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Abstract
How proteins respond to pulling forces, or protein nanomechanics, is a key contributor to the form and function of biological
systems. Indeed, the conventional view that proteins are able to diffuse in solution does not apply to the many polypeptides that
are anchored to rigid supramolecular structures. These tethered proteins typically have important mechanical roles that enable
cells to generate, sense, and transduce mechanical forces. To fully comprehend the interplay between mechanical forces and
biology, we must understand how protein nanomechanics emerge in living matter. This endeavor is definitely challenging and
only recently has it started to appear tractable. Here, I introduce the main in vitro single-molecule biophysics methods that have
been instrumental to investigate protein nanomechanics over the last 2 decades. Then, I present the contemporary view on how
mechanical force shapes the free energy of tethered proteins, as well as the effect of biological factors such as post-translational
modifications and mutations. To illustrate the contribution of protein nanomechanics to biological function, I review current
knowledge on the mechanobiology of selected muscle and cell adhesion proteins including titin, talin, and bacterial pilins.
Finally, I discuss emerging methods to modulate protein nanomechanics in living matter, for instance by inducing specific
mechanical loss-of-function (mLOF). By interrogating biological systems in a causative manner, these new tools can contribute
to further place protein nanomechanics in a biological context.
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Mechanical forces in biology: the role
of protein nanomechanics

Biological systems generate and respond to mechanical
forces, determining cell and tissue behavior in health and dis-
ease (Guck 2019; Hannezo and Heisenberg 2019; Matamoro-
Vidal and Levayer 2019; Roca-Cusachs et al. 2017;
Saucerman et al. 2019; Vining and Mooney 2017; Zhu et al.
2019). Classical examples include muscle atrophy induced by
long-duration spaceflights (Fitts et al. 2010), brain damage
caused by concussion events (Hirad et al. 2019), and cardiac
hypertrophy due to elevated blood pressure (Drazner 2011).
The interplay between mechanical forces and biology in-
volves processes of active force generation by cells but also
dedicated mechanisms that sense (mechanosensing) and trans-
late (mechanotransduction) mechanical forces into the lan-
guage of the cell, which is written in biochemical and

metabolic words (Saucerman et al. 2019). The field of
mechanobiology, which is concerned with the study of me-
chanical forces in biology at the molecular, cellular, and or-
ganismal scales, has already led to several paradigm shifts.
These include the observation that stem cell differentiation is
determined by the stiffness of the extracellular matrix (ECM)
(Engler et al. 2006), that mechanical forces are fundamental
for development (Mammoto et al. 2013; Petridou et al. 2017),
that changes in cell and tissue mechanics are important for the
onset and evolution of diseases like cancer (Broders-Bondon
et al. 2018), that gene expression depends on the mechanics of
the nucleus (Shin et al. 2018; Tajik et al. 2016), and that
during some bacterial infections, the fight between host and
pathogen is mainly mechanical (Persat et al. 2015). These new
insights have been enabled by several technological develop-
ments, including production of cell-culture-compatible
hydrogels with tunable mechanical properties (Caliari and
Burdick 2016), force-sensing methods at the cellular (Cost
et al. 2019; Prevedel et al. 2019) and molecular (Neuman
and Nagy 2008) levels, tools to probe cell mechanics (Roca-
Cusachs et al. 2017), and nano- and microfabrication of cell
substrates with controlled geometries and their integration into
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microfluidics platforms for 2D and 3D cell culture (Castiaux
et al. 2019; Ermis et al. 2018).

The evolving view is that the landscape of force sensing
and force generation mechanisms by cells is broad, highlight-
ing the fact that cells have to ensure correct processing and
integration of different mechanical signals for optimal fitness,
proliferation, differentiation, and migration (De Pascalis and
Etienne-Manneville 2017; Echarri et al. 2019; Hannezo and
Heisenberg 2019; Matamoro-Vidal and Levayer 2019; Roca-
Cusachs et al. 2017; Saucerman et al. 2019; Yim and Sheetz
2012). Several molecular mechanisms contribute to
mechanosensing and mechanotransduction, including mem-
brane tension sensing by mechanosensitive ion channels, flow
sensing by extracellular mechanosensors, modulation of the
actomyosin cytoskeleton, and force sensing by load-bearing,
tethered proteins (del Rio et al. 2009; Douguet and Honoré
2019; Echarri et al. 2019; Fu et al. 2017; Murrell et al. 2015;
Orr et al. 2006; Puchner et al. 2008; Schönfelder et al. 2018;
Valle-Orero et al. 2017a) (Figure 1). This review focuses on
the behavior of proteins under force, or protein
nanomechanics, which is relevant not only to understanding
protein-based mechanosensing but also organelle integrity,
cell adhesion, and muscle function (Figure 1). For over 2
decades, and using different single-molecule approaches, the
protein nanomechanics field has gathered extensive informa-
tion on how force affects the conformational dynamics of
proteins. This knowledge has generated hypotheses about
how protein nanomechanics influence biology and vice versa;
however, these hypotheses have been difficult to test experi-
mentally in a direct manner due to the lack of appropriate
tools. In the next sections, I introduce experimental ap-
proaches to study protein nanomechanics and summarize fun-
damental concepts that are now well established in the field,
including how different factors influence the free energy land-
scape of a protein under force. Finally, I review emerging

developments to examine the role of protein nanomechanics
in living systems. Many laboratories have contributed to the
remarkable expansion of the protein nanomechanics field. I
have tried to cite the most relevant advances, but I must apol-
ogize for any unintended omission.

