 
the receptor ligand-binding sites. Similarly, if the structures 
of the i th and j th ligands are similar, the vector for the i th 
ligand molecule Ui =

{

s1
i
, s2

i
, s3

i
,… , s

Nrec

i

}

 is similar to that 

for the j th receptor Uj =
{

s1
j
, s2

j
, s3

j
,… , s

Nrec

j

}

 , where Nrec is 
the number of receptors in the interaction table. Similarity 

(19)Sa
i
=
∑

b
wa
b
sb
i

of ligand molecules is useful for the ligand-based in silico 
drug screening (Fukunishi et al. 2005, 2006c).

Descriptors for docking poses: 
pharmacogram method and paring 
propensity of substructures

The docking poses are useful descriptors. The simplest 1D 
descriptor of docking pose is a SIFt vector. The original SIFt 
is a digitalized amino-acid sequence of the receptor in that 
the residues contacting to the ligand are set to 1 and the other 
residues to 0. There are many variations based on the original 
SIFt vector (Deng et al. 2004).

Fujita and Orita introduced a 4D grid or multi-color 3D grid 
descriptor to represent the docking pose (see Fig. 5) and devel-
oped an in silico drug screening method called “pharmacogram 
method” (Fujita and Orita 2008). Receptor–ligand binding 
depends on the receptor-specific pharmacophore. “Pharmaco-
phore” is a spatial distribution of steric and electronic features 
that contribute mainly to the optimal receptor–ligand interac-
tions. The docking screening methods sort the ligand molecules 
by their docking scores, and the higher-ranked molecules are 
rich of actual active molecules rather than the lower-ranked 
molecules in many cases. The docking poses of the top-ranked 
molecules are likely to have important receptor–ligand interac-
tions that could be a part of the pharmacophore. Thus, we can 
predict the pharmacophore based on the docking screening.

Figure 5 illustrates the procedure of the pharmacogram 
method. The receptor structures are set to the same position. 
We put the receptor-ligand complex structure in the 3D grid 
box G and the ligand-binding site is put at the center of the 
box. The box G consists of sub cells that are divided by the 
grids and the box G is described as a matrix G ( = G(m, i, j, k) 
where m , i , j and k are integers: i , j and k specify the position 
of sub cell, and m does the type of atom involved in the grid). 
Here G(m, i, j, k) = 1 and G(m, i, j, k) = 0 mean that the mth 
atom type (or substructure) exists in the sub-cell (i, j, k) and 
not, respectively. The indexes of sub cell (i, j, k) correspond to 
the (x, y, z) coordinates in the Cartesian space.

We make the matrix G for each docking pose of the top-
ranked molecules of the docking screening (Fig. 5a, b). And 
the average G matrix of these top-ranked molecules should 
give the pharmacophore of the target receptor (see Fig. 5c). 
Finally, the docking poses are evaluated and re-ranked to 
show how much the obtained pharmacophore is satisfied 
(Fig. 5d).

Most of the current deep-learning type docking meth-
ods adopt the pharmacogram type (Ragoza et al. 2017) 
or GOLD type pose descriptors (Pereira et al. 2016) to 
scoring the docking poses.
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Prediction of ligand‑binding sites 
of receptors based on the interaction table

Because the ligand-binding sites of enzymes and recep-
tors are at a concave and hydrophobic, the sequences are 
conserved and the ligand-binding propensity of amino-
acid residues at the ligand-binding sites shows clear trends 
mostly. An aromatic large residue is likely to bind to the 
ligand, although small residues are not: The trend of 
ligand-binding propensity is Trp > Phe > Tyr > His > Arg 
> … > Gly (Soga et al. 2007). Most of the ligand-binding 
site (pocket) prediction methods show high prediction 
accuracy by using these steric features and the amino-acid 
sequence information.

The conservation of amino-acid sequences and the 3D 
receptor–ligand complex structures in PDB suggest that the 
pocket shapes are classified into a limited number of shapes 
(so-called “pocketome”) (Kufareva et al. 2012). The PoS-
SuM database summarized pairs of the receptor’s pockets 
and their ligands (Ito et al. 2012).

