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Abstract
Lipid-protein interactions play an important direct role in the function of many membrane proteins. We argue they are key 
players in membrane structure, modulate membrane proteins in more subtle ways than direct binding, and are important for 
understanding the mechanism of classes of hydrophobic drugs. By directly comparing membrane proteins from different 
families in the same, complex lipid mixture, we found a unique lipid environment for every protein. Extending this work, 
we identified both differences and similarities in the lipid environment of GPCRs, dependent on which family they belong to 
and in some cases their conformational state, with particular emphasis on the distribution of cholesterol. More recently, we 
have been studying modes of coupling between protein conformation and local membrane properties using model proteins. 
In more applied approaches, we have used similar methods to investigate specific hypotheses on interactions of lipid and 
lipid-like molecules with ion channels. We conclude this perspective with some considerations for future work, including a 
new more sophisticated coarse-grained force field (Martini 3), an interactive visual exploration framework, and opportuni-
ties to improve sampling.
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Introduction

Lipid-protein interactions have emerged as important contri-
butions to a variety of membrane-bound processes, including 
the mechanism of specific membrane proteins, modulating 
conformational changes, larger-scale effects including the 
formation of membrane domains, membrane remodeling, 
and very likely in the overall organization of biological 
membranes (Brown 2017; Corradi et al. 2019; Lee 2003). 
Molecular dynamics (MD) simulations have reached time 
and length scales, including with standard atomistic mod-
els and with increasingly sophisticated larger-scale mod-
els, where they can be used for meaningful investigations 

of membrane systems of direct biological and biomedical 
interest (Marrink et al. 2019). At the same time, a rapidly 
growing number of experimentally determined membrane 
protein structures, primarily by cryo-EM (Cheng 2018; 
Thonghin et al. 2018), is identifying lipid or surfactant den-
sity associated with membrane proteins (Duncan et al. 2020; 
Sun and Gennis 2019; Thompson and Baenziger 2020), and 
lipidomics approaches have made a major leap in their abil-
ity to identify lipid compositions in complex membranes in 
general (Lorent et al. 2020; Symons et al. 2021) and, in some 
cases, lipids associated with membrane proteins (Bolla et al. 
2019; Frick and Schmidt 2019; Sun and Gennis 2019; Teo 
et al. 2019; van ‘t Klooster et al. 2020). One of the long-
term aims of our group is to understand the diverse roles 
lipid-protein interactions play in biological processes in both 
qualitative and quantitative terms, from a fundamental bio-
logical perspective and to use an improved understanding of 
lipid-protein interactions in biomedical applications. In this 
paper, we provide a perspective on recent work, primarily 
from our group, on lipid-protein interactions and reflect on 
future directions.
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Membrane proteins have a unique, local 
lipid environment

Lipid-protein interactions have been widely recognized 
as key players in the function of many membrane pro-
teins through specific interactions at well-defined binding 
sites (Corradi et al. 2019). They also arise by virtue of 
membrane proteins being in a lipid environment. Although 
this seems trivial, thermodynamically, and kinetically, 
this is a complex environment that modulates many dif-
ferent properties of the membrane (Enkavi et al. 2019). 
Lipid-protein interactions are also critical in shaping 
local membrane structure and may in fact be a defining 
organizational factor for biological membranes. Experi-
mental techniques ranging from X-ray and electron crys-
tallography, to fluorescence spectroscopy, cryo-electron 
microscopy, and mass spectrometry have provided several 
examples of lipids tightly bound to membrane proteins 
(Barrera et al. 2013; Loll 2014; Loura et al. 2010; Raunser 
and Walz 2009). These techniques mainly capture strong 
interactions, they typically are not quantitative thermo-
dynamically, and they do not give high spatial resolution. 
Recently, the use of styrene-maleic acid (SMA) polymers 
has been applied to extract membrane proteins from their 
natural lipid environment, forming lipid-protein nanoparti-
cles that can be combined with lipidomics analyses for the 
identification of the lipids (Barniol-Xicota and Verhelst 
2021; Pollock et al. 2018; Reading et al. 2017; Teo et al. 
2019; van ‘t Klooster et al. 2020). However, it remains 
to be clarified how well the native environment is main-
tained or influenced using the polymers (Barniol-Xicota 
and Verhelst 2021). A detailed representation of the lipid 
environment of membrane proteins can be achieved with 
computational methods such as molecular dynamics (MD) 
simulations, applied extensively to characterize specific 
and less specific lipid-protein interactions (Corey et al. 
2020; Corradi et al. 2019; Enkavi et al. 2019; Muller et al. 
2019). Coarse-grain (CG) models, in particular, can simu-
late reversible binding and unbinding events and detect 
strong as well as weak lipid-protein interactions (Corey 
et al. 2020; Hedger and Sansom 2016; Ingolfsson et al. 
2014a). In addition, increasing computing power together 
with the development of optimized software has increased 
significantly the time scale, length scale, and complexity 
of simulated membrane systems (Marrink et al. 2019). We 
studied the local lipid composition of proteins represent-
ing ten eukaryotic membrane protein families (Corradi 
et al. 2018), embedded in a plasma membrane mixture 
with more than 60 lipid types (Ingolfsson et al. 2014b). 
Our hypothesis was that each protein will generate its 
own environment, distinctly different from the lipids con-
centrations in the bulk. Indeed, we identified unique lipid 

