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Abstract
The coagulation cascade represents a sophisticated and highly choreographed series of molecular events taking place in the 
blood with important clinical implications. One key player in coagulation is fibrinogen, a highly abundant soluble blood pro-
tein that is processed by thrombin proteases at wound sites, triggering self-assembly of an insoluble protein hydrogel known 
as a fibrin clot. By forming the key protein component of blood clots, fibrin acts as a structural biomaterial with biophysical 
properties well suited to its role inhibiting fluid flow and maintaining hemostasis. Based on its clinical importance, fibrin 
is being investigated as a potentially valuable molecular target in the development of coagulation therapies. In this topical 
review, we summarize our current understanding of the coagulation cascade from a molecular, structural and biophysical 
perspective. We highlight single-molecule studies on proteins involved in blood coagulation and report on the current state of 
the art in directed evolution and molecular engineering of fibrin-targeted proteins and polymers for modulating coagulation. 
This biophysical overview will help acclimatize newcomers to the field and catalyze interdisciplinary work in biomolecular 
engineering toward the development of new therapies targeting fibrin and the coagulation system.
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Introduction

The multicomponent coagulation system is regulated by an 
interplay of prothrombotic and antithrombotic signals in 
the blood. These signals must maintain a delicate balance 
in order to achieve appropriate hemostasis, being capable 
of rapidly stopping excessive bleeding or rebleeding events 
following trauma, while simultaneously avoiding unwanted, 
disseminated or prolonged thrombus formation. In light 
of recent clinical and molecular physiological studies on 
proteins involved in the coagulation cascade, the classical 
model of the intrinsic and extrinsic coagulation pathways is 
being evaluated more closely. Dysregulation of coagulation 
in COVID-19 patients (Helms et al. 2020; Connors and Levy 
2020; Klok et al. 2020) as well as vaccine recipients (Schultz 
et al. 2021) furthermore demonstrates the importance of 

coagulation physiology in the treatment and prevention of 
transmissible diseases. Given the importance of coagulation 
and its role in a broad range of pathological conditions, the 
development of engineered biological therapeutics target-
ing fibrin and the coagulation system is of high interest in 
molecular biosciences.

This review provides a current perspective on engi-
neered coagulation therapies with a particular emphasis on 
molecular, structural and biophysical properties of fibrin. 
We begin by summarizing our current understanding of the 
cellular and molecular events taking place during primary 
and secondary hemostasis. We highlight single-molecule 
biophysical studies on proteins involved in coagulation, 
with an emphasis on structure and conformation-based 
mechanisms. We summarize what is known about fibrin 
clots from a soft mechanics perspective and describe how 
molecular features of fibrin give rise to emergent mechanical 
properties at the network level that are well adapted to the 
physiological role of fibrin in stopping fluid flow. After this 
description of native coagulation, we provide an overview 
of currently available procoagulant hemostatic therapies, 
sealants and adhesives for topical and systemic clinical use 
in humans. Finally, we review reports on the development 
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of fibrin-targeted antibodies, peptides and polymers. With 
this review, we provide a broad overview at the intersec-
tion between molecular engineering and biophysical analy-
sis methods applied to fibrin and other proteins involved in 
coagulation.

Molecular physiology of coagulation 
and hemostasis

Primary hemostasis

Primary hemostasis refers to the initial steps of the coagula-
tion cascade encompassing platelet adhesion, activation and 
formation of a platelet plug at a wound site. Upon injury to 
the vessel wall, blood platelets (i.e., thrombocytes) adhere 
to exposed sub-endothelial matrix proteins, including von 
Willebrand factor (VWF), collagen and fibronectin (Lent-
ing et al. 2012). Following platelet adhesion, activation and 
aggregation, a platelet plug forms at the injury site (Rana 
et al. 2019). The arrest of platelets is known to be dependent 
on shear stress. In veins and larger arteries where the shear 
rate is low or intermediate (< 1000  s−1), αIIbβ3 integrins that 
engage fibrinogen adsorbed onto the surface of thrombi are 
involved in platelet aggregation. In the arterial microcircu-
lation or regions of arterial stenosis, shear rates occur in a 
range of 1,000–10,000  s−1, and platelet-platelet interactions 

become progressively more VWF-dependent with both 
GpIbα (a mechanosensing platelet surface receptor) and inte-
grin αIIbβ3 playing important roles. Under pathological shear 
(> 10,000  s−1) at sites of acute vessel narrowing or sites of 
atherothrombosis, platelet aggregation is exclusively medi-
ated by VWF-GpIbα adhesive bonds (Jackson et al. 2009). 
Here, we will focus on the biomechanical properties of VWF 
that facilitate its interaction with platelets under high shear 
stress.

Von Willebrand factor

Von Willebrand factor (VWF) is a multidomain protein 
made up of domains arranged in the order D1-D2-D’-D3-
A1-A2-A3-D4-B1-B2-B3-C1-C6-CK (Fig. 1a), each with a 
specific structure and function (Zhou et al. 2012). Pro-VWF 
monomers associate in the endoplasmic reticulum, forming 
“tail-to-tail” dimers through C-terminal disulfide bonds on 
the CK domains, forming a quaternary structure referred 
to as a dimeric bouquet (Marti et al. 1987; Katsumi et al. 
2000). Dimers then multimerize by forming “head-to-head” 
disulfide bonds between the N-terminal D3 domains in the 
Golgi (Fig. 1b) (Marti et al. 1987; Dong et al. 1994). VWF 
next undergoes post-translational modification through gly-
cosylation and sulfation in the endoplasmic reticulum, Golgi 
and post-Golgi organelles. Additional modification occurs 

Fig. 1   Schematic of von 
Willebrand Factor. (a) Domain 
annotation of a mature VWF 
monomer. (b) Schematic 
architecture of a VWF multimer 
linked through head-to-head and 
tail-to-tail disulfide bonds
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in the Golgi consisting of D1-D2 propeptide cleavage by 
furin (Sadler 1998; Springer 2014; Lancellotti et al. 2019).

A large portion (~ 95%) of VWF molecules are directly 
secreted into the bloodstream as low molecular weight 
multimers (Sporn et al. 1986). The remainder are stored in 
Weibel–Palade bodies of endothelial cells under the form 
of ultra large VWF (ULVWF), reaching up to 20,000 kDa, 
for stimulated secretion. Typically, tubule structures are 
adopted as shown by electron microscopy (Valentijn et al. 
2011; Springer 2014). Other proteins involved in hemostasis 
and inflammation are also stored in the WPB, namely factor 
VIII (FVIII) that directly interacts with VWF’s D’ domain 
(Shiltagh et al. 2014). Release of the ULVWF concatemers 
and other proteins from WPB into the bloodstream happens 
by activation of secretagogues such as thrombin, histamines 
or  Ca2+ (Valentijn et al. 2011). VWF secretion involves 
disassembly of the large helical structure adopted within 
the WPB and dimeric bouquet unzipping (Valentijn et al. 
2011; Springer 2014). ULVWF concatemers secreted from 
endothelial cells are anchored to the cell surface and form 
extremely long threads that are rapidly cut in the presence of 
plasma from healthy donors (Dong et al. 2002), facilitating 
VWF release away from the membrane. Hence, circulating 
VWF adopts a variety of multimerization degrees, ranging 

from a 500 kDa population (corresponding to single dimers) 
to 10,000 kDa population (corresponding to 20 dimers) 
(Stockschlaeder et al. 2014).

The primary function of VWF in the plasma is per-
formed by the three adjacent A domains (Fig. 2a). A1 
is responsible for binding to the platelet receptor GPIbα 
and collagen, A3 acts as the immobilization site for VWF 
on the collagen matrix in an ancillary manner, and A2 
is responsible for size regulation of the concatemers. It 
is the main sensing domain that responds to shear stress 
(Springer 2014).

The other domains also play biochemical roles and 
do not only fill structural purposes. For instance, the C4 
domain contains an RGD sequence that interacts with 
platelet receptor integrins αIIbβ3 and αVβ3 (Fig.  1a). 
VWF functions therefore as a link between subendothe-
lial collagen and platelets. As for D’, as mentioned ear-
lier, it binds the procoagulant FVIII at an early stage, in 
the WPB. When VWF is secreted in the bloodstream, it 
acts as a carrier molecule and protects FVIII, increasing 
its plasma half-life and localizing it at the injury sites 
(Sadler 1998).

VWF is critically important both physiologically and 
pathologically, and dysfunction of VWF is responsible for 

Fig. 2  Diagram of crystal structures of proteins involved in coagula-
tion. (a) Crystal structure of monomeric von Willebrand Factor D’D3 
domain (PDB: 6N29, green), A1 domain (PDB: 1AUQ, cyan), A2 
domain (PDB: 3GXB, violet) and A3 domain (PDB: 1AO3, wheat); 
(b) Crystal structure of human fibrinogen (PDB: 3GHG, α chain in 
cyan, β chain in wheat and γ chain in violet). (c) Crystal structure 

of full-length type II human plasminogen (PDB: 4DUR) (NTP in 
orange, K1 in red, K2 in blue, K3 in wheat, K4 in yellow, K5 in cyan, 
and serine protease domain in violet); (d) Crystal structure of recom-
binant human factor XIII a2 dimer (PDB: 1FIE) after cleavage by 
thrombin (α helix in cyan and β sheet in violet)
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several hemorrhagic disorders, including von Willebrand 
disease (VWD), a common hereditary disorder resulting 
from functional deficiencies in VWF. VWD presents in 
a range from mild to severe hemorrhagic episodes that 
can in the worst cases be fatal (Rana et al. 2019) with 
an overall incidence of approximately 1% in the general 
population.

Role of mechanical forces in VWF activation

VWF is directly regulated by hydrodynamic forces, and its 
activation involves force-induced conformational changes 
at the level of single domains and quaternary protein 
structure and conformation. Down-regulation of VWF-
mediated responses is furthermore based on mechano-
enzymatic cleavage at a cryptic binding site that becomes 

accessible upon A2 domain unfolding (Löf et al. 2018; 
Lancellotti et al. 2019). Schneider and colleagues showed 
that under low shear forces, VWF has a globular compact 
native conformation (Schneider et al. 2007) where the 
binding sites in the A1 and A3 domains are buried, steri-
cally shielded by other domains and inaccessible for plate-
let binding (Fig. 3a). When subjected to hydrodynamic 
forces, VWF multimers undergo an abrupt transition to an 
extended conformation, which switches on binding activ-
ity to collagen (Fig. 3b). In the vasculature, VWF under-
goes end-over-end tumbling as well as periodic elongation 
and compaction (Springer 2014; Rana et al. 2019). These 
stretching transitions can occur at sites of vascular injury 
following vasoconstriction or in stenosed vessels due to 
a reduction in vessel diameter and an increase in shear 
stress (Fig. 3b). These force-based signaling mechanisms 

Fig. 3  Schematic of shear-induced activation of multimeric VWF 
and subsequent interactions with exposed collagen, ADAMTS-13 
and platelet GpIbα receptor. (a) Under low shear stress VWF adopts 
a compact conformation with the three A domains buried and inac-
cessible for binding. (b) In case of injury, shear stress increases due 

to vascular contraction, leading to mechanical unfolding of A2 and 
exposure of A1 and A3, revealing cryptic binding sites on VWF that 
interact with collagen, GPIbα and ADAMTS-13. ADAMTS-13 is 
conformationally activated upon interaction with VWF and cuts the 
unfolded A2 domain
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rely on alterations to the normal blood flow profile in the 
vessel which increase elongational hydrodynamic forces 
acting on the VWF multimer (Rana et al. 2019; Kania 
et al. 2021).

Hydrodynamic forces increase nonlinearly with a mol-
ecule’s end-to-end contour length. Since mechanical unfold-
ing transitions release contour length (i.e., biopolymer 
length increase upon unfolding), this can initiate a cascade 
of increasing force that triggers additional unfolding transi-
tions in a positive feedback manner. Therefore, the larger the 
VWF multimers are, the more hemostatically active they are. 
Large VWF multimers (made of ~ 200 monomers) unfold at 
lower forces and bind collagen to recruit platelet more eas-
ily than smaller ones made of ~ 40 monomers (Zheng 2013; 
Stockschlaeder et al. 2014).