Single-molecule force spectroscopy methods
to study protein nanomechanics

Not every protein in its biological context is free to diffuse. On
the contrary, a fair fraction of them are naturally tethered to
cytoskeletal structures, organelles, and/or the ECM and, con-
sequently, subject to mechanical force. The physics of a pro-
tein under force has been unraveled thanks to single-molecule
force spectroscopy methods (Mora et al. 2020; Schönfelder
et al. 2018). Inspired by theoretical predictions on how an
end-to-end mechanical force could change the conformation
of a protein (Erickson 1994), three reports used single-
molecule atomic force microcopy (AFM) and optical tweezers
(OT) methods to demonstrate mechanical unfolding and ex-
tension transitions in domains belonging to the giant sarco-
meric protein titin (Kellermayer et al. 1997; Rief et al. 1997;
Tskhovrebova et al. 1997). For the ensuing 2 decades, AFM
became the gold standard method to characterize protein
nanomechanics, thanks to its relative simplicity and high
throughput (Popa et al. 2013b; Yang et al. 2020b). OT, al-
though more experimentally challenging, offers higher force
sensitivity and temporal resolution (Moffitt et al. 2008;
Neuman and Nagy 2008). More recently, magnetic tweezers
(MT) have reached the same level of sensitivity as OT but
with remarkable instrumental stability that enables week-
long studies on the same protein (Popa et al. 2016). Another
advantage of MT is that data acquisition can be parallelized
(Lof et al. 2019). To the best of my knowledge, other force

Figure 1. The role of protein nanomechanics in cell mechanosensing,
mechanotransduction, and force generation. Cells exploit different
mechano-active signaling pathways to produce, sense, and react to me-
chanical forces. Specialized membrane proteins can sense flow andmem-
brane tension resulting in biochemical signals and/or changes in mem-
brane permeability. Force generation relies on cytoskeletal machines.
Among them, sarcomeres present in striated myocytes are a paradigmatic

example. Protein nanomechanics is a main contributor to several of these
pathways, as exemplified by the role played by titin in force production
by sarcomeres, the contribution of lamin to the mechanical integrity of the
nucleus and the genome, or the mechanosensing function of integrins and
talin in cell/ECM interaction, and that of cadherins/α-catenin in cell-cell
junctions
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spectroscopymethods with parallelization capabilities, includ-
ing centrifugal force spectroscopy (Yang et al. 2016) and
acoustic force spectroscopy (Ozcelik et al. 2018; Sitters et al.
2015), have yet to be applied to the study of protein
nanomechanics.

The experimental design in AFM, OT, and MT is similar
(Figure 2). In the three techniques, a purified protein is teth-
ered between a fixed surface and a mobile element, whose
displacement results in the application of mechanical force
to the anchored protein. In AFM, the protein of interest is
tethered between the tip of an AFM cantilever and a surface
that can be retracted with sub-nanometer precision, thanks to
piezoelectric actuators (Figure 2a). Piezo-driven retraction re-
sults in the extension of the tethered protein, and the concom-
itant bending of the cantilever, which upon calibration, can be
used to calculate the force experienced by the protein (Slattery
et al. 2014). In AFM, the use of molecular fingerprints, typi-
cally based on the repetitive unfolding of serially linked pro-
tein domains, ensures identification of successful single-
molecule events (Li et al. 2000b; Li et al. 2005). In addition,
feedback systems enable force-clamp AFM measurements by
adjusting the extension of the piezoelectric actuator to achieve
the desired force set point (Schlierf et al. 2004). In pulling
experiments by OT, the protein of interest needs to be
derivatized to include DNA handles, which are then attached
to micrometer-sized polystyrene beads (Cecconi et al. 2005).
In a typical OT experiment, one of the beads is trapped by a
highly focused laser beam, while the other one is suctioned by
a micropipette (or, alternatively, also trapped by laser light)
(Figure 2b) (Moffitt et al. 2008). Displacement of the laser trap

relative to the micropipette strains the DNA/protein adduct.
Force is determined from the position of the trapped beads,
and as in AFM, there is possibility to achieve constant force
measurements (Moffitt et al. 2008). Time resolution in OT can
be as low as a few μs (Neupane et al. 2016). InMT, the protein
of interest is tethered to a glass surface and a paramagnetic
micrometer-sized polystyrene bead (Liu et al. 2009). Force is
applied by approaching a magnet to the sample, which results
in tether extension (Figure 2c). The relative position of the
bead with respect to reference beads glued to the surface is
determined from the diffraction pattern of the beads under a
light microscope (Popa et al. 2016). This image analysis is
time-consuming and results in limited bandwidth. An advan-
tage of MT over OT and AFM is that there is no requirement
for feedback systems to measure at constant force.

The field of force spectroscopy has greatly benefited from
computational approaches, in particular Steered Molecular
Dynamics (SMD) simulations (Do et al. 2018; Marszalek
et al. 1999). By simulating the effect of pulling forces on
proteins, SMD methods have the ability to identify unfolding
pathways and intermediate states (mechanical clamps)
(Marszalek et al. 1999). Importantly, SMD can be used to
probe pulling geometries that are not accessible in experi-
ments (Echarri et al. 2019). By defining force fields and pro-
tein models to different degrees of detail, simulations can
reach several levels of precision and speed. The partnership
between SMD and experimental force spectroscopy has be-
come commonplace to investigate protein nanomechanics
(Echarri et al. 2019; Milles et al. 2018a; Suay-Corredera
et al. 2021b). However, it is important to realize that

Figure 2. Single-molecule force spectroscopy methods to probe protein
nanomechanics. aAtomic force microscopy (AFM). An octameric repeat
of the protein of interest (in orange) is tethered between the sharp tip at the
end of a flexible cantilever (in black) and a cover slip placed on top of a
piezoelectric actuator. Retraction of the actuator generates a pulling force,
which is sensed from the bending of the cantilever. A covalent anchoring
to the cantilever (e.g., HaloTag-based) is shown in green and black.
Attachment to the cover slip can be established by different methods
including Cys-Au bonds (represented here) or through polyHistidine/
Ni-NTA interactions. b Optical tweezers (OT). The protein of interest is
anchored to two polystyrene beads through DNA handles taking

advantage of non-covalent interactions such as biotin/streptavidin (not
shown). In OT, at least one bead is trapped by highly focused laser light
(blue). Retraction of the other bead, which can be attached to a micropi-
pette or alternatively also trapped by light, generates a pulling force. Force
is measured from the position of the bead in the laser trap. c Magnetic
tweezers (MT). A tetrameric repeat of the protein of interest is tethered
between a glass surface (covalent anchoring is represented here) and to a
paramagnetic bead. Attachment to the bead can be achieved using differ-
ent covalent and non-covalent chemistries (not shown). Force is produced
by a magnetic field generated in the proximity of the sample chamber.
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computational constraints in SMD result in simulated time-
scales that can differ from those probed experimentally by
several orders of magnitude.

