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Abstract
Boosted by the simplicity of their synthesis and low toxicity, cholinium and amino acid-based ionic liquids have attracted the
attention of researchers in many different fields ranging from computational chemistry to electrochemistry and medicine. Among
the uncountable IL variations, these substances occupy a space on their own due to their exceptional biocompatibility that stems
from being entirely made by metabolic molecular components. These substances have undergone a rather intensive research
activity because of the possibility of using them as greener replacements for traditional ionic liquids. We present here a short
review in the attempt to provide a compendium of the state-of-the-art scientific research about this special class of ionic liquids
based on the combination of amino acid anions and cholinium cations.

Keywords Ionic liquids . Biocompatible ionic liquids . Amino acids . Cholinium

Introduction

Amino acid (AA)-based ionic liquids (AAILs) have emerged
recently as a versatile and peculiar class of ionic liquids which
have attracted attention from different fields of research owing
to their biocompatibility, to the relative low cost of their syn-
thesis, and to the availability of the reagents (Fukumoto and
Ohno 2006; Ohno and Fukumoto 2007; Kirchhecker and
Esposito 2016; Herrera et al. 2018; Ruivo et al. 2018). Ionic
liquids (ILs) are nowadays widely known as a very varied and
multifaceted set of different materials whose potential appli-
cations range from electrochemistry to medicine and from
industrial processes to biomass processing agents. It is not
easy to tell precisely what properties define an IL. In the recent
past, ILs have been loosely defined as salts with low melting
or glass transition points which display all of the following
functional physico-chemical properties: solvation capabilities,
ionic conductivity, low vapor pressure, and high thermal sta-
bility (Hayes et al. 2015). It is also true that, due to the sheer
number of available molecular ion combinations that give rise
to an IL, many of them show only a subset of these generic
properties. For a more in-depth discussion of which properties
actually define an ionic liquid, see the discussion by

MacFarlane and Seddon (2007). Since their inception in the
research field (Chum et al. 1975), ILs have been sometimes
considered inherently “green” solvents, while recent develop-
ments have shown that their biodegradability can be low and
their toxicity very high, especially for the ones which are
based on fluorine compounds (Scammells et al. 2005;
Petkovic et al. 2011).

Once realized that ILs are less environment-friendly than
expected, part of the IL research has steered toward the quest
for green and truly biocompatible ILs. One of the earliest
examples of a fully biocompatible ionic compound can be
traced back in 2004 (Abbott et al. 2004) where the coupling
of choline chloride with organic, naturally occurring sub-
stances such as succinic and oxalic acids has been shown to
produce a completely biocompatible ionic salt with melting
points below 100 °C. Since then, it has become clear that a
cholinium cation (Ch) might represent a competitive alterna-
tive to imidazolium both in terms of costs and in being a
greener component in terms of biodegradability (Morandeira
et al. 2017). At the same time, it was realized that naturally
occurring organic acids could be used to replace the not envi-
ronmentally benign, fluorinated anions such as Tf2N of SF6
(Fukaya et al. 2007). Other ways to improve the green char-
acter of ILs lie in the use of renewable and available com-
pounds for their synthesis such as naturally occurring amino
acids (Hulsbosch et al. 2016). These bio-based ILs would
ultimately be suitable to fully realize a green chemistry cycle
starting from their synthesis and ending to their use as reaction
agents (Plaquevent et al. 2008; Gomes et al. 2019).
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In cholinium-amino acid ionic liquids (ChAAILs), the
deprotonated form of an amino acid is coupled to the
cholinium cation. Given that, formally, the ensuing IL can
be thought as emerging from the reaction of a base (choline
hydroxide) and the amino acid, ChAAILs are part of the sub-
class of ILs known as protic ionic liquids (PILs), i.e., those
substances arising from an acid base reaction or proton trans-
fer. One of the key features of PILs is the presence of protons
that spawn a hydrogen bonding network and can, at least in
principle, act as efficient charge carriers. The possible chem-
ical activity of protons in PILs has important effects not only
on their nanoscopic structure (Bodo et al. 2014; Low et al.
2019) but on the bulk properties as well (Kreuer 1996); hence,
it has spawned and intense research for the use of PILs as
conductive materials in electrochemistry (Khan et al. 2017;
Kasprzak et al. 2018; Shmukler et al. 2018; Liu and Yu
2019). It is worth noting that, among the very first attempts
to obtain a fully biocompatible ILs, a different approach had
also been implemented where the AA is protonated and acts as
the cation (Tao et al. 2005, 2006).

In this short review, we will survey almost exclusively the
class of liquids based on AA anions and the cholinium cation.
In these liquids, biocompatibility stems directly (or sometimes
is postulated) from the metabolic nature of the composing
molecular ions. AA is the building unit of proteins and an
essential component of our food. Choline (once known as
vitamin B4) is a metabolite directly synthesized by the human
body and is also an essential dietary nutrient. In particular, due
to their reduced cost and greener properties, ILs based on
cholinium have gained attention as solvent in the field of or-
ganic synthesis (Gadilohar and Shankarling 2017), and, re-
cently, a short review focusing on their structural properties
has been published (Gontrani 2018).