A2 domain and ADAMTS‑13

The A2 domain is the primary mechanosensitive domain 
of VWF. Specific structural properties such as lack of 
long-range disulfide linkages and  Ca2+ binding make A2 
distinct from A1 and A3, and hydrodynamic shear acts 
mostly on the A2 domain (Jakobi et al. 2011; Lancellotti 
et al. 2019). Single-molecule optical tweezers and atomic 
force microscope experiments demonstrated that A2 can be 
unfolded by elongational forces (Zhang et al. 2009; Müller 
et al. 2016b; Löf et al. 2019). A2 unfolding produces a 
length increment of roughly 45 nm (at 20 pN), which is 
approximately the same length of a VWF monomer. This 
unique sensitivity of A2 to shear stress is also an important 
aspect of ULVWF size regulation and therefore, hemostatic 
activity. A2 can be recognized and cut by the protease 
ADAMTS-13 (a disintegrin and metalloproteinase with 
thrombospondin motifs). The target site is located between 
Tyr1605 and Met1606 and is buried in the central β-sheet of 
the folded domain. Exposure of this cleaving site is achieved 
upon A2 domain unfolding. Since A2 can spontaneously 
refold when force is relaxed, the action of ADAMTS-13 
is regulated by mechanical force and its influence on the 
folding state of A2 (Zhang et al. 2009). The requisite tensile 
force to unfold A2 corresponds to that experienced in the 
middle of a 200-mer VWF multimer in arterioles and 
capillaries or when VWF is bound to platelets, or collagen 
(Crawley et al. 2011). VWF has been shown to be more 
susceptible to cleavage by ADAMTS-13 when bound to 
platelets (Shim et al. 2008). Several studies carried out in 
recent years using truncation mutants and other approaches 
have shed light on the interaction and activation mechanisms 
between ADAMTS-13 and VWF that relies on structural 
transitions of A2 and of ADAMTS-13 from a quiescent, 
closed form to an active open form (Fig. 3b) (Muia et al. 
2014; South et al. 2016, 2017; South and Lane 2018).

VWF A1 and platelet GpIbα interaction

In the last decade, researchers have studied the mechanical 
regulation of the interaction between VWF A1 and platelet 
receptor GpIbα by shear stress (Löf et al. 2018). At low 
shear stress, VWF concatemers adopt a loosely collapsed, 
globular conformation that prevents the A1-GpIbα inter-
action. Both short-range interactions between A1 and its 
flanking domains as well as long range interactions between 
various regions of VWF multimers are involved (Deng et al. 
2017, 2018; Löf et al. 2018). Under elevated shear, VWF 
extends and mechanical stretching and unfolding of A1 
exposes cryptic sites, enabling platelet binding (Fig. 3b) 
(Savage et al. 1996). The A1-GpIbα interaction was reported 
as having flex bond behavior, resulting from force-induced 
structural changes within A1 and/or GpIbα. A recent study 
on full length VWF described this force-dependent two-step 
activation mechanism (Fu et al. 2017). At low shear stress, 
VWF concatemers extend, leading to exposure of platelet 
binding sites contained within A1 domains. At this stage, 
A1 domains adopt a flexed, low affinity state toward GpIbα. 
Only at tension values > 20 pN, does A1 conformationally 
transition to a high affinity state, increasing the GpIbα–A1 
bond lifetime. This unusual feature is believed to be respon-
sible for platelet behaviors such as rolling, slowing, and 
stopping on the vessel wall (Figs. 4 and 5).

Secondary hemostasis

Secondary hemostasis refers to the series of molecu-
lar interactions, serine protease cleavage and zymogen 
activation events that lead ultimately to the activation of 
thrombin protease, generation of a thrombin burst, and the 
formation of an insoluble fibrin clot. In the classical pic-
ture of the external pathway, tissue factor (TF) is released 
from endothelial cells upon membrane damage and binds 
to FVII to form an activated TF-FVIIa complex during an 
initiation phase (Hoffman 2003; Grover and Mackman 
2018). This signal is then propagated by activating FIX 
(alternate pathway), FX, and FXI during the amplifica-
tion phase. FXa then forms a prothrombinase complex 
with FVa which together activate thrombin (i.e., activated 
factor II (FIIa)). In addition to cleaving fibrinopeptides 
A and B (FpA and FpB) from fibrinogen (see below), 
thrombin also activates several of the upstream molecules 
in the cascade including FV, FVIII, the downstream trans-
glutaminase FXIII as well as platelets, contributing to 
the feedback and amplification mechanism (Hoffman and 
Monroe 2001). An intrinsic pathway can also generate 
thrombin through signaling involving kallikrein protease, 
FXII and FXI; however, it is now thought to play a com-
paratively minor role in hemostasis and be more signifi-
cant in inflammation and immunity (Long et al. 2016; 
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Grover and Mackman 2019). The main role of thrombin is 
the activation of soluble fibrinogen into insoluble fibrin. 
Fibrin polymerization at the wound site then allows the 
formation of a fibrin network which exhibits viscoelastic 

properties essential for its function (Fig. 6). In the next 
sections, we outline what is known about fibrin assem-
bly and structure, and how these structural features are 
related to its functional role in resisting fluid flow.

Fig. 4   Model of force-induced activation of the A1-GpIbα interac-
tion to a high affinity state. Mechanical stress applied between the 
N- and C-termini of A1 as well as from the platelet-bound GpIbα dis-

rupts hydrogen bonds on residues external to the A1 disulfide bond, 
deforming the protein structure and transitioning the A1-GpIbα inter-
action from a low-affinity to a high-affinity conformation

Fig. 5   Mechanosensing mecha-
nism of GpIb-IX. In the absence 
of shear forces, the stalk 
region is believed to be folded. 
Through VWF A1-mediated 
binding and exposure to 
mechanical tension, this region 
unfolds resulting in conforma-
tional changes to GpIb-IX that 
are propagated across the mem-
brane to initiate signaling
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Fibrin(ogen) structure and assembly

Fibrinogen is a ~ 340–420 kDa dimeric glycoprotein pre-
cursor to fibrin synthesized in the liver (Fig. 2b). Each sub-
unit of the fibrinogen dimer contains three chains known 
as the Aα, Bβ, and γ chains(Chung et al. 1990). Within the 
fibrin(ogen) molecule, the six chains are held together by 
multiple disulfide bonds and oriented with their N-termini 
toward the central E region(Medved et al. 2009). From 
either side of the central nodule, the three chains extend 
into triple coiled-coil α-helix structures, terminating with 
a series of disulfide bonds that link the three chains at 
the C-ter ends of the coiled-coil connectors. Beyond these 
disulfide linkages, the C-terminal regions of the Bβ and γ 
chains fold independently to form the compact, globular 
β- and γ-nodules (D regions). The C-terminal portion of 
the Aα chain is different, forming a fourth α-helix and 
possessing an intrinsically disordered region which has up 

to now been uncrystallizable (Zhang and Redman 1994; 
Spraggon et al. 1997; Kollman et al. 2009).

Alternative splicing of the fibrinogen chain transcript 
results in the fibrinogen-420 (Fib-420) isoform, so named 
because of its higher molecular weight of 420 kDa (Fu et al. 
1992; Fu and Grieninger 1994; Mosesson et al. 2004). Fib-
420 makes up approximately one percent of circulating 
fibrinogen in adults; however, in neonate and infant popula-
tions it is upregulated 3–fourfold to concentrations of ~ 1 µM 
(Grieninger et  al. 1997). Fib-420 differs from standard 
340 kDa fibrinogen by replacement of each Aα chain by an 
AE chain splicing variant, containing an additional globular 
C-terminal extension domain (EC) encoded by splicing of 
the transcript to include exon VI.

The physiological function of Fib-420, more specifi-
cally the EC-domain, in infant and neonatal coagulation is 
unknown. The gene encoding exon VI found in the Fib-420 
isoform is highly conserved among vertebrates(Fu et al. 

Fig. 6  Overview of fibrin networks and modulation of fibrin prop-
erties. (a) Fibrinogen monomers are cleaved by thrombin protease 
revealing knobs ‘A’ and ‘B’, which recognize holes ‘a’ and ‘b’, giving 

rise to a fibrin network. (b, c) Hydrodynamic shear forces and throm-
bin concentration modulate the structure of fibrin networks. (d) Plate-
let contraction stiffens clots
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1995). The EC-domain is homologous with the C-terminal 
regions of the B and γ chains found in the fibrin D region, 
but lacks a functional fibrin knob polymerization pocket. 
Remarkably, infant Fib-420 is found to assemble in a sym-
metric way, where the fibrinogen quaternary protein pref-
erentially incorporates two copies of the same alternatively 
spliced AE chains. Few to no heterogeneously assembled 
fibrinogen molecules are found to contain one infantile AE 
chain and one conventional Aα chain(Fu et al. 1998; Apple-
gate et al. 2000). The quality control system at work that 
regulates homogeneous assembly of Fib-420 into symmetric 
dimers is unknown. The EC-domain contains a binding site 
for 2 integrins involved in leukocyte adhesion and inflam-
mation (Lishko et al. 2001) and has been reported to show 
chaperone-like activity (Tang et al. 2009). Fib-420 appears 
to have a slower rate of fibrin polymerization and lower tur-
bidity than Fib-340 (Mosesson et al. 2004; Nellenbach et al. 
2020). Electron microscopy and imaging has shown more 
highly branched and thinner fibers for Fib-420.

Another fibrinogen splicing variant is the gamma prime 
(γ’) variant (Henschen and Edman 1972; Mosesson et al. 
1972; Mosher and Blout 1973; Chung and Davie 1984). 
The cDNAs of γ and γ’ chains share a common sequence 
encoding 1–407 amino acid residues; however, the γ chain 
contains an additional four amino acids (residues 408–411) 
at its C terminus, whereas the γ' chain contains 20 amino 
acids at its C terminus (residues 408–427). Therefore, the 
gene for the γ chain can be spliced to produce mRNAs that 
encode polypeptides with different C terminal sequences. 
Both of these polypeptides are integrated into fibrinogen 
present in plasma. These sequence differences between the 
γ chain and γ' chain explain the size and charge heterogene-
ity of fibrinogen.

The extreme C-terminal region of Aα chain, called αC 
region, is grouped into two sub-domains: the αC-connector 
and the αC-domain. The αC-connector consists of 10, 
13-amino acid repeats and is thought to be unstructured. 
Circular dichroism (CD) and nuclear magnetic resonance 
(NMR) studies found that the lone disulfide bond in the 
αC-domain stabilizes a double β hairpin (Veklich et al. 
1993; Tsurupa et al. 2009). In fibrinogen, the αC-domains 
are thought to interact with each other and with FpB in the 
E region (Litvinov et al. 2007). FpB (15 amino acids long) 
along with FpA (16 amino acids long) also located in the E 
region are cleaved by thrombin to form fibrin (Furlan et al. 
1976).

Fibrinopeptide cleavage by thrombin exposes peptide 
sequences known as knobs ‘A’ and ‘B,’ which noncovalently 
bind the so-called hole regions ‘a’ (located in γ-nodules) 
and ‘b’ (located in β-nodules) (Fig. 6a). Initial fiber self-
assembly is driven predominantly by knob ‘A’ interaction 
with complementary hole ‘a,’ while lateral fiber aggregation 
and later stabilization of formed clots are driven by knob 

‘B’ interaction with complementary hole ‘b’ (Medved and 
Nieuwenhuizen 2003).

The knob/hole interactions between fibrin molecules 
allow the formation of double-stranded protofibrils of ~ 600 
to 800 nm in length (Weisel et al. 1987). These protofibrils 
undergo lateral aggregation facilitated by αC-domains 
interactions both within and between protofibrils, leading 
to fibrin fiber formation and to a three-dimensional hydrogel 
(Weisel and Litvinov 2017). αC-domains interactions and 
the adjacent γ-nodules in protofibrils are further reinforced 
through cross-linking by the plasma transglutaminase Fac-
tor XIIIa (FXIIIa) (Fig. 2b). Prior to FXIIIa crosslinking, 
fibrin assembly is reversible (Chernysh et al. 2012) while 
after crosslinking the clot is irreversibly cross-linked and 
found to be stiffer and more resistant to fibrinolysis (Collet 
et al. 2005).

Viscoelastic properties of fibrin networks

Fibrin is a viscoelastic polymer, sharing mechanical proper-
ties with both elastic solids and viscous liquids. These vis-
coelastic properties are physiologically important because of 
fibrin’s role in performing the mechanical task of stemming 
blood flow (Fig.6). The elastic component contributes to in-
phase mechanical resistance of the network under reversible 
mechanical deformation, while the viscous component con-
tributes to out-of-phase mechanical resistance in proportion 
to the strain (loading) rate (Weisel and Litvinov 2017). The 
stress–strain curve for fibrin shows that stress is directly pro-
portional to strain at low strain values, with constant slope 
until a strain of ~ 80% is reached. At larger strains, the slope 
of the curve then increases dramatically. This nonlinearity, 
referred to as strain hardening or strain stiffening, is an inter-
esting property of select protein-based hydrogels (Weisel 
and Litvinov 2017). Strain-stiffening is thought to originate 
from structural hierarchy at the molecular level. These mod-
els imply that fibrin deformation is accompanied by struc-
tural rearrangements at multiple different length scales.