shells surrounding the proteins, and this in turn triggered 
non-uniform perturbations of local membrane properties, 
which we defined as “fingerprint.” Our results revealed a 
landscape of diverse lipid-protein interactions as well as 
protein-driven effects on membrane properties, extending 
the lipid-protein interplay beyond the interactions between 
proteins and tightly bound lipids, to include the overall 
structure of the membrane (Fig. 1).

Simulations can find lipid‑binding sites

In the previous section, we described simulations of a set 
of membrane proteins meant to sample the major eukary-
otic membrane protein families, and we found significant 
differences for each protein. What would happen for a set 
of more closely related membrane proteins? Due to their 
essential physiology and importance as drug targets, G pro-
tein-coupled receptors (GPCRs) are among the most studied 
membrane proteins (Hauser et al. 2017, 2018). Initial MD 
simulations of rhodopsin in bilayer mixtures containing dif-
ferently saturated lipids and cholesterol showed that rhodop-
sin interactions with lipids may affect measured stability and 
kinetics (Grossfield et al. 2006). Following studies, using 
both experimental and computational approaches, further 
underlined the importance of considering the lipid envi-
ronment in GPCR structure and functional investigations. 
Results from over almost two decades of MD simulations 
show several different GPCRs, mainly from class A, form-
ing consistent yet distinct interactions with cholesterol and 
other membrane lipids (Corradi et al. 2019; Periole 2017; 
Sengupta and Chattopadhyay 2015).

Because these studies use different methods, including 
force fields, set-up procedures, and simulation lengths, a 
direct quantitative comparison is challenging. To get a pic-
ture of GPCR-lipid interaction in a family-wide context, we 
simulated 28 different GPCR structures belonging to dif-
ferent classification levels and conformational states in the 
same complex plasma mixture described in the previous sec-
tion (Sejdiu and Tieleman 2020). We found that the enrich-
ment and depletion of selected lipid classes near the proteins 
show similar trends across the different GPCRs but with dif-
ferent magnitudes, depending on the type of receptor and on 
its conformational state. For instance, phosphatidylinositol-
(bi, tri)phosphate lipids (PIPs) are highly enriched around 
the histamine H1 receptor but only modestly enriched in 
the case of the smoothened receptor (an interactive graph-
ics showing data for all the studied GPCRs can be accessed 
through ProLint (Sejdiu and Tieleman 2021), a web appli-
cation for the analysis of lipid-protein interactions, with a 
section dedicated to GPCRs: proli​nt.​ca/​gpcrs/​stats).

Overall, we discovered specific interactions with both 
cholesterol and PIP lipids for all the simulated receptors. The 
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number of interaction sites per structure, their interaction 
strength, and the location of lipid binding sites, however, 
differ widely between individual GPCRs. First, the binding 
of PIP lipids is confined to interfaces within transmembrane 
helices along with the intracellular loops linking them. In 
contrast, GPCR interactions with cholesterol (Fig. 2) require 
a protein environment capable of accommodating the ring 
structure of cholesterol and stabilizing it via hydrophobic 
interactions, while its head group can engage in interactions 

with charged residues or other lipids. Second, the large 
number of cholesterol interaction sites that we observed 
allows us to comment on the significance of CRAC/CARC 
motifs to cholesterol binding (Fantini et al. 2016; Jafurulla 
et al. 2011). While we do observe a few interactions with 
cholesterol that seem to be mediated by this motif, for the 
most part, we do not find any supporting evidence for their 
importance to GPCR-lipid interactions, in line with other 
reports (Lee 2018, 2019; Taghon et al. 2021). Third, not all 

