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Abstract
Over recent years, new light has been shed on aspects of information processing in cells. The quantification of information, as
described by Shannon’s information theory, is a basic and powerful tool that can be applied to various fields, such as commu-
nication, statistics, and computer science, as well as to information processing within cells. It has also been used to infer the
network structure of molecular species. However, the difficulty of obtaining sufficient sample sizes and the computational burden
associated with the high-dimensional data often encountered in biology can result in bottlenecks in the application of information
theory to systems biology. This article provides an overview of the application of information theory to systems biology,
discussing the associated bottlenecks and reviewing recent work.
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Introduction

Systems biology has contributed greatly to our understanding
of life phenomena by helping elucidate their underlying mech-
anisms from a systems perspective. Various systems ap-
proaches can be applied, such as the consideration ofmechanics
or of biochemical reactions, but in recent years there has been
increased focus on information processing in cells (Uda and
Kuroda 2016) (Levchenko and Nemenman 2014) (Tkačik and
Bialek 2016). That is not to say that investigating cells as infor-
mation processing systems is entirely novel; in neuroscience,
there have been various studies of the mechanisms of informa-
tion processing in neurons and neuronal networks (Rieke et al.
1997; Timme and Lapish 2018), and the notion of information
processing in cells, especially cellular signal transduction, has
previously been described (Azeloglu and Iyengar 2015).

In most cells, information processing is implemented by
biochemical processes; in neurons, it is implemented through
electrical signaling. Collecting quantitative data is generally
more difficult for biochemical processes than for the electrical
signals in neurons, and this has hampered the analysis of in-
formation processing in cells. However, recent developments

in technology have made it possible to quantitatively measure
various biochemical processes, and thus to investigate infor-
mation processing, in a single cell (Cheong et al. 2011; Gregor
et al. 2007; Keshelava et al. 2018; Ozaki et al. 2010;
Selimkhanov et al. 2014).

Quantitative analysis of information processing requires a
definition of the amount of information. This is provided by
Shannon’s information theory (Cover and Thomas 2006;
Shannon 1948). In this theory, information is defined and
formulated in the context of communication between a sender
and receiver; the definitions are general and can be applied not
only to communication, but also to fields such as statistics,
machine learning, computer science, and gambling. Systems
biology is no exception; the application of Shannon’s infor-
mation theory and its definition of information allows the
quantitative analysis of mechanisms of information process-
ing. However, this raises some concerns in terms of sample
size, the dimension of the data vector, and the interpretation of
the analysis results. In this article, the author describes the
efficacy of applying Shannon’s information theory to systems
biology and discusses notable points specific to biological
situations.

Information quantification

Data have become increasingly important in this Information
Age. Data sets are generally used with the expectation they
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contain useful information, but how can the amount of infor-
mation they contain be quantified?

Consider data sampled from a statistical population,
where a random variable X is generated from a distribution
and the outcome x of X is a part of the data. All information
on X is contained in the distribution of X because x can be
generated if the distribution is known. Intuitively, the
amount of information contained might be expected to be
proportional to the length of the sequence representing the
data items sampled from the population. However, this is
not necessarily the case. For example, take the example of
a coin flip, where x = 1 and x = 0 represent an outcome of
heads and tails, respectively. The data set of the observed
outcomes for coin flips repeated n times can be written as a
sequence of length n: xif gni¼1. If, however, the representa-
tions of heads and tails are changed to x = 11 and x = 00,
this doubles the length of the sequence. Similarly, the
length of the sequence can be increased without limit
through the redundant representation of the data, with no
change in the amount of information contained in the data.
It therefore seems to be essential that measuring the
amount of information contained in a data set requires
non-redundant representation of the data.

Let li be the description length of event i, which occurs with
probability pi. The average description length of the data has
the following lower bound (Cover and Thomas 2006):

∑
i
pili≥−∑

i
pilogpi≡H pð Þ ð1Þ

This lower bound corresponds to the entropy H of dis-
tribution {pi}. Inequality (1) means that the average de-
scription length for arbitrary representation of event i can-
not be reduced to less than the value of entropy. In the case
of a continuous random variable, the summation is re-
placed with the equivalent integral. Thus, entropy can be
used as a measure to quantify the amount of information
contained in a distribution. The most commonly used unit
of information is the “bits,” which represents the length of
a binary sequence, because most data can be transformed
to binary representation.