At the clot scale (mm), stretching a fibrin gel is accom-
panied by dramatic shrinkage due to water expulsion and 
network densification. Fibrin is one of the most extensi-
ble polymers, and under stress blood clots can be severely 
stretched without breaking. For example, it was reported that 
fibrin fibers and plasma clots stabilized with Factor XIIIa 
could be stretched to over three times their relaxed length 
before breaking (Liu et al. 2006; Brown et al. 2009). At 
the fiber scale (µm), fibers align along the strain direction 
(Fig. 6b) (Brown et al. 2009; Litvinov et al. 2012) becom-
ing thinner and bundled (Brown et al. 2009). In response to 
shear stress, fibrin fibers buckle and bend in response to the 
direction of flow (Lindström et al. 2013). The elastic limit 
of a fibrin fiber was tested by stretching with an atomic force 
microscope (AFM) tip. After being stretched to 2.8 times its 
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original length, the crossed-linked fiber recovered without 
permanent damage (Liu et al. 2006). Finally at the molecu-
lar scale (nm), reversible unfolding of the central coiled-
coil connectors (Brown et al. 2009; Hudson et al. 2013) and 
stretching of αC region of fibrin can contribute to work dis-
sipation (Collet et al. 2005; Duval et al. 2014). Work dis-
sipation refers to the mechanical energy that must be input 
in order to unfold and stretch fibrin, and these sacrificial 
structures in fibrin are thought to be essential for fibrin’s 
viscoelastic properties.

Fibrinolysis

To avoid over clotting, fibrin is degraded through a process 
called fibrinolysis mediated by the enzyme plasmin (Pln), 
a multi-domain serine protease (Fig. 2c). Derived from the 
zymogen precursor plasminogen (Plg), Pln is the major 
fibrinolytic protease, circulating in the bloodstream at a 
concentration of ∼2 µM (Collen et al. 1972). Pln is a pro-
miscuous trypsin-like protease that cleaves peptides C-ter-
minal from lysine and arginine residues in many targets. 
Pln activates other proteases and growth factors involved 
in inflammation, cell migration, angiogenesis, and tumor 
growth among others (Weisel and Litvinov 2017).

Native circulating Plg (92 kDa) is a single chain glyco-
protein, cross-linked by 24 disulfide bridges. It contains an 
N-terminal activation peptide (NTP), five homologous tri-
ple loop kringle domains (K1–K5), and a serine protease 
domain (Fig. 2c) (Forsgren et al. 1987; Law et al. 2012). 
K1, K2, K4, and K5 contain a DXD/E motif that bonds 
C-terminal lysine residues, which is likely a primary binding 
mechanism of plasmin(ogen) to fibrin and/or cell surfaces 
(Castellino and Ploplis 2005). Thus, as fibrin is digested, 
newly generated C-terminal lysine residues on the digested 
fragments become exposed, providing more binding sites 
for Plg and creating a positive feedback and amplification 
mechanism that accelerates degradation.

Plg can be converted to Pln by both tissue-type Plg acti-
vator (tPA) as well as by urokinase-type activator (uPA), 
although tPA is thought to be the predominant Plg activa-
tor during fibrinolysis (Hudson 2017). Both tPA and uPA 
are multidomain serine proteases. While uPA binds to a 
cell-surface receptor (urokinase-type plasminogen activa-
tor receptor, (uPAR)), tPA binds directly to fibrin through 
the Kringle domain or through a finger domain (Hudson 
2017). tPA and uPA cleave the Arg561–Val562 bond of Plg, 
producing two-chain active Pln with an N-terminal heavy 
chain (12–65 kDa) and a C-terminal light chain (25 kDa). 
Once activated, Pln can cleave both tPA and uPA, converting 
them from single chains to activated two-chain polypeptides 
(Cesarman-Maus and Hajjar 2005).

Plg and tPA both bind to fibrin, thereby localizing and 
enhancing Pln generation in fibrin substrates. In the absence 

of fibrin, tPA is a weak activator of Plg, but its catalytic 
efficiency is enhanced > 100 fold in the presence of fibrin 
(Cesarman-Maus and Hajjar 2005). The affinity between tPA 
and Plg also increases in the presence of fibrin. Fibrin (but 
not soluble fibrinogen) was found to enhance the activation 
of Plg by tPA (Rijken et al. 1982). One active hypothesis 
is that cleavage of fibrinogen to produce fibrin networks 
causes a structural change that generates new conformational 
epitopes for Plg and tPA binding (Medved and Nieuwenhui-
zen 2003).

The structure and density of fibrin fibers can significantly 
influence the enzymatic digestion rate. Fibrin network struc-
ture is influenced by fibrinogen, thrombin, and ion concen-
trations including  Ca2+ and  Zn2+ (Ryan et al. 1999; Xia 
et al. 2021). High fibrinogen or thrombin concentrations, 
and high ionic strength produce thinner fibers with higher 
density (Ryan et al. 1999), while high  Ca2+ (while keeping 
ionic strength constant by adjusting NaCl concentration) or 
low thrombin concentrations produce clots with thicker fib-
ers and lower density (Fig. 6c). It was reported that thick 
fibers lyse more slowly than thin fibers (Collet et al. 2000; 
Bannish et al. 2014; Bucay et al. 2015) and that low density 
networks of thick fibers lyse more rapidly than high density 
networks composed of thin fibers (Carr and Alving 1995; 
Liu et al. 2010; Machlus et al. 2011). However, there have 
been contradictory reports (Gabriel et al. 1992; Kolev et al. 
1997), with recent modeling studies seeking to reconcile the 
differences by accounting for the number of tPA molecules 
able to initiate lysis (Hudson 2017).

Another parameter that influences fibrinolysis effi-
ciency is mechanical force. Varjù and colleagues showed 
that mechanical stress renders fibrin clots more resistant 
to fibrinolysis (Varjú et al. 2011), an observation with two 
origins. Firstly, activation of Plg by tPA was decreased two- 
to threefold in contact with stretched fibrin fibers as com-
pared to relaxed ones. Secondly, once Pln is formed, it is 
less active in the presence of strained fibrin. Stretched fibers 
were lysed 50% less by tPA/Pln as compared to unstretched 
fibers. In more recent studies, two teams worked on the lysis 
susceptibility of single fibrin fibers (Bucay et al. 2015; Li 
et al. 2017). Using different experimental set ups, both stud-
ies confirmed at the individual fiber scale the same trend 
that was observed by Varjù at the clot scale: that fibrinolytic 
activity is dependent on the degree of strain experienced by 
fibrin fibers, even at high plasmin concentrations.

It was also demonstrated in several studies that retracted 
clots are more resistant to fibrinolysis (Longstaff et al. 2011; 
Whyte et al. 2017). Activated platelets generate contractile 
forces that propagate through the fibrin network (Lam et al. 
2011), leading to clot retraction, shrinkage and expulsion of 
fluid. This process is important for stabilizing clots through 
strain stiffening and for maintaining unobstructed vessels. 
One mechanistic explanation is that fiber alignment due to 
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shear stress or clot retraction by platelets induces a reduc-
tion in pore size and a densification of tPA and Pln binding 
sites, lowering the mass transport rate of fibrinolytic agents 
through the material (Adhikari et al. 2012; Tutwiler et al. 
2018). Clot lysis rates therefore depend on several factors, 
including accessibility of fibers to fibrinolytic enzymes, pore 
sizes, and mechanical strain (Cone et al. 2020). In Fig. 2, we 
have provided protein structural renderings of some of the 
key molecules covered thus far.

Single‑molecule experiments on coagulation 
proteins

Mechanical forces acting on folded domains or ligand–recep-
tor interactions are an integral part of many biological 
processes, and they are especially relevant to consider for 
proteins involved in hemostasis and coagulation. In the 
last twenty years, single-molecule mechanical experiments 
have allowed molecular scale studies on the physiological 
function of these proteins to decipher the mechanisms of 
activity regulation by mechanical force. Some of the rel-
evant molecular mechanisms regulated by mechanical forces 
include protein interaction stabilization (i.e., catch bonds), 
exposure of cryptic binding sites or scissiles bonds, force-
dependent unfolding and refolding events, and protein struc-
tural changes that trigger biochemical signaling cascades 
(Vogel 2006; Puchner and Gaub 2012).

VWF unfolding and ADAMTS‑13 cleavage

The first single-molecule study on force regulated activation 
of VWF was carried out using optical tweezers (OT) on the 
single A2 domain (Zhang et al. 2009). It was already known 
that the cleavage of the A2 domain was activated by shear 
in large VWF concatemers. It was thought that tensile force 
altered the conformation of A2 domains to enable cleavage 
and that the scissile bond was likely buried in the native 
state. Therefore, in this study they tested whether unfolding 
of the A2 domain occurred at physiological forces experi-
enced by VWF in the circulation, and whether mechanical 
unfolding could prime A2 for cleavage by ADAMTS-13. A 
single A2 domain coupled to DNA handles through N-ter 
and C-ter Cys tags was stretched using a bead-based laser 
trap and micropipette. The A2 domain was subjected to 
mechanical unfolding/refolding and force clamp cycles. A2 
was found to unfold at tensile forces of 7–14 pN at loading 
rates of 0.35–350 pN・s−1 and could refold in the absence 
of force with a rate of 0.54 ± 0.05  s−1. They discovered that 
mechanical unfolding of A2 was indeed required for cleav-
age by ADAMTS-13.

Two years later, the high-resolution A2 crystal structure 
helped to confirm the presence of a  Ca2+ binding sites with 

micromolar affinity for this partner (Xu and Springer 2012). 
It consists of a water molecule and five coordinating residues 
located upstream of the scissile strand (Zhou et al. 2011a; 
Jakobi et al. 2011). This metal ion plays a crucial role in 
A2’s sensitivity to ADAMTS-13. In the absence of  Ca2+, 
ADAMTS-13 cleavage is more efficient than in the presence 
of the ion.  Ca2+ binding prevents A2 unfolding and there-
fore, provides protection from proteolysis in the absence of 
shear stress (Zhou et al. 2011a; Jakobi et al. 2011; Xu and 
Springer 2012). Using OT, it was shown that  Ca2+ binding 
does not significantly affect A2 unfolding; however, it has 
a large impact on the domain refolding kinetics, increasing 
several fold the folding rate constant (Jakobi et al. 2011; Xu 
and Springer 2012).

VWF being a multi-domain protein, other studies have 
also been carried out on larger constructs, to place A2 in a 
more physiologically relevant environment. Ying and col-
leagues performed unfolding experiments on VWF multim-
ers purified from human plasma along with a polyprotein 
(A1-A2-A3)3 construct, using OT (Ying et al. 2010). Pro-
teins were immobilized on latex beads functionalized with 
specific antibodies. In the resulting data, extensional jumps 
signifying domain unfolding were observed, and unfolding 
forces and contour length plots showed two or three peaks 
with integer multiples of ~ 21 pN and ~ 63 nm, respectively. 
These integer multiples indicated unfolding of single iden-
tical domains, likely A2, in parallel. Stretching of minimal 
(A1-A2-A3)3 polyproteins also produced comparable distri-
butions, showing that A2 unfolding accounts for the behav-
ior of the VWF multimers.

Until recently, the exact nature of the interactions hold-
ing VWF in the compact conformation was not well under-
stood. In 2016, two AFM studies on VWF dimers linked 
“tail to tail” through CTCK disulfide bridges (correspond-
ing to the smallest repeating subunits of VWF multimers) 
were reported where Müller and colleagues identified strong 
intra-dimer interactions (Müller et al. 2016b, 2016a). These 
studies identified strong inter-monomer interactions involv-
ing the D4 domain and reported a dependence of binding 
strength on divalent ions and pH. Variations in VWF mul-
timer compactness and stability may play a key role during 
VWF processing, multimerization, and storage occurring 
in ER (pH 7.4), Golgi (pH 6.8) and Weibel–Palade bodies 
(pH 5.4). It is also noteworthy that VWF has the highest 
mechanical strength at physiological pH. The mechanosta-
bility decreases at lower pH values, a feature that is physi-
ologically relevant due to the acidification that can occur 
in connection with injury and inflammation, although the 
timescale of acidification remains unclear (De Backer 2003; 
Christou et al. 2005).