Receptor–ligand docking should find the ligand-binding 
sites of the target receptor, to which native-ligand-like mole-
cules binds. As mentioned in section “Docking screening for 
choosing target-selective molecules based on the interaction 
table,” a wide variety of molecules can bind to receptors, 
regardless of binding energy. The MolSite method replaces 
the various receptors in Fig. 4a by the various sites of the tar-
get receptor described in Fig. 4b. Then, the Molsite method 
performs receptor–ligand docking of a set of small com-
pounds including small drug molecules to the various sites 

of the receptor surface and predicts the site that exhibits the 
strongest docking scores (Fukunishi and Nakamura 2011).

Ensemble receptor–ligand docking

Structural dynamics are essential to realize the functions 
of enzymes and receptors. Namely, the ligand-binding sites 
change the structures during the ligand association and dis-
sociation. These dynamics include the population shift, 
induced fit, local folding (coupled folding and binding), and 
so on. The definition of ΔG (Eq. 12) suggests that the dock-
ing results obtained from multiple receptor structures are 
closer to the reality than that from a single receptor structure.

Ensemble docking is a procedure where one ligand 
molecule binds to an ensemble of multiple receptor 
conformers to improve the accuracies of docking pose 
and binding activity prediction. Figure  4c  shows the 
interaction matrix for the ensemble-docking screening. 
The ensemble of receptor structures can be obtained from 
various MD simulations such as the conventional MD 
simulation of receptor, generalized ensemble simulation, 
co-solvent MD simulations, and experiments (X-ray 
crystallography, liquid NMR, cryo-EM etc.).

The ensemble docking was considered when Kuntz’s 
group developed the first docking program DOCK (Kuntz 
et al. 1982; Meng et al. 1992; Ferrari et al. 2004). The early 
ensemble docking replaced the grid potential from a single 
receptor structure by an average over multiple grid poten-
tials of receptor structures, and then the docking using the 

Fig. 5   Schematic representation 
of the pharmacogram method 
and the grid-type descriptor 
of docking pose. Although the 
grids are presented three-dimen-
sionally originally, this figure is 
presented two-dimensionally

1435Biophysical Reviews (2022) 14:1423–1447



1 3

averaged grid potential was performed. This method did 
not increase the docking calculation cost. Currently, the 
ensemble-docking score is computed from the Boltzmann-
weighted or simple average, and each docking score is 
obtained from the grid potential of each receptor structure 
of the ensemble (Knegtel et al. 1997).

A problem of ensemble docking is how to select the most 
suitable receptor structures from many structures in the 
ensemble since the in silico screening of millions or billion 
compounds are time consuming (Mohammadi et al. 2022). 
However, it is likely that a small number of receptor–ligand 
complex structures with strong binding energies contribute 
to a major part of the ΔG . The key point is a careful struc-
tural clustering of receptor conformers to decrease the num-
ber of candidate structures when some experimental active 
ligand molecules are available: When such active molecules 
are available, machine learning methods (i.e., random for-
est, naïve Bayesian model, deep learning) can make a rule 
for selection.

Molsite is also useful for the ensemble docking (Fukunishi 
et al. 2010). The Molsite method predicts receptor’s surface 
sites that are likely to bind to ligand-like and drug-like 
molecules. Then, the predicted receptor sites are replaced by 
the receptor conformers in the ensemble. Suitable conformers 
are elected from conformers with high docking scores.

Remained problems: cryptic site

Each cell expresses several thousands of genes and many 
proteins produced by those genes are crowded in the cell. 
These proteins may interact randomly and conflict mutually 
(crowding effect). In this situation, exposed hydrophobic 
surfaces of proteins may cause non-selective protein–protein 
bindings. To avoid such bindings, the surfaces of the proteins 
are almost hydrophilic. Recently, binding sites that are exposed 
only when binding to a ligand or that appear transiently in an 
apo form have been investigated (Cimermancic et al. 2016; 
Beglov et al. 2018; Vajda et al. 2018). Such binding sites 
are called “cryptic sites” and may be one of mechanics of 
forming functional protein–protein complex structures like 
transcription factor complexes (Bekker et al. 2021b; Iida et al. 
2020).

The conventional pocket prediction methods were not so 
useful to find the cryptic sites with using an apo form of 
a receptor. On the other hands, since the cryptic sites are 
functional, the amino-acid sequences around cryptic sites are 
conserved, and MD simulations show that the cryptic sites 
are transiently appear in 100–1000 ns at a room temperature 
(Frembgen-Kesner and Elcock 2006; Guo et al. 2016).