Force spectroscopy methods are in constant evolution. For
instance, force sensitivity and time resolution in AFM can be
greatly improved by the use of carefully designed, very soft
cantilevers (Edwards et al. 2017; Yu et al. 2017). High-speed
AFM setups can now study protein mechanical unfolding at
mm/s speed, which is in the range probed in SMD simulations
(Rico et al. 2013). A challenge in force spectroscopy by AFM
results from inaccuracies in cantilever calibration (Wagner
et al. 2011). However, it has been demonstrated that the accu-
racy of relative AFM measurements can be increased by con-
comitant measurements, which can be achieved by
multiplexing (Otten et al. 2014) or by orthogonal fingerprint-
ing strategies (Pimenta-Lopes et al. 2019). Recent instrumen-
tal development in OT enables simultaneous measurement of
fluorescence during mechanical unfolding/folding transitions
(Ganim and Rief 2017). Of note, recent ultra-resolution opti-
cal tweezer–based measurement of germanium nanospheres
has indicated the possibility of examining protein
nanomechanics with unprecedented detail (Sudhakar et al.
2021). Regarding MT, optimization can push bandwidth over
10 kHz (Tapia-Rojo et al. 2019). Indeed, in combination with
magnetic tape heads to trigger fast force modulation, MT can
capture short-lived states in protein folding (Tapia-Rojo et al.
2019) and the response of protein mechanosensors to well-
defined force perturbations (Tapia-Rojo et al. 2020b).

Implementation of efficient tethering strategies has been
key to the success of force spectroscopy, and it is still a very
active area of research (reviewed in Yang et al. 2020b).
Different from MT and OT, AFM measurements can be car-
ried out by using non-specific tethering strategies (Echelman
et al. 2016; Rief et al. 1997). However, the development of
specific tethering methods has dramatically improved both the
yield and quality of data acquisition in AFM (Yang et al.
2020b). Non-covalent tethering methods are widespread and
include systems based on biotin-avidin/streptavidin binding
(Cecconi et a l . 2005; Rivas-Pardo et al . 2016) ,
polyHistidine/Ni-NTA interaction (Alsteens et al. 2013), or
on specific recognition by antibodies (Rivas-Pardo et al.
2016). A disadvantage of non-covalent tethering strategies is
their limited resistance to pulling forces, which poses a prob-
lem when studying mechanically stable proteins (Echelman
et al. 2016). Notable exceptions include the high stability of
cohesin-dockerin and SdvG-Fgβ interactions (Milles et al.
2018a; Schoeler et al. 2014). Alternatively, a handful of spe-
cific covalent tethering methods leading to well-defined
pulling geometries have been demonstrated and used in
AFM and MT experiments. These methods exploit thiol-gold,
thiol-maleimide, HaloTag (Popa et al. 2013a; Taniguchi and
Kawakami 2010), sortase, ybbR-CoA (Durner et al. 2017),
OaAEP1 (Deng et al. 2019), SNAP tag (Kufer et al. 2005),

non-canonical amino acid (Yang et al. 2020a), and isopeptide
bond (Alonso-Caballero et al. 2021; Zakeri et al. 2012) chem-
istries. Given the complementary information that can be ob-
tained by AFM, OT, and MT, looking to the future, it will be
interesting to develop specific covalent tethering strategies
that can probe the same protein preparation with different
force spectroscopy techniques.

The free energy of a protein under force

Force spectroscopy methods have shown that tethered pro-
teins are more than rigid scaffolds. In simple terms, the re-
sponse of proteins to a pulling force can be split into entropic
and enthalpic contributions (Figure 3a, b) (Li et al. 2002). In
the former, random coil polypeptide regions and serially
linked protein domains behave as simple springs that adapt
their extension (x) to the pulling force (F) in an elastic manner.
Indeed, the elastic behavior of random coil polypeptides fol-
lows predictions by polymer physics models such as the
worm-like chain (Bustamante et al. 1994) (Figure 3c), which
is given by:
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In Equation 1, kB is the Boltzmann constant, T is the abso-
lute temperature, and Lp and Lc are the persistence and contour
lengths of the polymer under strain. Regarding enthalpic con-
tributions, folded protein domains experience reversible
unfolding transitions that are highly force dependent
(Schlierf et al. 2004) (Figure 3a), and that can lead to modu-
lation of downstream signaling via differential exposure of
binding sites (del Rio et al. 2009).

Several theoretical developments have been put forward to
reconstruct underlying force-dependent free energy land-
scapes from force spectroscopy data (Mora et al. 2020;
Valle-Orero et al. 2017a). In this regard, two main consider-
ations need to be taken into account. First, an equilibrium
exists between folded and unfolded, but still compact, states
of proteins that applies also to tethered proteins (Garcia-
Manyes et al. 2009a; Tapia-Rojo et al. 2019). These transi-
tions between states with very similar end-to-end lengths may
not be observed from force spectroscopy recordings directly
(Figure 3d, e) (Rivas-Pardo et al. 2016). In addition, extended
states of polypeptides can only be reached upon a threshold
pulling force that overcomes their tendency to collapse by
hydrophobic interactions (Figure 3e) (Berkovich et al.
2010a; Berkovich et al. 2010b; Walther et al. 2007).

For many proteins, the rate of mechanical unfolding mea-
sured by AFM and MT has been shown to be exponentially
dependent on force, in agreement with the simple Bell-Evans
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model (Bell 1978; Liu et al. 2009; Popa et al. 2013a; Schlierf
et al. 2004). This model considers that mechanical force tilts
energy barriers according to the work it develops along the
reaction coordinate, resulting in an exponential dependency of
transition rates (r) (Figure 3f):

r ¼ ro � eF�Δx=kB�T ð2Þ

where ro is the transition rate in the absence of force and Δx
is the distance to the transition state. A modification of the
Bell-Evans model considers that the position of the transition
state changes with force, which can explain deviations from
simple exponential behavior at extreme forces (Dudko et al.
2008). In this regard, the I27 domain of titin has been shown to
mechanically unfold at much higher rates than expected when
pulled at forces <100 pN using MT (Yuan et al. 2017). It is
important to stress that when pulling experiments are conduct-
ed at forces higher than a few pN, collapsed states rapidly
transition to extended states. Hence, measured transition rates
are mostly dependent on the height of the energy barrier be-
tween native and unfolded, but still collapsed, states. In this

regard, more complex free energy models account for coordi-
nate reactions that are not directly observable in experiments
(Dudko et al. 2008) or for the heterogeneity of transition paths
due to static and dynamic disorder (Costescu et al. 2017; Kuo
et al. 2010). Theoretical developments have also been extend-
ed to serially linked arrays of domains, a configuration found
in many proteins with mechanical roles (Berkovich et al.
2018; Chetrit et al. 2020; Valle-Orero et al. 2015).

