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Abstract
Mesenchymal stem cells (MSCs) have immune-modulatory and tissue-regenerative properties that make them a suitable and
promising tool for cell-based therapy application. Since the bio-chemo-mechanical environment influences MSC fate and
behavior, the understanding of the mechanosensors involved in the transduction of mechanical inputs into chemical signals
could be pivotal. In this context, the nuclear pore complex is a molecular machinery that is believed to have a key role in force
transmission and in nucleocytoplasmic shuttling regulation. To fully understand the nuclear pore complex role and the
nucleocytoplasmic transport dynamics, recent advancements in fluorescence microscopy provided the possibility to study
passive and facilitated nuclear transports also in mechanically stimulated cell culture conditions. Here, we review the current
available methods for the investigation of nucleocytoplasmic shuttling, including photo-perturbation-based approaches, fluores-
cence correlation spectroscopy, and single-particle tracking techniques. For each method, we analyze the advantages, disadvan-
tages, and technical limitations. Finally, we summarize the recent knowledge on mechanical regulation of nucleocytoplasmic
translocation in MSC, the relevant progresses made so far, and the future perspectives in the field.
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Introduction

Over 10 years, thanks to their unique properties and multiple
clinical benefits, mesenchymal stem cells (MSCs) have been
studied and used as suitable and promising tools for cell-based
therapy applications. MSCs are adult multipotent cells with
the great potential to self-renew and to differentiate into mul-
tiple cell lineages mainly derived from the mesodermal layer
but also from the ectoderma and endoderma under specific
conditions (Fig. 1) (Moon et al. 2018; Le and Yao 2017).

MSCs can be easily harvested from different mesenchymal
tissues that are bone marrow, adipose tissue, umbilical cord, and
dermis. Cell isolation is a simple procedure based on the collec-
tion of a heterogeneous population of plastic-adherent cells
screened by the expression of specific surface antigens (Barry
andMurphy 2004). The use of this type of adult stem cells arises
low ethical issues (Volarevic et al. 2018), shows a low risk of
tumorigenicity (Meier et al. 2013), and possesses a broad spec-
trum of immune regulatory and tissue organ repairing ability.
Thanks toMSC immune-modulatory properties, these cells were
used for some preclinical cell-based treatment of different auto-
immune diseases, such as systemic lupus erythematosus (Cras
et al. 2015), inflammatory bowel’s disease (He et al. 2012), and
rheumatoid arthritis (AbdElhalem et al. 2018). These first studies
showed great benefits on clinical and biochemical markers but
appeared highly dependent on the host inflammatory state.
Exploiting their tissue-regenerative properties, MSCs have been
also applied for cell-based therapy in case of several other pa-
thologies, such as liver disease (Zhao et al. 2018), myocardial
infarction (Madigan and Atoui 2018), pancreatitis (Ahmed et al.
2018), and stroke (Bang et al. 2016).
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Focusing on improving the clinical cell application and the
control of MSC fate and behavior, researchers have been able to
modulate MSC differentiation by regulating the chemical or me-
chanical environment. Until some decades ago, they guided
MSC differentiation by adding exogenous chemical molecules
to cell culture. However, these techniques do not allow transla-
tion to the clinic because they could induce immune reactions or
even cause tumors onset. The main challenge today is being able
to effectively control the differentiation in vitro without using
chemical factors. Therefore, with the aim ofmimicking the entire
bio-chemo-mechanical environment, recent promising ap-
proaches are focused on the mechanical influence of the MSC
environment (Raimondi et al. 2012).

Mechanical regulation of MSC differentiation

In the last decades, researchers evaluated how mechanical
environment (matrix and external inputs) is transduced into a
cell biochemical signal leading to gene transcription. This
mechanism is defined as mechanotranscription. Among all
the transcription factors involved in MSC differentiation path-
ways, few factors have been studied in the context of
mechanotranscription. In Table 1, we listed the main transcrip-
tion factors (TFs) involved in the promotion of the earlier
stages of MSC differentiation. As this table clearly shows, so
far, the pathways investigated in connection to the
mechanotranscription mechanism are those characterizing
the three mesodermal cell lineages defined by the
International Society of Cellular Therapy for the determina-
tion of MSC population: adipogenesis, osteogenesis, and
chondrogenesis.