Equation (1) indicates that a data set of length n with en-
tropy H(p) has an average number of states of 2nH(p), where
the base of logarithms is 2 and the unit of entropy is bits. Thus,
the entropy can also be interpreted as an index of uncertainty,
with larger values indicating greater uncertainty. It may not be
immediately intuitive that a measure of uncertainty would be
an indicator of the amount of information; however, it may
help to keep in mind that uncertainty is defined by the average
number of states.

Consider a sender transmitting a message to a receiver.
How can the amount of information reliably transmitted be-
tween the sender and receiver be quantified? Information
transmission is measured according to the mutual information

to the sender’s and receiver’s data X and Y, respectively, as
follows:

I X ; Yð Þ ¼ H Xð Þ−H X jYð Þ ¼ H Yð Þ−H Y jXð Þ
¼ ∑

x;y
p x; yð Þlog p yjxð Þ

p yð Þ
ð2Þ

where p(⋅) indicates a probabilistic distribution function. The
conditional distribution p(y| x) is termed a communication
channel in the context of communication, and defines the
distribution of Y given X; this can be interpreted as the rela-
tionship between X as the input and Y as the output (Fig. 1).
The term 2I(X;Y), based on the mutual information I(X;Y), cor-
responds to the average number of states of the sender’s data
that the receiver can distinguish. The mutual information can
be described by the difference between the entropy and the
conditional entropy (Fig. 2), where the conditional entropy
H(A| B) is the amount of information of Awhen B is known.
Thus, the mutual information I(X; Y) can be interpreted as the
information that is the residue of information X (or Y) omitted
the information when Y (or X) is known. Schematically, this
corresponds to the intersection of the information content of X
and Y. If I(X; Y) = 0, there is no information transmission be-
tween the sender and the receiver. This is equivalent toX and Y
being statistically independent.

Given the distributions p(x) and p(y| x), the mutual infor-
mation is uniquely determined by Eq. (2) (Fig. 1), where p(x,
y) = p(x)p(y| x) and p yð Þ ¼ ∑

x
p yjxð Þp xð Þ. In the transmission

process, the channel p(y| x) typically depends on the commu-
nication system used, but the input distribution p(x) can often
be designed. The upper bound for the mutual information,
given an input distribution p(x), is known as the channel ca-
pacity:

C ¼ max
p xð Þ

I X ; Yð Þ

When applying these concepts to biological situations, the
in vivo input distribution is often difficult to measure, so the
channel capacity is often calculated instead of evaluating the
mutual information from the input distribution.

Although, for simplicity, X and Y have so far been de-
noted as scalar quantities, they can more generally be rep-
resented as vectors. When the data form a time series, the
information including time effects can be represented by
the extension of random variables such as X and/or Y from
scalar to vector. For simplicity, consider time to be discrete
rather than continuous, given by t = {ti}; then, the time
trajectory of X can be represented as {Xt} = (X1,⋯, Xm)

T.
The mutual information between time trajectory {Xt} and
{Yt} is given by:

I X tf g; Y tf gð Þ ¼ ∑
xtf g; ytf g

p xtf g; ytf gð Þlog p ytf gj xtf gð Þ
p ytf gð Þ ð3Þ
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This can be considered to be the information transmission
between a sender and receiver (Munakata and Kamiyabu
2006). The mutual information of the snapshot at a single time
given by Eq. (2) corresponds to the lower bound of the mutual
information of the time trajectory given by Eq. (3).

The mutual information I(X; Y) does not always indicate
the direct statistical interaction between X and Y. For example,
if Z interacts with X and Y, and X and Y are not independent,
then even if X and Y do not directly interact, there is an indirect
interaction between X and Y mediated through Z. The condi-
tional mutual information:

I X ; Y jZð Þ ¼ ∑
x;y;z

p x; y; zð Þlog p yjx; zð Þ
p yjzð Þ

allows the statistical relationship between X and Y, subtracting
the effect of Z to be quantified.