Modulation of protein nanomechanics

Multiple factors influence protein nanomechanics. Some of
these modulators are reversible and appear to be exploited
by cells to achieve functional adaptation. In this section, I
summarize the best-known determinants of protein
nanomechanics.

Polypeptide structure defines how proteins respond to me-
chanical force. As discussed above, random coil structures
behave in a purely elastic manner and are quite easily extend-
ed under force, while folded structures have intrinsic

Figure 3. Protein nanomechanics 101. a Simplified representation of a
protein under mechanical force, which depicts a random coil region as a
spring and a folded domain as a loop. The random coil region adapts its
length to force in an elastic manner (states 1 through 3), while the folded
domain only unfolds at high forces (states 2→3). b States 1 through 3 in
panel (a) are identified in a simulated single-molecule force-extension
plot. c Graphical representation of force-polymer length relationship ac-
cording to the worm-like chain model. d Simple two-state free energy
diagram underlying protein unfolding in the bulk. Please note that the
contour length of the folded and unfolded states is very similar. The
position of the transition state (ts) is indicated. e Simple free energy

diagrams of a protein at 0 and 10 pN pulling force considering extension
as the reaction coordinate. Extended states can only be observed at forces
that overcome the tendency of polypeptides to undergo hydrophobic col-
lapse (i.e., there is no free energy minimum corresponding to an extended
state at 0 pN). Since the folded/unfolded states have very similar contour
lengths, they cannot be observed directly in single-molecule pulling ex-
periments. f Graphical representation of the Bell-Evans model, which
considers that the height of the energy barrier decreases by FΔx when
force is applied in the direction of molecular extension. The position of
the transition state (ts) is indicated.
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mechanical resistance. For some proteins with mechanical
function, cells can express more than one isoform differing
in the proportion of random coil and folded domains
(Figure 4a). A paradigmatic example is titin, for which a va-
riety of isoforms can be expressed in myocytes contributing to
the passive mechanical properties of muscle tissue (Cazorla
et al. 2000; Freiburg et al. 2000; Neagoe et al. 2003). In addi-
tion, different protein folds show distinct mechanical proper-
ties. Typically, α-helical proteins have low mechanical stabil-
ity, while β-sheet-containing polypeptides are more resistant
to mechanical unfolding, especially if a parallel β-strand me-
chanical clamp is present (Figure 4b) (Sulkowska and Cieplak
2007). This different behavior of folded domains can be ex-
plained by the need to break hydrogen bonds to mechanically
unfold the polypeptide, which in the case of parallel β-strands
must occur simultaneously (Marszalek et al. 1999).

Since mechanical protein unfolding involves the rupture of
interactions present in the mechanical clamp, the mechanical
stability of a protein is highly dependent on the pulling geom-
etry (Figure 4c) (Brockwell et al. 2003; Carrion-Vazquez et al.
2003; Shank et al. 2010). Hence, if biophysical measurements
are to be extrapolated to the in vivo setting, it is important to
consider whether native pulling geometries match the experi-
mental ones (Echarri et al. 2019). Similarly, environmental
factors that perturb the free energy of a protein can lead to
nanomechanical modulation, including temperature (Botello
et al. 2009; Popa et al. 2011), pH (Edwards et al. 2021),
crowding (Yuan et al. 2008), surrounding ions (Labeit et al.

2003; Muddassir et al. 2018), and osmolytes (Aioanei et al.
2012; Garcia-Manyes et al. 2009b; Popa et al. 2013b)
(Figure 4d). Ligand binding can also modulate protein
nanomechanics, as demonstrated for metals and protein part-
ners (Cao and Li 2008; Cao et al. 2008a; Cao et al. 2008b;
Kotamarthi et al. 2015; Lof et al. 2019; Milles et al. 2018b;
Verdorfer and Gaub 2018) (Figure 4d). The interplay between
ligand binding and protein mechanics also enables
mechanosensingmechanisms based on force-dependent expo-
sure of binding sites (del Rio et al. 2009; Tapia-Rojo et al.
2020a).

Point mutations targeting both mechanical clamps and other
protein regions can result in altered polypeptide mechanical
stability (Li et al. 2000a; Sadler et al. 2009) or, more unpre-
dictably, in changes in protein folding (Li et al. 2000a)
(Figure 4e). Since mutations in force-bearing proteins cause
human disease (Nakamura et al. 2011; Schreiber and
Kennedy 2013; Yotti et al. 2019), it has been proposed that
alteration of protein nanomechanics can contribute to patho-
genesis (Anderson et al. 2013; Ma et al. 2009; Suay-Corredera
et al. 2021b). Similarly, protein nanomechanics can be pro-
foundly modulated by post-translational modifications
(PTMs). Typical PTMs are reversible biochemical additions
to proteins, which can be exploited to modulate protein activity
in a fast and highly specific manner (Barber and Rinehart
2018). Specifically, the persistence length of random coil re-
gions can be modulated by phosphorylation (Hidalgo et al.
2009; Kruger et al. 2009; Lanzicher et al. 2020) (Figure 4f),

Figure 4. Modulators of protein nanomechanics. a Proportion of random
coil set the stiffness of proteins under mechanical force. b The structure of
mechanical clamps determines protein mechanical stability. c Illustrative
example histograms of unfolding forces of the same protein pulled from
two different geometries. d The environmental factors in this panel have
all been shown to affect protein nanomechanics. e A mutation (indicated
by an asterisk) can alter mechanical stability and/or folding of the targeted
domain. f Phosphorylation-induced changes in persistence length result in