Synthesis and physico-chemical properties

The first synthesis of ChAAILs was reported by Ohno et al.
(2007), by Moriel et al. (2010), and by Liu et al. (2012b). The
most common synthetic route is based on a simple neutraliza-
tion reaction between a water solution of [Ch][OH] and the
amino acid. The IL is obtained as a result of the acid-base
reaction and purified by further water removal. A more con-
trolled synthetic route employing a titration has been succes-
sively reported (De Santis et al. 2015). After it was noted that
the [Ch][OH] solution is corrosive, reactive, and more expen-
sive than [Ch][Cl] and that the titration procedure used by De
Santis et al. (2015) is time-consuming, another synthetic var-
iant has been recently proposed (Zhang et al. 2019; Latini
et al. 2019) where they can be obtained via an ionic metathesis
between potassium AA salts and [Ch][Cl] in ethanol. A key
efficiency factor in this new synthetic route is that it employs
the cheap [Ch][Cl] reagent and has a high efficiency, which

makes this synthesis appealing for large-scale production or
industrial applications.

An excerpt of the physical data that are available on these
liquids is shown in Table 1 where we have picked a few
examples for representative ChAAILs. The densities of these
liquids have been found to lie within a limited range between
1.1 and 1.2 g cm−3. Densities do not simply correlate with
molecular weights because the presence of multiple hydrogen
bonding features is a crucial factor in determining the cohesive
state of these substances.

Glass transition temperatures have been reported by Liu
et al. (2012b) and lie in a wide range from − 74 to − 10 °C,
depending on the anion structure. In contrast, De Santis et al.
(2015) found [Ch][Asp] and [Ch][Glu] to become liquid only
at 90 °C, while they were glassy solids at 25 °C.
Decomposition temperatures have also been measured (Liu
et al. 2012b) and turned out to be much higher than 100 °C
for all compounds, hence comparable to traditional ILs. The
high decomposition temperature is an indicator of the high
ionicity degree within the liquid and of how the hydrogen
bonding network can be effective in stabilizing the molecular
constituents.

The measurements of viscosities show significant discrep-
ancies between the published data. In the work by Liu et al.
(2012b), all viscosities were found to lie within 121–
5640 mPa·s at 25 °C, but much higher values were found by
subsequent determinations (see Table 1, for an example).
Despite differences in the actual data, it is clear that an in-
crease in the size of the anion increases viscosity, probably
because of stronger van der Waals interactions. In addition,
the existence of a protic side chain (Cys, Asp, etc.) seems to be
able to induce additional hydrogen bonding activity that great-
ly enhances viscosities. A recent study by Moosavi et al.
(2019) using molecular dynamics provides calculated viscos-
ities that are compatible with those from Liu et al. (2012b).

Conductivities are inversely related to viscosities and, de-
spite numerical differences, have been found to loosely corre-
late with the anion size and its ability to spawn hydrogen
bonding, two effects that tend to decrease the conductive
performance.

Despite discrepancies in the measured data (that could be
explained by different amounts of water contamination or by
the typical metastability of some of the physical states of the
compounds), a very clear picture emerges: ChAAILs are a
series of homologous compounds whose molecular compo-
nents feature only minor differences but present huge differ-
ences in the resulting bulk properties. Finding a simple corre-
lation between the molecular characteristics and the bulk
properties is not easy, and the latter seem to stem from a set
of subtle molecular effects which are not simple to evaluate:
many body effects, charge transfer phenomena, hydrogen
bonding, and tautomerization reactions (see Le Donne et al.
(2018) for a more in depth discussion).
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Toxicity and biodegradability

The toxicity of ionic liquids and their activity toward living
organisms are a very complex subject (Wang et al. 2007; Zhao
et al. 2007; Costa et al. 2017; Kumari et al. 2020), and it would
be unpractical to list here a comprehensive list of references.
The nature of the interactions that drives the action of ILs on
living cells has been recently summarized by Kumari et al.
(2020). Many traditional ionic liquids have been revealed to
be toxic for living species (Bernot et al. 2005; Docherty and
Kulpa Jr. 2005; Latała et al. 2005; Peric et al. 2013). This
inherent toxicity of many ILs presents a twofold issue where,
from a biotechnological standpoint, the high activity of ILs
toward microorganisms hinders their use as pharmaceuticals,
but their toxicity opens new vistas for the implementation of
ILs as antibacterial and perhaps antifungal agents (Ibsen et al.
2018; Zandu et al. 2020).

The toxicity and biodegradability of several ChAAILs
have been reported since their first appearance in the field by
Hou et al. (2013b), and both were found to be better than
traditional ILs. A subsequent analysis by Foulet et al. (2016)
showed that ChAAILs can be classified as non-toxic (or even
practically harmless for [Ch][Pro]) and, as expected, that their
anti-microbial activity is very low. Another study based on the
antimicrobial activity of a set of several ChAAILs demonstrat-
ed that those with AA anions of high molecular weight (Glu,
Arg, Phe, Try) are practically harmless to various bacterial
cultures (Yazdani et al. 2016).

