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Abstract
The complex physiological signal transduction networks that respond to the dual challenges of inflammatory and oxidative stress
are major factors that promote the development of cardiovascular pathologies. These signaling networks contribute to the
development of age-related diseases, suggesting crosstalk between the development of aging and cardiovascular disease.
Inhibition and/or attenuation of these signaling networks also delays the onset of disease. Therefore, a concept of targeting the
signaling networks that are involved in inflammation and oxidative stress may represent a novel treatment paradigm for many
types of heart disease. In this review, we discuss the molecular mechanisms associated with the physiological responses to
inflammation and oxidative stress especially in heart failure with preserved ejection fraction and emphasize the nature of the
crosstalk of these signaling processes as well as possible therapeutic implications for cardiovascular medicine.
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Heart failure

Heart failure (HF) is increasing in prevalence and now affects
over 10 % of those aged 70 years and over. HF is character-
ized by the activation of the sympathetic nervous and renin-
angiotensin-aldosterone systems, in a process of neuroendo-
crine activation that is associated with oxidative stress in the
myocardium and vasculature. Oxidative stress occurs in the

myocardium (Franssen et al. 2016; Maack et al. 2003;
Mollnau et al. 2005) and plasma and correlates with left ven-
tricular (LV) dysfunction (Belch et al. 1991). Inflammation
and oxidative stress are well known to promote HF pheno-
types (Fig. 1). The processes of inflammation and oxidative
stress are through physiological interactions to the activation
of downstream networks that in turn promote various human
pathologies, including aging, carcinogenesis, neurodegenera-
tive disorders, and HF associated with various causes and
phenotypes (Alegre-Cebollada et al. 2014; Choudhary and
Dudley Jr. 2002; Grützner et al. 2009; Kötter et al. 2014;
Matough et al. 2012). To understand the role of oxidation in
the pathology of disease, in particular in those diseases that
show abnormalities of diastolic function, it is crucial to eluci-
date the functional changes that occur during oxidative stress
and how they result in HF (Fig. 1).

Heart failure with preserved ejection fraction

Heart failure with preserved ejection fraction (HFpEF) is char-
acterized by high myocardial diastolic stiffness. Diastolic dys-
function is defined as the inability to fill the ventricle to an
adequate preload volume (end-diastolic volume; EDV) at ac-
ceptably low pressures. Patients with abnormal diastolic
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function in particular HF with preserved ejection fraction
(HFpEF) showed a complex remodeling of cardiomyocyte
structure and function, in addition to a remodeling of the
non-myocyte compartment (Borlaug and Kass 2006;
Borlaug and Paulus 2011). Patients with abnormal diastolic
function have a characteristic set of features including LV
hypertrophy, concentric remodeling, increased extracellular
matrix (ECM), abnormal calcium handling, abnormal relaxa-
tion and filling, and decreased diastolic distensibility.
Diastolic function is often conceptualized as the totality of
an active process of pressure decay (relaxation) during early
diastole, which is related to myofilament dissociation and cal-
cium reuptake, and to a “passive” stiffness dependent on vis-
coelastic properties, modulated bymechanical changes via the
sarcomere, ECM, chamber, or pericardium (Linke and
Hamdani 2014). Recent evidence suggests that oxidative
stress may be the mechanistic link between obesity, diabetes
mellitus, and related complications (Franssen et al. 2016;
Herwig et al. 2020; Kolijn et al. 2020a; b). In obese patients,
antioxidant defenses are lower than normal-weight counter-
parts and their levels inversely correlate with central adiposity;
obesity is also characterized by enhanced levels of reactive
oxygen or nitrogen species.

Inflammation in heart failure

Classic stimuli of ventricular remodeling such as wall stress,
inflammatory cytokines, and neurohormones (e.g., catechol-
amines and angiotensin II) induce cellular changes that are at
least partially mediated via oxidative or nitrosative stress
(Arstall et al. 1999; Cheng et al. 1999; Communal et al.
1998; Nakamura et al. 1998; Xiao et al. 2002). Inflammation
plays a central role in the development of HF, particularly in
HF with preserved ejection fraction (HFpEF). The current rise
in the prevalence of HF (Ponikowski et al. 2016b) can be
explained by the increasing incidence of a range of comorbid-
ities including renal failure, arterial hypertension, chronic ob-
structive pulmonary disease, diabetes mellitus, and metabolic
syndrome (Fig. 1). These comorbidities are usually character-
ized by chronic inflammation and are of particular importance
for patients with HFpEF (Ponikowski et al. 2016a).
Inflammation is not only critical for the development and pro-
gression of HFpEF, but the inflammatory response also plays
an important role in adverse remodeling processes following
myocardial infarction. The development of HF may also be
directly immune-modulated, for example following autoim-
mune or infectious triggers such as viral infection. The inflam-
matory response is required to induce a regenerative response
following acute myocardial injury and therefore also plays a
positive role. However, sustained and chronic inflammation
quickly becomes detrimental. The significance of inflamma-
tion in the development of HFpEF was firmly established in a

swine model following induction of the three most common
inflammation-associated comorbidities in HFpEF patients: ar-
terial hypertension, diabetes mellitus, and hypercholesterol-
emia (Sorop et al. 2018). Together, these lead to diastolic
dysfunction and HF, independent of coexisting coronary ar-
tery disease and hypertension. Increased inflammation is an
important mechanism contributing to increased risk of HF in
diabetic patients (Riehle and Abel 2016; Riehle and
Bauersachs 2018). The underlying mechanisms of
inflammatory-dependent HF in diabetic patients include in-
creased expression levels of interleukins (IL) 1β and 6, inter-
cellular adhesion molecule-1 (ICAM-1), and vascular cell ad-
hesion molecule-1 (VCAM-1), together with decreased activ-
ity of collagen-degrading matrix metalloproteinase (Swinnen
et al. 2009). Macrophages are also important mediators of
inflammation and tissue remodeling in diabetes, and diverse
inflammatory markers are associated with the development,
diagnosis, and prognosis of patients with HF and HFpEF
(Collier et al. 2011; Kalogeropoulos et al. 2010). The role of
inflammation in the pathogenesis and progression of HF has
important therapeutic and diagnostic implications (Briasoulis
et al. 2016; Dick and Epelman 2016; Mehta and Pothineni
2016), but the question of whether inflammation is a direct
cause of HF or only a marker of disease is still not completely
resolved. Nevertheless, the association between the two has
been shown in many studies, and pro-inflammatory bio-
markers, specifically pro-inflammatory cytokines such as
TNF-α, IL-1, IL-6, and galectin-3, are known to be elevated
in patients with a range of phenotypes and correlate with the
prognosis and severity of disease (Dick and Epelman 2016;
Franssen et al. 2016; Kolijn et al. 2020b). If inflammation is
the cause of many forms of heart disease, then targeting the
immune response may prove beneficial in patients with signs
of inflammation. If this is not the case, it seems unlikely that a
treatment targeting inflammation will prove effective in HF.

A central player of inflammation in many HF patients is
obesity. Obesity is accompanied by increased visceral adipose
tissue, which leads to the induction of several pro-
inflammatory cytokines such as tumor necrosis factor-α
(TNFα), IL-6, monocyte chemoattractant protein 1, and other
chemokine ligands, all of which lead to monocyte recruitment
and macrophage activation. Increased peripheral inflamma-
tion, monocytosis, and monocyte differentiation to anti-in-
flammatory/profibrotic M2 macrophages have been associat-
ed with HFpEF in a population with a very high prevalence of
metabolic comorbidities (Glezeva et al. 2015). Perivascular
adipose tissue plays a major role in mediating vascular tone
and endothelial inflammation through the mutual interaction
of perivascular adipocytes, immune cells, vascular endotheli-
um, and smooth muscle cells (Meijer et al. 2011). The effects
can also be mediated by reduced expression of endothelial
nitric oxide (NO) synthase (eNOS) and thus decreased NO
synthesis, leading to reduced vasorelaxation. In addition, as
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obesity-associated inflammation also induces insulin resis-
tance, an early step in the development of diabetes mellitus,
comorbidities may interact. Obesity is defined as an expansion
of adipose tissue as a result of excessive nutrient intake and
insufficient energetic expenditure and may result in numerous
different metabolic disorders including cardiovascular dis-
eases, type 2 diabetes, and some forms of cancer. Obesity is
associated with insulin resistance, which is a central compo-
nent of type 2 diabetes, leading to altered glucose and lipid
metabolism in adipose tissue, liver, and skeletal muscles.
Insulin resistance is characterized by the failure of insulin to
trigger the correct signaling mechanisms (Taniguchi et al.
2006). The chronic low-grade, systemic and local inflamma-
tion that develops during obesity links obesity to the develop-
ment of insulin resistance (Gregor and Hotamisligil 2011),
which then effects a variety of different organs involved in
the control of metabolic homeostasis, including adipose tis-
sue, liver, endocrine pancreas, hypothalamus, and possibly
skeletal muscle. As adipocytes are a known source of pro-
inflammatory cytokines, including TNF-α, IL-1, and IL-6,
obesity can be seen as a chronic inflammatory condition (de
Almeida et al. 2020; Franssen et al. 2016; Schmidt-Lucke
et al. 2015). These cytokines are known potent stimulators
of the production of ROS and NOS by macrophages and
monocytes and thereby increasing oxidative stress. Adipose
tissue also has the capacity to secrete angiotensin II, which

stimulates NADPH oxidase activity, which in turn represents
the major source of ROS production in adipocytes (Morrow
2003). Furthermore, oxidative stress causes mitochondrial ab-
normalities, which then further escalate overproduction of
ROS. Damage to mitochondria is significant because they
provide a substantial proportion of the energy required for
cellular processes and also play a central role in programed
cell death (apoptosis) (Wang and Nakayama 2010).