modulation of protein nanomechanics, as visualized in these two worm-
like chain plots in which persistence length increases in the phosphory-
lated state (+P) as compared to the non-phosphorylated polypeptide (-P),
resulting in protein softening. g Worm-like chain plot of a reduced (SH)
and disulfide-containing (SS) extended polypeptide, showing marked
stiffening induced by oxidation as a consequence of shorter contour
length. h S-glutathionylation of cryptic cysteines in unfolded domains
blocks refolding and therefore softens protein domains.
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while crosslinking modifications such as isopeptide (Alegre-
Cebollada et al. 2010; Echelman et al. 2016) or disulfide bonds
(Ainavarapu et al. 2007; Carl et al. 2001) reduce the effective
contour length of proteins resulting in marked stiffening
(Figure 4g). Disulfides can also influence the mechanical sta-
bility of a protein in a context-dependent manner (Giganti et al.
2018; Manteca et al. 2017a; Manteca et al. 2017b) and are
positive modulators of protein folding (Eckels et al. 2019;
Kosuri et al. 2012). Redox modifications other than disulfide
bonds, such as S-glutathionylation, are also potent modulators
of protein nanomechanics by inhibiting refolding, which
softens targeted domains (Figure 4h) (Alegre-Cebollada et al.
2014). Interestingly, redox modifications that control protein
structure can be exploited to modulate protein nanomechanics
(Peng et al. 2012). The rich interplay between protein bio-
chemistry and nanomechanics is also exemplified by the me-
chanical effects of disulfide isomerization, which can be
trigged bymechanical force resulting in force-dependent nano-
mechanical modulation (Alegre-Cebollada et al. 2011b;
Giganti et al. 2018). Intriguingly, extended polypeptides age
in a time scale of minutes to days losing their ability to fold
(Valle-Orero et al. 2017b). Although the mechanisms behind
this observation are not completely understood, it is possible
that accumulating chemical modifications could contribute to
the inability of the protein to refold, similar to the effects of S-
glutathionylation described above.

Key examples of proteins under mechanical
force

There is a long list of force-bearing proteins involved in force
generation, sensing, and transduction whose nanomechanics
can be regulated by the mechanisms described above. In the
following sections, I review current knowledge on the biolog-
ical function and mechanical activity of selected force-bearing
proteins. Beyond these specific examples, it is important to
stress that arguably all proteins are subject to mechanical force
when synthesized by the ribosome (Goldman et al. 2015) and
when being translocated through narrow channels, for in-
stance during proteasomal degradation (Alegre-Cebollada
et al. 2011a; Aubin-Tam et al. 2011; Maillard et al. 2011).

Muscle proteins

Striated muscle, including both skeletal and cardiac muscle,
has been a prime tissue to investigate the function of proteins
under load, thanks to its highly ordered structure based on the
regular assembly of sarcomeres (Wang et al. 2021). Indeed,
muscle has been a traditional model tissue that has led to
important discoveries in biology, such as actomyosin contrac-
tion and the sliding filament theory (Szent-Gyorgyi 2004), or
the electromechanical coupling controlling contraction

(Dulhunty 2006). It is remarkable that macroscopic observa-
tions, such as the Frank-Starling law describing how the ven-
tricular function of the heart is adjusted to the filling pressure,
can be modeled down to molecular events involving compo-
nents of the sarcomere (John Solaro 2007).

Among the different tethered polypeptides in the sarco-
mere, the giant protein titin (also known as connectin) has
captured the attention of muscle researchers since its discov-
ery (Freundt and Linke 2019; LeWinter and Granzier 2010;
Maruyama et al. 1977; Wang et al. 1979). It is now well-
established that mechanically induced conformational chang-
es in titin’s I-band region are a main determinant of the stiff-
ness of cardiomyocytes, with potential implications in heart
physiology and disease (Freundt and Linke 2019; LeWinter
and Granzier 2010). Titin localizes to the sarcomeres of stri-
atedmuscle cells, where it bridges the Z- andM-lines ensuring
structural integrity of contracting myocytes (Figure 5a).
Beyond this structural function, titin is also a signaling hub
through an extensive network of protein interactors (Linke
and Hamdani 2014). During the contraction/relaxation cycles
of myocytes, titin molecules experience varying mechanical
forces that lead to uncoiling/recoiling of the N2-Bus and the
PEVK random coil regions and also straightening and
unfolding/refolding of serially linked immunoglobulin-like
(Ig) domains in the I-band (Figure 5a) (Li et al. 2002; Rivas-
Pardo et al. 2020). In addition to their contribution to sarco-
mere stiffness, it is important to realize that these force-
induced conformational changes can also alter the binding
affinities for interactors, including signaling and effector mol-
ecules such as transcription factors. For instance, there is an
inactive kinase domain in the M-line region of titin that is
predicted to become activated under mechanical load
(Puchner et al. 2008). More recently, the role of folding tran-
sitions during active contraction of sarcomeres has been pro-
posed (Rivas-Pardo et al. 2016) and debated (Bianco et al.
2016; Eckels et al. 2018).

The fundamental role of titin for the fitness of myocytes is
exemplified by the following facts: (i) mutations in titin are the
most common cause of human dilated cardiomyopathy
(Herman et al. 2012) and are also responsible for several mus-
culoskeletal conditions (Savarese et al. 2016); (ii) titin defi-
ciency in mice causes embryonic lethality (Gotthardt et al.
2003; Radke et al. 2019); (iii) titin-deficient cells cannot pro-
duce functional sarcomeres and do not fully differentiate into
myocytes (Hinson et al. 2015; Musa et al. 2006); and (iv) titin
is exquisitely regulated, both at the transcriptional and the
post-translational levels (LeWinter and Granzier 2010; Linke
and Hamdani 2014). At the transcriptional level, titin primary
RNA transcripts undergo complex alternative splicing, as in-
troduced in the previous section. There are two major titin
isoforms in the adult myocardium, N2BA and N2B. The
N2BA isoform is softer than N2B because it is longer and
contains a higher proportion of random coil regions.
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Modulation of the content of titin isoforms is well documented
under several physiological and pathological situations,
resulting in changes of the mechanical output of the tissue as
in the case of hypertensive cardiomyopathy (Linke and
Hamdani 2014). A more rapid adjustment of the mechanical
properties of titin can be achieved by post-translational mod-
ifications like phosphorylation, acetylation, and oxidation,
which in turn can also be influenced by force (Abdellatif
et al. 2021; Herrero-Galán et al. 2020; Herrero-Galán et al.
2019; Huang et al. 2020; Linke and Hamdani 2014; Loescher
et al. 2020).

As for other proteins under mechanical load, most of what
we know about the mechanical role of titin in striated muscles
derives from correlative observations. To provide mechanistic
insights in vivo, a few mouse lines in which specific mechan-
ically active segments of titin are constitutively knocked out
have been characterized. The targeted regions include the N2-
Bus and the PEVK random coil regions (Brynnel et al. 2018;
Granzier et al. 2009; Radke et al. 2007), the proximal tandem
Ig domains (Chung et al. 2013), and the I-A band junction
(Granzier et al. 2014). Overall, these models have shown that
the myocyte is quite adaptable to chronic perturbations of titin
mechanical architecture through a range of compensatory
changes. For instance, deletion of several PEVK exons in
skeletal muscle leads to reduced sarcomere length, which re-
stores the force experienced by titin molecules (Brynnel et al.
2018). At the organismal level, these models show a range of
phenotypes, including diastolic dysfunction, atrophy,

ventricle dilatation, and hypertrophy, which are hypothesized
to result from altered protein-protein interactions and faulty
mechanosensing (Granzier et al. 2009). In conclusion, results
with available mouse models suggest that dedicated
mechanobiochemical mechanisms of the myocyte ensure
proper activity of titin, but their molecular basis remains
elusive.