Recently, the use of magnetic tweezers (MT) allowed 
researchers to unravel another structural transition occur-
ring at the dimer scale of VWF (Löf et al. 2019). MT is a 

436 Biophysical Reviews (2022) 14:427–461



1 3

useful tool because of the ability to apply extremely low 
forces to molecules in the range of ∼0.01–100 pN, and to 
measure many molecules in parallel (Lipfert et al. 2009). 
This study carried out in the low force regime showed that 
the first step of VWF mechano-activation is unzipping of 
the C stem domains interacting together in the context of 
the dimer (Fig. 1b). Previous AFM imaging and electron 
microscopy studies suggested that the VWF stem consist-
ing of the 6 C domains behaves in a zipper-like fashion; 
however, direct observation of the transitions of the stem 
had not been previously reported (Zhou et al. 2011b; Müller 
et al. 2016b, 2016a). At only ∼1 pN of force, the VWF stem 
region showed reversible zipping/unzipping transitions with 
a contour length increase of ∼50 nm. The stem transitions 
did not behave as a 2-state system, but showed more com-
plex multistate behavior which was consistent with AFM 
observations, showing that the stem frequently populates 
partially open configurations (Müller et al. 2016b, 2016a). 
In these experiments, they also recorded A2 unfolding events 
and intermonomer interaction through D4 domains. They 
found opening of the intermonomer interactions mediated 
by D4 occurred in the same force range as A2 unfolding, 
suggesting both behaviors could help regulate VWF’s hemo-
static activity under shear stress in the bloodstream (Löf 
et al. 2019). This consequential work was also the occasion 
to study the influence of A2  Ca2+ binding in the context 
of the VWF dimer using a more sensitive technique and 
more precise experimental setup. Löf and colleagues found 
that at different constant forces, unfolding rates were 2- to 
4-times higher in EDTA buffer and 2-times slower in  Ca2+ 
containing buffer compared to previous studies using OT on 
isolated A2 domains (Jakobi et al. 2011; Xu and Springer 
2012). Since no signal could be attributed to dissociation of 
A2 with neighboring domains, the authors could not con-
clude a shielding effect of A2 surroundings. Instead, they 
suggested that these substantial differences are coming from 
the use of the Dudko–Hummer–Szabo method to transform 
the rupture force distribution, this method being sensitive to 
the elastic response of the DNA handles that were used for 
the OT studies. Löf and colleagues’ MT experimental design 
involved a more recently developed sortase A and YbbR 
tag immobilization technique (Yang et al. 2020), allowing 
single-molecule stretching without the need for DNA han-
dles. As for the refolding rates, their results were in good 
agreement with OT experiments: they were two- to sixfold 
higher in the presence of  Ca2+ than with EDTA at forces 
between 2 and 5 pN. This value reached a factor of 20 differ-
ence in the absence of applied force, indicating a significant 
stabilizing effect of the metal ion (Löf et al. 2019). Overall, 
 Ca2+ would both decrease the unfolding and increase the 
folding rates of the A2 domain making this cation a major 
contributor of VWF mechanostability and therefore, a major 
regulator of hemostasis.

GpIb‑A1 interaction

Hydrodynamic forces play a role not only in A2 domain 
unfolding and protease cleavage, but also in VWF activa-
tion through exposure of the A1 domain that promotes 
platelet arrest at the injury site. It was recently shown that 
the flanking sequences of the A1 domain (about 30 resi-
dues each) form a so-called discontinuous autoinhibitory 
module (AIM) and play an inhibitory role by masking the 
GpIbα binding site (Deng et al. 2017, 2018). OT experi-
ments helped to determine the mechanical properties of 
this AIM (Arce et al. 2021). A recombinant AIM-A1 pro-
tein with a N-ter biotin and a C-ter SpyTag was fixed to a 
SpyCatcher-biotin DNA handle, held in an OT, and repeat-
edly extended and relaxed. The authors demonstrated that 
the AIM behaves as a single structural unit, unfolding 
between 10 and 20 pN most frequently in a single step, 
as opposed to separate unfolding steps for the N-ter AIM 
and the C-ter AIM.

The interaction mechanism between the platelet recep-
tor GpIbα and A1 domain was also shown to be force-
resistant using single-molecule techniques (Kim et al. 
2010). Kim and colleagues developed a new single-mol-
ecule assay for repeated measurements of receptor-ligand 
binding/unbinding called ReaLiSM. The C-ter of the A1 
domain (a construct that did not include the AIM) was 
fused to the N-ter of GpIbα with a 43-residue linker. DNA 
handles were attached to cysteine residues at the C-ter of 
GpIbα and N-ter of A1. The construct was held through 
the handles in a micropipette and bead-based laser trap, 
allowing them to subject the A1-GpIbα construct to cycles 
of mechanical force. At low loading rates, bond ruptures 
generated a narrow unimodal force distribution, while at 
higher pulling rates, the distribution of dissociation forces 
was bimodal. They developed a kinetic model to explain 
the two bond dissociation pathways: the first dissociation 
pathway predominated below 8 pN, whereas above 12 pN 
the second pathway predominated. This second state has 
a ∼20-fold longer lifetime due to a lower off-rate that can 
potentially resist hydrodynamic forces that could disag-
gregate the platelet plug. They found that tensile force sta-
bilizes the high-affinity state and strengthens the interac-
tion under shear stress. They concluded that the A1-GpIbα 
bond is a flex-bond, with a low stability state transitioning 
to the second high stability state upon mechanical loading 
(Fig. 4). The two bond states were observed not only for 
unbinding, but also for rebinding, suggesting the exist-
ence of two different conformational states of A1 that are 
present prior to binding to GpIbα (Kim et al. 2010, 2015). 
This hypothesis was already formulated by previous dena-
turation and structural studies of A1 domain and mutants 
(Auton et al. 2007; Tischer et al. 2014) and was recently 
confirmed by Fu and colleagues (Fu et al. 2017).
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Platelet mechano‑sensing

Platelets sense mechanical shear forces and transduce them 
into biochemical signals to promote clot growth and stabi-
lization. GpIbα together with GpIbβ and GpIX forms the 
GpIb-IX trans-membrane protein complex (Fig. 5). In frame 
with the leucine-rich repeat domain (corresponding to the 
ligand binding domain, LBD) of the N-ter, GpIbα comprises 
a glycosylated macroglycopeptide region, a stalk region, a 
pair of cysteine residues form disulfide bridges to GpIbβ, a 
transmembrane helix, and a short C-terminal cytoplasmic 
domain (Qiu et al. 2015).

Zhang and colleagues showed in a single-molecule study 
that the stalk region can unfold under tension and act as a 
mechanosensing domain (Fig. 5) (Zhang et al. 2015). In the 
OT experiment, recombinant VWF-A1 was attached through 
a DNA handle to a trapped bead. Biotinylated GpIb-IX was 
held on a streptavidin bead fixed with a micropipette. In the 
pulling curves, an unfolding event could be observed before 
the rupture of the complex, with forces ranging from 5 to 
20 pN. Worm-like chain (WLC) fitting of these data sug-
gested the unfolding of a domain of ∼63 residues that was 
referred to as the Mechano-Sensitive Domain (MSD). Using 
antibodies targeting different regions of the GpIb-IX recep-
tor allowed them to localize the MSD in the stalk region of 
GpIbα chain (Ibα-S). The MSD unfolded at forces similar 
to those required to induce flex-bond formation between 
VWF-A1 and the N-ter domain of GpIbα. Another recent 
OT study was carried out by Zhang and colleagues using 
a monoclonal antibody recognizing the macroglycopeptide 
region of GpIbα (Zhang et al. 2019). This allowed them to 
record pulling and relaxation cycles and led to the first direct 
detection of refolding of the MSD in GpIb-IX.

Fibrin(ogen)

Several single-molecule studies have characterized the 
molecular transitions that fibrin(ogen) undergoes when 
exposed to mechanical stress. These results provide single-
molecule evidence and explanations for the extraordinary 
viscoelastic properties of fibrin networks. It was shown very 
early that structural changes during fibrin deformation under 
mechanical stress include unfolding of the central coiled-coil 
connectors. The first AFM pulling experiments on fibrino-
gen (Brown et al. 2007) reported covalent cross-linking of 
fibrinogen molecules with FXIIIa and direct application 
of this solution of oligomerized fibrinogen onto a mica 
surface. When unfolded under force with an atomic force 
microscope cantilever tip, fibrinogen oligomers generated 
periodic sawtooth patterns. Shortly afterward, AFM and 
steered molecular dynamic (SMD) simulations were per-
formed on single fibrinogen molecules and fibrin protofibrils 
(Lim et al. 2008). The molecules were directly adsorbed to 

a coverslip surface, leading to extremely low success rate 
for picking up single molecules (approximately 1% over all 
trials). Pulling single fibrinogen molecules produced force 
extension curves characterized by three phases, a behavior 
already characterized previously for coiled-coil helical struc-
tures such as myosin coiled-coil (Root et al. 2006), leucine 
zipper coiled-coils (Bornschlögl and Rief 2006), desmin 
intermediate filaments (Kiss et al. 2006), and even DNA 
(Rief et al. 1999). These three unfolding phases were attrib-
uted to specific structural features undergoing mechanical 
denaturation and unfolding with interpretations supported 
by molecular dynamics simulations.

It was later found using Fourier transform infrared (FTIR) 
and Raman spectroscopy that the extension of the oligom-
ers is accompanied by the transition of the triple α-helix to 
β-sheet (Litvinov et al. 2012; Fleissner et al. 2016). This 
structural transition was further analyzed using all-atom 
molecular dynamics simulations of fibrin(ogen) unfold-
ing (Zhmurov et al. 2012). A more recent AFM study and 
pulling simulations of single fibrinogen molecules and oli-
gomers helped refine the unfolding mechanism (Zhmurov 
et al. 2011). They showed that forced unfolding is a col-
lective process involving mechanically coupled elements. 
They proposed that the α-helical coiled-coil connectors in 
fibrin(ogen) act as mechanical capacitors where mechani-
cal energy can be reversibly stored through unfolding and 
refolding transitions. This AFM study also confirmed that 
the extension of fibrin(ogen) is largely determined by 
unfolding transitions of the C-ter γ-nodules (Averett et al. 
2008, 2009).

An essential aspect of protofibril and fiber structures was 
not taken into account in these early studies, which is the 
role of αC-domain. FXIIIa ligation of Aα chains contrib-
utes substantially to fibrin clot stiffness and elasticity (Collet 
et al. 2005; Duval et al. 2014). At strains below 100%, αC 
regions play a predominant role in the extension and recoil 
of the fibers due to the long-unstructured region upstream of 
αC β-hairpin domain. This region would act as an entropic 
spring allowing fibrin fibers under low stress to recoil within 
milliseconds (Hudson et al. 2013).

Fibrin knob/hole interactions also play a role in the 
mechanical response of fibrin clots to mechanical forces, 
in particular the knob ‘A’ interaction with complementary 
hole ‘a’ which was reported to be a force-activated catch 
bond. Litvinov and colleagues reported a single fibrinogen- 
or fragment D-coated bead that was trapped and repeatedly 
brought into contact with a fibrin or fragment E-coated ped-
estal using OT (Litvinov et al. 2018). The strength of the 
A:a knob/hole interaction was found to increase with tensile 
force up to f ≈ 30–35 pN and then, decrease at f > 35 pN. 
They identified a movable flap corresponding to residues 
γ295 to γ305 forming a short α-helix, which regulates the 
opening/closing of the binding interface in response to force. 
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Under low force, the movable flap interacts with residues 
in the γ-nodule, leaving the binding interface open while 
under tension, it extends and stabilizes the high affinity 
bound state.

Biophysical properties of fibrin networks

The biophysical performance of fibrin networks is strongly 
influenced by factors such as clotting factor concentrations, 
ionic strength, platelet contraction, and fluid flow condi-
tions, among several others (Jansen et al. 2013; Kurniawan 
et al. 2014; Badiei et al. 2015; Mihalko and Brown 2020). 
Deviation from standard physiological concentrations of 
clotting factors is associated with a number of pathologies 
in which fibrin networks are formed with substandard bio-
physical and mechanical properties, resulting in insufficient 
hemostatic ability. In this section, we outline how natural 
clotting factors and fibrin-binding synthetic molecules can 
influence fibrin network properties, including mechanical 
strength, fiber thickness, density, degree of branching, poros-
ity, and resistance to degradation by plasmin. We discuss the 
implications of these effects on the ability of blood clots to 
achieve adequate hemostasis.