The advantages of using ILs in the pharmaceutical industry
are associated with their use as solvents to solubilize poorly
soluble drugs, thus improving delivery, and with their poten-
tial in reducing typical problems affecting solid-state drugs
such as polymorphism and bioavailability (Md Moshikur
et al. 2020). The use of biocompatible ILs such as
ChAAILs, in this context, has obvious advantages because
they allow one to circumvent the toxicity issue of other ILs.
For this reason, their use as a potential drug carrier has been
explored, and they were found to improve the solubility of
active pharmaceutical principles (APs) and to increase their
capability to penetrate the cell membranes. In particular,
[Cho][Phe] and [Cho][Glu] have been tested as excipients to
enhance loading and solubility of poorly soluble APs

(Caparica et al. 2018), while they did not increase the cyto-
toxicity of the preparations. Very recently, it was found that
[Ch][Gly] and [Ch][Ala], even in small amounts, can signifi-
cantly increase the solubility of ibuprofen without an increase
in cytotoxicity (Yuan et al. 2020). Another recent study aimed
at investigating the applicability of ChAAILs as excipients for
the delivery of rutin as a potential anticancer agent (Caparica
et al. 2020), and it was found that these ILs can act as safe
functional excipients that are non-toxic and act to enhance the
AP solubility while preserving its pharmacological activity.

Interactionwith complex biological molecules

ILs consisting of biocompatible cations and anions are of great
interest for biotechnology and protein chemistry because they
can serve as solvents potentially able to improve protein solu-
bility, crystallization, and stability and to ease extraction and
separation (Patel et al. 2014; Wakayama et al. 2019). Out of
their native environments, proteins are often unstable. During
an extraction, due to the change of environment, the extracted
proteins may not function properly. It therefore follows that, for
practical applications, the possibility of maintaining protein in-
tegrity for a long time outside their native environment is crucial.
In other words, the nature of the “storage” environment is the
key to preserve proteins and their bioactivity. Unfortunately,
protein-IL interactions are very complex, and, at the moment,
it appears that a generalization of the observations outside par-
ticular systems is not yet possible (Benedetto 2017).

Guncheva et al. (2019) have explored the stabilization of
the monomeric form of insulin in ChAAILs (Asp, Glu, Lys,
Arg) and have found that, in accordwith previous experiments
with other ILs based on imidazolium, protein aggregation is
prevented, although a partial denaturation at the expenses of
α-helices was observed.

It is generally assumed that ChAAILs act as gentle solvat-
ing agents for biomolecules. In support of this claim, a com-
putational study (Kumari and Kashyap 2019) shows that the
presence of the simplest form of ChAAIL, cholinium
glycinate ([Ch][Gly]), does not disturb the structure and sta-
bility of lipid bilayers as much as traditional ILs based on
imidazolium cations. Also, studies on the solvation of DNA

Table 1 Excerpts from published
data of some physical properties
of ChAAILs

AA Density (g cm−3) Conductivity (μs cm−1) Viscosity (mPa s) Tg (°C) Td (°C)

Gly 1.14a 1.15b 67.7a 90.6b 182.3a 1230b 121c −61c 150c

Ala 1.11a 1.13b 21.3a 74.1b 385.6a 720b 163c −56c 159c

Pro 1.12a 1.14b 0.3a 7.5b 10,643.8a 9810b 500c −44c 163c

Ser 1.19a 1.20b 9.3a 17.5b 11,543.7a 12,500b 402c −55c 182c

a From (Tao et al. 2013)
b From (De Santis et al. 2015)
c From (Liu et al. 2012b)
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(Sahoo et al. 2018) have shown only a minor binding affinity
(~ 4 kcal/mol) of the ChAAIL for the macromolecule, where-
by the Ch cations and not the amino acids were the main
coordinating agents. Contrasting results have however been
obtained by Bisht et al. (2018) where the stability of stem
bromelain has been studied in the presence of both [Ch][Br]
and [Ch][Gly]: unexpectedly, [Ch][Gly] proved to be a poor
stabilizer for the enzyme when compared to [Ch][Br]. More
recently Kumar et al. (2020) have shown that the replacement
of the tetraalkylammonium cations with cholinium in AAILs
can provide a better stabilizing environment for serum
albumins.