Fig. 1   Unique lipid annular shells for Aquaporin 1 (AQP1). a Simu-
lation setup for AQP1, with four copies of the protein embedded in 
a plasma membrane model with more than 60 lipid types. The pie 
charts represent the lipid head group composition of the upper and 
lower leaflet. b View of the first few lipid shells around AQP1, after 
30 μs of simulation time. Lipid tails and head groups are colored as 
in c. c Lipid depletion-enrichment (DE) index for the AQP1 simula-
tion, calculated from the last 5  μs of a 30-μs simulation. Shown is 
the average over the four AQP1 molecules. The DE index is com-
puted by dividing the lipid composition of the annular shell by the 
bulk membrane composition. Values larger than 1 indicate enrich-
ment, while values smaller than 1 indicate depletion of the chosen 

class (see Corradi et  al. 2018 for more details on lipid classes and 
analyses. Membrane protein fingerprints. d 2D lateral density maps, 
showing local density fluctuations around AQP1 in upper (top row) 
and lower (bottom row) leaflets, grouped according to lipid classes: 
polyunsaturated (PU) lipids, fully saturated (FS) lipids, and choles-
terol. Major observations are highlighted by arrows: I, non-specific 
binding; II, non-uniform distribution; III, leaflet asymmetry; IV, spe-
cific binding; V, membrane fluctuations (see Corradi et  al. 2018 for 
more details). e Non-uniform variations in local membrane properties 
around AQP1: thickness, mean curvature, and Gaussian curvature for 
upper and lower leaflets. Figure panels were  modified from Corradi 
et al. (2018)
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interaction sites are equal. Most interactions are mediated 
through the extracellular side of TM2/3 and TM6-7 and the 
intracellular side of TM8/1. In fact, cholesterol interactions 
at the TM6-7 interface seem to be a common feature of class 
A GPCRs that is missing from their non-class A counter-
parts (Fig. 2; an interactive graphics showing these heatmaps 
is available through ProLint (Sejdiu and Tieleman 2021): 
prolint.ca/gpcrs/heatmap). Several crystal structures of class 
A GPCRs also feature a co-crystalized cholesterol at this site 
(Taghon et al. 2021).

Simulations enable a molecular view 
of curvature partitioning consistent 
with experiments

Membrane curvature is a fundamental characteristic of all 
cells and a key aspect of the lipid raft hypothesis (Mein-
hardt et al. 2013; Pike 2009). Essential life processes such 
as cytokinesis, membrane remodeling, and vesicle forma-
tion involve curvature (Bohuszewicz et al. 2016). Some pro-
teins show distinct curvature preferences, which suggests 
a connection between the local membrane environment 
and protein function. A prominent example is the cluster-
ing of mitochondrial ATP synthase dimers along the highly 
curved crista ridges and their depletion in the flat stretches 
of the inner membrane (Blum et al. 2019; Kuhlbrandt 2015). 
Still, many aspects of ATP synthase function in relation to 
curvature remain elusive, such as how the dimers remain 
anchored at specific membrane regions, and whether the 

curved environment influences its catalytic activity (Nirody 
et al. 2020). Estimates of membrane curvature free energy 
are well within the range required for protein conforma-
tional changes, suggesting that the elastic energy stored in 
the membrane may be able to allosterically regulate a vast 
assortment of membrane proteins (Brown 2012; Golani et al. 
2019; Iversen et al. 2015). For instance, conformational 
changes during photoactivation of rhodopsin become more 
favorable as the curvature elastic energy of the membrane 
increases (Soubias et al. 2010), and the specific activity of 
diacylglycerol kinase ϵ can be over tenfold higher in curved 
versus flat membranes (Bozelli et al. 2018). While these 
observations illustrate the importance of curvature in vital 
biological functions, a molecular-level description is needed 
for a more thorough understanding of curvature-dependent 
processes. Due to experimental challenges associated with 
obtaining molecular-level data in membrane environments, 
MD simulations are a promising alternative. With the objec-
tive of using MD simulations to study the interplay between 
local membrane environment, protein shape, conformation, 
and function, we first investigated whether the approach 
yielded results consistent with experimental data.