Endogenous mediators of fibrin network structure

Thrombin

Thrombin is a multi-functional serine protease that is acti-
vated at the downstream end of the clotting cascade and 
initiates fibrin gelation by cleaving the N-termini of Aɑ and 
Bβ polypeptides in the central E region of fibrinogen (Weisel 
and Litvinov 2017). The concentration of thrombin is known 
to strongly influence clot structure. Clots formed at low 
thrombin concentrations have thicker, less dense fibers and 
are prone to rapid fibrinolysis, while those formed at high 
thrombin concentrations have thinner, denser fibers that are 
more resistant to proteolytic degradation (Wolberg 2007). 
In vitro assays to test the effects of thrombin concentration 
on clot structure typically involve adding a fixed amount of 
activated thrombin to a fibrinogen solution. Although this 
approach is straightforward, it may not reflect the dynamic 
nature of thrombin generation in vivo, where free thrombin 
concentrations can range from 1–500 nM during coagulation 
depending on environmental conditions (Wolberg 2007). 
Environmental conditions can also modulate the activity of 
thrombin to change clot morphology. For example,  Ca2+ is 
required for the assembly of procoagulant complexes and 
for the generation of thrombin, and clotting onset times 
are shorter in the presence of  Ca2+, resulting in clots with 
thicker fibers than clots formed in the presence of thrombin 
alone (Carr et al. 1986).

The mechanism by which varying thrombin concentration 
and/or activation rates drive changes in fibrin network struc-
tures is related to the varying rate of fibrinopeptide release, 
which in turn influences the rate of protofibril formation and 
lateral aggregation (Wolberg and Campbell 2008). Higher 
thrombin concentrations are associated with fast fibrin 
monomer activation and protofibril extension, which may 
account for the reduced lateral aggregation of protofibrils 
that was observed by Domingues et al. Using a number of 
non-destructive techniques including turbidimetry and AFM, 
the researchers found that increasing thrombin concentra-
tions led to a significant decrease in the average number 
of fibrin protofibrils per fiber, but only a minor reduction 
in the size of those fibers, indicating that compaction of 
protofibrils, was significantly reduced under these condi-
tions (Domingues et al. 2016). This result was in contrast to 
previous results gathered from SEM studies, which showed 
a significant reduction in fiber diameter in the presence of 
higher thrombin concentrations (Wolberg 2007). This dis-
crepancy was attributed to the differences in solvent content 
within fibers formed at low vs. high thrombin concentra-
tions; fibers formed at low thrombin concentrations had 
higher protein density and less intrafibrillar solvent content, 
and so contracted less during the dehydration step of SEM 
sample preparation, causing them to appear thicker in SEM 
images (Domingues et al. 2016).

Dynamic stiffening through contractile stress 
generated by cells

Platelets and fibroblasts bind fibrin networks and alter their 
structural and mechanical properties by exerting stresses 
through cytoskeletal contraction. Platelet plugs are sup-
ported by the fibrin network that forms during secondary 
hemostasis. Fibroblasts are recruited into a clot from the 
surrounding ECM during the proliferation phase of wound 
healing, and work to promote the formation of new ECM at 
the site of injury through the release of collagen, fibronectin, 
and proteoglycans (Chester and Brown 2017). Fibrin-bound 
platelets decrease clot sizes by increasing fiber density which 
increases the elastic modulus as much as tenfold through 
actomyosin-based contraction of their cytoskeletal network 
(Lam et al. 2011; Wufsus et al. 2015). In a landmark study, 
Lam et al. used atomic-force microscopy (AFM) to investi-
gate the contractile forces generated by individual platelets 
bound to fibrinogen-coated cantilevers and surfaces. They 
found that each individual platelet can exert a contractile 
force of up to 29 nN, and that platelets adhered to fibrinogen 
at forces up to 70 nN. Based on these results, they proposed 
a mechanism of platelet-mediated contraction of fibrin, 
whereby platelets exert higher contractile forces on regions 
of higher fiber density, such that contraction of the clot as a 
whole is more uniform and the overall elasticity of the clot 
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is increased (Fig. 6) (Lam et al. 2011). A subsequent work 
by Kim et al. elucidated the structural mechanism of platelet 
contraction at the single cell level. This mechanism involved 
the extension and retraction of the filopodia of platelets that 
were bound to fibrin fibers, the end result of which was the 
shortening and bending of those fibers and the introduction 
of kinks in the fiber network. This so-called hand-over-hand 
action of filopodia pulls on fibers transversely to their lon-
gitudinal axis, leading to an increase in fiber density (Kim 
et al. 2017).

Fibroblasts migrate into the clot during the proliferation 
stage of wound healing following the release of fibroblast 
growth factor (FGF) from macrophages, and their key func-
tions are then regulated through the secretion of TGF-β 
from macrophages, platelets, and lymphocytes (Chester and 
Brown 2017). Through their binding to fibrin, fibroblasts 
like platelets can exert contractile forces on fibrin networks 
in a manner that is theorized to relate to the nonlinear elas-
ticity of those networks. Winer et al. proposed this theory 
after conducting AFM and rheological experiments on fibro-
blasts embedded within fibrin gels. They found that embed-
ded fibroblasts reached maximal spreading even in fibrin 
networks with low elastic moduli, in contrast to their behav-
ior in low stiffness linearly elastic gels, where they maintain 
a more rounded morphology (Winer et al. 2009). Jansen 
et al. investigated this idea further using a similar model of 
fibroblasts embedded in fibrin gels and found that fibroblasts 
exert myosin-II-driven contractile forces on fibrin networks 
while spreading, which led to local alignment of fibrin fib-
ers around cells. They proposed that these forces push the 
surrounding fibrin gel into the nonlinear viscoelastic region 
and thereby drive strain-stiffening of these materials (Jansen 
et al. 2013; Litvinov and Weisel 2017).

Factor XIII

Factor XIII is a clotting-associated transglutaminase that 
exists in vivo as a tetrameric zymogen prior to conversion 
into an active dimer (FXIIIa) through the action of thrombin. 
FXIIIa catalyzes an acyl transfer reaction between lysine and 
glutamine on the Aɑ and γ chains of fibrin. The resulting 
covalent cross-links increase fibrin’s mechanical stability 
and resistance to proteolysis (Bagoly et al. 2012). Inherited 
deficiencies in FXIIIa functionality, though rare, invariably 
lead to severe and persistent bleeding disorders (Muszbek 
and Katona 2016).

The improvements in clot properties that are observed 
in the presence of FXIIIa are believed to originate from 
structural changes to fibrin networks. Hethershaw et al. con-
ducted turbidity measurements on fibrin clots formed with 
or without FXIII to elucidate what effect the presence of 
FXIII had on fibrin fiber thickness and density (Hethershaw 
et al. 2014). Turbidity assays are established for investigating 

structural properties of fibrin, and networks formed from 
thinner, more densely packed fibers tend to be less opti-
cally dense than those formed from larger diameter, loosely 
packed fibers (Sproul et al. 2018). The researchers found 
that clots formed in the presence of FXIII had significantly 
lower turbidity than those formed without FXIII. Follow-up 
SEM studies confirmed that fiber diameter was significantly 
smaller (by approx. 10 nm) and density significantly higher 
(by approx. 0.6 fibers/µm) for clots formed with FXIII.

Kurniawan and colleagues also applied turbidity assays 
to study fibrin gelation with and without inhibition of FXIII. 
They found that there was little effect of FXIII inhibition 
on the initial phase of clot formation (approx. 10 min under 
their conditions) during which fibrin protofibrils are aggre-
gating laterally, but that FXIII inhibition did lead to the 
elimination of the secondary phase of gelation (lasting sev-
eral hours), during which compaction of the fibrin network 
occurs (Kurniawan et al. 2014). Subsequent rheological 
studies showed that FXIII significantly increased the lin-
ear elastic modulus of clots, but that it did not affect the 
stiffness of these clots at high strains. Given these results, 
the researchers proposed a multiscale structural model of 
fibrin networks, whereby FXIIIa cross-links and compacts 
protofibrils within a fiber. Thermal fluctuations are believed 
to dominate the elastic response of the clots at low-strains, 
while at higher strains the stretching of individual protofi-
brils dominates the elastic response. Based on this model of 
fibrin elasticity, FXIIIa-mediated compaction is critical at 
low strains but plays less of a role at high strains.

Hydrodynamic shear stress

In vivo blood clots are exposed to hydrodynamic shear from 
physiological flow of blood through veins (10–100  s−1) and 
arteries (500–1500  s−1), and during extravasation of blood 
from vessels following injury (Campbell et al. 2010). The 
physical stimulation of fluid flow is known to have a strong 
influence on the structure and mechanical properties of 
fibrin networks. Campbell et al. investigated this by study-
ing the formation of clots from platelet-free plasma (PFP) 
in the presence of immortalized human dermal fibroblasts 
 (NHF1-hTert) under static and flow conditions. They found 
that clots formed under hydrodynamic flow had significantly 
larger, and more densely-packed fibers than clots formed 
under static conditions (Campbell et al. 2010). This can be 
explained by the fact that, for a given blood concentration of 
fibrin, a greater amount of fibrin will be deposited on a form-
ing clot under flow than under static conditions due to con-
stant replenishment of the reactant. Clots formed under con-
ditions of flow therefore have higher protein content (Weisel 
and Litvinov 2017). Additionally, SEM studies showed that 
fibrin networks formed under flow had significantly higher 
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degrees of anisotropy as compared to those formed under 
static conditions, which were largely isotropic.

Badiei and colleagues conducted controlled stress parallel 
superposition (CSPS) rheological experiments on incipient 
fibrin clots, whereby an oscillatory shear stress was super-
imposed on top of a steady state shear stress in order to 
study the effects of unidirectional flow/shear stress on the 
formation, fractal microstructure, and stiffness of fibrin. 
They found that clots formed under conditions of unidirec-
tional shear stress exhibited greater network compaction, 
which was correlated with an increase in their shear stor-
age moduli (G’) (Badiei et al. 2015). Based on this series 
of studies, it is clear that the physical stimulation of fluid 
flow can induce structural and functional changes in fibrin 
networks that influence the mechanical properties and per-
formance of clots.

Synthetic mediators of fibrin network structure

Synthetic platelets

A key function of platelets in coagulation is to bind and 
compact fibrin fibers through actin-myosin-mediated con-
traction of the cytoskeleton. Synthetic platelets or platelet 
substitutes seeking to recapitulate this function should meet 
two important criteria: (A) they should bind fibrin with 
high specificity while not binding to fibrinogen; and (B) 
they should promote compaction of fibrin fibers through 
the application of contractile forces or through aggregation. 
Brown et al. achieved such a system consisting of ultrasoft 
microgel particles coated with fibrin-binding nanobodies, 
which they called platelet-like particles (PLPs). Using a pre-
cipitation polymerization method, they synthesized ultra-low 
density crosslinked poly(N-isopropylacrylamide-co-acrylic 
acid) microgels and decorated them with variable domain-
like recognition motifs (single-domain VHH antibodies or 
nanobodies) that had been selected in vitro by phage dis-
play biopanning to bind fibrin with high specificity (Brown 
et al. 2014; Welsch et al. 2018). Not only were PLPs able 
to promote the formation of fibrin clots in a manner akin 
to platelet-rich plasma (PRP), but upon binding to fibrin 
the ultra-soft particles would collapse, causing each PLP 
to exert a contractile force of approximately 6.5 ± 5.5 pN. 
While this is significantly lower than the contractile forces 
individual platelets were found to be able to exert (from 1.5 
to 79 nN) (Lam et al. 2011), PLPs were still able to stiffen 
clots significantly and compact their local fibrin network. 
Ultimately, this resulted in clots that were more resistant to 
degradation, promoted wound healing, and reduced bleed-
ing times in murine models of vascular injury (Brown et al. 
2014; Nandi et al. 2019).

Other examples of synthetic platelet mimics include 
PLGA-PLL nanoparticles with surface exposed RGD motifs 

that are able to bind endogenous platelets, and lipid vesi-
cle decorated with a number of platelet-associated peptides 
such as vWF and various integrins (Bertram et al. 2009; 
Dyer et al. 2018). Sekhon et al. recently described plate-
let-mimicking procoagulant nanoparticles (PPNs) which 
comprised liposomes displaying phosphatidylserines; this 
anionic phospholipid is exposed on platelets endogenously 
following their activation, and their presence on PPNs led 
to increased thrombin generation and improved hemostasis 
in animals treated with these particles (Sekhon et al. 2022).