Iida et al. found that the ligand-binding propensity of 
amino-acid at the cryptic site is different from that of the 
conventional ligand-binding site. Namely, Tyr and Phe are 

the most popular in the cryptic site, although Trp is the most 
popular in the conventional ligand-binding site (Iida et al. 
2020). With analyzing PDB statistically and using informa-
tion from MD simulations, they proposed a “cryptic-site 
index” that provides the propensity of each amino-acid to 
be in the cryptic site. The cryptic site index showed that the 
aromatic residues (Tye > Phe > His) except Trp tend to be in 
the cryptic sites. In many cases, several 100 ns MD simula-
tions at the room temperature are enough to find the cryptic 
sites at positions predicted by the cryptic-site index values. 
Some previous works showed that the chance of opening 
the cryptic sites increases with increasing the vdW interac-
tion between the solvent water molecules and receptor atoms 
(SWISH method) (Oleinikovas et al. 2016). The combina-
tion of co-solvent MD, the cryptic site index, and ensemble 
docking may make the drug screening effective when the 
ligand-binding site is the cryptic site.

Enhanced sampling methods and molecular 
binding

Energy basins distribute in the conformational space and 
energy barriers hinder the inter-basin conformational transi-
tions. As mentioned, when ensemble docking does not work 
because of the large conformational deformations/fluctua-
tions of biomolecules during the complex formation, a pow-
erful sampling method is required. One way is to use an MD-
specialized computer such as ANTON (Shaw et al. 2008; 
Shaw et al. 2014) or MDGRAPE (Ohmura et al. 2014), MD 
Engine (Toyoda et al. 1999), or Express5800/MD server 
(Ohtaki et al. 2008). The other is to use an enhanced sam-
pling (generalized ensemble) algorithm. In this review, we 
explain the latter because anyone can use a general-purpose 
computer.

To increase the sampling efficiency by algorithm, a gener-
alized ensemble method such as a multicanonical method or 
a replica exchange method was proposed (Higo et al. 2012). 
The multicanonical algorithm was proposed first to study 
a physical system, a spin system, with using a MC simula-
tion (Berg and Neuhaus 1992), applied to conformational 
motions of a biological system (Hansmann & Okamoto 
1993; Kidera 1995), and incorporated in MD (Hansmann 
et al. 1996; Nakajima et al. 1997; Bartels and Karplus 1998). 
Similarly, the replica-exchange algorithm was developed to 
study a spin system using MC (Hukushima and Nemoto 
1996) and applied to a biological system with using MD 
(Sugita and Okamoto 1999). Around the same time, sev-
eral sampling methods, which have some similarity with 
the multicanonical or replica exchange methods, have been 
developed (Torrie and Valleau 1977; Paine and Scheraga 
1985; Swendsen and Wang 1986; Mezei 1987; Lee 1993; 
Fukunishi et al. 1996; Iba et al. 1998; Wang and Landau 
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2001; Darve and Pohorille 2001; Laio and Parrinello 2002; 
Fukunishi et al. 2002; Hamelberg et al. 2004; Deng and 
Roux 2009; Moritsugu et al. 2010; Itoh and Okumura 2013; 
Peter and Shea 2014; Dasgupta et al. 2016; Kasahara et al. 
2018; Ekimoto and Ikeguchi 2018; Higo et al. 2020b).

The enhanced sampling has a high efficiency to overcome 
energy barriers and importantly the method can assign a 
statistical weight equilibrated at a physiological tempera-
ture to any snapshot. Therefore, the resultant ensemble is 
equivalent to an equilibrated ensemble (canonical ensem-
ble). By clustering the snapshots, one can identify basins in 
the conformational space, which means that Eq. 7 is com-
putable. Suppose that the conformational space consists of 
three basins b1 , b2 , and b3 . Then, the free-energy ratio of Fb1

 
and Fb2

 is expressed as:

where wbj

i
 and nj were defined in Eq. 7. The normalization 

factor, which was omitted in Eq. 1, is cancelled out in Eq. 20.
Suppose that basin b3 was sampled insufficiently (or not 

sampled at all). Even so, the ratio Fb1

Fb2

 is computable correctly 

if b1 and b2 are sampled sufficiently. However, 
Fb3

Fbj

 ( j = 1, 2 ) 

is computed inaccurately because of the insufficient data of 
b3 . Importantly, one may not notice this inaccuracy even 
after the simulation has finished. We note that such insuffi-
ciency occurs usually in minor basins fortunately. However, 
if the basin is a major one, main results from the sampling 
become misleading.