Transfer entropy (Hlavackova-Schindler et al. 2007; Palus
et al. 2001; Schreiber 2000):

TE X→Yð Þ ¼ I yif gTi¼tþ1; xif gt−τxi¼t j yif gt−τyi¼t

� �
¼ ∑

yif gTi¼tþ1; yif gt−τyi¼t ; xif gt−τxi¼t

p yif gTi¼tþ1; yif gt−τyi¼t ; xif gt−τxi¼t

� �

log
p yif gTi¼tþ1j yif gt−τyi¼t ; xif gt−τxi¼t

� �

p yif gTi¼tþ1j yif gt−τyi¼t

� �

is a specific application of conditional mutual information to
the analysis of time series, where T, τx and τy indicate the
number of lags. It can be interpreted as an extension of
Granger causality to a non-linear relationship.

Bottlenecks

In general, it is not easy to evaluate mutual information from
data with a finite sample size. Especially in biology, sample
sizes tend to be relatively small but with high dimensions.
This results in bottlenecks and makes the evaluation of mutual
information difficult.

Mutual information is defined by using a distribution func-
tion. Thus, the evaluation of mutual information requires the
distribution function to be estimated directly or indirectly.
However, estimating a distribution function from data is not
easy in practice, especially in high dimensions (Hastie et al.
2009). A simple method for estimating a distribution function
is by using a normalized histogram; however, the value of the
resulting mutual information will vary depending on the bin
size of the histogram, and selecting bin size is an unexpectedly
troublesome task. The variance in the estimated distribution
function increases as the bin size decreases, and its bias in-
creases as the bin size increases. A number of methods to
select bin size have been proposed (Freedman and Diaconis
1981; Scott 1979; Shimazaki and Shinomoto 2007; Sturges
1926). However, it is still not easy to control the bias–variance
trade-off when selecting the bin size for practical data (Hastie
et al. 2009). For high-dimensional data, the exponential in-
crease in the number of bins makes it especially difficult to
process the histogram.

An improved method for constructing histograms using B-
spline functions has been proposed by Daub et al. (Daub et al.
2004). This method is more efficient than using an ordinary
histogram for estimating a distribution function by the exten-
sion of bins to polynomial functions with the use of charac-
teristics of B-spline functions, requiring the selection of the
bin size and the order of the B-spline function. The kernel
density estimation method (Parzen 1962) is frequently used
to estimate a distribution function; this requires the selection
of the bandwidth of the kernel function rather than the bin size.
Various methods to select the bandwidth have been proposed

Fig. 2 Graphical representation of entropy and mutual information. The
circles represent the entropies of the random variablesX and Y. The area of
intersection of the two circles corresponds to the mutual information
between the variables. The remainder of each circle outside the
intersection corresponds to each conditional entropy

Fig. 1 The relationship of the distributions of x as the sender and y as the
receiver. The solid line is the average of y given x. The vertical height of
the yellow area for a given value of x is the variability of y given x
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(Turlach 1993), but there remains the problem of the bias–
variance trade-off for the selection of bandwidth.

Estimating a distribution function with high accuracy and
precision generally requires a sample size difficult to achieve
in biology experiments. The sample size to be required to
estimate distribution function increases exponentially as the
number of dimensions increases, so it is especially difficult to
reliably estimate a distribution function in high dimensions.
The computational burden for evaluating information also in-
creases exponentially because the summations in Eqs. (1)–(3)
run over all the domains of the variables. This makes the
straightforward computation of information in high dimen-
sions an intractable problem. In biology, the number of mo-
lecular species is of the order 103 to 105, depending on the
omics layer, and so the number of dimensions of biological
data, especially omics data, is often large. However,
reformulating the information equations in terms of the expec-
tation of the logarithm of a distribution function or the ratio
between distribution functions can be useful. When the distri-
bution functions are known, the computation of the expecta-
tion for all domains can be approximated by the sample mean.
This approximation by sample mean only needs the values of
probability density at the sampling points; thus, estimating
distribution function is not needed. This reduces the compu-
tational burden for the expectation to the order of the sample
size, and in biology the sample size is relatively small com-
pared with the number of dimensions. For example, in Eq. (2),
the following holds:

E log
p yjxð Þ
p yð Þ

� �
≈
1

n
∑
n

i
log

p yijxið Þ
p yið Þ

The Kozachenko–Leonenko estimator (Kozachenko and
Leonenko 1987; Kraskov et al. 2004) can be used to compute
the quantity of information based on approximations by using
the sample mean and applying the k-nearest neighbors meth-
od, even for high-dimensional data. However, the accuracy of
the Kozachenko–Leonenko estimator seems to be low, espe-
cially for high dimensions, and the information such as entro-
py and mutual information often take negative values. The
parameter k for the number of nearest neighbors needs to be
selected, but as yet there is no theoretical criterion on how to
do this. In addition, there is the problem of the bias–variance
trade-off for the selection of parameter k.