The traditional techniques for protein extraction such elec-
trophoresis, ion exchange, and chromatography are expen-
sive, complex, and difficult to implement on large scales.
Liquid-liquid separation systems may offer a cheap substitute.
For example, aqueous two-phase systems, where polymer/IL
or salt/IL mixtures are dissolved in water above critical con-
centration, can provide a cost-effective and environmentally
friendly alternative (He et al. 2012; Benedetto and Ballone
2016; Zeng et al. 2016). Since biocompatibility and low tox-
icity are crucial in these applications, several research efforts
have been directed toward ChAAILs as alternative solvents
(Song et al. 2015, 2017; Wang et al. 2016a; Zafarani-Moattar
et al. 2019). Aqueous biphasic systems consisting of
ChAAILs together with a water solution of polypropylene
glycol seem to be a nearly optimal combination because of
the ability to preserve the protein enzymatic activity and be-
cause of the general safety of the additives that could contam-
inate the extracted product. ChAAILs based on the use of
anionic dipeptides such as [Ch][Phe-Phe] has shown superior
performances in the extraction and recovery of metabolites
from microalgae processing (Morandeira et al. 2020). The
peculiar biocompatibility of ChAAILs has been also exploited
to construct especially designed biosensors based on Gly, Ser,
Phe, and His which showed good reliability, sensitivity, limit
of detection, and linearity of range (Zappi et al. 2019).

With the persistent reduction of petroleum-based resources,
there has been a worldwide increase in the search for alterna-
tive energy sources. In this context, biomasses represent a
particularly attractive source of energy because of their avail-
ability, but their use is hampered by the difficulties and by the
processing costs of extremely recalcitrant materials such as
lignin and cellulose and the energy needed for it (Carlson
et al. 2008). It is well-known that ILs can efficiently dissolve
a large number of macromolecules otherwise difficult to sol-
ubilize (see the paper by Sun et al. (2009) and references
therein) and that the extensive hydrogen bonding network that
characterizes PILs could been exploited to dissolve com-
pounds which normally require very harsh conditions and
highly toxic solvents.

The ability of dissolve lignin, xylan, and cellulose was
investigated for ChAAILs by Liu et al. (2012b). The lignin

dissolution reached satisfactory values for most of the
ChAAIL at 90 °C (the solubility is more than 140 mg g−1),
but the dissolution of xylan and cellulose was much poorer
with solubility values lower than 5 mg g−1.

Hou et al. (2013a) have reported that lignin extraction from
sugar cane reached 44% using a mild condition treatment
based on increasing IL concentrations of a water solution of
[Ch][Lys]. Wang et al. (2016b) used a water solution of
[Ch][Leu] to extract flavonoids and pectin from ponkan
peels at room temperature. In a recent paper, To et al. (2018)
have shown that under very mild conditions (70 °C), a water
solution of a set of chosen ChAAILs (Arg, Gly, Lys, and Phe)
is able to extract 50% of lipids from algae biomasses. Among
the AA anions, the most efficient was argininate, which
yielded the best extraction performances. The structure of
the argininate anion with its 6 hydrogen-bonding sites is very
likely the responsible for its effectiveness.

Scarpellini et al. (2016) presented an exploratory study for
paper-based cultural heritage conservation through the use of
ChAAILs. They showed that a treatment with [Ch][Gly] in-
creases the tensile strength of the fiber due to the action of the
ILwhen the paper is subjected to artificially accelerated aging.

Use as lubricants

The first work on a tribological use of traditional ILs dates
back to 2001, with a study on two different imidazolium
tetrafluoroborates ILs, which showed excellent friction reduc-
tion, high load-carrying capacity, and anti-wear performance
(Ye et al. 2001). The main mechanisms beyond these excel-
lent tribological properties have to be traced in the high adhe-
sion energies of IL onto the surfaces that induce the formation
of layers between them. The possible use of ILs as lubricants
focused on ILs containing halogens and specifically those
made using [BF4]

− and [PF6]
− anions, but these compounds

can undergo hydrolysis by moisture and generate corrosive
and toxic hydrogen fluoride. The ChAAILs emerged only
recently as a greener type of lubricants. The combination of
two ChAAILs with lignin (Mu et al. 2015) has been investi-
gated to evaluate the tribological properties of these mixed
systems. The use of lignin as an additive improves the thermal
stability and the anti-corrosive properties of the resulting mix-
ture, thus providing excellent performance when used with
commercial aluminum and iron boards.

The tribological properties of five ChAAILs have been
explored using steel/steel and copper/steel contacts and turned
out to be comparable to conventional IL such as
[C6mim][NTf2] (Jiang et al. 2018). The lubricant action has
been confirmed as due to the formation of a physically
adsorbed thin film of liquid on the metal surface.

In the framework on finding non-toxic lubricants, Zhang
et al. (2018) have explored, in addition to the tribological
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properties, the toxicity of several ChAAILs against three
aquatic organisms: brine shrimp, zebrafish, and green algae.
The results show that their toxicities are significantly lower
than that of traditional ILs such as 1-butyl-3-methyl
imidazolium tetrafluoroborate and that ChAAILs can be used
as high-performance and environmentally friendly lubricants.
Hua et al. (2020) have shown that the frictional properties of
[Cho][Pro] can be controlled by altering the environmental
humidity. The viscosity of the ChAAIL increases at higher
humidity, while it decreases when water is evaporated.