In enhanced sampling, a single or multiple reaction coor-
dinates are introduced, which can be energy, temperature, 
Hamiltonian, other structural parameters (such as inter-
molecular distance or radius of gyration), or a virtual quan-
tity for instance. In brief, the sampling is enhanced along 
the reaction coordinates by adding a bias potential along the 
reaction-coordinate axes or by controlling transition prob-
ability between different reaction-coordinate positions. The 
variation of the reaction coordinate(s) can be either continu-
ous or discrete.

Application of the enhanced sampling to molecular 
binding is increasing (Sinko et al. 2013). Two-dimensional 
(temperature and Hamiltonian) replica exchange sampling 
was combined to the Rosetta docking (Zhang et al. 2015). 
The replica-exchange method was applied to poses obtained 
from Rosetta to detect stable complex conformations (poses) 
(Wang et al. 2017). To develop a drug for SARS-CoV-2, 
the in silico screening followed by MD simulation was 
applied to many existing drugs, and then metadynamics was 
applied to remaining poses to select better drug candidates 
(Kumawat et al. 2021; Namsani et al. 2021). Binding poses 
from ensemble docking were assessed by metadynamics to 

(20)
Fb1

Fb2

=

∑n1
i
w
b1
i

∑n2
i
w
b2
i

,

screen out false positives (Dandekar et al. 2021). However, 
it is still difficult to apply the enhanced sampling to many 
systems because this method requires a long computation 
time. Even so, enhanced sampling is useful to obtain details 
of the molecular binding process. Amyloid aggregation 
process was investigated by a replica-permutation method 
(Itoh and Okumura 2021). Metadynamics was applied to a 
protein–ligand binding phenomenon that accompanies an 
induced-fit conformational change (Zhao et al. 2021).

Nakamura and his coworkers introduced a generalized 
ensemble method, a multi-dimensional virtual-system cou-
pled molecular dynamics (mD-VcMD) (Hayami et al. 2019), 
and then the Genetic Algorithm (GA) was incorporated to 
mD-VcMD, which was named “GA-mD-VcMD” (Higo 
et al. 2020b). In this method, the entire multidimensional 
reaction-coordinate space is divided into many small pieces 
(zones). The conformation (phase point) moves freely only 
in a zone for a while, and occasionally the phase point transi-
tions to another zone using an inter-zone transition probabil-
ity, which is defined by a user. This method was applied to 
some biological systems to elucidate ligand-receptor binding 
mechanisms and produce free-energy landscapes (Higo et al. 
2019, 2020a, 2021; Hayami et al. 2021).

Here we introduce a study of GA-mD-VcMD applied to 
a middle-sized flexible drug, bosentan, binding to a GPCR 
molecule, human endothelin receptor type B (hETB) (Higo 
et al. 2022). Figure 6a illustrates the initial conformation of 
the simulation, where bosentan is far from hETB. The hRTB 
has a long N-terminal tail fluctuating largely in solution, 
and the root of the tail is located near the entrance of the 
gate of the binding pocket. The binding site is at the bottom 
of the pocket. Figure 6b demonstrates the resultant spatial 
density, �MCb(r) , of the bosentan’s centroid at position r . The 
density was normalized so that �CMb(r) at the highest density 
position is 1.0. Apparently, the highest-density spot (region 
with �CMb ≥ 0.5 ; red-colored contours) corresponded to the 
bosentan’s position in the native complex (crystal structure) 
(Shihoya et al. 2017). The density was still high in the bind-
ing pocket ( �CMb ≥ 0.1 ). Although the density decreased 
with the ligand being apart from the binding pocket, this 
figure indicates that hETB and membrane affected bosentan 
even in a region far from hETB ( �CMb ≥ 0.0004 ). Subse-
quent analyses showed that this long-range effect is caused 
by contacts of bosentan to the N-terminal tail of hETB.