Thus, sample sizes and computational burden could be
bottlenecks to evaluate the quantity of information.

The application of information theory
to systems biology

Information theory has contributed to systems biology in two
main ways: the analysis of information transmission in cells

and the inference of the network structure of molecular spe-
cies. In the former, information theory has been used to quan-
tify information transmission (previous studies are
summarized in Table 1). In the latter, information theory has
been used to examine the presence or absence of statistical
relationships.

In recent studies of information transmission, information
theory has been used to examine signal transduction, consid-
ered to be a core mechanism in cellular information process-
ing (Tkačik et al. 2008a, b; Cheong et al. 2011; Lestas et al.
2010; Levchenko and Nemenman 2014; Selimkhanov et al.
2014; Tostevin and ten Wolde 2009; Uda et al. 2013;
Waltermann and Klipp 2011; Yu et al. 2008). Tkačik et al.
examined the channel capacity and mutual information be-
tween an upstream transcription factor, Bicoid, and a down-
stream target gene product, Hunchback, during early embryo-
genesis inDrosophila flies (Tkačik et al. 2008b). As discussed
earlier, mutual information is generally calculated from the
input distribution and the conditional distribution. Unlike
most biological experiments, in which the measurement of
the input distribution in vivo is typically difficult, it is possible
to measure the in vivo distribution of Bicoid concentrations
(Gregor et al. 2007). Tkačik et al. reported that the mutual
information was almost 1.5 bits, close to the channel capacity
of almost 1.7 bits. These findings indicated that in vivo
Bicoid/Hunchback system uses a distribution of the input,
Bicoid, that results in the channel capacity. This is interesting,
with the close agreement in the values of mutual information
and the channel capacity possibly implying a design principle
in cellular information processing.

Cheong et al. examined the channel capacity between up-
stream tumor necrosis factor and the downstream nuclear
factor(NF) κB or activating transcription factor–2 (ATF-2)
and found that information transmission increased through a
combination of the effects of NFκB and ATF-2 (Cheong et al.
2011). In addition, they defined two models, the bush model
and the tree model, which differ in terms of the network struc-
ture for information transmission. In the bush model, informa-
tion is transmitted downstream by branched pathways directly.
In the tree model, information is transmitted via the pathways,
which go through a common downstream molecule. They
investigated the characteristics of information transmission
by comparing two models under the assumption of a
Gaussian distribution.

Uda et al. examined channel capacities between growth
factors and either signaling molecules or immediate early
genes (Uda et al. 2013). They demonstrated that each channel
capacity is almost 1 bit for each growth factor, but each
growth factor uses a specific pathway to transmit information
through the use of multivariate mutual information. In addi-
tion, the information transmission was generally more robust
than the average signal intensity, despite pharmacological per-
turbations, and compensation for information transmission
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occurred. The mechanism or mathematical conditions under-
lying this robustness and compensation have not been fully
elucidated; further study is needed. Robust information trans-
mission has also been identified in the spines of neurons by
numerical stochastic simulation; despite the signal being
noisy, the information transmission in spines with small vol-
umes is efficient compared with that for those with large vol-
umes, and is sensitive to the input (Fujii et al. 2017; Tottori
et al. 2019a, 2019b).

Tkačik et al., Cheong et al., and Uda et al. acquired data
sets for estimating the distributions in their studies by snap-
shots taken at a series of time points. With this method, the
combined effects of multiple time points are omitted from the
calculation of mutual information, which results in the infor-
mation transmission being underestimated. Generally, calcu-
lating mutual information and the channel capacity between a
stimulus and the associated time trajectory, which consists of
multiple time points, increases the computational difficulty
because of the high-dimensional summation involved.
Tostevin and ten Wolde theoretically analyzed the mutual in-
formation between time trajectories generated by biochemical
reactions based on a Gaussian approximation (Tostevin and
ten Wolde 2009).