ChAAIL as candidates for CO2 absorption

The worldwide issue of CO2 emissions linked to anthropogen-
ic global warming is one of the major concerns of this century
(Stern 2007). Technologies that can offer sustainable solutions
have undergone intense research, and ILs do play a role as
materials which is worth investigating as a medium for CO2

absorption and storage (MacDowell et al. 2010). ILs can be
incorporated into existing processing technologies, especially
coal-fired power stations, to aid the separation of CO2 from
flue gas (Gurkan et al. 2010a; Smiglak et al. 2014), and both
theoretical and experimental studies have been performed on
how ILs can interact and react with CO2molecules. In general,
the use of ILs as CO2 capture agents presents two drawbacks:
limited maximum gravimetric absorption (7–9%) and slow
absorption kinetics due to the high viscosity (Bates et al.
2002), although results have been reported with a gravimetric
capacity of more than 16% (Wang et al. 2010).

The challenge lies with fine-tuning IL specific reactivity
and selectivity for CO2 trapping while, at the same time, pro-
viding a recyclable and biocompatible material. This is essen-
tial in order for the technology to be economically feasible and
for scaling to larger and greener applications. An issue in the
chemisorption of CO2 is the overall economic viability of the
process because it is not a profitable industry (MacDowell
et al. 2010). Even with incentives such as carbon credit
schemes, it seems not plausible to eliminate the costs of car-
bon capture, and therefore any new IL proposed for CO2 ab-
sorption purposes must be inexpensive.

Two different CO2 absorption processes in ILs have been
reported in the literature (Mumford et al. 2017; Song et al.
2019): ion structures that can react and combine with CO2

(chemisorption) or compounds that can physically dissolve
CO2 (physisorption). Our interest for the present review lies
in the former where CO2 is removed from flue gas using a
chemical reaction that transforms it into a component of the
liquid. The traditional technologies used to capture CO2 in
industry settings consists of a chemical reaction of the gas
with a solution of ethanolamine, which has a low cost, and a
gravimetric capacity of about 7%, but has major problems
related to toxicity and corrosion (Rao and Rubin 2002).

A possible alternative to the ethanolamine-based approach
is the use of amine-functionalized ILs which react with CO2

molecules with the formation of carbamate species and pro-
ducing improved reaction stoichiometries (Camper et al.
2008; Vijayraghavan et al. 2013; Li et al. 2019). This method
tends to cause large changes in solvent viscosity, yet this can
be circumvented via counterions that do not promote the for-
mation of H-bonded networks or by water addition.

Within AAILs (also those with cations different from
[Ch]+), absorption can occur to various extents depending on
the physical conditions and on the IL molecular composition:
absorption ranges from 0.5 mol of CO2 per mol of IL (2:1
mechanism) up to 1 mol of CO2 per 1 mol of IL (1:1 mecha-
nism) and sometimes higher molar fractions (1:2 mechanism).
It is clear that this range of results implies the existence of
different reaction mechanisms.

CO2 capture in these liquids is achieved by exploiting the –
NH2 group on the AA anions. The general reaction of amines
with CO2 is known (Goodrich et al. 2011; Firaha and Kirchner
2016; Li et al. 2018) and can be summarized as in Scheme 1.

Whether the reaction proceeds with a 1:1 or 2:1 stoichiom-
etry depends on what extent the second reaction takes place
after the initial carbamic acid formation. In order to enhance
absorption, it is necessary to favor the carbamic acid forma-
tion instead of carbamates. Gurkan et al. (2010b) explored two
AAILs based on Pro andMet which have been coupled with a
phosphonium cation. The absorbed molar ratio of CO2 per
mol of IL was 0.9, thus increasing by a factor of 2 the effi-
ciency of previous setups, thanks to the possibility of favoring
a carbamic acid derivative instead of the carbamate one. The
gravimetric capacity, though, was still low, about 6%.

Other authors have reported larger absorption capacity up
to 1:2 M ratio. In a first work (Luo et al. 2019), a set AAILs
with different basicity and steric hindrance was tested. It was
found that the di-anion of a doubly deprotonated AA such as
Asp showed a very high absorption capacity of 1.96 mol/mol
IL at 30 °C and 1 atm. Along the same route, the activation of
the carboxyl group in the AA using an electron withdrawing
group has also been tested increasing load factors up to
1.69 mol/mol (Chen et al. 2016). Ammonium-based cations
with longer side chains instead of cholinium have also been
tested as a viable route to achieve 1:2 absorption ratios
(Saravanamurugan et al. 2014). These works all incorporate
AA anions in the IL, but the nature of the cationic partner can
raise an environmental issue if it is toxic to the ecosystems.
For this reason, ChAAILs have attracted the attention of re-
searchers in this field because of their biodegradability and

Scheme 1 General reaction for the addition of CO2 to an amino group.
The first step leads to the formation of a carbamic acid derivative. The
second leads to a carbamate
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inexpensive synthetic procedure due to the relative abundance
of their components (Gurkan et al. 2010b; Liu et al. 2012a).