Matrix microenvironment (architecture, stiffness, composi-
tion) and external mechanical stimuli clearly influence both
in vitro and in vivo cell growth. Substrate and matrix stiffness

regulate cell properties, such as differentiation, proliferation,
and cell shape (Nava 2012, 2014; Sun 2018). For example, soft
substrates, mechanically similar to the brain tissue, were found
to stimulate neurogenesis; myogenesis instead was induced by
an intermediate substrate stiffness; relatively stiff substrates
were finally shown to promote osteogenesis (Guilak 2009;
Engler 2006). In the same way, external mechanical stimuli,
reproducing the physiological mechanical condition character-
istic of the MSC niche, cause biological and structural cell
rearrangements. The main external mechanical cues are hydro-
static pressure, tensile stress, fluid flow, compression, vibration,
and ultrasound (Fig. 2). Below we list the main effects onMSC
differentiation applying each mechanical stimulus.

Hydrostatic pressure (HP) is a non-deforming me-
chanical stimulus able to increase chondrogenic gene
expression in MSCs (Luo and Seedhom 2007). HP pro-
motes mechanotransduction altering ions concentration,
such as Na+ and Ca2+ (Wright 1992; Browning 1999),
and cytoskeleton organization, involving both microtu-
bules and vimentin rearrangement (Jortikka 2000;
Steward 2013).

Tension loading is an external mechanical force able to
stimulate MSCs to tenogenic, osteogenic, or myogenic differ-
entiation. Depending on the strain intensity, MSCs show a
specific differentiation fate (Park 2004; Chen 2008). For ex-
ample, Chen and colleagues subjected human bone marrow
MSCs to 3% and 10% strain observing osteogenesis and
tenogenesis, respectively (Chen 2008).

Oscillatory fluid flow (OFF) induces shearing stress and it
is found to promote both osteogenic than myogenic differen-
tiation. The method commonly used to induce this type of
stress involves perfusion bioreactors with a steady, pulsatile,
and unidirectional flow (Sikavitsas 2003). Fluid flow has con-
sistently been demonstrated to promote osteogenesis and
myogenesis in bone marrow MSCs (Huang 2010).

Fig. 1 Graphical representation
of mesenchymal stem cells
differentiation pathways
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Compression loading strongly promotes chondrogenic dif-
ferentiation of MSCs upregulating chondrogenic markers
gene expression, such as collagen II and aggrecan, without
any exogenous factors stimulation (Huang 2004). A smaller
number of studies also demonstrated that this type of external
mechanical signals can induceMSC osteogenic differentiation
increasing bone matrix formation and calcium deposition
(Sittichokechaiwut 2010).

Finally, vibration has been found to promote osteogenesis,
increasing the expression of osteogenic markers, such as
osteopontin and osteocalcin (Sen 2011; Yourek 2010), and
low-intensity-pulsed ultrasound (LIPUS) has been shown to
direct chondrogenic differentiation of rat MSCs promoting the
matrix formation and increasing the expression of

chondrogenic markers, such as COL2A1 and Sox-9 (Lee
2006).

Cell and nuclear mechanosensors

From a molecular point of view, the mechanical mechanisms
that trigger or influence cell structure rearrangements leading
to biochemical signals are still not fully understood. In this
context, the players involved in the mechanotransduction
event include several elements: proteins of the plasma mem-
brane and cytoskeleton, nuclear complexes and structures, and
DNA (Fig. 3) (Bonnet and Ferrari 2010).

Table 1 Characteristics of the main transcription factors (TFs) promoting the earlier stages of MSC differentiation. In italics, the TFs found to be
involved in the mechanotranscription mechanism are highlighted

Differentiation pathways Factors Type Molecular weight (kDa) Ref.