Selimkhanov et al. measured the continuous time course of
molecular concentrations by live imaging and efficiently calcu-
lated the mutual information and channel capacity between the
stimulus and the associated time trajectory of downstreammol-
ecules, including the combined effect at multiple time points, by
applying the k-nearest neighbors method (Selimkhanov et al.
2014). The combined effect can increase the channel capacity
compared with using only a snapshot at a single time point, as
can combining molecular species.

A method using machine learning for evaluating mutual
information has been proposed (Cepeda-Humerez et al.
2019). In this, the time trajectories and inputs, which represent
the stimuli and experimental conditions, are regarded as the
explanatory and response variables, respectively. After

training the model for classification or regression with a train-
ing data set, mutual information was estimated from the pre-
diction error by using a test data set. This method is based on
the intuitive idea that prediction error is reduced by increasing
the amount of information the time trajectories include about
the input corresponding to the stimulation.

The data to estimate information transmission is usually
acquired by stimulating a single cell once. Because this esti-
mate requires a large sample size for the data set, as discussed
earlier, many single cells need to be measured. When this
approach is used, as in the studies described above, the author
refers here to the resulting information as “information at the
population level” (Fig. 3a). Conversely, a single cell can be
stimulated and measured repeatedly to obtain the data. This
requires the characteristics of the single cell system to remain
unchanged with the repeated stimulation and measurements.
The author refers to the information collected in this way as
“information at the single cell level” (Fig. 3b). Information at
the population level assumes that the cell systems do not differ
between the cells or that the response at the population level
does not vary; this can be interpreted as the receiver not dis-
criminating between the signals in specific single cells.
Conversely, information at the single cell level assumes that
the cell system can vary between cells. The interpretation of
the information depends on the problem settings involved in
encode and decode systems.

Keshelava et al. (Keshelava et al. 2018) repeatedly stimu-
lated andmeasured the responses of single cells by using a live
imaging technique, and evaluated the channel capacity at the
single cell level. This varied between single cells, suggesting
that the system of information transmission differs between
individual cells. The average channel capacity at the single
cell level (almost 2 bits) was larger than the channel capacity
at the population level.

Information theory has also been employed to infer the
network structure of molecular species. In this case, informa-
tion is used to examine statistical relationships between

Table 1 Summary of previous studies on information transmission in biological systems (this table is modified from Uda and Kuroda (2016))

Authors Measurement
technique

Sender Receiver Biological System Main result

Tkačik et al. Snapshot Bicoid Hunchback Transcription factor, gene expression Comparing information transmission
in vivo to channel capacity

Cheong et al. Snapshot TNF NFĸB, ATF-2 Nuclear translocation, protein
phosphorylation

Information transmission by multiple
molecular species

Uda et al. Snapshot Growth factors,
ERK, CREB

ERK, CREB,
c-FOS, EGR1

Protein phosphorylation, gene
production

Robustness and compensation of
information transmission

Selimkhanov
et al.

Live imaging EGF ERK Protein phosphorylation, small
molecule, nuclear translocation

Information transmission by temporal
patternATP Ca2+

LPS NFĸB
Keshelava

et al.
Live imaging Acetylcholine Ca2+ G protein-coupled receptor signaling Information transmission at a single cell

level

Biophys Rev (2020) 12:377–384 381



molecular species. Several methods to infer the structures of
biological networks have been reported. Here, the author fo-
cuses on those based on an information theory approach. The
ARACNE (Margolin et al. 2006) and CLR (Faith et al. 2007)
network inference algorithms determine the presence of an
edge between nodes by calculating the mutual information
of the two nodes. ARACNE employs data processing inequal-
ities to eliminate the weakest associations in every closed
triplet of nodes. Intuitively, suppose a relay of information
transmission, data processing inequality means that the quan-
tity of information of end point cannot increase more than that
of relay point. This procedure is exact when the network has a
tree structure. In contrast, CLR compares the values of mutual
information for a particular pair of nodes to the background
distribution, which is empirically estimated from the two sets
of values of mutual information: the set of values of mutual
information between one of the pairs and all nodes, and the set
of values of mutual information between the other of the pairs
and all nodes. CLR is based on the assumption that the em-
pirical distribution provides background information about
the absence of edges. On the other hand, a statistical hypoth-
esis test also provides a threshold of mutual information to
determine the absence of edges. Even when X and Y are inde-
pendent, I(X; Y) = 0 does not always hold because of the sam-
pling error resulting from the finite sample size. The permu-
tation test is effective for examining the statistical significance
of the null hypothesis I(X; Y) = 0 and the alternative hypothe-
sis I(X; Y) ≠ 0 (Daub et al. 2004).