The general mechanism for addition of a single molecule of
CO2 to an AA anion is reported in Scheme 2.

This reaction can be divided into two steps as shown in
Scheme 2: (i) a pre-reaction complex formation (which has
zwitterionic character) and (ii) a proton transfer (PT) to ei-
ther carboxylate terminals. In principle the two tautomeric
forms of the resulting product are in equilibrium (3), in
practice, one form is often markedly more stable than the
other, and the final product is only one thereby favoring
either a 1:1 or 2:1 stoichiometry in the final absorption.
Several approaches based on computational modeling have
been used to unravel the detailed mechanism of the reaction
above (Sheridan et al. 2018).

Shaikh et al. (2016, 2020) showed the existence of barriers
associated with the proton transfer step that leads the pre-
reaction zwitterion to the final carbamate. Mercy et al.
(2016) and Onofri et al. (2020) have found that the proton
transfer step in [Ch][AA] can occur via two possible reaction
pathways that differ by the size of the ring that is formed in the
transition state as shown in Scheme 3. The mechanism based
on a 4-member ring is highly disfavored due to very high
barriers, while the one with a 5-member ring has a low acti-
vation energy of only few kcal/mol.

The main problem is that the existing ChAAILs are highly
viscous, limiting their applicability as agents incorporating
CO2 because of its limited diffusion in the liquid. Attempts
have been made to reduce the viscosity either reducing the
strength of the hydrogen bonding network (Luo et al. 2016)
or using ether substituents (Goodrich et al. 2011). In the latter
case, the [Ch][Lys] compound has been shown to maintain a
high capture capacity of 1.62 mol/mol. The use of the doubly
deprotonated forms of certain AA anions has also been ex-
plored as a tool to reduce or control the overall viscosity of the
final mixture (Pan et al. 2018). Attempts at using co-solvents
have been made in order to reduce the viscosities of
ChAAILs. Davarpanah et al. (2020) have attempted dissolu-
tion of the IL into another solvent with high boiling point such
as DMSO, but the dilution of the absorbent material led to a
reduced absorption capacity (with 12.5 wt% IL in DMSO,
only 0.3 mol CO2/mol IL of CO2).

The addition of water to ILs (Li et al. 2018), in the context
of CO2 absorption, is known to have beneficial effects in
reducing the viscosity of the absorbent fluid. Water seems to
play a two-faced role since it works by reducing viscosity and
hydrogen bonding, thus increasing the diffusion of CO2, as
well as removing phenomena that render the reaction site less
available, but it may also act as a catalyst for the overall CO2

absorption reaction by assisting a more efficient PT. When a
single water molecule was included in the transition state com-
putational evaluation, it effectively lowered the kinetic bar-
riers of this step (Li et al. 2018; Shaikh et al. 2020; Onofri
et al. 2020) by reducing the strain on the transition state cycle
as shown in Scheme 4.

Using a completely different chemical process, a set of
ChAAILs has been examined by Saptal and Bhanage (2017)
where 9 AA anions were used as solvent catalysts in order to
help the chemical fixation of CO2 into cyclic carbonates. The
binary system based on [Ch][AA]/TBAI, in particular, gener-
ated deep eutectic solvents (DESs), which were found to be
highly active at atmospheric pressure with the hydroxyl func-
tional group activating the epoxide ring and the amino group
activating the CO2 molecules for reaction. In these setups, the
catalyst and the co-catalyst are both recyclable up to five times
without loss of catalytic activity.

Structure and computational studies

The many applications of ChAAILs have attracted the atten-
tion of computational chemists. Following the early synthesis
and physical characterizations, Benedetto et al. (2014) have
implemented a DFT-based study of 8 different AA anions
focusing on the stability of the isolated ionic couples. Along
the series of 8 AA anions, the average [Ch]+[AA]− interaction
energy shows only minor variations and turns out to be very
large, around 100 kcal/mol. The anion-cation geometric bind-
ing motif in the isolated ionic couples also is rather invariant
along the different AA anions and is reported in Fig. 1 for two
selected examples. Apart from the obvious electrostatic inter-
action, the binding interaction is provided by a hydrogen bond
between the cholinium hydroxyl and the AA carboxylate.

Scheme 2 General reaction
mechanisms for the addition of
CO2 to an AA anion. The first
step leads to the formation of a
zwitterionic adduct that evolves
via proton transfer to a carbamic/
carbamate derivative which, in
principle, are in equilibrium due
to tautomerization reactions
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The same kind of approach was also used by del Olmo
et al. (2016) extending the series of AA anions to 20 and by
calculating, via the COSMO approach, bulk properties such as
density and viscosity. While the data of the densities were in
line with experiments, the viscosities did not match the exper-
imental measurements, although the latter (Liu et al. 2012b;
Tao et al. 2013; De Santis et al. 2015) showed noticeable
differences among them. Recently, Moosavi et al. (2019) have
performed molecular dynamics (MD) simulations on the
ChAAILs containing [Ala], [β-Ala], and [Phe] and computed
the viscosities via the autocorrelation of the stress tensor: their
data are compatible with the ones originally reported by Liu
et al. (2012b), but it is well known that modeling the frictional
properties of ILs using fixed charges schemes has certain ac-
curacy limits due to the neglect of polarization and charge
transfer effects.