The pathways that trigger the cellular phenotypes of hyper-
trophy and apoptosis appear to involve stress-responsive pro-
tein kinases such as mitogen-activated protein kinases
(MAPK), c-Jun N-terminal kinases, and p38 MAPKs in the
myocardium (Sugden and Clerk 1998b), many of which are
activated by reactive oxygen species (ROS).

Mechanical stress as a trigger of immune activation
in heart failure

The heart undergoes extensive structural and functional re-
modeling in response to injury, central to which is the hyper-
trophy of cardiac myocytes, which is characterized by the
excessive deposition of extracellular matrix. Mechanical
stress as a result of pressure and volume overload, together
with shear stress, may induce cytokine expression and chang-
es in cardiac extracellular matrix composition which in turn
contribute to the pathogenesis of HF. In HF patients, the levels

Fig. 1 Mechanisms, sources, and implications of oxidative stress in
cardiovascular disease and heart failure. Aging, genetic predisposition,
conventional risk factors, and environmental factors can induce oxidative
stress, where NADPH, NOX, and uncoupled NOS are dominant sources
of ROS. When the generation of ROS is greater than the antioxidative
capacity, then cell damage and endothelial dysfunction arise due to
increased ROS level. As a consequence, oxidation of mitochondrial
NADPH, H2O2 is increased, which plays a causal role in contractile

dysfunction, arrhythmia, and ultimately maladaptive cardiac remodeling
through hypertrophy and cell death. Abbreviations: H2O2, hydrogen
peroxide; NADPH, nicotinamide adenine dinucleotide phosphate; NO,
nitric oxide; NOS, nitric oxide synthase; NOX, nicotinamide adenine
dinucleotide phosphate oxidase (NADPH oxidase); ROS, reactive
oxygen species; IL, interleukin; ICAM, intercellular adhesion
molecule; VCAM, vascular cell adhesion molecule; TNF-α, tumor
necrosis factor-α
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of a number of different cytokines such as TNF-α, IL-1, 6, 18,
cardiotrophin-1, and Fas ligand, as well as several
chemokines, are elevated in the myocardium and plasma
(Aukrust et al. 1999; Meldrum 1998; Testa et al. 1996).
Cytokines are not only responsible for autocrine and paracrine
signaling within the myocardium but also for endocrine sig-
naling throughout the body, especially affecting striated mus-
cle mass through the induction of muscle wasting and cachex-
ia. Transforming growth factor signaling and alterations to the
composition of the extracellular matrix induce acquisition of a
myofibroblast phenotype (Koitabashi et al. 2011). Fibrosis is
accelerated as a result of intercellular interactions and
crosstalk between activated fibroblasts and cardiomyocytes
(Burchfield et al. 2013).

Mechanical stress resulting in LV overload can also lead to
myocardial inflammation, which manifests as leucocyte infil-
tration and the myocardial release of pro-inflammatory cyto-
kines (Falkenham et al. 2015; Kain et al. 2016). Pro-
inflammatory cytokines affect LV function, exert a negative
inotropic effect (Meldrum 1998), induce abnormalities in car-
diac metabolism and energetics, promote myocardial remod-
eling (Diwan et al. 2003; Mann 2002; Valgimigli et al. 2001),
and depress myocardial contractility. The latter may be due to
uncoupling of β-adrenergic signaling, increases in cardiac
NO, or alterations in intracellular calcium homeostasis
(Finkel et al. 1992; Goldhaber et al. 1996; Gulick et al.
1989; Yokoyama et al. 1993). The result is cardiomyocyte
hypertrophy (Yokoyama et al. 1997), necrosis, and apoptosis
(Krown et al. 1996; Kubota et al. 1997), as well as activation
of metalloproteinases, impaired expression of their inhibitors,
and changes to the extracellular myocardial matrix, which
together likely contribute to cardiac remodeling (Krown
et al. 1996; Li et al. 2000; Pulkki 1997; Sivasubramanian
et al. 2001). Resulting activation of the immune response also
promotes the development of endothelial dysfunction, general
body wasting, skeletal muscle apoptosis, and anorexia in HF
(Sharma et al. 2000; Sivasubramanian et al. 2001; Torre-
Amione et al. 1996). Inflammatory mediators may also con-
tribute more indirectly to the progression of HF through im-
pairment of bone marrow function with secondary anemia,
inappropriate endothelial cell activation, and impairment of
peripheral muscle, with secondary induction of systemic in-
flammation and reflex abnormalities in HF (Mann 2002).

Hypoxia and ischemia are additional potent inducers of
inflammatory cytokines within the myocardium and their ef-
fects are primarily mediated through the production of ROS,
although secondary activation of the transcriptional factor nu-
clear factor-κB also plays an important role (Li and Karin
1999; Singal et al. 1998). Finally, oxidized low-density lipo-
protein cholesterol may increase cytokine expression in endo-
thelial cells and monocytes, a mechanism that may be of par-
ticular importance inmyocardial failure secondary to coronary
artery disease (Janabi et al. 2000).

Macrophages as key drivers of the innate
immune response

Macrophages are key mediators of the innate immune re-
sponse, which is involved in the recognition, phagocytosis,
and elimination of pathogens. They exist within the body as
both circulating and tissue-resident cells and have the ability
to transform their function and phenotype based on environ-
mental signals (Murray and Wynn 2011). Macrophages are
classified as either M1 or M2 types. M1 macrophages
(Murray et al. 2014) are usually associated with a pro-
inflammatory response and are referred to as classically acti-
vated macrophages, with induction mediated by IFNγ, lipo-
polysaccharide, and TNF-α. When stimulated, M1 macro-
phages secrete high levels of pro-inflammatory cytokine inter-
leukins (Martinez et al. 2008). By contrast, M2 macrophages
exhibit an anti-inflammatory, pro-regenerative phenotype due
to their capacity to secrete high levels of anti-inflammatory
cytokines, including IL-10 and certain growth factors
(Martinez et al. 2008). After angiotensin II infusion or trans-
verse aortic constriction, macrophages are important media-
tors of hypertension, cardiac remodeling, and fibrosis, and
depletion of macrophages results in reduced cardiac fibrosis
and decreased LV hypertrophy (Falkenham et al. 2015; Kain
et al. 2016). The pathological processes in many disease
models are fueled by macrophage-derived cytokines
(Heymans et al. 2013). Depletion of monocytes and macro-
phages in chronic HF models of mechanical stress prevents
LV remodeling, fibrosis and preserves cardiac function
(Dewald et al. 2005; Frantz et al. 2013; Kain et al. 2016; van
Amerongen et al. 2007). Mice with macrophage-specific
deletion of IL-10 show improved diastolic function. IL-
10 may promote fibrosis by activating fibroblasts, in-
creasing collagen deposition, and impairing myocardial
relaxation (Hulsmans et al. 2018).

Inflammation promotes cardiac fibrosis in HFpEF mouse
models (Glezeva and Baugh 2014; Tromp et al. 2018), and
increased numbers of macrophages have been observed in
HFpEF patients and appear to contribute to pathophysiology
(Hulsmans et al. 2018). Fibrosis is thus heavily implicated in
the development of LV diastolic dysfunction and, in addition
to reduced ventricular compliance and comorbidities, may be
one of the major pathophysiological mechanisms underlying
HFpEF (Bode et al. 2019; Hamdani et al. 2013a; 2014;
Trippel et al. 2018). Increased inflammation, elevated levels
of endothelial adhesion molecules, and increased production
and tissue release of inflammatory cytokines and chemokines
are the earliest events found in cardiac stress states in HFpEF,
including pressure and/or volume overload (Paulus and
Tschöpe 2013). These states promote the infiltration of acti-
vated inflammatory cells, particularly monocytes, into cardiac
tissue, and increased monocyte infiltration is also seen in hy-
pertension and HFpEF. Once in place in tissue, monocytes

950 Biophys Rev (2020) 12:947–968



differentiate into macrophages and promote cardiac inflam-
mation, tissue injury, and myocardial fibrosis (Paulus and
Tschöpe 2013). In coronary artery disease, resident macro-
phages distinct from monocyte-derived macrophages contrib-
ute to pathology (Honold and Nahrendorf 2018). Two mouse
models of LV diastolic dysfunction, induced by either hyper-
tension or advanced age, showed increased macrophage den-
sity in the LV compared with control mice, a finding associ-
ated with increased inflammatory monocytes (Hulsmans et al.
2018). In line with these findings, LV myocardial biopsies
from patients with hypertension and HFpEF had higher mac-
rophage densities compared with those from age-matched
healthy controls (Hulsmans et al. 2018). The myocardial infil-
tration of inflammatory cells in HFpEF patients and in ZSF1-
HFpEF rats is favored by adhesion molecules, an effect evi-
denced by the presence of NOX2-producingmacrophages and
by the high expression of CD68 (Franssen et al. 2016). In
contrast to viral myocarditis, the myocardial presence of mac-
rophages in HFpEF is not accompanied by evidence of car-
diomyocyte cell death (van Heerebeek et al. 2006; 2008),
perhaps due to the fact that macrophages activated due to
obesity show a different pro-inflammatory phenotype (Kratz
et al. 2014).