The non-negative decomposition of multivariate mutual
information has been applied to the inference of network
structure from single-cell transcriptome data (Chan et al.
2017). Transfer entropy has been used to infer the connectivity
of a neuronal network from time series data of neuronal activ-
ity (Vicente et al. 2011; Terada et al. 2019). Entropy has also

been used to characterize a population of differentiated cells
(Grun et al. 2016).

Summary and perspectives

Information theory is a powerful tool for quantifying informa-
tion transmission in cells and inferring the network structure
of molecular species and the connectivity of neuronal net-
works. The cost of data acquisition in biology can be high;
nevertheless, the evaluation of quantity of information re-
quires a large sample size because this is defined by distribu-
tion functions. In addition, when the data set is high dimen-
sional, such as with omics data and time series, the computa-
tional burden increases exponentially with the increase in di-
mensions. When the sample size is small and the data are high
dimensional, this can result in a bottleneck to applying infor-
mation quantification; however, many computational methods
are being developed to avoid such a bottleneck. It is important
to choose suitable methods to evaluate the quantity of infor-
mation on problem setting such as biological situations and
experimental conditions. Bottlenecks could potentially be
avoided by the future development of suitable experimental
measurement techniques and computational methods,
allowing information theory to be applied more widely to
systems biology.

The interpretation of information transmission quantified
by information quantification methods is not yet fully
established, possibly because of its short research history.
Information transmission refers essentially to the potential
amount of information that can be transmitted. For example,
if the information transmission of a pathway within a cell is
2 bits, this means that four states can be controlled by the
pathway; however, the cell needs to control only two states

Fig. 3 Schematic interpretation of
information at the population
level and information at the single
cell level. a Information at the
population level is evaluated from
a distribution obtained from the
responses of a population of cells
where each cell is stimulated
once. b Information at the single
cell level is evaluated from a
distribution obtained from the
responses of a single cell
stimulated repeatedly
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of survival or differentiation. The value of mutual information
does not always correspond to the amount of biologically
meaningful information. The elucidation of information trans-
mission linked with a decoding system is needed to clarify the
biological meaning of information.

The development of computational methods for informa-
tion transmission on a time trajectory would allow the exam-
ination of how to encode information to a time trajectory. For
example, epidermal growth factor stimulation has been report-
ed to induce the transient phosphorylation of extracellular
signal-regulated kinase (pERK) and cell proliferation, where-
as nerve growth factor stimulation induces the sustained pro-
duction of pERK and cell differentiation (Marshall 1995;
Gotoh et al. 1990; Qiu and Green 1992; Traverse et al.
1992). This means that information for the distinct growth
factors is encoded into the specific time trajectory of pERK,
which is selectively decoded by the downstream pathways,
resulting in the appropriate cell fate decisions (Sasagawa
et al. 2005). This suggests that the time trajectories for the
transient and sustained conditions enhance the information
transmission. Extracting information about the enhancing part
or pattern of such time trajectories could help elucidate the
encoding mechanism underlying information transmission.

A drawback of information theory in the inference of net-
work structures of molecular species is the difficulty of infer-
ring the direction of edges because information quantification
is symmetric for X and Y. One method for inferring the direc-
tion of edges is to use the transfer entropy. Although it remains
difficult to infer the structure of a large network, such as in an
omics data set, the structure of a partial network can be inferred
from a time series data set of multiple molecular species.

Currently, the main contribution of studies of information
transmission is limited to cellular signal transduction.
However, the elucidation of the entire spectrum of life phe-
nomena across multi-omic layers, that is, by using transomics
analysis, is attracting research attention (Yugi et al. 2016; Yugi
and Kuroda 2018). However, the transomics analysis of infor-
mation transmission is difficult under the present circum-
stances because of the difficulty of data acquisition, the
high-dimensional nature of the data, and the multiple time-
scales involved. Nevertheless, from the long-term perspective,
elucidation of how information is transmitted across multi-
omic layers would be highly interesting. The author expects
that the future development of measurement technology and
analysis methods based on information theory could address
this problem.
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