Fibrin‑binding polymers

Synthetic polymers have also been designed with the abil-
ity to bind fibrin both through engagement of fibrin’s natu-
ral knob/hole polymerization mechanism, or orthogonally 
through the use of cyclic peptides with high binding affinity 
for fibrin. There have been several reports of polyethylene 
glycol (PEG) bearing knobs ‘A’ and ‘B’ peptide mimics that 
affect the structure of fibrin clots. A summary of how knobs 
‘A’ and ‘B’ mimics and other fibrin network modulators 
affect fibrin-based biomaterials can be found in a review by 
Brown and Barker (Brown and Barker 2014). Stabenfeldt 
et al. introduced PEG functionalized with knob ‘B’ mimics 
to polymerizing fibrin gels. Engagement of hole ‘b’ by knob 
‘B’-PEG led to the formation of fibrin networks with greater 
porosity, but also, surprisingly, increased mechanical stiff-
ness and greater resistance to fibrinolysis (Stabenfeldt et al. 
2012). Through this method, the researchers were able to 
improve the mechanical robustness of clots without sacri-
ficing mass transport through the network, as evidenced by 
the ability of the modified clots to support angiogenesis at a 
level equivalent to control clots.

Another example of a synthetic fibrin-binding polymer 
was reported by Pun and co-workers. Their design consisted 
of a (hydroxyethyl)methacrylate (HEMA)- N-hydroxy-
succinimide methacrylate (NHSMA) polymer backbone 
p(HEMA-co-NHSMA), which they functionalized with a 
cyclic peptide isolated by phage display with high affinity 
and specificity for fibrin (Chan et al. 2015a). When the func-
tionalized polymer (polySTAT) was introduced into forming 
fibrin gels, it produced a number of structural changes in 
fibrin networks, including reduced porosity, fiber densifica-
tion and increased mechanical stiffness as compared to clots 
formed in the presence of non-fibrin-binding polymers or 
FXIII. Follow-up neutron scattering studies indicated that 
polySTAT enhanced clot properties likely by increasing the 
radius of fibers through recruitment of additional fibrin to 
those fibers (Lamm et al. 2017). Ultimately, these improved 
clot characteristics translated to reduce bleeding times and 
improve survivability in animal models of hemorrhage.

Our research group has also recently described new for-
mulations of polymers that modulate the properties of fibrin 
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clots. In this case, our designs are based on a particular class 
of intrinsically disordered proteins called elastin-like poly-
peptides (ELPs). ELPs are repetitive pentapeptide sequences 
derived from the hydrophobic domains of human tropoe-
lastin. ELPs exhibit stimuli-responsive solubility whereby 
they phase separate from aqueous solutions at tempera-
tures above a lower critical solution temperature (LCST). 
The LCST can be tuned by modifying ELP properties such 
as length, concentration, and composition (Varanko et al. 
2020). We recently reported hemostatic ELPs (hELPs) that 
were able to covalently bind fibrin (Urosev et al. 2020). The 
covalent cross-linking was achieved by interspersing con-
textual glutamine- or lysine-containing peptide sequences 
along the length of hELP. These sequences were recognized 
by FXIIIa such that when hELPs were mixed with a gelling 
fibrin clot, they were covalently integrated into fibrin net-
works by activated FXIII. The resulting hybrid hELP/fibrin 
clots exhibited improvements in mechanical strength, resist-
ance to fluid flow, and resistance to plasmin degradation. 
Interestingly, improvements in clot mechanical properties 
were only seen when hELPs were integrated into clots at 
physiological temperature (i.e., above their transition tem-
perature), indicating that phase separation of hELPs was a 
necessary factor in producing the stiffening effect. hELPs 
therefore offer a protein-based alternative to the previously 
described synthetic polymer hemostats, with the potential 
associated advantages of molecular-level control of their 
composition, biocompatibility, and simple bulk production 
and purification procedure that relies on phase separation 
and centrifugation.

Procoagulant materials and therapies 
for clinical use

The development of biomolecular therapeutics along with 
hemostatic biomaterials such as sponges, sealants and foams 
for procoagulant use in humans has a long history. Early 
examples include injectable porcine skin gelatin tested clini-
cally in the 1940s and the development of gelatin sponges in 
1945 (Correll and Wise 1945). In terms of intravenous thera-
peutics for promoting coagulation and maintaining hemo-
stasis, early examples include tranexamic acid developed 
in the 1960s and used until today (Tengborn et al. 2015). 
Table 1 tabulates procoagulant hemostatic agents for human 
clinical use, their mechanism of action, and commonly used 
trade names. This table is broadly split into local/topical 
products and intravenous products. The local/topical mate-
rials list includes several classes of macromolecules used 
for procoagulant effects including carbohydrates, structural 
proteins, peptides, inorganics, and synthetic polymers. The 
intravenous therapeutics section includes small molecule 
drugs along with recombinant and human-derived proteins 

and coagulation factors that have passed clinical trials for 
human use. This table can serve as a general reference list 
for the broad range of clinically available hemostatic agents 
in use today.

Biomolecular strategies for targeting fibrin

The first reports of fibrin binding antibodies for theranostic 
applications focused on localizing thromboses using cross-
species polyclonal anti-fibrinogen antibodies isolated from 
rabbits immunized with dog fibrinogen (Spar et al. 1965). 
Rabbit antisera were used to label fibrin in clots; however, 
the antibodies did not discriminate between fibrin and 
fibrinogen. Two decades later, the development of hybri-
doma technology (Köhler and Milstein 1975) and a deeper 
understanding of the fibrin polymerization and fibrinolysis 
pathways helped in the development of the first monoclonal 
antibodies with high affinity and specificity to fibrin (Fig. 7). 
In the sections that follow, we provide an overview of the 
development of fibrin binders and the engineering strategies 
used for isolation.

Monoclonal antibodies (mAbs)

Several early studies reported engineering mAbs specifi-
cally targeting fibrin. For example, Rylatt and colleagues 
developed the first mAb for the D-dimer antigen. Mice were 
immunized with the fibrin fragment D-dimer, or other prepa-
rations of cross-linked fibrin degradation products (Rylatt 
et al. 1983). Hui et al. synthesized a heptapeptide mimic of 
the amino terminus of the fibrin β chain to serve as a unique 
fibrin antigen based on the rationale that the amino terminus 
is exposed after thrombin cleavage and constitutes a con-
served antigen unique to fibrin and not fibrinogen. Mouse 
immunization and hybridoma cell line development yielded 
the 59D8 mAb, which was found to bind human fibrin in the 
presence of fibrinogen, both in vitro and ex vivo (Hui et al. 
1983). Following this strategy, Kudryk et al. developed the 
T2G1S mAb (Kudryk et al. 1984), which together with the 
59D8 mAb constitutes a gold standard for fibrin targeting in 
current clinical applications and commercial antifibrin anti-
bodies (Khaw 1999). Finally, Kanke and colleagues devel-
oped the 64C5 mAb to image pulmonary embolisms (Kanke 
et al. 1991). Altogether these works paved the way for the 
traditional generation of anti-fibrin monoclonal antibodies, 
usually in an IgG format.

Another significant aspect of anti-fibrin mAbs is their 
major influence in the design and engineering of diagnos-
tic and therapeutic delivery technologies for thrombolytics, 
contrast/imaging agents or other active biomolecules. Runge 
et  al. reported a fibrin-selective recombinant molecule 
that was generated by coupling a high-affinity anti-fibrin 
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antibody (59D8) with a single-chain urokinase-type plasmi-
nogen activator scuPA, which is a fibrin-selective plasmino-
gen activator that does not directly bind fibrin but binds and 
activates fibrin-bound plasminogen (r-scuPA-59D8). This 
engineered thrombolytic agent exhibited catalytic activity 
identical to that of WT-scuPA and fibrin binding activity 
comparable to that of the native 59D8 mAb. r-scuPA-59D8 
was found to be sixfold more potent than WT-scuPA in lys-
ing human clots in vitro and 20-fold more potent in a rab-
bit jugular vein model of thrombolysis (Runge et al. 1991). 
Bos et al. demonstrated a similar concept in recruiting plas-
minogen activators to fibrin clots using bispecific mAbs 
to enhance thrombolytic activity (Bos et al. 1990). These 
efforts were among the first to use recombinant engineered 
proteins including mAbs and other molecular entities for 
clot-targeted interventions.

Although full-length IgG antibodies can have a long 
half-life in blood and can be isolated with high affinity and 
specificity for a single antigen, full length IgGs also have 
intrinsic drawbacks. At ~ 150 kDa, full-length IgGs are large 
in size and can elicit immunogenic responses in humans, 

especially when they are derived from animal immunization 
procedures. Moreover, mAbs may be prone to physical and 
chemical instabilities that lead to aggregation, sensitivity to 
temperature and pH, and loss of activity or potency (Wang 
et al. 2007; Stefanelli and Barker 2015). To circumvent these 
limitations, mAbs have been dissected into their constituent 
domains, initially through papain/ pepsin proteolysis and 
later using genetic engineering to produce either monova-
lent (Fab, scFv, single variable VH and VL domains sdFv) 
or bivalent fragments (Fab′2, diabodies, minibodies, etc.…) 
(Holliger and Hudson 2005). Many of these alternative scaf-
folds to mAbs have also been developed for fibrin binding 
activity, as outlined in the next sections.

Antibody derivative fragments (Fab, Fab’ 
and F(ab)2)

With a molecular weight of around ~ 50 KDa, the antigen 
binding fragment (Fab) is one of the most common anti-
body derivative fragments used in protein engineering. 
Fab fragments consist of the antigen-binding domains of 

Fig. 7  Timeline showing the development of fibrin binders. The 
timeline shows the development of antibodies and other binding scaf-
fold formats used for the development of anti-fibrin molecules with 
the year or decade of first publication indicated. pAb, polyclonal 
antibody(Spar et  al. 1965); mAb, monoclonal antibody; (Hui et  al. 
1983; Kudryk et  al. 1984) Fab, monovalent antigen-binding frag-
ment obtained after papain digestion of IgGs;(Raut and Gaffney 
1996) Fab’, monovalent antigen-binding fragment obtained after 
pepsin digestion of IgGs and reduction in disulfide bridges (Flacke 
et al. 2001); F(ab)’2, divalent antigen binding fragment obtained after 
pepsin digestion of IgGs (Lugovskoy et al. 2004); scFv, single-chain 
variable fragment (Yan et al. 2004; Putelli et al. 2014); sdAb, single 
domain antibody/nanobody (Brown et  al. 2014). Synthetic peptides 

with fibrin binding ability comprise linear short sequences (Starmans 
et al. 2013a; Wu et al. 2013) while cyclic peptides that may include 
D-amino acids or unnatural amino acids are circularized by Cys-Cys 
disulfide bonds (Kolodziej et al. 2012; Obermeyer et al. 2014). Antifi-
brin mimetics include molecules that naturally bind fibrin(ogen) or to 
their complexes that have been engineered for fibrin targeting (Ezov 
et  al. 1997; Wu et  al. 2003; Makogonenko et  al. 2007; Klegerman 
et al. 2008; Martino et al. 2014; Litvinov et al. 2016; Briquez et al. 
2017; Ghaheh et  al. 2019). Next-generation fibrin binders include 
novel scaffolds that can be evolved for fibrin affinity and engineered 
for additional therapeutic features such as pro- or anticoagulant activ-
ity or image contrast (Liu et al. 2008; Fujita et al. 2018)
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standard mAbs, containing a variable region of the heavy 
chain (VH), a variable region of light chain (VL), a constant 
region of heavy chain 1 (CH1), and a constant region of 
the light chain (CL). Fab’ refers to a fragment containing 
a disulfide bridge, whereas Fab refers to a fragment lack-
ing the disulfide (Joosten et al. 2003), while F(ab)’2 s are 
divalent antigen binding fragment obtained after pepsin 
digestion of IgGs (Lugovskoy et al. 2004). Typically, Fab 
fragments are produced via enzymatic/chemical cleavage of 
a full-length IgG using papain, pepsin and ficin followed by 
disulfide reduction (Crivianu-Gaita and Thompson 2016). 
Protease cleavage to generate Fab fragments requires large 
quantities of starting materials; therefore, single-chain Fab 
fragments (scFab) were developed using genetic engineer-
ing. Hust et al. showed that scFab fragments exhibit supe-
rior antigen-binding ability compared to Fab fragments and 
compensate for some of the disadvantages of the soluble Fab 
production in E. coli (Hust et al. 2007).

Development of Fab fragments with affinity for fibrin 
was carried out by Greco et al. (Greco et al. 1993). They 
produced a monoclonal antibody (TRFl) and engineered it 
as an F(ab’)2 against the human fragment D-dimer of cross-
linked fibrin to detect human atherosclerotic plaques free of 
macroscopically detectable thrombi on their surface. They 
raised mAbs against fibrin epitopes using purified D-dimers 
from cross-linked fibrin as the antigen and proved that TRFl-
F(ab’)2 s possessed a high specific affinity for atherosclerotic 
plaques and to a lesser extent arterial fragments containing 
fatty streaks. It was suggested that such F(ab’)2 s could be a 
useful compound for the scintigraphic detection of athero-
sclerotic disease. In a similar fashion, Kamat and colleagues 
developed an anti-fibrin Fab’ (Tc-99 m-antifibrin) for use in 
immunoscintigraphy of deep vein thrombosis (DVT) (Kamat 
et al. 1996). They showed that the Fab format retained high 
affinity for fibrin epitopes following technetium-labeling 
chemistry and formulation enhancement including additives 
for labeling, bulking, and stabilization.