Importantly and as already mentioned, classically con-
ceived macrophage activation proceeds via either an M1 phe-
notype, with potent pro-inflammatory properties, or via anM2
phenotype, with anti-inflammatory properties. However,
when activated by obesity, a distinct macrophage phenotype
is induced that is characterized by low levels of pro-
inflammatory cytokines. Another study has also reported that
the development of HFpEF is associated with monocytosis
and monocyte differentiation into M2-like macrophages
(Glezeva et al. 2015; Hulsmans et al. 2018). Furthermore,
patients with HFpEF show increased levels of blood leuko-
cytes and monocytes (Hulsmans et al. 2018). Taken together,
these findings imply that the expansion of and phenotypic
changes in cardiac macrophages may represent viable thera-
peutic targets when seeking to limit the cardiac inflammation
that leads to diastolic dysfunction.

What is oxidative stress?

Oxidative stress is defined based on a description of the origin
of the type of ROS and other free radicals. Oxidative stress is
an important contributor to tissue damage, and the cellular
damage caused by oxidative stress elicits complex antioxidant
defense mechanisms that have co-evolved to protect body
tissues. As free radicals are constantly produced during nor-
mal metabolic processes in cells, antioxidants are also pro-
duced to ensure neutralization of free radicals. Under normal
conditions, the body is usually able to maintain an equilibrium
between free radicals and antioxidants.

Severe oxidative stress represents a threat to cell function
and therefore results in the activation of repair mechanisms.
On the other hand, disturbance in ROS levels appears to be
involved in growth factor and other receptor-mediated cell
signaling processes. ROS negatively affects the disposition
of myocardial calcium, may induce arrhythmia, and can con-
tribute to cardiac remodeling by inducing hypertrophic signal-
ing, apoptosis, and necrosis (Burgoyne et al. 2012a; Wagner
et al. 2013). ROS and nitric oxide (NO) produced from these
sources are oxygen-/nitrogen-based chemical species with a
high reactivity and include free radicals such as superoxide
ion (O2 •-), hydroxyl radical (•OH), and peroxy radicals
(ROO•), as well as non-radicals that are nevertheless able to
generate free radicals, such as hydrogen peroxide (H2O2),
nitroxyl, and NO (Breitkreuz and Hamdani 2015). A dimin-
ished capacity of nitric oxide synthase (NOS) to generate NO
(Pitocco et al. 2010; Sena et al. 2013) is accompanied by
increased oxidative stress during diabetic vascular dysfunc-
tion (Giugliano et al. 1996). The likely mechanism is via a
superoxide ion that reacts with NO, resulting in the formation
of peroxynitrite. Peroxynitrite then oxidizes the endothelial
NOS (eNOS) cofactor tetrahydrobiopterin (BH4) to
dihydrobiopterin (BH2), leading to eNOS uncoupling and
thus producing superoxide ion rather than NO. This mecha-
nism leads to a decrease in eNOS expression and activity in
endothelial cells (Cosentino and Lüscher 1997; Srinivasan
et al. 2004).

ROS are generated as metabolic by-products by biological
systems (enzymatic reactions) in various cell compartments,
including the cytoplasm, cell membrane, endoplasmic reticu-
lum (ER), mitochondria, and peroxisome, all as through basal
metabolic activity. In cardiomyocytes, ROS typically origi-
nate from several intracellular sources, including mitochon-
dria, NOS, and enzymes such as xanthine oxidase, NADPH
oxidase (NOX), and cytochrome p450 (Dostalek et al. 2008;
Gori and Münzel 2011; Ji 2007; Srinivasan et al. 2004;
Sumimoto et al. 2005; Zangar et al. 2004) (Fig. 2).
Importantly, mitochondria amplify ROS derived from NOXs
and may thereby function as “redox hubs” in cardiac physiol-
ogy and disease (Navarro-Yepes et al. 2014; Sato et al. 2013).
Additionally, many other enzymes, such as cyclooxygenases
and lipoxygenases, may contribute to intracellular ROS pro-
duction (Holmström and Finkel 2014). Along with resident
cardiac cells, infiltrated leukocytes account for a large propor-
tion of ROS and reactive nitrogen species (RNS) in myocar-
dial tissues, via the production of superoxide ion and release
of pro-oxidant enzyme systems like the leukocyte-derived en-
zyme myeloperoxidase (MPO). ROS are produced by mito-
chondria (Li et al. 2013; 2017; Reichart et al. 2019), which
mainly takes place at the electron transport chain located on
the inner mitochondrial membrane during the process of oxi-
dative phosphorylation. Leakage of electrons at complex I and
complex III from electron transport chains leads to a partial
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reduction of oxygen to form superoxide. Consequently, super-
oxide is dismutated to hydrogen peroxide by two dismutases
including superoxide dismutase 2 in mitochondrial matrix and
superoxide dismutase 1 in mitochondrial intermembrane
space and both superoxide and hydrogen peroxide generated
are considered mitochondrial ROS (Li et al. 2013).

Different signals lead to the stimulation of mitochondrial
ROS such as lysophosphatidylcholine and Toll-like receptor 4
and Toll-like receptor 2 bacterial ligands lipopolysaccharide
and lipopeptides; these signals are involved in regulating in-
flammatory response (Li et al. 2016; West et al. 2011).
Among others, mitochondrial ROS adversely affects EC-
coupling (Bertero and Maack 2018) and can induce cell death
via activation of apoptosis and/or autophagy pathways (Finkel
2012). As previously discussed, under normal physiological
conditions, the tissue oxidative balance is maintained by mo-
bilizing an antioxidant defense system that eliminates harmful
reactive oxygen/nitrogen species (ROS/NOS). Several distinct
types of ROS have been identified, each of which is targeted
by specific antioxidant enzymes. The one-electron reduction
of O2 leads to the formation of superoxide anion, an unstable
free radical that reacts with itself and other oxygen-containing

species. Redox biology refers to low levels of ROS that acti-
vate signaling pathways to initiate biological processes, while
oxidative stress denotes high levels of ROS that cause damage
to DNA, protein, or lipids leading to different diseases.

Proteins, lipids, and DNA are the primary cellular struc-
tures affected by ROS and RNS (Wu et al. 2013). A large
body of evidence shows that oxidative stress is implicated in
the onset and progression of diseases such as cancer, diabetes,
metabolic disorders, and atherosclerosis, in addition to cardio-
vascular diseases (Taniyama and Griendling 2003).
Depending on the source of ROS, cell type, and tissue envi-
ronment, ROS signaling may simply participate in normal
physiological processes or contribute to a maladaptive re-
sponse that leads to metabolic dysfunction and inflammatory
signaling.

Oxidative stress and inflammation in cardiovascular
diseases

One potential trigger of HF-associated changes in muscle pro-
tein function, some of which are characterized by an increase
in LV diastolic stiffness, is the oxidative stress that results

Fig. 2 Scheme for the signaling pathways of cardiomyocyte in diseased
heart under oxidative (right) and healthy (left) conditions.A Represents a
heart under oxidative condition with impaired endothelial function via
increased inflammatory cytokines and oxidative stress. B Represents a
healthy condition showing a normal endothelial function via normal/low
inflammatory cytokines and oxidative stress (green arrow pointing up-
wards means increase and green arrow pointing down means decrease).

Abbreviations: cGMP, cyclic guanosine monophosphate; GTP, guano-
sine triphosphate; PKG, protein kinase G; H2O2, hydrogen peroxide;
NO, nitric oxide; ONOO-, peroxynitrite; PKG, protein kinase G; PKA,
protein kinase A; PKC, protein kinase C; CaMKII, calcium calmodulin–
dependent kinase II; MAPK, mitogen-activated protein kinase; ROS, re-
active oxygen species; sGC, soluble guanylyl cyclase; GSH, reduced
glutathione; GSSG, oxidized glutathione
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from imbalances in cellular antioxidant systems and free rad-
ical production. High levels of ROS production that
overwhelm cellular antioxidant defense systems are gen-
erally deleterious to contractile performance and result
in adverse cardiac and skeletal remodeling. In
cardiomyocytes, several intracellular sources of ROS/
RNS are typically found under physiological conditions,
and tissue oxidative balance is maintained by utilizing
an antioxidant defense system that removes harmful
ROS/NOS. The mechanism by which myocardial oxida-
tive stress might impair cardiac function is probably
oxidative damage to cellular proteins and membranes,
thereby inducing cellular dysfunction or death through
apoptosis and/or necrosis. However, recent studies in other
organ systems indicate that ROS can exert much subtler ef-
fects, depending upon the level, the site of production, and the
overall redox status of the cell (Borkowski et al. 2011;
Campbell et al. 1996; Xu et al. 1998).