The binding mechanism of this system is summarized 
as follows. First, bosentan and the N-terminal tail of hETB 
are fluctuating in solution (Fig. 7a). Then, the tip of the 
N-terminal tail of hETB captures bosemtan via nonspe-
cific attractive interactions (Fig. 7b), which is called “fly 
casting” (Shoemaker et al. 2000; Sugase et al. 2007; Arai 
2018). Next, bosentan slides occasionally from the tip to 
the root of the N-terminal tail (ligand–sliding) (Fig. 7c). 
During this sliding, bosentan passes the gate of the binding 
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pocket, which accompanies rapid reduction of the molecu-
lar orientational variety of bosentan. This molecular ori-
entational reduction, called a “orientational selection,” is 
categorized to the population selection (Bosshard 2001; 
James and Tawfik 2003; Yamane et al. 2010), and con-
sequently molecular orientations suitable for moving in 
the binding pocket toward the binding site are selected. 
Furthermore, this gate passing corresponds to overcoming 
a free-energy barrier in a free-energy landscape. When 
bosentan has reached the bottom of the pocket, attractive 
inter-molecular contacts are formed (formation of native 
contacts), which is the most thermodynamically stable 

complex (Fig. 7d). Details for this mechanism is reported 
in the paper (Higo et al. 2022).

Although the enhanced sampling (generalized ensemble) 
methods can assign a statistical weight to snapshots as men-
tioned above, the sampling requires a long simulation to 
obtain data that guarantee statistics accurate enough. One 
can perform multiple short runs instead of the long simula-
tion, where the runs are distributed widely in the conforma-
tional space (Higo et al. 2009; Ikebe et al. 2011). However, 
the number of runs should be large when the system is com-
plicated. For instance, the bosentan–GPCR simulation men-
tioned above, we performed 2000 runs. Therefore, it is still 

Fig. 6   a Initial conformation of 
simulation consisting of hETB, 
bosentan, membrane (choles-
terol and POPC lipid mol-
ecules), and solvent (water mol-
ecules and ions). All molecules 
are flexible. b Spatial density of 
bosentan’s centroid �CMb(r) at 
position r . Iso-density surface 
is presented by five differently 
colored contours (see inset). 
Green-colored stick model and 
black sphere are, respectively, 
bosentan and the bosentan’s 
centroid position in the native 
complex experimentally deter-
mined (PDB ID: 5xpr)

Fig. 7   Bosentan-hETB bind-
ing process follows panels as 
(a) → (b) → (c) → (d) . Arrow 
assigned to bosentan indicates 
its molecular orientation. Gate 
of the binding pocket is shown 
by gray dotted line. Ligand 
binding site is at the bottom 
of the binding pocket. Native 
attractive contacts are shown by 
pairs of open and filled small 
spheres in panel (d)
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difficult to perform the enhanced sampling for many compu-
tational researchers. We, however, believe that the applica-
bility of the enhanced sampling methods increases because 
the computer power is increasing rapidly and steadily.

Binding free energy along a pathway: local 
sampling

As explained, the enhanced sampling method explores the 
conformational space widely with searching free-energy 
basins (binding poses). We refer to this approach as “global 
sampling” in this paper. The global sampling searches major 
basins to understand the binding process. Practically, on the 
other hand, the free-energy differences among the basins and 
the heights of free-energy barriers are not always estimated 
accurately when the computed system is large and compli-
cated and when the simulation length is short. We suppose 
that the meshed area of Fig. 8a as well as the whole area of 
Fig. 8b are regions to be sampled by the global sampling.

If PMF is calculated along a pathway (line) in the real 
space, the volume to be sampled decreases drastically com-
paring with that sampled by the global sampling. We refer 
to this approach as a “line sampling,” which is an extreme 
case of local sampling. Of course, the line sampling can-
not discover basins out of the pathway. However, when the 
two conformations are set from the native complex and an 
unbound conformation, this method is useful to estimate the 
binding free energy.

Figure 8a presents schematically three pathways p1 , p2 , 
and p3 , each of which connects the most stable ligand posi-
tion m1 (the native-complex position) and a position m5 in 

the unbound state. Figure 8b is a free-energy (PMF) land-
scape presented in the reaction-coordinate space. Remem-
ber that PMF is a quantity assigned to a position q (Eq. 6): 
PMF = PMF(q) . Then, the change of PMF from m1 to m5 is 
defined as ΔG = PMF

(

qm5

)

− PMF
(

qm1

)

 , where qm5
 and qm1

 
are respectively the positions of m1 and m5 in Fig. 8b in the 
reaction-coordinate space. In theory, ΔG is independent of 
the pathway. We, however, note that ΔG does not equivalent 
to the binding free-energy (free-energy difference between 
the native complex state and the full unfolded state). The 
free energy of the native-complex state is contributed by 
many conformations in the native-complex basin around m1 
(Eq. 7). Similarly, the free energy of the unbound state is 
contributed by many conformations in the unbound state. 
Furthermore, the binding free energy is measured in a solu-
tion that contains many identical receptors and identical 
ligands. Therefore, some corrections should be applied to 
ΔG . Wo do not explain the corrections in this paper. See a 
paper (Fukunishi 2009) for instance.