Osteogenesis Runx2 (Cbfa1) Runt-related TF 18.8 Yanagisawa et al. 2007
Yang et al. 2014
Murphy et al. 2012
Hime and Abud 2013

Osterix Zinc Finger TF 44.9 Yanagisawa 2007
Hime and Abud 2013

Dlx Family Homeobox TF Dlx3 = 31.7
Dlx5 = 31.5
Dlx6 = 32.5

Yanagisawa 2007
Hime and Abud 2013

Adipogenesis PPARγ Nuclear Receptor 54.7 Yanagisawa 2007
Yang 2014
Li 2015
Case 2013
Hime and Abud 2013

C/EBPS Basic Leucine Zipper Domain TF α = 35.9
β = 36.1
γ = 28.4

Li 2015
Hime and Abud 2013

SREBP1/ADD1 Sterol regulatory element-binding TF ~ 49 Hime and Abud 2013
Chondrogenesis Sox9 SRY-related

High mobility group-box TF
56.1 Yanagisawa 2007

Murphy 2012
Hime and Abud 2013

Sox5 84 Yanagisawa 2007
Hime and Abud 2013

Sox6 91.9 Yanagisawa 2007
Hime and Abud 2013

Runx2 (Cbfa-1) Runt-related TF 18.8 Yanagisawa 2007
Yang 2014
Murphy 2012
Hime and Abud 2013

Myogenesis Myod Basic helix loop helix TF 34.5 Yanagisawa 2007
Pownall 2002

Myogenin 25 Pownall 2002
Myf5 28.3 Pownall 2002
Myf6 (MRF4) 26.9 Pownall 2002

Tenogenesis Scleraxis Basic helix loop helix TF 21.6 Wang 2018
Mohawk Homeobox TF 39.4 Liu 2015
Egr1 C2H2-type zinc finger TF 57.5 Guerquin 2013

Neurogenesis Ascl1 Basic helix loop helix TF 25.5 Araújo 2018
Neurogenin 25.7 Araújo 2018

Schäck 2016
Foxa2 Forkhead box transcription protein 48.9 Marrelli 2015
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The extracellular matrix (ECM) is the first element acting
in the mechanotransduction mechanism. Some cell membrane
elements capture chemical and mechanical signals from the
extracellular environment and transmit them through the cell
to the nucleus. These membrane components are integrins,
cadherins, cilia, and ion channels. Integrins bind cytoskeleton
through focal adhesion complexes and functioning as the di-
rect linkage between ECM and intracellular environment.
Thus, thanks to integrins, external stimuli could be transmitted
and translated into a structural rearrangement of cytoskeleton
organization. Other sensors of external inputs are ion chan-
nels, Piezo proteins, which respond to stimuli altering the
intracellular cationic flow and triggering intracellular mecha-
nisms (Wu 2017; Chubinskiy-Nadezhdin 2017). For instance,
cadherins that are cell-cell junction proteins are involved in
mechanotransduction, thanks to their dependence to calcium
concentration. In fact, in response to its variation, cadherins
change their molecular conformation leading to cytoskeleton
rearrangement and the promotion of signaling molecule re-
lease (Arnsdorf 2009). Calcium concentration indirectly

modulates the actin dynamics also via Rho-A/Rock promotion
(Haws 2016).

The actin cytoskeleton is the second main player in the
force transmission: cell adhesion induces the formation of
focal adhesions that are the protein complexes, able to support
the formation of long and strong actin filaments. The larger the
focal adhesions are, the more the cell will be able to transmit
internal forces to the nucleus, through actin bundles.

In the force transmission pathway, the third group of
players is the LINC complex, the nuclear pore complex
(NPC), and the lamina. As focal adhesions connect ECM to
the cytoskeleton, LINC (LInker of Nucleoskeleton and
Cytoskeleton) complexes connect the cytoskeleton to the
nucleoskeleton, leading to the transmission of an external
stimulus to the internal environment of the nucleus
(Lombardi 2011). Among the nucleoskeleton elements, lamin
A\C is the component more involved in nuclear structure sta-
bilization against mechanical stress (Swift 2013).

Together with the LINC complexes, the nuclear pore
complex (NPC) is the other structural linkage between
the cytoplasm and the nucleus. Recently, researchers
have shown that LINC complexes and NPC are directly
connected (Swift 2013). Unfortunately, the NPC real
involvement in mechanotransduction is still not fully
understood and it remains a challenge. Globally, the
transmission of the mechanical loading by LINC com-
plex and NPC to the nucleoskeleton alters the lamin
A\C structure and organization. Since lamina strictly in-
teracts with chromatin (Oldenburg and Collas 2016), its
skeleton destabilization is transduced in chromatin rear-
rangement and epigenetic modifications, leading to the
exposure of specific binding sites to the transcription
machinery (Killaars 2018; Heo 2015; Arnsdorf 2010).
Thus, besides the chromatin remodeling, understanding
the nucleocytoplasmic shuttling of proteins—such as
transcription factors—could be decisive to fully charac-
terize and control the mechanotransduction events.