The original conclusion that the main binding motifs in
these liquids stem from the cation/anion coordination through
strong hydrogen bonding has been further confirmed by using
MD simulations and X-ray scattering data in a paper by
Russina et al. (2016) where the subtle effects due to multiple
coordination patters have also been described. The bidentate

nature of the carboxyl unit on the AA anion can induce the
existence of two kinds of coordination patterns: in the first,
one anion coordinates one cation interacting with the hydroxyl
and the quaternary ammonium. In the second, a single anion
can coordinate simultaneously two cholinium cations by hy-
drogen bonds.

From the earliest computational studies, it was clear that
the ChAAILs structure was not as simple as initially thought.
In particular, the emergence of low-Q peaks in the X-ray dif-
fraction patterns seemed to indicate some kind of aggregation
phenomena at the nanoscale which previous calculations on
isolated dimers were not able to grasp (Campetella et al.
2015b, 2016b). The authors of these studies focused on Pro-
and Phe-based ChAAILs where the presence of structured
side chains could induce and enhance the formation of tran-
sient structures at the nanoscopic level. Interestingly,
ChAAILs based on Phe anions showed low-Q peaks in their
X-ray scattering pattern without having a long alkyl chain in
their structure. The interpretation of the experimental diffrac-
tion data relied on the presence of correlations between
second-neighbor groups (cation-cation and anion-anion) that
seems to characterize the local structure in the fluids and that
can induce the emergence of the spectral fingerprint of aggre-
gation phenomena.

Analogous approaches based on a combined experimental
andMD study byGontrani et al. (2017) have elucidated, using
different degrees of water dilution in the IL, the behavior of
hydrogen bonding between opposite- and like-charge dimers
and the intercalation structure of the final solutions. These
findings agree with what was found by Shyama and
Lakshmipathi (2020) where 8 [EMIM][AA] ILs were investi-
gated by DFT calculations. Water tends to stick to anions, and
only a high number of water molecules leads to the separation
of the ionic dimers.

From the studies described above, it was clear that both the
short- and long-range structure of these fluids was determined
by a subtle balance between the weak interactions between
either the molecular components with opposite charge or
those with the same charge. Modeling such interactions

Scheme 3 Possible mechanisms
of the proton transfer step with a
5-member ring or a 4-member
ring in the transition state

Scheme 4 Possible mechanisms of the proton transfer step with a 6-
member ring or a 7-member ring in the transition state when including
a water molecule
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requires necessarily a great accuracy in the calculation of the
interatomic potentials because of the need to describe polari-
zation phenomena and many-body effects. In order to proper-
ly include such effects, theMD studies must be based on a first
principles evaluation of the electronic energy (ab-initio MD or
AIMD). In these approaches, both the size of the systems and
the time scales are much reduced with respect to traditional
MD techniques, but the reliability of the outcomes is generally
increased. AIMD has also the advantage of accounting for
anharmonic motions and providing atomic charge fluctuations
so that in addition to structural information such as X-ray
diffraction patterns, IR absorption spectra can be calculated
as well. Known IR absorption bands of functional groups are
obviously sensible to the chemical surroundings, thus provid-
ing indications on the aggregation state (Tanzi et al. 2014).
The structural and spectral properties of several ChAAILs
have been explored by means of AIMD, by comparing the
outcomes of the simulation with both X-ray (Campetella
et al. 2016a) and with IR absorption and Raman measure-
ments (Campetella et al. 2015a, 2018). An example of the
structural information available and of their accuracy with
respect to experimental data is reported in Fig. 2 where the
ability of AIMD to almost perfectly reproduce the structure of
the fluids should be apparent. Analogous comparison of com-
puted data with experimental IR absorption profiles can be
found in the works by Campetella et al. (2015a, 2018).

As suggested by a series of works by Ludwig and co-
workers (Niemann et al. 2018, 2019, 2020; Khudozhitkov
et al. 2019), the interactions between like-charge ions could
be a crucial ingredient in those ILs that are characterized by a
high degree of H-bonding interactions. Multiple and cooper-
ative H-bonding features seems to be sufficient to overcome
the natural Coulombic repulsion between like-charge ions,
especially when the charge is delocalized over the molecular
structure and the repulsion weakened by the surrounding di-
electric response of the medium (polarization).

The possibility of having anionic aggregation and the ex-
tent to which like-charge interactions might contribute to the
overall cohesive energy of few selected ChAAILs have been
thoroughly explored in a series of papers by us and other
authors. Even in the simplest AA anions with aliphatic side

chains, the computational data do suggest the presence of
conspicuous anion-anion pairing through H-bonding of their
amino and carboxylate groups (Fedotova et al. 2019). Le
Donne et al. (2018, 2019) using AIMD have found a rough
but evident correlation between the association energies of the
dimeric anion-anion structures and the measured viscosities of
the corresponding ChAAILs. A recent work by Khorrami and
Kowsari (2020) based on classical MD has further extended
the study of these like-charge interactions to the mixtures of
ChAAILs with water.