ROS may also activate signaling pathways that contribute
to ischemic preconditioning, cardioprotection, and myocardial
damage, and high levels of ROS induce structural modifica-
tions of the sarcomere that impact pump function and the
general pathogenesis of HF. Many of the characteristic cellu-
lar responses found in HF can be activated by oxidative stress,
including cellular hypertrophy, changes in gene expression,
and cell death (Kwon et al. 2003; Siwik et al. 1999). For
instance, cell growth, a hypertrophic phenotype, and apoptosis
in neonatal rat cardiac myocytes in vitro can all be induced by
inhibition of the antioxidant enzyme, copper-zinc super-
oxide dismutase (Siwik et al. 1999). Hydrogen peroxide
regulates the phenotype of cardiac myocytes via
concentration-dependent activation of different kinase
pathways (Kwon et al. 2003), in addition to altering
the turnover and properties of the extracellular matrix
(Siwik et al. 2001). ROS can also exert subtler effects,
depending on the level of ROS and the redox status of
the cell. Regardless of the crucial role of antioxidant
systems, dysregulation of oxidant signaling may cause or ac-
celerate a host of pathological conditions. Nevertheless, the
body is armed with protective measures against ROS via en-
zymatic superoxide dismutase, catalase, peroxiredoxin, and
glutathione peroxidase, as well as non-enzymatic compounds
such as vitamin E, beta-carotene, ascorbate, glutathione, and
nicotinamide (Balaban et al. 2005).

Structural modifications in cardiomyocytes are caused by
alterations either of protein expression, phosphorylation, or
function and have been attributed to the activation of signaling
pathways. In turn, these lead to changes in the magnitude of
the calcium transients and an inadequate calcium-
induced contractile response, or induce contractile pro-
tein modifications independent of alterations to intracel-
lular calcium homeostasis (Adachi et al. 2004; Lancel
et al. 2009; Xu et al. 1998).

Oxidative stress and redox regulation
in cardiomyocytes

Cardiac contraction is dynamically regulated on a beat-to-beat
basis in order to accommodate changes in hemodynamic load
and to respond to neurohumeral stresses. Control is predomi-
nantly signal-regulated via various post-translational modifi-
cations, and signaling by ROS has recently emerged as a ma-
jor physiological control mechanism (Breitkreuz and
Hamdani 2015). Furthermore, redox protein modifications
are known to induce changes in protein structure, stability,
interactivity, and activity (Fig. 2) (Disatnik et al. 1998; Gao
et al. 1996; Posterino and Lamb 1996).

Myocytes isolated from the failing heart show abnormal
intracellular calcium transients, along with alterations in the
expression and/or activity of calcium handling proteins (Arai
et al. 1993), an effect that is partly due to oxidative stress (Fig.
2). Functional changes in calcium handling are linked to post-
translational modification of calcium signaling proteins, as
well as oxidative and nitrosative regulation of the calcium-
sensitive proteome in excitation–contraction coupling
(Canton et al. 2014; Haycock et al. 1996; Posterino and
Lamb 1996; Ullrich et al. 2009). ROS alter calcium transients
and excitation–contraction coupling in isolated myocytes by
increasing the activity of the sodium–calcium exchanger,
which lead to calcium overload in human and animal models
(Arai et al. 1993; Goldhaber and Qayyum 2000; Litwin and
Bridge 1997). A direct effect of ROS and RNS on voltage-
dependent calcium channels and calcium release channels has
been noted in isolated cardiomyocytes and attributed to the
activation of kinase cascades and cell death pathways, includ-
ing apoptosis and necroptosis (Adachi et al. 2004; Borkowski
et al. 2011; Campbell et al. 1996). ROS generation might also
contribute to the activation of maladaptive signaling cascades,
e.g., those leading to impaired calcium handling.

Calcium channels associated with excitation–contraction
coupling regulate myoplasmic calcium levels and are orga-
nized around a system of deep membrane invaginations
known as t-tubules. Depolarization of the sarcolemma leads
to calcium influx into the sarcoplasm and triggers the release
of calcium from the sarcoplasmic reticulum via the ryanodine
receptor (calcium-induced calcium release). Changes in intra-
cellular calcium cycling are either causal or adaptive
(Bellinger et al. 2009; Durham et al. 2008; Zalk et al. 2007).
Abnormalities in excitation–contraction coupling components
trigger and/or aggravate contractile dysfunction and have been
partially attributed to redox modifications that act as key sig-
naling components of excitation–contraction coupling
(Canton et al. 2014; Disatnik et al. 1998; Gao et al. 1996;
Posterino and Lamb 1996). The redox modification of protein
kinase activity and direct effects on channels and ion trans-
porters are among the well-known effects of ROS on
excitation–contraction coupling (Wagner et al. 2013).
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Modification of redox-related signaling pathways

Redox-modulated protein signaling activities that are impor-
tant for cardiomyocyte function are often mediated via protein
kinase A (PKA) (Brennan et al. 2006), protein kinase G
(PKG) (Burgoyne et al. 2007), or calcium calmodulin–
dependent kinase II (CaMKII), in addition to important con-
tributions from the small G protein Ras (stress signaling)
(Kuster et al. 2006), class II histone deacetylases (HDACs)
(Ago et al. 2008), and the metabolic enzymes glyceraldehyde-
3-phosphate dehydrogenase and thioredoxin (Eaton et al.
2002b; Tisdale 2002). The balance between oxidized and re-
duced forms of such signaling proteins is influenced by both
local ROS generation and by reductants such as glutathione,
which function to reduce oxidized proteins.

cAMP-dependent protein kinase A
and cGMP-dependent protein kinase G

Protein kinase Aβ–Adrenergic activation via protein kinase A
(PKA)–mediated phosphorylation targets several proteins in-
volved in calcium handling, including the L-type calcium
channel (LTCC), sarco-/endoplasmic reticulum Ca2+-
ATPase (SERCA), ryanodine receptors (RyR), and myofila-
ment proteins such as cardiac troponin I (cTnI), myosin-
binding protein C (cMyBPC), and the giant protein titin
(Hamdani et al. 2013a; b; 2014; 2008; 2009). Catecholamine
stimulation of the β-adrenergic receptors in the myocardium
plays an important role in adjusting myocardial performance
to meet increased demands of the heart, as occurs upon in-
creased stress (e.g., exercise). Phosphorylation of calcium
handling and myofilament proteins regulates contractile func-
tion of the heart via its positive lusitropic effect and its contri-
bution to an acceleration of the rate of cardiac relaxation (Fig.
2) (Gaponenko et al. 1999; Hamdani et al. 2008; Kentish et al.
2001; Lehnart et al. 2004). Alterations in PKA-mediated
phosphorylation in HF have been reported following catechol-
amine overstimulation of the β-adrenergic receptors. In HF,
the RyR2 receptors are hyperphosphorylated (Lehnart et al.
2004) and many myofilament proteins (such as cTnI, cMyBP-
C, and titin) are hypophosphorylated (Hamdani et al. 2008;
Solaro 2008; Solaro and de Tombe 2008) (with an exception
o f s ome pho s p h o - s i t e s o n t i t i n t h a t b e c ome
hyperphosphorylated when they are targeted by PKC and
CaMKII, two kinases upregulated in HF) (Hamdani et al.
2013b). These changes all seem to be detrimental to cardiac
performance. In addition, leakage of calcium from the
SR, which increases cytosolic calcium levels during di-
astole and enhances myofilament calcium sensitivity, re-
sults in an increase in passive stiffness that limits relax-
ation of the heart muscle (Hamdani et al. 2013a;
Herwig et al. 2020; Kolijn et al. 2020b; Pabel et al.
2018; van Heerebeek et al. 2008).

PKA can also be activated by redox changes acting through
the formation of an inter-disulfide bond between its catalytic
subunits (Brennan et al. 2006). A similar mechanism of redox
activation has also been reported for PKG (Burgoyne et al.
2007). Oxidative modifications of PKA alter its activity and
lead to functional and physiological consequences such as
impaired insulin-stimulated lipolysis (de Piña et al. 2008). In
addition, oxidation of PKA mediated by oxidants derived
from NADPH oxidase 4 stimulates angiogenesis via vascular
endothelial growth factor (Burgoyne et al. 2015). Modulation
of cardiomyocyte stiffness via altered PKA activity has been
noted in HF patients and animal models with several different
types of heart disease (Hamdani et al. 2013a; Kolijn et al.
2020b). Overall, the changes noted in diseased hearts were
associated with a chronic titin phosphorylation deficit related
to the modulation of PKA activity. Titin can also be phosphor-
ylated by a range of additional kinases such as protein kinase
G (PKG), protein kinase C (PKC), protein kinase D (PKD),
extracellular signal–regulated kinases (ERK), and calcium
calmodulin–dependent protein kinase II (CaMKII) (Fig. 2).