In a famous study, Sirio Dupont highlighted an interesting
phenomenon related to the migration of transcription factors

Fig. 2 Mechanical stimuli
characterizing physiological
MSC environment: hydrostatic
pressure, tensile stress, fluid flow,
compression, vibration,
ultrasound

Fig. 3 Sketch representing howMSCs respond to mechanical stimuli and
to substrate rigidity with several biological mechanosensors distributed
throughout the cell. Sequentially, plasma membrane components (1) cap-
ture the external mechanical signal via integrins, cadherins, and focal
adhesions, and transmit it to cytoskeletal elements (2) that propagate the
input throughout the cell until the nucleus. The nuclear envelope struc-
tural elements (3) can transduce the signal to the lamin A/C and the
chromatin (4) modulating the accessibility of transcription factors to
DNA and thus the transduction of the mechanical stimulus into chemical
signals
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involved in key cellular mechanisms. He showed how two
mechanotransduction mediators YAP (yes-associated pro-
tein)/TAZ (transcriptional coactivator with PDZ-binding mo-
tif) localization is strictly related to the rigidity and cell shape
(Dupont et al. 2011). They platedMSCs onmicropillars arrays
of different rigidity and observed a higher percentage of nu-
clear YAP/TAZ whenMSCs were plated on rigid micropillars
with rather than elastic ones.

Within this scenario, the aim of this review was to summa-
rize the state of the art of the nucleocytoplasmic transport
through the nuclear pore complexes in mesenchymal stem
cells subjected to mechanically stressed conditions.

The nuclear pore complex

The NPC is a complex molecular machine (∼ 125 MDa) com-
posed by approximately 30 nucleoporins (Nup), giving to the
NPC a cylindrical structure that spans from the cytoplasmic to
the nucleoplasmic side of the cell (Fig. 4) (Garcia 2016). In the
cytoplasm side, the gate is the cytoplasmic ring: it is a dia-
phragm with a diameter around 100–150 nm equipped by
eight filaments (50–70 nm in length) catching cargoes and
macromolecules to facilitate their transport to the nucleus.

The spoke ring is the NPC structure localized in the nuclear
envelope (NE) lipid bilayer. It is a cylinder of 50-nm length and
width between 20 and 80 nm, filled with protein filaments, and
the phenylalanine–glycine repeats nucleoporins (FG-Nups).
FG-Nups have the role to block big inert molecules (>
70 kDa) and facilitate cargo passage to the nucleus. The ex-
change of ion and small molecule is also allowed from a group
of secondary channels (around 4 nm in diameter), placed around
the spoke ring. The transmembrane ring located between the
two NE lipid membranes confers stability to the NPC cylinder.

Finally, the nuclear and the distal rings are in the nucleo-
plasmic side and are connected by Nup153 and Tpr proteins
forming the nuclear basket (50–75-nm length) (Gu 2018;
Garcia 2016; Wente and Rout 2010).

Transports through the NPC could be passive or facilitated.
They are bidirectional and share the central diffusion channel
located within the central pore: molecules smaller than ~
70 kDa in size (corresponding to a maximum diameter ~
10 nm) can passively diffuse across the central part of the pore
and their translocation capability is function of size (Gerace
and Burke 1998; Keminer and Peters 1999; Paine 1975).

Molecules bigger than 70 kDa pass through the NPC by
facilitated diffusion only in the presence of specific motifs
(nuclear localization and nuclear export signals (NLS/NES)).
The carrier is aided to translocate principally by FG-Nup fil-
aments with cell energy expenditure (Terry and Wente 2009).
In fact, the release of molecules into the nucleus or into the
cytoplasm is driven by the state of the Ran nucleotide that
cycles between the GDP and the GTP bound states.