Experimental studies from the Bassereau group 
revealed that the aquaporin 0 water channel (AQP0) 
and an archaebacterial voltage-gated potassium channel 
(KvAP)—two proteins of similar lateral size—have differ-
ent curvature preferences in POPC/POPA (9:1 ratio) giant 
unilamellar vesicles (Aimon et al. 2014; Quemeneur et al. 
2014). These studies highlighted how (i) AQP0 localizes 
to planar membrane regions, while KvAP is enriched in 

Fig. 2   a GPCR-cholesterol interaction for eight GPCRs shown as a 
surface presentation of cholesterol contacts. Color scale (red-white-
blue) represents an increase in the contact duration of cholesterol (for 
more details, see Sejdiu and Tieleman 2020). A larger set of GPCRs, 
including a detailed comparison between contact duration and contact 
number as visualization metrics, is given in the Supporting Informa-

tion of (Sejdiu and Tieleman 2020) (figure from Sejdiu and Tieleman 
2020). b Prevalence of GPCR-cholesterol interactions at the upper 
membrane leaflet-facing TM6/7 interface. Note the lack of similar 
interactions for the following non-class A GPCRs: calcitonin, GLP1, 
glucagon, and smoothened (SMO) receptors. The same color scale to 
highlight cholesterol interactions is used for both figures
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curved regions of the membrane; (ii) KvAP induces local 
membrane bending; and (iii) the lateral diffusion of KvAP 
is decreased in curved membranes, whereas the mobil-
ity of AQP0 is insensitive to membrane curvature. We 
have reproduced the experimental setup of the Bassereau 
group in silico by using the Martini force field (de Jong 
et al. 2013; Marrink et al. 2007; Marrink and Tieleman 
2013) to simulate POPC/POPA/AQP0 and POPC/POPA/
KvAP membranes at different degrees of membrane strain. 
Our CG simulations reproduce all of the aforementioned 
trends reported by the Bassereau group (Fig. 3), illustrat-
ing proof of principle for using the Martini force field to 
accurately study protein sorting in curved membranes. We 
thus expect that MD simulations will be a valuable tool 
for studying the curvature-driven modulation of protein 
sorting and function.

Outlook

In eukaryotes and prokaryotes, biological membranes reveal 
a highly diverse lipid landscape with some lipid species 
found only in one or the other kingdoms of life (Sohlen-
kamp and Geiger 2016; van Meer et al. 2008). Eukaryotic 
membranes, in particular, are characterized by a lipid com-
position that differs at the membrane type, organelle, and 
leaflet level (van Meer et al. 2008; Harayama and Riezman 
2018). The asymmetric distribution of lipids between leaf-
lets and laterally within the same leaflet (Lorent et al. 2020; 
Symons et al. 2021; van Meer et al. 2008) is important for 
mechanical properties as well as for many cellular functions, 
including but not limited to protein recruitment and protein 
function regulation, signaling, and energy storage (Lorent 
et al. 2020). There are also crucial mechanistic connec-
tions between membranes and the cytoskeleton, linked to 

Fig. 3   The different curvature 
preferences of AQP0 and KvAP 
are captured by Martini simula-
tions. a Structure of AQP0 
(orange) and snapshot of AQP0 
embedded in a POPC/POPA 
(9:1, blue and red, respectively) 
membrane. b Structure of 
KvAP (pink) and snapshot of 
KvAP embedded in a POPC/
POPA membrane. c Snap-
shots of AQP0 and KvAP in 
membranes of a different strain. 
d Probability density of AQP0 
and KvAP in the membrane and 
average curvature preference, 
C (1/nm), as a function of the 
applied strain. e Spontaneous 
mean membrane curvature 
around AQP0 and KvAP in 
the zero strain bilayers. Each 
independent simulation was 
run for 30 μs, and the last 20 μs 
was analyzed in 2.5-μs blocks. 
Systems were built with insane 
(Wassenaar et al. 2015) using 
the Martini 2.2 parameter set 
(de Jong et al. 2013; Marrink 
et al. 2007). Minimization, equi-
libration, and production were 
carried out with GROMACS 
2020 (Abraham et al. 2015) as 
previously described (Cino et al. 
2021). Protocols for membrane 
buckling and data analysis 
followed established methods 
(Boyd et al. 2017) and in-house 
software (Barreto-Ojeda 2021)
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the presence of specific lipid types and domains (Bezanilla 
et al. 2015; Head et al. 2014).