Titin isoform switching The titin protein consists of two main
isoforms, N2BA (long and compliant) and N2B (short and
stiff), and acts as a molecular spring with a crucial role in
LV diastolic stiffness (Hamdani et al. 2017; Hamdani et al.
2013c; Linke and Hamdani 2014). Titin is responsible for the
passive elasticity of muscle through isoform switching or
post-translational modifications such as phosphorylation and
oxidation. Different isoforms result from differential splicing
of a single titin gene and differ in their expression level de-
pending on the heart phenotype and disease stage. Expression
of either the long and compliant N2BA or the short and stiff
N2B isoform significantly influences titin-based stiffness,
which then modulates diastolic function (Hamdani et al.
2017; Hamdani et al. 2013c; Linke and Hamdani 2014). By
contrast, phosphorylation has rapid effects compared with iso-
form switching and contributes to either increased or reduced
cardiomyocyte stiffness, depending on the type of kinase
(Hamdani et al. 2017; Hamdani et al. 2013c; Linke and
Hamdani 2014).

Protein kinase G PKG regulates the function of target proteins
by phosphorylating serine or threonine residues. It is a well-
known modulator of diastolic function and can be modified
directly and indirectly via ROS. Cyclic guanosine
monophosphate (cGMP)–directed PKG signaling is initiated
by soluble guanylate cyclase (sGC) or particulate GC (pGC),
both lyase enzymes that convert guanosine triphosphate
(GTP) to cyclic guanosine monophosphate. sGC is activated
by NO, which then generates cGMP from GTP (Fig. 2)
(Klaiber et al. 2011; Kuhn 2004; Moltzau et al. 2014a; b).
pGC is activated by natriuretic peptides (NPs), including atrial
NP and B-type NP, which bind to shared, membrane-bound
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GC-A or GC-C receptors. The activation of pGC can also
occur through C-type NP binding to GC-B or GC-C receptors
(Klaiber et al. 2011; Kuhn 2004;Moltzau et al. 2014a; b). sGC
and pGC generate spatially and functionally distinct cellular
pools of cGMP (Klaiber et al. 2011; Kuhn 2004) that are
tightly controlled by phosphodiesterases (PDEs) (Bishu et al.
2011; Hamdani et al. 2014; Lee et al. 2015). However, the
relative importance of the respective cGMP pools for HF may
differ depending on comorbidities and sex-related differences,
although the details of this process are still unknown. ROS can
directly modify PKG via oxidation, as reduced PKGIα activ-
ity and increased PKGIα oxidation were found in human
HFpEFmyocardium and ZDF rats and correlated significantly
with increased myocardial oxidative stress, specifically in the
cytosol and mitochondria (Kolijn et al. 2020b). Studies sug-
gested that PKGIα oxidation would likely increase the activity
of the kinase (Prysyazhna et al. 2012), while other studies
reported similar PKGIα activity in both WT and PKGIα
Redox dead′ cysteine-42S (C42S) PKG1α knockin mice
(TAC myocardium), mice harboring a knockin redox-dead
mutation PKG1αC42S, perhaps due to a higher cGMP level
that might blunt changes in oxidative activity (Burgoyne et al.
2007; 2012b). Furthermore, C42 oxidation reportedly reduces
the capacity for activation PKGIα when countering hormone,
hemodynamic (Nakamura et al. 2015), and cardiotoxic stress
(Prysyazhna et al. 2016). Others have reported that the
interprotomer disulfide bond is not required for oxidation-
induced activation, as shown by a truncated PKGIα construct
(Prysyazhna et al. 2012). Unsurprisingly, PKGIα oxidation is
increased in human ischemic HF, in mouse hearts exposed to
sustained pressure overload, and in canine-dilated cardiomy-
opathy (Nakamura et al. 2015).

Modifications of cardiomyocyte function in HF are associ-
ated with alterations in cGMP-PKG signaling due to oxidative
stress (indirect ROS effect on cardiomyocyte modifications)
(Fig. 2). Normally, NO activates sGC in a process involving
the binding of NO to the hememoiety of sGC, augmenting the
action of cGMP. However, the superoxide anion is a potent
inactivator of the signaling molecule NO; the resulting reduc-
tion in NO bioavailability contributes to vascular endothelial
dysfunction and the loss of other physiological effects of NO
(Fig. 2). The reaction between NO and superoxide generates
peroxynitrite, which is itself a potent RNS. Hence, ROS can
modulate the activity of various intracellular signaling path-
ways and molecules, potentially inducing acute and chronic
modifications (Finkel 1999; Hamdani et al. 2013a; b; 2014).
Signal transduction by ROS in non-phagocytic cells (Finkel
1999) can be mediated via proteins involved in myocardial
excitation–contraction coupling (including ion channels, sar-
coplasmic reticulum calcium–release channels, and myofila-
ment proteins), as these proteins are prone to redox-sensitive
alterations in an activity that ultimately modify cardiomyocyte
function (Byrne et al. 2003; Linke and Hamdani 2014). In

addition, stimulation of NO and/or activation of sGC pro-
motes cGMP and PKG activation (Kolijn et al. 2020b; Linke
and Hamdani 2014). Oxidative stress affects these pathways
by lowering NO bioavailability, blocking sGC activity, in-
creasing cGMP-specific phosphodiesterase-5A, and downreg-
ulating cGMP-PKG signaling (Franssen et al. 2016; Herwig
et al. 2020; Kolijn et al. 2020b). Reduced PKG activity due to
oxidative stress will then lead, among other outcomes, to
hypophosphorylation of the giant titin, raising cardiomyocyte
passive tension (Fig. 2). Accordingly, hearts from HFpEF
patients and a small animal model of HFpEF (which exhibit
reduced cGMP concentrations, reduced PKG activity,
hypophosphorylated titin, and high cardiomyocyte passive
stiffness) also show increased nitrotyrosine levels, indicative
of nitrosative/oxidative stress (Borbély et al. 2009; Franssen
et al. 2016; Hamdani et al. 2013a; b; 2014; van Heerebeek
et al. 2012). These findings point to oxidative/nitrosative
stress as an indirect modifier of titin phosphorylation and stiff-
ness, which could eventually lead to diastolic dysfunction
(Fig. 3). If so, many patients with HFpEF might develop dia-
stolic dysfunction, not least because they are typically older
and have various comorbidities including renal insufficiency,
obesity, diabetes mellitus, or hypertension, all of which are
likely to increase the level of oxidative/nitrosative stress.
Taken together, these findings suggest that modulation
of titin-based stiffness via cGMP-enhancing therapy
could be a useful approach to correcting pathologically
elevated LV diastolic stiffness, one of the primary char-
acteristics of HFpEF in patients. Therefore, HFpEF
treatment strategies might reasonably aim to treat co-
mo r b i d i t i e s t h r o u g h t h e u s e o f NO do n o r s ,
phosphodiesterase-5 and 9 inhibitors, and antioxidants, the
beneficial effects of which would also include a correction
of titin-based myocardial stiffness.

Histone deacetylases

Oxidative stress is a major stimulator of epithelial cell function
and can induce DNA damage and repair. During DNA repair,
cells are prevented from entering S phase of the cell cycle
(Clement et al. 2001). Many oxidants, including H2O2, can
also induce enhanced release of inflammatory mediators from
cells, a process that is associated with changes in histone acet-
ylation (Ito et al. 2001). Histone acetylation and deacetylation
are linked to cell cycle progression and correlate with repair
and recombination events, as well as with gene transcription
(Pazin and Kadonaga 1997; Tian et al. 2005). Histone acety-
lation promotes, while deacetylation inhibits, gene expression,
via processes that are mediated by histone acetyltransferases
and histone deacetylases (HDACs), respectively.
Thioredoxin1-sensitive oxidation of the class II HDAC,
HDAC4, has been implicated in α-adrenergic receptor-in-
duced cardiomyocyte hypertrophy (Ago et al. 2008). Class II
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HDACs normally inhibit the transcription of prohypertrophic
myocyte enhancer factor-2-dependent genes. Intramolecular
disulfide formation in HDACs has been shown to regulate
HDAC localization and subsequent cardiomyocyte hypertro-
phy (Haworth et al. 2012). Nitration of HDAC2 following
oxidative stress might also account for the reduced HDAC
activity found in cells from patients with oxidative stress-
related diseases (Ito et al. 2001) and thus contribute to a wors-
ening of inflammation (Ito et al. 2004).