In fact, the free-energy profile was computed by a ther-
modynamic integration (Kirkwood 1935; Gelman and Meng 
1998), a thermodynamic perturbation method (Zwanzig 
1954; Beveridge and DiCapua 1989; Merz and Kollman 
1989) or a weighted histogram analysis method (WHAM) 
(Kumar et al. 1992; Bartels 2000).

Practically, pathway setting is crucial to keep the accu-
racy of PMF in the line sampling. Problem of line sam-
pling is that an appropriate pathway is unknown a priori. 
The pathway p1 in Fig. 8a is simply set by a straight line 
between m1 and m5 in the real space. The corresponding 
pathway p1 in the reaction-coordinate space is not nec-
essarily straight, although it is straight in Fig.  8b. We 

Fig. 8   a Binding/dissociating pathways in real space. Although the 
space is three-dimensional, it is presented two-dimensionally. Red-
colored “ × ” labeled by mi ( i = 1,… , 5 ) is as follows: m1 is the most 
stable position of ligand (native-complex position), m2 , m3 and m4 are 
semi-stable positions, and m5 is a conformation in the unbound state. 
Ligands at m1 and m5 are shown as “bound ligand” and “unbound 
ligand,” respectively. Three ligand binding/dissociating pathways ( p1 , 

p2 and p3 ) are indicated by broken lines, which connect m1 and m5 . 
Meshed area is region to be sampled by global sampling. Labels bA 
and bB indicates positions of energy barriers along p1 and p2 , respec-
tively. b Free-energy landscape in reaction-coordinate space. Blue to 
red contour lines correspond to low to high PMF values. Meaning of 
pi , bA , bB , “ × ” and mi are the same as those in panel a 
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prepared Fig. 8 so that a high energy barrier bA exists in p1 . 
Therefore, when the phase point is near bA , a very strong 
force acts on the system, which causes a large numeri-
cal error in the resultant PMF. If the pathway is shifted 
slightly to a direction toward which the force decreases, 
then the numerical error decreases. By repeating this 
pathway resetting, the pathway may reach the pathway p2 
finally, because the barrier bB in p2 corresponds to a saddle 
point of PMF along p2 (Fig. 8b). Therefore, the pathway 
resetting will not provide the pathway p3 , which is the best 
pathway, along which no remarkable barriers exist.

Nakamura and his coworkers proposed a method to escape 
high energy barriers in setting the pathway (Fukunishi 
et  al. 2003). This sampling method consists of iterative 
simulations. An iteration (say iteration M ) starts from the 
last conformation of iteration M − 1 , and the sampling 
is limited around the initial conformation by applying a 
restraint potential around the initial conformation: Sampling 
is localized around the initial conformation (effective range 
for the restraint potential is given by user). Furthermore, a 
repulsive potential is added at the vicinity of conformations 
sampled during the iteration. Besides, the repulsive potential 
is usually a Gaussian centered at the sampled conformations. 
With proceeding the iteration, the repulsive potential is 
accumulated in a low potential-energy region, and this 
region is gradually eliminated from sampling. This means 
that the simulation trajectory is not trapped in the low 
potential-energy region. On the other hand, very instable 
(high potential energy) regions (barrier bA for instance) are 
also eliminated from sampling because of its high potential 
energy. When the next iteration (iteration M + 1 ) is initiated, 
the repulsive potentials accumulated in iterations 1 to M 
are used in iteration M + 1 from the beginning. Thus, the 
conformation does not return to a stable region, which was 
sampled in iterations 1 to M . The first iteration usually starts 
from a stable conformation (the native complex structure) 
and sampling continues till the phase point reaches an 
unbound conformation. By repeating the iterations and 
connecting the generated trajectories by the WHAM (Kumar 
et al. 1992; Bartels 2000), one can obtained a line in the 3D 
space, which connect the bound conformation to the unbound 
conformation. This method, named a “filling potential” 
method, is a procedure to escape conformational trapping 
and detour around high energy regions.