In subsequent years, several examples of antifibrin Fab 
fragments were reported, for example, a bispecific antifi-
brin-antiplatelet urokinase conjugate BAAUC consisting of 
a monovalent Fab’ from the antifibrin monoclonal antibody 
59D8 (Hui et al. 1983) and a monovalent Fab’ from the anti-
glycoprotein GpIIb/IIIa monoclonal antibody 7E3. This 
compound was found to lyse both fibrin-rich and platelet-
rich thrombi with high efficacy. The in vitro platelet aggre-
gation and clot lysis activity of different urokinase constructs 
were also compared alone, fused to a full-length IgG, fused 
only to either one of the monospecific Fab, and finally as a 
bispecific construct. The bispecific construct displayed the 
highest activity, inhibited platelet aggregation and was pro-
posed as an antithrombotic therapy (Ruef et al. 1999).

Flacke et al. developed a ligand-targeted paramagnetic 
MRI imaging agent with high avidity for fibrin using F(ab’)2 

fragments derived from the previously reported anti-fibrin 
monoclonal antibodies (NIB 1H10, NIB 5F3) (Raut and 
Gaffney 1996) conjugated to acoustic contrast nanoparti-
cles. By targeting two different epitopes on fibrin and for-
mulating multivalent particles decorated with both Fabs, 
the effective affinity to fibrin was increased, allowing the 
sensitive detection of active vulnerable plaques (Flacke et al. 
2001). Finally, Lugovskoy and colleagues used F(ab) frag-
ments from parental antifibrin mAbs (II-3b and II-4d) to 
identify unknown epitopes in fibrin that could be targeted for 
inhibiting fibrin polymerization as antithrombotic therapies. 
They suggested for the first time that Fabs, as smaller enti-
ties than mAbs, could block more polymerization sites than 
full-length IgGs (Lugovskoy et al. 2004).

Single‑chain variable fragment antibodies (scFv)

Single-chain variable fragments (scFvs) consist of a fusion 
protein of the variable region of the heavy chain (VH) and 
variable region of the light chain (VL) domains of immu-
noglobulins, connected with a short linker peptide of ~ 10 
to ~ 25 amino acids. The order of the domains can be either 
VH-linker-VL or VL-linker-VH. One advantageous feature 
is that scFv fragments can be expressed in both bacterial 
(i.e., E.coli) and mammalian systems (i.e., CHO or HEK293 
cells) (Kramer et al. 2002).

There are a few examples of fibrin-specific scFvs that 
have shown promising results for targeting clots. Song et al. 
reformatted antifibrin mAbs from a hybridoma cell line 8E5 
to produce an scFv and (scFv)2 recombinantly in E. coli. 
They achieved high fibrin specificity by using a synthetic 
heptapeptide GHRPLDKC, which is a defined epitope of the 
B chain of fibrin, as it is a fibrin-unique antigen exposed on 
the surface of fibrin but not on fibrinogen. Moreover, they 
proved that the scFv retained the fibrin binding activity of 
the parent mAbs while the (scFv)2 showed stronger binding 
than the single scFv (Song et al. 1997).

Karlheinz and colleagues followed a similar strategy by 
recycling and editing the 59D8 antifibrin mAb and geneti-
cally formatting it into an scFv. Its affinity was matured 
using phage display in 10 rounds of panning on the syn-
thetic Bβ15-22 peptide of fibrin (β-peptide). To engineer an 
anticoagulant that selectively localizes and acts at the clot 
site, Karlheinz genetically fused the anticoagulant peptide 
hirudin to the C-terminus of the variable region of the scFv 
light chain. To release the biologically active N-terminus 
of hirudin at the site of clotting, a factor Xa protease rec-
ognition sequence site was introduced between  scFv59D8 
and hirudin. This recombinant anticoagulant inhibited clot 
growth in vitro more efficiently than native hirudin. In addi-
tion to binding fibrin, the fusion protein inhibited thrombin 
only in the presence of factor Xa by releasing the hirudin 
antithrombotic N-terminus upon factor Xa-mediate cleavage. 
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This anticoagulant was preferentially active at bleeding sites 
and served as the basis for a novel pharmacological approach 
(Peter et al. 2000). Further work from this group focused 
on modifications of this system by coupling a Factor Xa 
inhibitor tick anticoagulant peptide (TAP) N-terminally to 
 scFv59D8 (Hagemeyer et al. 2004).

Another approach using fibrin-targeted scFvs was taken 
by Yan and colleagues, whereby an scFv was developed to 
bind fibrin clots using the human single fold scFv librar-
ies I + J (Tomlinson I + J). This effort is one of the first to 
use a human synthetic scFv-phage display library to select 
scFvs specifically against human fibrin clots. The purified 
scFv did not bind to fibrinogen in ELISA tests, and its fibrin 
binding ability was concentration dependent, suggesting a 
specific and unique conformational epitope in fibrin (Yan 
et al. 2004).

A recent development in antifibrin scFvs came from 
Putelli and colleagues (Putelli et al. 2014), who used anti-
body phage display to isolate binders to the N-terminal pep-
tide of the fibrin α-chain. They panned a naive phage library 
and after selecting an enhanced binder with high affinity 
 (KD = 44 nM) to fibrin but not to fibrinogen or N-acetylated 
fibrin peptides, they further affinity matured the VH domain 
yielding an antibody termed AP2. AP2 was engineered and 
expressed as an scFv, a small immune protein and an IgG 
that were all found to inhibit fibrin clot formation in a con-
centration-dependent manner.

Single domain variable fragment antibodies (sdFv)

Variable domain-like recognition motifs (sdFv) or single 
domain antibodies(Holliger and Hudson 2005) are natu-
rally occurring small (~ 15 kDa) antibodies derived from 
the heavy chain-only antibodies found in camelids (VHH 
from camels and llamas), and cartilaginous fishes (VNAR 
from sharks). A commercial name was coined by the com-
pany Actelion, which popularized the term “nanobodies” for 
VHH and VNAR scaffolds. Nanobodies are useful alterna-
tives to conventional antibodies due to their small size, high 
solubility and stability. Nanobodies can be recombinantly 
expressed in bacteria or yeast cells. In addition, phage-, ribo-
some-, and/or mRNA/cDNA display methods can be used 
for the efficient generation and maturation of these binders 
in vitro.

Employing phage biopanning against polymerized fibrin 
along with negative selection/competition with soluble 
fibrinogen, Barker and colleagues (Brown et al. 2014) iso-
lated several fibrin-specific scFv and sdFv binders. The nan-
obody designated H6 bound fibrin with ~ 200 nM affinity 
with only weak binding to fibrinogen. This work exploited 
the avidity of gel particles decorated with H6 sdFvs to 
reduce bleeding times in rats on par with FVIIa, and better 
than infused fresh platelets.

Synthetic peptides

Peptides, typically between 10 and 30 residues long, are the 
shortest sequences that exhibit binding activity and pos-
sess intrinsic advantages over antibody fragments in certain 
applications. The small size confers rapid clearance from 
the bloodstream which can be advantageous in imaging 
applications. Peptides also have low production costs and 
are frequently non-immunogenic. However, the length con-
straints can limit binding affinity to the micromolar range 
in many cases. Among the first to develop peptides to bind 
fibrin or fibrinogen, Kawasaki et al. (Kawasaki et al. 1992) 
reported that N-terminal tetrapetide analogs of the fibrin 
α-chain GPRP can inhibit fibrin polymerization and throm-
bin activity. Several analogs were synthesized and described 
as potent anticoagulants. Based on this sequence, Soon and 
colleagues (Soon et al. 2010) created engineered proteins 
that use the interactions between N-terminal fibrin knobs 
that bind C-terminal pockets of the fibrin network for pro-
tein delivery within fibrin matrices using the GPR motif and 
derivatives. They confirmed that GPRP sequence confers 
specific binding ability of fusion domains to fibrin(ogen).

In related work, the Ruoslathi group (Pilch et al. 2006; 
Simberg et al. 2007) used ex vivo and in vivo phage selec-
tion to discover several tumor-related fibrin-binding pep-
tides. The CREKA peptide was found to home to tumor sites 
in vivo in transgenic breast cancer mouse models. Analysis 
suggested the peptide bound to a neoepitope formed due 
to the interaction between fibrin and fibronectin (FN), as 
it colocalizes with anti-fibrinogen antibodies in atheroscle-
rotic plaques, but it does not bind tumors in knocked down 
fibrinogen or knocked down FN mice. Ruoslathis’s peptide 
has undergone preclinical and early clinical trials for the 
detection and targeted delivery of antithrombotic agents to 
clots formed in lung, prostate and glioma tumors, as well 
as to atherosclerotic plaques. Building on this, Peters and 
colleagues developed modular multifunctional micelles that 
contain a fibrin targeting CREKA peptide, a fluorophore, 
and, when desired, a drug component in the same particle 
to target atherosclerotic plaques (Peters et al. 2009; Agemy 
et al. 2010). Besides the CREKA peptide, the CLT-1 peptide 
with the sequence CGLIIQKNEC binds to fibrin–FN com-
plexes as well. Although the epitope has not been confirmed, 
it is presumed that CTL-1 binds FN as suggested by minimal 
homing to tumors in fibrinogen knocked down mice, but 
not in FN-knocked down mice. In similar applications as 
the CREKA peptide, CTL-1 has been conjugated to radio-
isotopes for imaging tumors, atherosclerotic plaques, and 
fibrotic tissue in vivo (Pilch et al. 2006; Chow et al. 2013; 
Wu et al. 2013, 2014).

Cyclic peptides were developed in the early 2000’s by 
several researchers working for EPIX Medical Inc. One of 
the first synthetic peptides, EP-1873, is a fibrin-specific MRI 
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contrast agent composed of a constrained six amino acid 
cyclic peptide core and four Gd-DTPA (diethylenetriami-
nepentaacetic acid) chelates. The agent binds intact fibrin 
selectively without binding to circulating fibrinogen, allow-
ing the detection of acute thromboembolic events throughout 
the body. Their clinical suggestions for potential thrombus 
detection in acute coronary syndromes and stroke led to 
preclinical trials of this compound (Wiethoff et al. 2003; 
Botnar et al. 2004). Recent work related to the evolution 
and development of novel agents based on EP-1873 pep-
tides led to the discovery of EP-2104R, which is amenable to 
both MRI and NMR-based detection techniques (Sirol et al. 
2005; Overoye-Chan et al. 2008). While this work focused 
on EP-2104R effectiveness for imaging, initial studies of the 
binding affinity of the peptide to fibrin were carried out on 
human plasma. Subsequent versions of EP-2104R have been 
developed from the Caravan lab ((Sirol et al. 2005; Overoye-
Chan et al. 2008) (Nair et al. 2008); (Kolodziej et al. 2012)
(Sirol et al. 2005; Overoye-Chan et al. 2008). The EP-782a 
and EP-821 peptides, both derivatives of the EP-2104R pep-
tide, bind with low micromolar affinity to two sites on fibrin. 
Nair et al. (Nair et al. 2008) demonstrated that their mono-
valent constructs created by chemoselective ligation bind 
to two sites in fibrin and that their fibrin affinity is higher 
than the monovalent constructs. In related work, Ciesien-
ski and colleagues developed three fibrin-targeted FBP1, 
FBP2, FBP3 peptides and used them as positron emission 
tomography (PET) probes for thrombus imaging (Ciesienski 
et al. 2013). Finally, Marinelli et al. developed and patented 
FibPep (Marinelli et al. 2015), a SPECT imaging probe for 
fibrin with an 11 In-labeled fibrin-binding peptide (Starmans 
et al. 2013a, 2013b).