Calcium calmodulin–dependent kinase II

Calcium calmodulin–dependent kinase II (CaMKII) phos-
phorylates several cardiac calcium handling and myofilament
proteins to modulate excitation–contraction coupling, apopto-
sis, and gene transcription (Backs et al. 2006; Maier and Bers
2007; Toischer et al. 2010). CaMKII isoforms show increased
expression/activity in failing human hearts and in animal
models of cardiac hypertrophy (Anderson et al. 2011;

Fig. 3 Thiol modifications of proteins and mechanisms of titin-based
passive tension modulation by oxidative stress–induced titin modifica-
tions.A Formation of sulfenic acid from the reaction of H2O2 with protein
thiolates. This formation leads to different protein modifications. In pro-
teins without a second sulfhydryl, the sulfenic acid (–SOH) may be sta-
bilized or will generate oxidized sulfinic (–SOOH) and sulfonic acid
derivatives due to its reaction with ROS. Otherwise, a disulfide bond
can form between the two sulfur atoms (–S–S–). Lastly, the sulfenated
cysteinyl residue can react with glutathione (GSH), leading to a mixed

disulfide. B Formation of intramolecular disulfide bonds within the titin-
N2Bus when exposed to oxidative stress, which then increases titin-based
stiffness in cardiomyocytes. C Ig domain unfolding due to sarcomere
stretching causes exposure of hidden (“cryptic”) cysteines in Ig domains,
which can become S-glutathionylated under oxidative conditions. This
modification prevents Ig domain refolding, resulting in decreased titin-
based stiffness.D Isomerization of disulfide bonds of the cysteine triad in
titin Ig domains can occur under oxidative conditions. This modification
leads to increased titin based stiffness
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Swaminathan et al . 2012; Toischer et al . 2010).
Overexpression of CaMKIIδC in mouse myocardium is asso-
ciated with massive cardiac hypertrophy and induces dilated
cardiomyopathy and premature death (Zhang et al. 2003).
CaMKII activity and expression are also elevated in cardiac
injury models, including myocardial infarction (MI) (Singh
et al. 2009; Zhang et al. 2005), and in ischemia-reperfusion
(I/R) injury (Salas et al. 2010; Vila-Petroff et al. 2007).
Knocking out the CaMKIIδ isoform in mice attenuates path-
ological cardiac hypertrophy and remodeling in response to
pressure overload (Backs et al. 2009; Ling et al. 2009).
CaMKII is a multimeric complex with multiple catalytic do-
mains, therefore providing a basis for a graded calcium re-
sponse (Hamdani et al. 2013c; Hudmon and Schulman
2002). Calcium-dependent activation upon oxidative stress
leads to intersubunit autophosphorylation at Thr-287 within
the autoinhibitory domain, preventing its reassociation with
the catalytic domain and sustaining kinase activity. CaMKII
activity is enhanced upon exposure to oxidative stress, as
shown by the redox-active regulatory domain methionine res-
idues (Met-281 and 282) that sustain CaMKII activity even in
the absence of calcium calmodulin. Chronic angiotensin II
treatment and/or myocardial infarction has been shown to
promote oxidation and apoptosis (Erickson et al. 2008), but
these effects were attenuated in transgenic mice expressing a
CaMKII inhibitory peptide or in mice expressing Met281/
282Val CaMKII. Furthermore, overexpression of CaMKII in-
hibitory peptide reduces CaMKII oxidation and blocks the
pathological consequences of aldosterone and angiotensin II
in myocardium (He et al. 2011; Purohit et al. 2013).
Methionine sulfoxide reductase reduces sulfoxidized methio-
nine residues. Investigation of mice null for methionine sulf-
oxide reductase A found enhanced CaMKII oxidation, cell
death, and heightened sensitivity to angiotensin II and infarc-
tion (Erickson et al. 2008). This strongly suggests that oxida-
tion of CaMKII, via ROS produced by NADPH oxidase or in
mitochondria, is directly detrimental to the heart. Elimination
of either of these ROS pathways, via genetic knockout or
targeted ROS scavenging, results in a reduction of CaMKII
oxidation (Erickson et al. 2008; Luo et al. 2013).
Overexpression of CaMKII in the heart disturbs calcium ho-
meostasis and leads to HF and arrhythmias (Maier et al. 2003;
Pabel et al. 2020; Zhang et al. 2003). Taking these findings as
a whole, we suggest that oxidative activation of CaMKII plays
a critical role in the pathogenesis of cardiac disease.

Glyceraldehyde 3-phosphate dehydrogenase

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a
conserved enzyme that controls glucose flux through the ca-
nonical Embden-Meyerhof glycolytic pathway (J Biol, 2007,
vol. 6 4 pg. 10). It also mediates cell death via nuclear trans-
location under conditions of oxidative stress. GAPDH is a

glycolytic enzyme that is responsible for the sixth step of
glycolysis (Nicholls et al. 2012) and is a multifunctional pro-
tein with additional functions, including transcriptional
(Zheng et al. 2003) and posttranscriptional gene regulation
(Rodríguez-Pascual et al. 2008), and intracellular membrane
trafficking (Chuang et al. 2005; Hara et al. 2006; Tisdale
2001). Its catalytic thiol is subject to reversible and irreversible
forms of inhibitory oxidation, which have also been observed
during myocardial ischemia-reperfusion (Blaustein et al.
1989; Eaton et al. 2002a). The protein undergoes S
nitrosylation by NO, which triggers nuclear translocation
and apoptosis (Hara et al. 2005; Sen et al. 2008). Another
redox-regulated function of GAPDH is to control mRNA sta-
bilization (Rodríguez-Pascual et al. 2008). GAPDH binds the
3′-untranslated region of endothelin-1 mRNA and enhances
its degradation through destabilization. Oxidative stress alters
the binding of GAPDH to this mRNA and thus its capacity to
modulate endothelin-1 expression. This phenomenon occurs
through specific S-glutathionylation of the catalytically active
residue cysteine 152 (Rodríguez-Pascual et al. 2008), which
also modulates the metabolic activity of GAPDH in an oxida-
tive stress–dependent fashion (Jeong et al. 2011). GAPDH
also undergoes NAD+ covalent linkage upon S-nitrosylation
(Mohr et al. 1996), nitroalkylation by nitrated fatty acids
(Batthyany et al. 2006), and S-glutathionylation by glutathi-
one or even by NO (Mohr et al. 1999), in addition to extensive
oxidation by peroxynitrite or H2O2 (Little and O'Brien 1969;
Souza and Radi 1998). These results suggest that GAPDH
exerts other functions beyond glycolysis and that oxidative
modifications of GAPDH regulate its cellular functions by
changing its interactions with other proteins.

Oxidation of titin and its effect
on cardiomyocyte stiffness

Oxidative stress, such as that seen in myocardial ischemia-
reperfusion damage, obesity, or diabetes mellitus, impairs
LV diastolic function, which can be independently modulated
through cardiomyocyte and especially titin-based stiffness.
Interestingly, the stiffness of titin can also be directly affected
by oxidative stress, acting via several mechanisms.

First, oxidizing conditions promote the formation of disul-
fide bridges within the disordered N2-Bus element of cardiac
titin. The human N2-Bus contains 6 cysteines, which can form
≤ 3 disulfide bonds. Because S–S bridges are covalent bonds,
the internally cross-linked N2-Bus loses much of its extensi-
bility, resulting in elevated cardiomyocyte passive tension
(Fig. 3) (Grützner et al. 2009; Linke and Hamdani 2014).

A second direct oxidative stress–related mechanism, re-
cently elucidated, targets the Ig domains, which constitute
the majority of elastic titin. If I-band Ig domains become un-
folded, for example due to increased strain on the sarcomeres,

957Biophys Rev (2020) 12:947–968



they expose cryptic cysteines which now become accessible to
disulfide bonding or S-glutathionylation under oxidizing con-
ditions (Fig. 3) (Alegre-Cebollada et al. 2014). Importantly,
the unfolded titin-Ig domains almost exclusively form mixed
disulfides with glutathione, which weakens the mechanical
stability of these domains and prevents their refolding. S-
Glutathionylation substantially reduces the passive tension
of stretched human cardiomyocytes incubated with oxidized
glutathione, and the effect is reversible upon incubation with
reduced glutathione (Alegre-Cebollada et al. 2014). An inter-
esting implication of this novel mechanism of regulating titin
elasticity is that it opens the possibility that titin-Ig domains
represent mechanosensors that respond to oxidative stress–
coupled myocyte stretch with reversible mechanical soften-
ing, which could well be the origin of altered mechano-
chemical signaling in stressed cardiomyocytes.

A third mechanism involves S-sulfenylation of cryptic cys-
teines, a modification that has been shown to cause titin stiff-
ening (Fig. 3) (Beedle et al. 2016). This modification is well-
known as a trigger of protein misfolding, in addition to poten-
tially leading to the formation of a disulfide bond that protects
the Ig domain fold. The intramolecular S–S bond leads to
stiffening of the Ig domain segments (Ainavarapu et al.
2007; Kosuri et al. 2012), which presumably leads to in-
creased titin-based passive stiffness in a reversible manner,
depending on the redox state of the cardiomyocyte.