NPC molecular machinery is so efficient that in a single
pore could translocate up to 1000 molecules/s corresponding
to a mass flow nearly 100 MDa/s (Ribbeck and Gorlich 2001;
Stewart 2007). In the last decades, the development of genet-
ically encoded fluorescent proteins and fluorescent synthetic
dyes has opened the door to study protein localization and
trafficking at the level of single cell and single pore (Chalfie
1995; Los 2008; Keppler 2002; Giepmans 2006). Different
translocation models have been proposed and well described
(Fahrenkrog and Aebi 2003). Nevertheless, since the mecha-
nism of nucleocytoplasmic translocation remains poorly un-
derstood, it is currently intensely investigated with the tech-
niques described in the following section.

Fluorescence microscopy techniques applied
to characterize nucleocytoplasmic transport

Fluorescence microscopy provides an efficient approach to
study diffusion and transport in and out subcellular compart-
ments. In fact, in the last decade, significant advances have
been made not only in the field of fluorescent dye\protein
engineering but also in microscope set-up development and
quantitative fluorescence microscopy techniques. Today, mo-
lecular events can be studied both at the level of the single live
cell (microns) and single pore (nanometers), allowing visual-
ization and analysis of molecular dynamics through a single
NPC. The main techniques used to evaluate fluorescent mol-
ecule and protein diffusion or fluxes between different cell
compartments are photo-perturbation, correlation spectrosco-
py, and single-molecule tracking (Fig. 5 and Table 2).

Photo-perturbation approaches are based on changing the
fluorescent dye photo-physical properties and studying the
redistribution of fluorescence. Among these techniques,
Fluorescence Recovery After Photo-bleaching (FRAP) is a
powerful method used to investigate protein mobility into
the cells (Reits and Neefjes 2001; Kang 2009). It consists of
irreversibly photo-bleach fluorescent protein in a selected re-
gion of interest (ROI). Thanks to the protein diffusion, it is
possible to analyze the fluorescence recovery into the ROI.
Two main parameters can be extracted from the FRAP mea-
surement: the mobile fraction (Mf), representing the protein
fraction diffusing in the selected ROI, and the characteristic
time of the diffusion t1/2. Small and highly diffusing proteins
show fast recovery, while no fluorescence recovery is ob-
served with an immobile molecule. The speed of the recovery
is dependent on the molecular size, the environment viscosity,
or the interaction degree between the protein of interest and
other molecules (Lippincott-Schwartz et al. 2001).

In photo-perturbation experiments, the protein of inter-
est is linked to a fluorescent protein or dye chosen relying
on their physico-chemical features such as quantum yield,
its low tendency to photo-bleach, and its photo-stability
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during post-bleach image acquisition (Lippincott-Schwartz
and Patterson 2003). FRAP measurement is widely used
and is relatively easy to perform. Furthermore, it can be
accomplished on any standard confocal microscope or on
a wide-fields microscope equipped with a laser able to
bleach a limited area. In any case, it is necessary to keep
in account that this technique has some disadvantages
(Bancaud 2010; Mueller 2012, 2013; Mazza 2007;
Braeckmans 2003; Blumenthal 2015):

& The high expression level of fluorescence is required, pre-
cluding the study of proteins that need to be over-
expressed.

& Photo-bleaching is generated by a strong laser pulse that
could induce cell photo-toxicity.

& Photo-bleaching is not completely irreversible for several
fluorescent molecules based on GFP technology, leaving
some uncertainty on the measure of goodness.

& Results are dependent on the size of the bleached ROI and
the profile of the bleached volume making it difficult to
measure diffusion on large areas and volumes.

& A quantitative interpretation of FRAP measurements is
not trivial and data need to be fitted with the correct kinetic
model.