Other sarcomeric proteins are also under mechanical load
in vivo. For instance, myosin-binding protein C (MyBP-C),
located in the C-zone of sarcomeres, interacts with both thick
and thin filaments in such a manner that myofilament sliding
is predicted to generate load on the protein (Previs et al. 2012)
(Figure 5a). Although MyBP-C is much smaller than titin, the
mechanical organization in random coil structures and serially
linked folded domains is very similar (Karsai et al. 2011), as in
other sarcomere components such as the M-line protein
myomesin (Berkemeier et al. 2011) and obscurin (Manring
et al. 2017).

Mutations in titin and MyBP-C are well-established in-
ducers of different forms of human cardiomyopathy (Harris
et a l . 2011; Herman et al . 2012) . However , the
pathomechanisms induced by these mutations remain incom-
pletely understood. Prompted by the sophisticated nanome-
chanical design of these proteins and the fact that mutations
can change protein nanomechanics, there has been an interest
in examining if disease-causing variants can alter the
nanomechanics of titin and MyBP-C. Specifically,
arrhythmogenic-cardiomyopathy-causing mutation T16I was

Figure 5. Mechanical functions of key tethered proteins. a
Representation of one half-sarcomere, highlighting actin-based thin fila-
ments and myosin-containing thick filaments. Titin runs along the sarco-
mere from the Z- to the M-lines. MyBP-C is located at the A-band of
sarcomeres where it interacts both with thin and thick filaments. b Talin
interacts with actin filaments and adhesion proteins such as integrins.
Mechanical force unfolds talin domains resulting in the exposure of

binding sites for partners such as vinculin. c Adhesive pili in bacteria
withstand mechanical perturbations induced by flow and shearing. d
Filamin dimers bridge actin filaments and therefore are subject to me-
chanical force when there is relative movement between the filaments.
Similar to the talin/vinculin system, mechanical force induces the expo-
sure of cryptic binding sites in rod 2 domains.
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found to decrease the mechanical stability of the Ig10
domain of titin (Anderson et al. 2013), although this effect is
concomitant with a marked decrease in thermodynamic stabil-
ity (Bogomolovas et al. 2016). More recently, nanomechani-
cal alterations in mutant cardiac MyBP-C that cause hypertro-
phic cardiomyopathy have been detected. These alterations
occur in the absence of other pathogenic molecular pheno-
types (Suay-Corredera et al. 2021a; Suay-Corredera et al.
2021b). A decrease in mechanical stability at low forces was
detected for mutant R495W, which could reduce the braking
force exerted by mutant MyBP-C on actomyosin gliding. The
same study reported increased mechanical folding of mutant
R502Q.

Adhesion proteins

Protein nanomechanics is key for cell-cell and cell-ECM in-
teraction and adhesion, so it comes as no surprise that proteins
belonging to adhesion structures show highly specialized
nanomechanical architectures. A paradigmatic example is
found in how talin contributes to ECM rigidity sensing by
cells. Talin is associated to focal adhesions, where it bridges
the intracellular region of integrins and actin filaments
(Figure 5b) (Klapholz and Brown 2017). The biphasic
mechanosensing response of cells to ECM stiffness can be
explained by considering the interplay between force-
dependent ECM binding kinetics and the reinforcement of
focal adhesions induced by talin unfolding (del Rio et al.
2009; Elosegui-Artola et al. 2016; Haining et al. 2016). In
simple terms, when the stiffness of the ECM is high, pulling
forces generated by polymerizing actin induce the exposure of
cryptic binding sites in talin, which can be recognized by
adaptor proteins such as vinculin reinforcing focal adhesions.

In addition to cytoskeleton-associated proteins like talin,
cell-ECM adhesion is arguably dependent on the
nanomechanics of cell membrane adhesive proteins (Ju et al.
2016; Mikulska-Ruminska et al. 2017; Perez-Jimenez et al.
2014) and of constituent proteins of the ECM, including fi-
bronectin (Oberhauser et al. 2002; Smith et al. 2007) and
tenascin (Oberhauser et al. 1998) (Figure 1). Similar to titin,
the structure of these ECM proteins is based on serially linked
folded domains, suggesting that equivalent modes of protein
nanomechanics modulation also target the ECM. Recent ex-
periments suggest that, as for titin kinase, focal adhesion ki-
nase can also be activated by mechanical force (Bauer et al.
2019). Similar mechanosensing systems involving tethered
proteins likeα-catenin and cadherins ensure cell-cell adhesion
(Leckband and de Rooij 2014).

Bacteria also take advantage of refined protein
nanomechanics to ensure efficient adhesion to target tissues
(to sustain infection) or substrates (for instance to enable cat-
alytic processing of nutrients) (Figure 5c). For instance,
micrometer-long pili in Gram positive bacteria are composed

by a linear covalent assembly of pilin monomers on the bac-
terial surface (Mandlik et al. 2008). It is remarkable that the
domain organization of titin, ECM proteins, and Gram posi-
tive pili is so similar despite their very different biosynthesis.
Two distinctive features are found in Gram positive pili. First,
they are covalently capped with highly specific adhesive
pilins. These capping pilins can contain reactive chemical
groups that can be modulated by force to ensure covalent,
but reversible, binding to their targets (Alonso-Caballero
et al. 2021; Echelman et al. 2017). In addition, structural pilins
can contain self-catalyzed, intradomain isopeptide bonds.
These bonds can block totally (Alegre-Cebollada et al. 2010)
or partially (Echelman et al. 2016) pilin mechanical unfolding.
In the latter case, isopeptides enable very fast mechanical
refolding, which is compatible with a shock-absorber role
for isopeptide-containing pilins.