Although the filling-potential method produces a binding 
pathway along which rapid energy changes do not occur, 
the pathway looks like a random-work trajectory involving 
winding or loop-like curves. This may cause an unnecessar-
ily computation. Then, Nakamura and his coworkers pro-
posed a method to smoothen the random-like pathway by 
connecting the initial and final conformations by a linear 
combination of Legendre polynomials: Smooth-reaction 
path generation (SRPG) method (Fukunishi et al. 2009).

The idea of the filling potential is categorized in a Taboo 
search (Fred 1986). Around the same time, similar sam-
pling methods to the filling potential method were proposed: 
Local elevation (Huber et al. 1994), conformational flood-
ing (Grubmüller 1995), Wang–Landau sampling (Wang and 
Landau 2001), metadynamics (Laio and Parrinello 2002), 
and accelerated molecular dynamics (Hamelberg et  al. 
2004).

As explained above, the line sampling cannot discover 
out-of-pathway basins. Contrarily, the global sampling 
requires a high computational cost although it can discover 
various basins. To compensate the drawbacks of the two 
approaches, Nakamura and his coworkers proposed a local 
sampling method (Bekker et al. 2017). First, a cylinder is set 
in the system so that it covers both the ligand-binding site 
of receptor and an unbound position of ligand in solvent. 
Then, a multicanonical MD simulation is performed within 
the cylinder to obtain a free-energy landscape. Next, a low 
free-energy pathway is set by connecting the native-complex 
state and an unbound conformation in the resultant land-
scape. Note that the cylinder can be replaced by a body of 
an arbitral shape to define an appropriate pathway.

This method saves a computational time because the sam-
pling is restricted in a volume enough to define the appro-
priate pathway. This method was applied to some systems: 
A ligand cyclin-dependent kinase 2 binding to a amino-
pyrazole inhibitor, yielding a binding free-energy error of 
0.5 kcal/mol to the experimental value (Bekker et al. 2017), 
a medium-sized ligand 3MR binding to β-secretase 1 (error 
of 0.4 kcal/mol) (Bekker et al. 2019), and a peptide (about 
10 residues long) from the amyloid-β peptide binding to an 
antibody solanezumab (error of 1.3 kcal / mol) (Bekker et al. 
2020b). This procedure was also used to predict appropri-
ate binding poses of some systems: Inhibitor binding to the 
N-terminal domain of heat-shock protein 90 (Bekker et al. 
2020a), the Asian-dominant allele human leukocyte anti-
gen binding to an HIV-1 Nef protein epitope (Bekker and 
Kamiya 2021), antagonist alprenolol binding to a GPCR, 
β2-adrenergic receptor (Bekker et  al. 2021a), and two 
medium-sized inhibitors (ABT-737 and WEHI-539) bind-
ing to the cryptic site of Bcl-xL (Bekker et al. 2021b).

Conclusions

We reviewed various molecular binding methods from in 
silico screening to generalized ensemble methods. The in 
silico screening is a high throughput procedure because this 
method can provide binding poses of many ligand-receptor 
systems in a short time interval. This method is effective 
when the conformational change upon molecular binding 
is negligible in both the ligand and receptor. When a large 
conformational deformation occurs in receptor, ensemble 
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docking becomes useful because the ensemble may involve 
the deformed conformation of the receptor. When both the 
ligand and receptor are deformed considerably upon binding, 
a generalized ensemble method (global sampling) is useful. 
This approach, however, requires a considerable computa-
tional time. The line sampling or local sampling are methods 
to reduce the computation cost and to focus on a restricted 
region essential for the molecular binding process.

Nakamura has been contributing to the life science data-
bases (PDB, eF-site, HitPredict etc.) and biomolecular sim-
ulation algorithms for understanding the life systems. His 
works follow the “Algorithms + Data Structures = Programs” 
and the DIKW pyramid (Data, Information, Knowledge, and 
Wisdom hierarchy) (Wirth 1976; Rowley 2007). Many peo-
ple know about the Wirth’s book and the DIKW Pyramid, 
but few spend their lives exploring it.
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