Finally, another mechanism of stiffness modulation under
oxidative stress is the formation and isomerization of disulfide
bonds in unfolded titin Ig domains. Ig domains contain many
conserved cysteines which potentially oxidize under oxidative
stress conditions, form S–S bridges, and isomerize (Fig. 3)
(Alegre-Cebollada et al. 2011; Giganti et al. 2018; Solsona
et al. 2014). This disulfide bond formation and isomerization
prevents further unfolding of the Ig domain, presumably lead-
ing to increased titin-based passive tension. All of these find-
ings point to the important role of titin oxidation in regulation
of cardiomyocyte stiffness in vivo and further suggest that the
correction of titin oxidation may be relevant in diseased hearts
characterized by increased oxidative stress, with correction
leading to reduced pathological cardiomyocyte stiffness and
normalized diastolic function.

Oxidative stress–related endothelial
dysfunction in cardiovascular disease

Endothelial dysfunction is a pathological condition character-
ized by loss of balance in all major endothelial mechanisms
(Fig. 4). The condition has been implicated in the pathophys-
iology of various cardiovascular diseases, including chronic
HF (Endemann and Schiffrin 2004). Endothelial dysfunction
is caused by inflammation, free radicals, and cytokines, acting
via oxidized low-density lipoproteins that increase the

expression of adhesion molecules in the endothelium, facili-
tating monocyte infiltration into the subendothelial space
(Couillard et al. 2005; Janabi et al. 2000). Endothelial dys-
function plays an important role in the excessive systemic
vasoconstriction and reduced peripheral tissue perfusion ob-
served in chronic HF, as worsening vasoconstriction aug-
ments myocard ia l damage . Decreased coronary
endothelium–dependent vasodilation impairs myocardial per-
fusion, reduces coronary flow, and worsens ventricular func-
tion. The decreased cardiac output observed in HF patients
culminates in endothelial shear stress that stimulates eNOS
expression. In HF, the downregulation of eNOS expression
results in less NO production and hence diminished flow-
mediated vasodilation, giving place to concomitant vasocon-
striction. Experimental models have shown that oxidative
stress significantly stimulates the progression of endothelial
dysfunction (Heitzer et al. 2001). Endothelial inflammatory
activation in primates developing diet-induced obesity, evi-
dent from adhesion molecule expression, appears to be the
earliest manifestation of vascular damage (Chadderdon et al.
2014). Endothelial inflammatory activation is associated with
microalbuminuria, which is in turn associated with diastolic
dysfunction and predicts HFpEF development (Brouwers
et al. 2013). In HFpEF, endothelial dysfunction is linked to
the worsening of symptoms (Borlaug et al. 2010), functional
capacity (Borlaug et al. 2010), and precapillary pulmonary
hypertension (Farrero et al. 2014). In general, comorbidities
lead to systemic inflammation and increased oxidative stress,
triggering endothelial and cardiomyocyte dysfunction and so
contributing to the development of HF and HFpEF (Franssen
et al. 2016; Kolijn et al. 2020b). Inflammation and oxidative
stress in HFpEF patients and HFpEF rats were accompanied
by impaired eNOS phosphorylation and NO bioavailability in
the myocardium, and specifically in cardiomyocytes (Kolijn
et al. 2020b). Previous work has indicated that both are likely
to be the primary underlying causes of the abnormal cardio-
myocyte stiffness that results from titin hypophosphorylation
(Franssen et al. 2016; Hamdani et al. 2013a; b; 2014; van
Heerebeek et al. 2008). The reduced production of NO and
sGC could be a result of increased H2O2 and 3-nitrotyrosine,
as shown previously (Herwig et al. 2020; Kolijn et al. 2020b),
and may be due to the uncoupling of eNOS, thereby switching
the eNOS dimer to a superoxide anion-generating monomer
(Franssen et al. 2016; Kolijn et al. 2020b).

In HF, both cardiomyocyte and endothelial cells contribute
to cardiac dysfunction. Systemic inflammation induces in-
flammatory activation of the endothelium of myocardial mi-
crocirculation. This leads to enhanced endothelial expression
of adhesion molecules such as ICAM-1, VCAM, and E-
selectin (Fig. 4) (Franssen et al. 2016; Kolijn et al. 2020b).
As a result of inflammatory activation, NOX2 is upregulated
in endothelial cells, leading to oxidative stress, increased
levels of H2O2, uncoupling of eNOS, decreased NO
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bioavailability, and formation of 3-nitrotyrosine and thereby
endothelial dysfunction and subsequent cardiac dysfunction
(Franssen et al. 2016; Kolijn et al. 2020b). On the other hand,
in cardiomyocytes, increased oxidative stress leads to the gen-
eration of H2O2 and thereby decreased NO bioavailability,
which in turn leads to less stimulation of sGC, reduced for-
mation of cGMP, and diminished PKG activity (Kolijn et al.
2020b). A lack of PKG activity is associated with decreased
titin phosphorylation and increased passive stiffness of
cardiomyocytes. Due to a low cGMP concentration, the latter
pathway fails to compensate for the decreased NO bioavail-
ability. Ultimately, this leads to chronic cardiomyocyte dys-
function and thereby cardiac dysfunction.

Alterations in stress signaling pathways

Biomechanical stress as a result of hypoxia, hypertension, and
other forms of myocardial injury leads to a decline in myocar-
dium function and thereby triggers signals to compensate via
hypertrophy. Cardiac hypertrophy, in its early stages, is part of
a compensatory response to external stressors, including me-
chanical loading and oxidative stresses (Linke and Hamdani
2014). The onset of cardiac hypertrophy can be a beneficial
response that maintains or augments cardiac output without
adverse pathology. However, when stressors persist, compen-
satory hypertrophy can evolve into a decompensated state

with profound changes in gene expression programs, contrac-
tile dysfunction, and extracellular remodeling. A transition
can occur during the dilation of the heart and thinning of the
walls of the ventricular chamber.

Hyperglycemia in diabetes causes alterations in membrane
and metabolic and biochemical functions that lead to contrac-
tile dysfunction and thereby cardiac dysfunction.
Hyperglycemia also results in the generation of ROS, ulti-
mately leading to increased oxidative stress in a variety of
tissues. Consequently, this will lead to the activation of
stress-sensitive intracellular signaling pathways once there is
a redox imbalance in the cell.

One major intracellular target of hyperglycemia and oxida-
tive stress is nuclear factor-κB (NF-κB) (Barnes and Karin
1997; Mohamed et al. 1999; Tak and Firestein 2001).
NF-κB can be activated by a wide array of exogenous and
endogenous stimuli including hyperglycemia, elevated free
fatty acids, ROS, TNF-α , IL-1β , and other pro-
inflammatory cytokines, advanced glycosylation end-
product-binding and receptor for AGE, p38 MAPK, DNA
damage, viral infection, and ultraviolet irradiation (Barnes
and Karin 1997). In addition to its role in apoptosis, NF-κB
plays a crucial role in mediating immune and inflammatory
responses. Modifications in NF-κB signaling are associated
with various heart diseases. The c-Jun NH(2)-terminal kinases
(JNK) and p38 MAPKs are members of the extensive super-
family of MAP serine/threonine protein kinases and can be

Fig. 4 Scheme for the signaling pathways of endothelial cell in diseased
heart under oxidative (right) and healthy (left) conditions.A Represents a
heart under oxidative condition with impaired endothelial function via
increased inflammatory cytokines and oxidative stress (red arrow
pointing upwards means increase and red arrow pointing down means
decrease).BRepresents a healthy condition showing a normal endothelial
function via normal/low inflammatory cytokines and oxidative stress

(green arrow pointing upwards means increase and green arrow pointing
downmeans decrease). Abbreviations: H2O2, hydrogen peroxide; ICAM-
1, intercellular cell adhesion molecule-1; IL-6, interleukin-6; NO, nitric
oxide; NOX2, NADPH phagocyte oxidase isoform; ONOO-,
peroxynitrite; ROS, reactive oxygen species; sGC, soluble guanylyl cy-
clase; TNF-α, tumor necrosis factor-alpha; VCAM-1, vascular cell adhe-
sion molecule-1; P-eNOS, phospho-endothelial nitric oxide synthase
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activated and/or stimulated through different stress-inducing
stimuli, including oxidative stress, ROS, hyperglycemia, os-
motic stress, heat shock, and pro-inflammatory cytokines
(“stress-activated kinases”) (Tibbles and Woodgett 1999).
These kinases are activated in response to hyperglycemia
and diabetes and are involved in apoptosis, which can be
suppressed by antioxidant vitamin C (Ho et al. 2000).
Chronic activation of the p38 MAPK pathway is often asso-
ciated with disease pathology, including inflammation,
ischemia/reperfusion injury, infectious disease, and neuronal
disease (Obata et al. 2000).