Until recently, the possibility of having anion-anion aggre-
gation phenomena in ChAAILswas the result of computation-
al evidence. Very recent, though, an experimental corrobora-
tion has been obtained from the fitting of the molecular struc-
ture of [Ch][Phe] to neutron diffraction data, thus confirming
the theoretical hypothesis (Miao et al. 2020b). These experi-
ments show that molecular segregation is present, as well as
the existence of anion-rich domains which are controlled by
inter-anion hydrogen bonds. These anionic aggregation phe-
nomena might also be responsible for the low-Q correlations
spotted in SAXS diffraction patterns which are otherwise dif-
ficult to attribute to more common effects such as apolar do-
main segregation in compounds which do not have long ali-
phatic chains (Miao et al. 2020a).

A pictorial example of these domains as they emerge from
AIMD simulations is presented in Fig. 3 where the aggrega-
tion state of [Thr] and [Phe] anions is depicted using the atom-
ic volumetric density in snapshots of the simulation. Examples
of a trimeric [Thr3]

3− and of a dimeric [Phe2]
2− anionic struc-

tures are reported at the bottom.
Recent calculations by us (Campetella et al. 2017; Adenusi

et al. 2020b) have shown that these anionic domains can host a
rather complex chemistry due to proton transfer processes and
to the respective tautomerization processes. In these works, it
has been shown that AA anions containing an additional
protic function, such as –SH, –PO3H2, or –COOH, can exist
in the form of a zwitterionic-anionic tautomer where the ad-
ditional proton has moved onto the –NH2 group. The presence
of multiple partial charges on the same molecular ion further
weakens the overall anion-anion electrostatic repulsion and
allows for even tighter anion aggregation phenomena. The

Fig. 1 Example structures for the
[Ch][Ala] (left) and [Ch][Phe]
(right) ionic couples. Their inter-
action energies as reported by
Benedetto et al. (2014) are 106
and 103 kcal/mol, respectively
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Fig. 2 Total X-ray scattering
structure factors as computed
through AIMD compared to ex-
perimental measurements (no
scaling involved) for [Ch][Ala],
[Ch][Thr], [Ch][Phe], and
[Ch][Pro]. See Campetella et al.
(2016a) for more details

Fig. 3 Top: snapshots of AIMD simulations containing [Ch][Thr] (left)
and [Ch][Phe] (right). The anionic moieties are represented by the red iso-
surfaces, while the cations correspond to the blue structures. The forma-
tion of oligomers of anions is evident as well as the nano-segregation

between the oppositely charged moieties. Bottom: examples of
hydrogen-bonded clusters of [Thr] and [Phe] anions as extracted from
the simulations at the top. For details see Le Donne et al. (2019)
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mechanism of two possible tautomerization pathways in the
anionic moiety of AA anions with protic side chains is report-
ed in Scheme 5.

PILs have been, since their inception in the landscape of
ionic media, an important candidate for achieving highly
conductive solvents especially tailored for electrochemistry
(Lu et al. 2012). The problem with these substances is that
their degree of ionicity and their ability to transport charge
are very dependent upon the tendency of the involved mo-
lecular species to bind the proton. The correlation between
quantities such as pKa and proton affinities of the acid and
base involved and the ensuing ionization degree and con-
ductive properties of the fluid has been the subject of a great
number of research activities, but it still eludes a simple
generalization (Shmukler et al. 2020). The ChAAILs in
which the AA anions have an additional protic function on
the side chains and where the additional protons are mobile
and give rise to the aforementioned tautomerization reac-
tions might provide an exemplar ionized medium where fast
charge transfer could be achieved by proton diffusion
(Adenusi et al. 2020b) and point toward the development
of novel conducting media (Adenusi et al. 2020a).

Conclusions

ChAAILs are a class of biocompatible ionic liquids that have
attracted in recent years a vast research effort because they are
emerging as suitable candidate to supplant first-generation ILs
in many technological compartments. In the present review,
we have summarized the results of these research efforts.
These compounds have been known to be a versatile replace-
ment for traditional ILs in various applications ranging from
their use as lubricants to being efficient solvents for biomole-
cules, from media for protein extraction and preservation to
electrochemistry. In the last part of this work, we have also
summarized the results of the studies dealing with their struc-
ture at a more fundamental level which resulted in understand-
ing that their structure is far from being trivial and shows
peculiar and interesting features such as segregation phenom-
ena that might come from the aggregation of the anionic moi-
ety due to cooperative hydrogen bonding effects. The most
recent results show that the nanoscopic structure of the anionic
component can be very different from the expected, hence
pointing to interesting developments for the achievement of
proton conductive highly ionized media.
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