A common characteristic of adhesins from Gram positive
bacteria is their strong resistance to mechanical unfolding,
which can also be achieved by mechanical architectures in-
volving non-covalent bonds. For instance, the B domains in
Staphylococcal adhesins reach covalent-like mechanical sta-
bility via coordination of calcium ions (Milles et al. 2018b). In
addition, the structure of cohesin domains present in
cellulosomal complexes makes them highly resistant to me-
chanical unfolding (Valbuena et al. 2009; Verdorfer et al.
2017). Altogether, these results suggest strong evolutionary
pressure that leads to convergent mechanisms ensuring high
mechanical stability of Gram positive adhesins. It is tempting
to hypothesize that such mechanically strong folds help bac-
teria remain attached to their targets duringmechanical insults,
such as coughing or brushing. However, it remains unclear
why Gram negative bacteria show adhesive systems with very
different mechanical architectures. For instance, E. coli type I
pili are built from non-covalent helical assembly of monomers
and rely on helix uncoiling and recoiling to accommodate
changes in flow (Forero et al. 2006; Miller et al. 2006). The
mechanical stability of constituent pilin domains, although
lower than in Gram positive counterparts, is high enough to
ensure uncoiling of pili (Alonso-Caballero et al. 2018). Most
probably, different mechanical architectures of adhesins in
Gram positive and negative bacteria reflect adaptation to their
specific mechanical niches (Persat et al. 2015).

Other proteins under mechanical load

Other proteins beyond those participating in muscle contrac-
tion or cell adhesion operate under mechanical load. The func-
tion of these proteins can involve modulation of cytoskeletal
filaments by crosslinking, structural support of organelles, or
flow sensing. I have chosen three specific examples (filamin,
lamin and von Willebrand factor) to illustrate how protein
nanomechanics contribute to these seemingly different me-
chanical functions, although many other mechanical proteins
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fall in any of these categories (Johnson et al. 2007; Le et al.
2018; Ramm et al. 2014; Sawada et al. 2006).

Filamins are dimeric proteins able to crosslink actin fila-
ments at different locations in the cell (Razinia et al. 2012).
Similar to titin, filamin is composed by serially linked Ig do-
mains, although two different interdomain arrangements are
present (Figure 5d).While domains 1–15 (rod 1) show amostly
linear arrangement, domains 16–24 (rod 2) are more compact.
X-ray crystallography has uncovered a peculiar arrangement of
β-strands in domains belonging to rod 2, by which some Ig
folds are completed by β-strands that extend from adjacent
domains (Lad et al. 2007). This structural arrangement has been
proposed to play mechanosensory roles in filamin A. In partic-
ular, the β-strand extending from Ig20 that completes domain
Ig21 can be peeled off by low mechanical forces, resulting in
the exposure of binding sites for several downstream signaling
partners like the cytoplasmic tails of integrins (Figure 5d)
(Rognoni et al. 2012). The mechanical stability of the Ig do-
mains of filamin A has been measured using both AFM
(Furuike et al. 2001) and MT (Chen et al. 2011).

Lamin proteins are fundamental for the mechanical integ-
rity of the nuclear envelope (Gruenbaum and Foisner 2015)
and the genome (Cho et al. 2019). Lamin A self-associates
through specific multimerization regions that lead to a mesh-
work structure (Gruenbaum and Foisner 2015). Interestingly,
the levels of lamin A in the nucleus correlate with the stiffness
of the ECM (Swift et al. 2013). It remains to be investigated
how the different lamin domains contribute to the non-linear
mechanics of lamin filaments (Bera et al. 2014, 2016; Sapra
et al. 2020).

Von Willebrand factor is a sensor of blood shear and is
required for normal hemostasis (Sadler 1998). Molecular
mechanisms sustaining shear-flow-sensing involve force-
induced conformational changes and exposure of cryptic
cleavage sites, which ensure timely mechanical control of
the coagulation cascade (Arce et al. 2021; Fu et al. 2017;
Lof et al. 2019; Springer 2014; Zhang et al. 2009).

Moving the protein nanomechanics field
from correlations to causality

Newton’s law of universal gravitation ensures that, absent of any
other prevailing forces, if I let go of a ball, it will drop and hit the
ground. The subsequent effects are more difficult to predict and
depend on the specific type of ball, whether the ground is flat or
not, or if I am playing in the finals of the basketball World Cup.
This example mirrors the situation currently faced when trying
to understand the contribution of protein nanomechanics to
many aspects of physiology. As elaborated in the previous sec-
tions, single-molecule biophysics approaches have shown that
proteins under mechanical force experience reversible confor-
mational changes, which can be exploited by biological systems

to trigger downstream biochemical signals. However, the study
of mechanosensing by force-bearing proteins currently faces
challenges derived from the difficulties associated with modu-
lating protein nanomechanics in living cells. For instance, bio-
physical experiments have demonstrated that mechanical force
induces extended states of talin that expose new binding sites
(del Rio et al. 2009; Tapia-Rojo et al. 2020a), but it remains
impossible to examine how force modulates the interactome of
the protein in a cellular context. To overcome current barriers to
mechanistic progress, we need to develop tools able to modulate
protein nanomechanics in living cells (Guck 2019).

A number of innovative approaches have been implemented
to examine the role of protein nanomechanics in physiology.
These strategies are typically multidisciplinary, requiring inte-
gration of cell biology, tissue physiology, and biochemical and
biophysical experiments through modeling and computer sim-
ulations (Elosegui-Artola et al. 2016; Escribano et al. 2018; Fu
et al. 2017; Giganti et al. 2018; Li et al. 2002; Rahikainen et al.
2017; Schwarz 2017; Shamsan and Odde 2019). However,
these methods face limitations. For instance, Förster resonance
energy transfer (FRET) sensors can quantify mechanical ten-
sion across molecules, making modeling more accurate, but
cannot modulate protein nanomechanics in living cells (Cost
et al. 2019; Ham et al. 2019; Lemke et al. 2019; Roca-
Cusachs et al. 2017). Mechanistic knock-out (KO), knock-
down (KD), and overexpression tools can be used to alter the
levels of mechano-active proteins; however, these strategies
also interfere with non-mechanical functions, potentially com-
plicating the interpretation of results (Figure 6).