In other work based on peptide phage display technology, 
Kolodziej et al. isolated cyclic peptides with low micromolar 
affinity for fibrin. Panning counterselection campaigns by 
incubating phages with fibrinogen eliminated non-specific 
binders while positive selection panning rounds against 
fibrin and immobilized DD(E) fragments were used to iso-
late small cyclic peptide families, referred to as Tn6, Tn7, 
and Tn10, that differ in the size of the central disulfide-linked 
macrocyclic ring and the sequences (Kolodziej et al. 2012). 
In all three of these peptides classes (Tn6, Tn7, and Tn10), 
the disulfide bridge is critical for fibrin binding (Kolodziej 
et al. 2012; Oliveira and Caravan 2017). Tn6 and Tn7 pep-
tides were used as conjugates together with MRI contrast 
agents (Stefanelli and Barker 2015). Later, it was discov-
ered that EP-2104R belongs to the Tn6 family (Oliveira and 
Caravan 2017). The Caravan group further developed an 
elegant strategy for fibrin targeting using a modified EP-
2104R. Activated platelets overexpress the enzyme disulfide 
isomerase (PDI). Since PDI catalyzes disulfide exchange in 
the integrin α2Bβ3 that allows the platelet to bind fibrinogen, 
they hypothesized that in the presence of activated platelets 

and PDI, the peptide would undergo disulfide formation and 
cyclization, producing a fibrin targeting probe in situ. A lin-
ear EP-2104R analogue prodrug had no affinity for the fibrin 
DD(E) fragment, but in the presence of PDI, disulfide rear-
rangement re-established fibrin binding properties (Oliveira 
and Caravan 2017).

Another work on peptides by Stabenfeldt et al. employed 
molecular dynamic simulations to provide insight into the 
knob structural features that govern fibrin knob/hole binding 
interactions (Stabenfeldt et al. 2010). The group proposed 
knob design criteria for developing more potent binding 
peptides that significantly disrupt native knob/hole interac-
tion. They proved the principle by developing a novel knob 
peptide mimic, GPRPFPAC that shows the highest reported 
affinity to the polymerization holes domains due to a unique 
element (Pro-Phe-Pro) that enhanced the association rate.

Avidity engineering has also been used to enhance bind-
ing of small peptides to fibrin. Obermeyer et al. (Obermeyer 
et al. 2014) proved this concept by conjugating 90 copies of 
a fibrin targeting GPR tripeptide to the exterior protein shell 
of bacteriophage MS2 capsids for fibrin targeting and imag-
ing. The ability of peptide multivalency to enhance fibrin 
binding was shown through inhibition of clot formation at 
effective concentrations over ten-fold lower than the mono-
meric peptide alone.

Engineered antifibrin mimetics

Several naturally occurring peptides, proteins, and enzymes 
have fibrin-binding activity, and these modules can be used 
for rational design of molecular systems targeting fibrin. 
Particularly plasminogen (Wiman and Collen 1978), plas-
minogen activators, and plasmin inhibitors can be emulated 
or exploited to create artificial fibrin-binding proteins.

Plasminogen heavy chain A contains 5 kringle domains 
while the light chain B is the serine protease domain 
(Fig. 2c) (O’Reilly et al. 1994). The 5 kringle domains dis-
play various levels of affinity for cross-linked fibrin, with 
kringle-1 having the strongest affinity followed by kringle-4 
(Lerch et al. 1980). Menhart et al. recombinantly produced 
these domains in E. coli to test fibrin binding activity (Men-
hart et al. 1991). Wu and colleagues then developed a throm-
bolytic agent by fusing a Kringle-1 domain from human 
plasminogen to the C-terminal end of staphylokinase in a 
construct called SAKM3-L-K1 (Wu et al. 2003).

A frequently mimicked natural molecule is tissue-type 
plasminogen activator (tPA). Runge and colleagues (Runge 
et  al. 1991) combined a high-affinity anti-fibrin mAb, 
59D8, with a low molecular mass (32 kDa) single-chain 
urokinase-type plasminogen activator scuPA. The 103-kDa 
r-scuPA-59D8 protein was 6x more potent than WT scuPA 
in lysing a human plasma clots in vitro and 20 × more 
potent in a rabbit jugular vein model of thrombolysis. 
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In related work, Klegerman et al. irreversibly inhibited 
human recombinant tPA (Activase®) with D-phe-L-pro-
L-arg-chloromethyl ketone (PPACK) and conjugated it 
to intrinsically echogenic liposomes (ELIP) (Klegerman 
et al. 2008). More recent applications of tPA for fibrin 
targeting are from Taheri et al. (Taheri et al. 2016), who 
imparted fibrin-binding ability to the fibrinolytic agent 
streptokinase by fusing the tPA Kringle 2 domain to the 
streptokinase N-terminal domain and showing that the 
chimeric streptokinase exhibited stronger fibrin-specific 
activity compared to wild-type.

Another important natural protein that binds fibrin 
and modulates fibrinolysis is the inhibitor α2-antiplasmin 
(α2AP). α2AP is a primary inhibitor of plasmin-mediated 
fibrinolysis that is covalently cross-linked by FXIIIa to 
polymerized α-chains of fibrin and competitively abolishes 
plasmin digestion (Sakata and Aoki 1980). The fibrin recog-
nition sequence in α2AP was characterized as the N-terminal 
sequence  N13QEQVSPLTLLK24. This short peptide retains 
fibrin affinity and thus, has been used for the detection of 
nascent clots (Tung et al. 2003), for wound repair (Geer et al. 
2005; Liang and Andreadis 2011; Sacchi et al. 2014), and 
for thrombolytic activity (Robinson et al. 2000; Stefanelli 
and Barker 2015). Briquez and colleagues reported the use 
of α2AP peptide incorporated into a human-derived plasmin 
inhibitor. Based on sequence homology to aprotinin, they 
identified the Kunitz-type protease inhibitor (KPI) domain of 
human amyloid-β A4 precursor protein as a lead candidate. 
They engineered the α2AP peptide into KPI variants to colo-
calize to fibrin via covalent binding through Factor XIIIa 
transglutaminase-mediated ligation. The engineered KPI 
variants significantly slowed plasmin-mediated fibrinolysis 
in vitro as compared with aprotinin (Briquez et al. 2017).

FN is an adhesive extracellular matrix protein that inter-
acts with surface receptors on fibroblasts, neurons, phago-
cytes, and bacteria during wound healing and also has 
binding affinity for fibrin. The FN multidomain polyprotein 
consists of two disulfide-linked chains. Each chain contains 
homologous type I (finger), type II, or type III domains 
that are grouped into functional regions including fibrin-
binding (Fib-1 and Fib-2), collagen-binding, cell-binding, 
and heparin-binding regions (Makogonenko et al. 2007). 
The N-terminal domain of FN has a fibrin-binding site and 
a site for covalent FXIIIa-mediated cross-linking to fibrin, 
which served as a basis for an engineered thrombus imag-
ing agent described by Rosentall and Leclerc, who used the 
Fib-1 fibrin binding domain labeled with In-111 to detect 
fresh clots in patients (Rosenthall and Leclerc 1995). Ezov 
and colleagues used the fibrin binding properties of the 
N-terminal fibronectin domain by radioactively labelling the 
5-finger FN domains and using them for the diagnosis of 
venous thrombosis (Ezov et al. 1997). Finally, Makogonenko 
et al. produced Fib-2 regions and tested interactions with 

recombinant αC-domains of fibrin(ogen) (Makogonenko 
et al. 2007; Stefanelli and Barker 2015).

As critical molecules for tissue repair with many inter-
actions with the ECM including fibrin(ogen), growth fac-
tors (GFs) have also been used for fibrin targeting. Martino 
and colleagues found that a domain from placenta growth 
factor-2 (PlGF-2123–144) binds with high affinity yet pro-
miscuously to the ECM proteins FN, vibronectin, tenas-
cin C, osteopontin, collagen and fibrin(ogen). They fused 
PlGF-2123–144 to several GFs (vascular endothelial growth 
factor–A, platelet-derived growth factor–BB, and bone mor-
phogenetic protein–2) to generate GFs variants with affinity 
for ECM proteins. These PlGF-2123–144-GFs aided the repair 
of chronic wounds and bone defects, surpassing the effects 
of the wild-type GFs along in rodent models. The group sug-
gested that coupling an ECM binding mimetic domain may 
be useful for targeting fibrin in several regenerative medicine 
applications (Martino et al. 2014).

Miscellaneous fibrin binders

In this section, we cover miscellaneous macromolecules 
with affinity for fibrin. For example, Fujita et al. showed 
that a thrombin-binding DNA aptamer called 29TBA with 
the sequence 5’ -AGT CCG TGG TAG GGC AGG TTG GGG 
TGACT- 3’ was entrapped in fibrin gels during the hydro-
gel polymerization catalyzed by thrombin. Fujita showed 
that 29TBA tightly bound thrombin  (KD ~ 0.29 nM) and 
suppressed thrombin activity down to 65%; however, this 
activity level was still sufficient for catalyzing fibrin assem-
bly and thrombin entrapment, providing a possible approach 
for entrapment of growth factors, antibiotics, or anti-tumor 
drugs and their controllable release from fibrin gels (Fujita 
et al. 2018). Liu et al. reported a method for purifying fibrin-
ogen based on the affinity of Staphylococcus aureus clump-
ing factor A to fibrinogen. Clumping factor A (ClfA) is a 
cell wall-anchored protein with affi nity  to the C-terminus 
of the γ-chain of fibrinogen. Active ClfA was genetically 
fused with the C-terminus of glutathione–S-transferase 
(GST) and used as an affinity  ligand to isolate fibrinogen 
using affinity separation.  ClfA221–550 is cross-reactive with 
both rat and mouse fibrinogen (Liu et al. 2008). Although 
the approach is similar to fibrin binding mimics, the idea 
of using adhesin domains from pathogenic bacteria with 
affinity for fibrin(ogen) opens the door for novel scaffold 
engineering for fibrin binding. There are many S. aureus 
and other bacterial adhesive proteins with affinity for fibrin; 
therefore, many scaffolds are potentially available.(Foster 
et al. 2014; Liesenborghs et al. 2018).

All the above-reported binders that target fibrin have been 
employed mainly as diagnostic tools where fibrin polymeri-
zation plays a major role in the pathology. For example, in 
cardiovascular diseases, fibrin accumulates in atherosclerotic 
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plaques and serves as a marker for localizing early thrombi 
before myocardial infarction occurs. Imaging techniques that 
target polymerized fibrin, such as contrast-MRI, Doppler 
ultrasound, and angiography, also benefit from high-affinity 
fibrin binding proteins in diagnosis of clotting disorders. 
Here, either hemostats or thrombolytics that minimize 
potentially severe hemorrhage or thrombosis with high 
specificity for fibrin and not fibrinogen are needed. The same 
high specificity is used to target fibrin formation caused by 
inflammatory pathologies, such as rheumatoid arthritis, 
autoimmune disorders, or sepsis. More serious conditions 
can also be diagnosed, as fibrin can be a biomarker for cen-
tral nervous system disorders like multiple sclerosis or as an 
oncological marker for certain types of cancer, where fibrin 
deposition is related to tumor development and metastasis. 
The main obstacle within the development of fibrin binders 
is to completely abolish non-specific binding to fibrinogen 
while retaining a high affinity for fibrin. This challenge has 
been tackled by using specific processed peptides unique to 
fibrin as antigens. A better understanding of fibrin polymeri-
zation and kinetics led to high-affinity mAbs and sdAbs with 
negligible binding to the fibrinogen precursor.

Nowadays, fibrin binders have been exploited for several 
purposes: for diagnostics, small binders like scFvs, sdAbs, 
peptides, and alternative scaffolds have been employed 
mainly because of the short half-life in the bloodstream, and 
also due to the high volume of distribution that generates 
better contrast for imaging and detection. Conversely, if a 
longer and more potent therapeutic effect is needed, mol-
ecules with higher molecular weight like Fab fragments or 
mAbs are used to extend the half-life. Next-generation fibrin 
binders will likely arrive as modular systems relying on 
antibody reformatting technology and immunoengineering 
methods to construct more efficient fibrin-targeting strate-
gies that can ultimately reach clinical stages.

Conclusion

With this broad review, we have provided background 
knowledge and summaries of specific studies on the top-
ics of fibrin and coagulation proteins from a biophysical 
perspective. We have summarized what is known about 
the molecular pathways governing primary and secondary 
hemostasis with an emphasis on molecular and structural 
mechanisms. We described a series of related single-mole-
cule studies using force-based assays with optical tweezers 
and atomic force microscopy investigating force activated 
conformational changes, including mechanical unfolding 
and activation of binding. Next, we provided an extensive 
list of clinical biomaterials and engineered therapeutics that 
serve to support coagulation and clotting in human patients. 
We described the biophysical properties of fibrin hydrogels 

from a soft mechanics perspective and then outlined anti-
fibrin antibodies, peptides, polymers and antibody mimet-
ics. Based on the importance of coagulation and clotting 
in a variety of pathophysiological processes, future work is 
poised to improve our understanding of the basic molecular 
processes underlying coagulation as well as develop novel 
formulations of engineered molecular systems capable of 
interfacing with the coagulation system in a controlled way.
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