Molecular-level details of vital processes that take place 
in the membranes can now be investigated using molecu-
lar dynamics (MD) simulations, and recent reviews pro-
vide a comprehensive overview of the challenges in this 
field and the mechanistic details of membrane proteins and 
their interplay with lipids that can be revealed with simu-
lations (Corradi et al. 2019; Marrink et al. 2019; Muller 
et al. 2019). Here we have highlighted three applications of 
MD simulations to specific biophysical questions based on 
lipid-protein interactions. The first one shows that relatively 
small changes in local lipid concentration around a given 
protein result in a unique environment for each protein, with 
biophysical properties that differ from a bulk lipid environ-
ment and may give rise to long-range organizational effects 
in the membrane as a whole. Our study of GPCRs shows 
that the lipid environment around evolutionarily related pro-
teins is on the one hand less different than the wide range 
of proteins in the previous section but still shows significant 
differences. This work also showed that families of closely 
related GPCRs are more similar in their environment than 
more distant relatives and shows that the local lipid environ-
ment can be conformation dependent. The third example 
hints at a more dramatic conformation-dependent effect. We 
showed that two proteins of different shape partition into 
areas of different curvature. Thus, proteins modify the local 
curvature of a membrane but this also provides a driving 
force for partitioning to specific areas. All three examples 
are at a relatively global level, although the GPCRs also 
show clear binding sites for cholesterol and PIP lipids. In 
other recent work, we targeted channels that play a role in 
cardiac arrhythmias and we identified more specific binding 
sites for lipid and lipid-like ligands, including ceramides that 
bind and modulate the HERG potassium channel (Miranda 
et al. 2021) and poly-unsaturated fatty acid derivatives that 
modulate the KCNQ1 potassium channel (Yazdi et al. 2021).

There are a number of areas where technical progress 
would be desirable. The studies we highlighted all use 
the Martini force field, a commonly used coarse-grained 
force field based on a four-to-one mapping scheme, where 
each particle represents approximately four heavy atoms. 
This design of the force field provides a smoother energy 
surface with a reduced number of degrees of freedom, 
thus allowing to reach time scales of tens to hundreds of 
microseconds (de Jong et al. 2013; Marrink et al. 2007; 
Marrink and Tieleman 2013). However, sampling is a 
major concern in atomistic and coarse-grained simula-
tions in general, but specifically for lipid-protein inter-
actions, the time scale is limited by the diffusion rates 
of lipids. A pipeline that incorporates atomistic simula-
tions based on previous Martini sampling is a compromise 
to obtain more detail, but even with the special purpose 

Anton supercomputer for molecular dynamics simulations 
(Shaw et al. 2014), atomistic simulations are limited typi-
cally to microseconds. Although computers will no doubt 
continue to become faster, there is room for improvement 
in both sampling and coarse-grain models. We recently 
showed that for Martini simulations of lipid mixtures, it is 
possible to greatly increase sampling by randomly swap-
ping lipids across the system rather than waiting for them 
to diffuse (Cherniavskyi et al. 2020). Although an exten-
sion to protein systems is not straightforward, this seems 
worthwhile to pursue. Martini has been widely adopted 
to simulate lipid-protein systems, with most papers using 
Martini 2. There are limitations to this approach (Ales-
sandri et al. 2019; Corradi et al. 2019; Marrink et al. 2019; 
Muller et al. 2019). Recently, a major update of the force 
field has enabled mixed resolutions (Souza et al. 2021), 
and a much more accurate description of small molecules 
(Souza et al. 2020) and further development is ongoing 
on improved descriptions of lipids and proteins. Martini 3 
retains the speed advantage of Martini but promises addi-
tional accuracy in detailed interactions as a further step 
between coarse-grain simulations and detailed molecular 
interactions.

MD simulations clearly can give very detailed informa-
tion about lipid-protein interactions. One challenge is to 
improve the crosstalk with experimental studies. In part, this 
is due to the importance of simulating more realistic mem-
brane compositions for longer time scales, but also the tech-
nical challenge in accurately identifying specifically bound 
lipids and the challenge in sharing simulation results. The 
first two sections above describe dozens of simulations, but 
analysis in published papers is limited by space and imagi-
nation, although there is much more data available in the 
raw simulation files. To simplify the analysis of lipid-protein 
interactions and system-independent visualization of results, 
including results not highlighted in papers, we have devel-
oped ProLint, an open-source webserver and set of tools 
that completely automates analysis and visualization of 
lipid-protein interactions (Sejdiu and Tieleman 2021). The 
visualization application linked (Fig. 2) above are part of 
ProLint (www.​proli​nt.​ca) and they highlight its capability 
in making simulation results available to the entire scientific 
community. We hope that ProLint’s ability to visualize lipid-
protein interactions using different web-based applications 
will make MD-generated data more accessible to experimen-
talists and encourage discussions, motivate collaborations, 
and accelerate future research in lipid-protein interactions.
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