In addition, extracellular signal-regulated kinase (ERK) 1
and 2 cascades are markedly activated in cardiomyocytes by
virtually all hypertrophic stimuli, inhibition of the cascade
suppresses at least some aspects of the hypertrophic response,
and constitutive activation of the pathway produces compen-
sated cardiac hypertrophy in transgenic mice (Bueno and
Molkentin 2002; Sugden and Clerk 1998a). However, while
the ERK1/2 cascade is implicated in promoting cardiomyo-
cyte hypertrophy, it can also be activated in cardiomyocytes
by cellular stresses, including H2O2, which induce cardiac
myocyte apoptosis. Hence, ROS, redox signaling, and oxida-
tive stress all contribute to both physiological and pathological
conditions.

Therapeutic implications

The current treatment options for many forms of heart disease
in particular for HFpEF patients are very limited and no drug
has yet been shown to improve cardiac or specifically diastolic
function in these patients. Many of the tested compounds were
ineffective in reducing morbidity and mortality although in
many cases proven to be effective for the treatment of
HFrEF. Accordingly, several clinical trials have failed to show
that any of these proposed drugs have positive effects in
HFpEF patients. Patient management is presently limited to
amelioration of symptoms and the treatment of common co-
morbidities such as hypertension, diabetes, obesity, and atrial
fibrillation. Some trials such as the recent PARAGON-HF
trial that investigated the effects of sacubitril/valsartan in pa-
tients with HFrEF showed evidence of a very heterogeneous
response to treatment (Solomon et al. 2019). Potential benefit
was detected only in some subgroups, such as women and
patients with an ejection fraction below the median in the
direction towards HF with mid-range EF. These results
strongly imply that one size might not fit all in heart failure
and in particular HFpEF (ClinicalTrials.gov Identifier:
NCT0192071). Many studies showed suppression of several
signaling pathways and in particular the cGMP-PKG pathway
in HFpEF patients and animal models of HFpEF. This reduc-
tion is possibly due to inflammation and oxidative stress mak-
ing it a suggestive treatment target option for these patients.

However, as many heart diseases are characterized by in-
creased inflammation and oxidative stress, one may think that
targeting both could be a treatment option for many sub-
groups. Indeed, our recent work suggested that increased ox-
idative stress and inflammation may play a major role in the
deterioration of LV diastolic function, as we showed that NO-
sGC-cGMP-PKG signaling is reduced in HFpEF patients and
in an HFpEF animal model (Kolijn et al. 2020a; b). Increased
inflammation and oxidative stress led to impaired cardiomyo-
cyte and endothelial function and thereby to diastolic dysfunc-
tion. This latest was associated with disarranged a couple of
signaling pathways and protein modifications (Kolijn et al.
2020a; b). All of which further suggest that increased oxida-
tive stress and inflammation may exacerbate the pathophysi-
ology of different heart diseases and specifically in HFpEF.
Both acute treatments with the sodium-glucose cotransporter
2 (SGLT2) inhibitor empagliflozin and sGC activator showed
antioxidant and anti-inflammatory properties when the myo-
cardium of HF and HFpEF patients and rats were treated
(Kolijn et al. 2020b). Empagliflozin is an inhibitor of the
Na-dependent glucose cotransporter 2 (SGLT2) and is clini-
cally approved as an oral antidiabetic drug. By inhibiting
SGLT2 in the proximal tubule of the kidney, empagliflozin
reduces the reuptake of glucose and Na and thereby lowers
blood glucose. In the EMPA-REG OUTCOME trial,
empagliflozin was evaluated for its cardiovascular safety.
The results showed that empagliflozin reduced cardiovascular
mortality, all-cause mortality, and heart failure (HF) hospital-
ization rates. Interestingly, the effects of empagliflozin in the
EMPA-REG OUTCOME trial on HF hospitalization and
mortality occurred within only a few months after initiation
of treatment, suggesting the mechanisms are independent of
long-acting secondary risk factors. This is supported by recent
clinical data showing that empagliflozin exerts the same ben-
eficial cardiovascular effects after adjustment for cardiovascu-
lar risk factors (blood pressure, low-density lipoprotein cho-
lesterol, and HbA1c) (Fitchett et al. 2019; Neal et al. 2017;
Wiviott et al. 2019; Zinman et al. 2015). sGC activity when
the heme iron is oxidized (Fe3+) on the heme group is missing
(Sandner et al. 2019; Stasch et al. 2001; 2011) and increase
NO. Both empagliflozin and the sGC activator improved car-
diomyocyte function via improved titin and other myofila-
ment protein phosphorylation, an effect likely due to im-
proved signaling pathways including the pathway NO-sGC-
cGMP-PKG and the hypertrophic pathways mediated by
CaMKII, PKC, and ERK2, in addition to the PKA pathway
(Kolijn et al. 2020a). Moreover, treatment with both drugs
reduced pathologically elevated pro-inflammatory cytokines
in human HFpEF myocardium as well as in HFpEF rats and
thereby improved endothelial function. This improvement
was accompanied with diminished increased levels of myo-
cardial and cardiomyocyte oxidative stress in human and rats
(Kolijn et al. 2020a; b). Previous work suggested that
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comorbidities lead to systemic inflammation and increased
oxidative stress, which triggers endothelial and cardiomyo-
cyte dysfunction; it is not surprising that interventions that
reduce inflammation are being explored as potential treatment
in heart failure. Other studies also demonstrated that
empagliflozin is associated with reduced inflammation and
reduced activation of the nucleotide-binding domain-like 81
receptor protein 3 inflammation in liver and plasma in type 1
and 2 diabetes (Marx and McGuire 2016; Tahara et al. 2013;
2014) inflammasome in the kidney (Benetti et al. 2016) and
heart (Lee et al. 2017). Previous work in HFpEF rats and
human HFpEF reported diminished oxidative parameters up-
on empagliflozin (Kolijn et al. 2020b). Several studies showed
that increased NO can suppress inflammation and regulates
the synthesis of pro-inflammatory cytokines, as NO donors
and L-arginine attenuate the expression of many pro-
inflammatory cytokines (De Caterina et al. 1995; Spiecker
et al. 1998); and supported by this the outcome of the
SGLT2 inhibitors and the sGC activator in suppressing in-
flammation and oxidative stress, perhaps all via boosting the
NO-sGC-cGMP-PKG pathway. Most importantly, these ef-
fects occur in the absence of any negative inotropy (Pabel
et al. 2018). In the light of recent clinical endpoint trials in-
vestigating the effects of SGLT2-inhibitors in high-risk pa-
tients, a subgroup analysis of patients with HFpEF, which
has not yet been available for these trials, would be of partic-
ular interest. However, according to the inclusion criteria of
the EMPA-REG OUTCOME (Zinman et al. 2015),
DECLARE-TIMI 58 (Wiviott et al. 2019), and the
CANVAS study (Neal et al. 2017), a not inconsiderable num-
ber of patients should suffer from HFpEF because either the
presence of established cardiovascular diseases or a combina-
tion of risk factors such as e.g. dyslipidemia or arterial hyper-
tension in many cases combined with diabetes was inclusion
criteria. The latter combination suggests a not inconsiderable
proportion of HFpEF patients in the collective as a whole.
Since adequate and therefore well-characterized subgroup
analyses are not to be expected in this regard, the results of
the DELIVER and EMPEROR-Preserved studies must be
awaited, which specifically examine the influence of SGLT-
2 inhibitors on hard endpoints in HFpEF patients. Finally,
another potential treatment for heart failure patients with in-
creased oxidative stress and inflammation would be theoreti-
cally “a cocktail drug,” which may combine different targets
in one. As many pro-inflammatory cytokines and oxidative
parameters are increased in HF, one may suggest to suppress
all of them together using a multiple anti-inflammatory drug
and/or a multiple antioxidant drug. In the past, the potential
benefit of antioxidative strategies for treating HF has already
been postulated. However, while agents with antioxidative
properties i.e. like vitamin C or vitamin E showed beneficial
effects in vitro, clinical trials largely failed in translating those
effects into an improvement of clinical endpoints (Farías et al.

2017; Keith et al. 2001; Myung et al. 2013). A potential lim-
itation could be that the effective concentration of the respec-
tive antioxidative agents in the heart has not been reached
upon in vivo application (Farías et al. 2017). Therefore,
targeting specific regulatory proteins of the pro-
inflammatory and oxidative signaling cascades in cardiac dis-
ease might be a valuable approach to reduce adverse remod-
eling mediated by myocardial inflammation and oxidative
stress. However, as individuals with HFpEF still represent a
very heterogeneous collective, one may consider to establish
more specific diagnostic subgroups in order to establish more
precise therapeutic approaches. In this case, different combi-
nations with the existing drugs may be more appropriate and
effective for each sub-group so far.

Conclusion

It remains very critical to understand the complex interactions
of oxidative and nitrosative stress with pro-inflammatory
mechanisms, metabolic dysfunction, signaling pathways,
and the redox modification of proteins characteristic of heart
failure to design novel approaches to therapeutic strategies for
each heart failure phenotype.
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