Emerging efforts to put protein nanomechanics in biological
context include the acute in vitro expression of mutants with
altered mechanical properties. This strategy has uncovered that
protein nuclear import depends on the nanomechanics of the
cargo, but not on its thermodynamic stability, a finding that can
be key for mechano-active transcription factors such as YAP
(Elosegui-Artola et al. 2017; Elosegui-Artola et al. 2016;
Infante et al. 2019). It has also become possible to control
mechanosensitive cell-surface receptors by nanoparticles
in vitro (Seo et al. 2016), a method that could potentially be
applied also to intracellular proteins. Very recently, strategies
based on the cleavage of mechanical proteins using light-
sensitive domains (Endo et al. 2019) or specific proteases
(Napierski et al. 2020; Rivas-Pardo et al. 2020) have been dem-
onstrated. In these approaches, specific proteolysis ceases force
transduction through the targeted protein, which blocks force-
induced protein conformational changes. Results so far are en-
couraging. For instance, severing a photocleavable cadherin
in vitro results in attenuated mechanotransduction at intercellu-
lar junctions (Endo et al. 2019). TEV-protease-mediated cleav-
age of cardiac MyBP-C causes mechanical dysregulation of
skinned cardiomyocytes leading to spontaneous contractile os-
cillations (Napierski et al. 2020). In a similar approach, TEV-
protease severing of titin led to specific quantification of the
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passive force generated by the protein in skinned myocytes
(Rivas-Pardo et al. 2020), as well as its contribution to sarco-
mere stability during active contraction (Li et al. 2020).

The results described above demonstrate that these new me-
chanical loss-of-function (mLOF) tools make it possible to eval-
uate biological response following acute protein nanomechani-
cal modulation (Figure 6). A number of limitations remain and
will need to be addressed to realize the full potential of mLOF
tools. For instance, light-induced cleavage can be difficult to
implement in vivo due to poor penetration of light in tissues,
while protease-based methods require the controlled expression
of proteases by living cells. However, the use of different spe-
cific proteases, including TEV, to control protein activity in vitro
and in vivo is well documented and results in no noticeable off-
target effects (Chung and Lin 2020; Harder et al. 2008; Kono
et al. 2014). An important limitation is the need to genetically
engineer cleavable sequences into the protein of interest, which
in the case of large proteins like titin requires laborious editing of
endogenous loci. Approaches based on engineering protease
specificity (Huang et al. 2016; Pethe et al. 2019) or on drugs
that modulate protein nanomechanics specifically are enticing
alternatives to be explored.

Concluding remarks

The field of protein nanomechanics has produced seminal con-
tributions regarding the behavior of proteins under a pulling
force, yielding highly accurate models of howmechanical force
shapes the free energy of proteins. This remarkable success has
been enabled by key experimental and theoretical

developments over the last 25 years. Nowadays, nanomechan-
ical probing of single proteins has become routine in many
laboratories. Current biophysical experiments often investigate
how protein nanomechanics is modulated by factors present in
living tissues or bymutations, including those that cause human
disease. However, instead of replicating in vivo conditions in
single-molecule force spectroscopy experiments, there is a
growing interest to do just the opposite, i.e., developing strate-
gies to modulate protein nanomechanics in living systems to
examine biological response. Among them, I anticipate that
protein-cleavage mLOF tools will open new windows of op-
portunity to investigate the connection between protein
nanomechanics and other biological functions. Efforts in this
direction include the generation of cell and animal models in
which protein nanomechanics can be specifically modulated at
will.
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Figure 6. Mechanical loss-of-
function (mLOF) to study teth-
ered proteins. a A generic force-
bearing, mechanosensing protein
containing both exposed (1) and
cryptic (2) signaling sites. The
activity of site 2 is force depen-
dent since mechanical load in-
duces its exposure via domain
unfolding. b Traditional KO/KD
systems get rid of the targeted
protein, which interferes both
with its mechanical and non-
mechanical functions (alterations
compared to wild-type are indi-
cated in bold type at the bottom).
In contrast, mLOF probes protein
mechanical functions specifically
by cleaving the protein and
locking it in a low-force
mechanosensing state.
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the laboratory of Prof. Julio M. Fernández at Columbia
University in New York. Fascinated by the extraordinary reso-
lution of single-molecule AFM and the quantitative treatment of
AFM data, he remembers reading with awe the 2006 PNAS
paper in which Prof. Fernández and colleagues described the
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to the presence of self-catalyzed isopeptide bonds, the first direct
observation of disulfide isomerization reactions in real time and
the realization that post-translational modification of cryptic res-
idues is a potent modulator of protein nanomechanics.
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among the first mLOF models (Rivas-Pardo et al. 2020).
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The Michèle Auger Award for Young
Scientists’ Independent Research

In late 2018, long time Editorial Board Member of
Biophysical Reviews journal, Professor Michèle Auger,
sadly succumbed to illness. As a mark of our respect for
Michèle, the Biophysical Reviews’ Editorial Board, together
with the kind support of Springer-Nature Corporation, created
a perpetual memorial award in honor of her life and service.
The “Michèle Auger Award for Young Scientists’
Independent Research” is to be granted each year to a single
candidate performing biophysical research, who at the time of
application is under 40 years of age. The award consists of a
plaque and a free personal subscription to the journal along
with an invitation to submit a single author review article to
Biophysical Reviews.

Biography: Michèle Auger (1963–2018)

Born in GrandMère, Quebec, and raised in TroisRivières,
Michèle Auger enrolled first in biophysics at the Université
du Québec à Trois-Rivières, only to later transfer to chemistry.
After obtaining her B. Sc. in 1985, Michèle joined the group
of Prof. Ian C.P. Smith at the University of Ottawa/National
Research Council of Canada to pursue her Ph.D. studies in
biophysics. After graduating from the University of Ottawa in
1990, Michèle refined her skills in solid state NMR as a post-
doctoral fellow in the group of Prof. Robert G. Griffin at the
Massachusetts Institute of Technology. Michèle joined the
Department of Chemistry at the University of Laval in 1991
as an assistant professor and recipient of an NSERCWomen’s
Faculty Award. She was promoted to associate professor in
1996 and then professor in 2000 where she remained until
2018. Michèle’s research involved using solid state NMR to
study (i) the interaction of proteins, peptides, and drugs with
phospholipid membranes and (ii) biopolymers such as spider
silk. Michèle served internationally on the Council of the
International Union of Pure and Applied Biophysics from
2011 to 2017 and was an editorial board member of
Biophysical Reviews journal from 2011 to 2018. Brilliant,
creative, and dedicated to the scientific and academic commu-
nities, Michèle displayed admirable professional, ethical, and

leadership qualities. She is remembered as a dedicated, gen-
erous, and inspirational scientist who touched the lives of
many through her friendship, teaching, and kindness.

(This short foreword is adapted from a longer memorial
published on the IUPAB Newsletter #70: http://iupab.org/
wp-content/uploads/2019/02/IUPAB-news-70-2-1.pdf)
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