Another photo-perturbation method more recently used is
the fluorescence loss in photo-bleaching (FLIP). It could be
used in place or paired with FRAP to investigate proteins
diffusion. This technique is based on the cell image acquisi-
tion between bleaching pulses on a fixed ROI. In this case, if

Fig. 4 Scheme of the nuclear pore
complex. (a) Cytoplasmic and (b)
nucleoplasmic view of the NPC.
(c) Illustration of FG-nucleoporin
filament in the NPC central chan-
nel. (d) Illustration of
nucleoporins (Nups) composing a
section of the NPC. (e) Vertical
section of the NPC: the cytoplas-
mic ring (CR) is marked in blue,
the central ring/spoke ring (SR) is
shown in purple, the nucleoplas-
mic ring (NR) and the nuclear
basket filaments are labelled in
green. The translocation paths are
represented with light blue arrows
and the red ones are representa-
tive of the secondary channels.
Image taken from (Garcia 2016)
with permission
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the protein is free to move and able to enter in the bleaching
region, a fluorescent signal decay is measured over the entire
cell (Ishikawa-Ankerhold 2012). Among photo-perturbation
approaches, there are also emerging techniques based on
photo-switchable and photo-activatable proteins. After an
UV laser pulse, these molecules can shift their emission spec-
trum or switch from a dark state to a bright state (or vice versa)
allowing to study protein mobility. Since the optical properties
modulation can be induced with relatively low laser intensi-
ties, with these tools, it is possible to perform diffusion mea-
surement, limiting the sample photo-damage (Bancaud 2010).

First investigations to study passive diffusion process
through the NPC in single live cells started using inert fluo-
rescent proteins microinjected in Xenopus oocyte or
transfected in eukaryotic cells. In 2003, Wei et al. (2003) used
FRAP to prove that EGFP (an inert fluorescent protein of
27 kDa) diffuses bi-directionally through the pore with a rate
reduction up to ∼ 100-fold with respect to the diffusion within

the nucleus or the cytoplasm, due to the reduced size of the
NPC channel available. Moreover, any significant variation in
EGFP diffusion through the NPC was observed by Ca2+ de-
pletion demonstrating that EGFP nucleocytoplasmic translo-
cation is a passive diffusion event.

After the pioneering studies on inert tracers, photo-
perturbation techniques were successfully used to examine
the nucleocytoplasmic-facilitated transport of other molecules
(Ando 2004; Köster 2005; Sunn 2005; Chudakov 2007;
Davies 2010; Cardarelli 2011a), such as the proteins with
nuclear localization/export signals (NLS/NES) and importins.
Measures confirm the hypothesis that facilitated nuclear im-
port regulation is mediated by the binding with the β-domain
of importinα and that both passive and facilitated transports
occur through the central pore channel without interfering
each other. Otherwise, different molecules transported by the
same pathway hamper each other (Naim 2007; Cardarelli
2009; Bizzarri 2012).

Fig. 5 Schematic representation of three approaches to measure molecule
nucleocytoplasmic translocation. (a) FRAP is the most used photo-
perturbation technique. It is based on the nuclear photo-bleaching and
the subsequent measure of the fluorescence recovery as intensity average
of the cell nucleus. Fast recovery is indicative of diffusion and a strong
molecule binding leads to an immobile fraction of non-fluorescent pro-
teins. (b) FCS is a fluctuation-based method. It measures fluorescence

fluctuations arising from fluorescent proteins movement across the exci-
tation volume. The autocorrelation function G(τ) represents the probabil-
ity that the protein of interest remains within the excitation volume for a
time longer than τ. (c) SMT is based on the detection of individual fluo-
rescent proteins. This is the reason why it requires a very low concentra-
tion (pM) of fluorescent molecules. To maximize the signal to noise ratio,
the excitation occurs by tilting the laser beam (HILO illumination)

Table 2 Features summary regarding the techniques for nucleocytoplasmic transport investigation

Techniques Spatial resolution Temporal resolution Sample preparation Labelling technique Molecule
concentration

Extracted
information

Photo-perturbation Microscale Seconds Transfection, microinjection Fluorescent proteins Micromolar Molecule ensemble

Correlation
spectroscopy

Nano/microscale Milliseconds Transfection, microinjection Fluorescent proteins Nanomolar Molecule ensemble

Single-molecule
tracking

Nanoscale Milliseconds Transfection, microinjection,
permeabilization

Organic dye or
quantum dot

Picomolar Single molecule
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In fluorescence correlation spectroscopy (FCS), a small
volume of the sample is illuminated and specimen fluorescent
fluctuations are acquired over time. Using the autocorrelation
function G, fluorescence fluctuations provide information
about molecules concentration and diffusion. In fact, G am-
plitude is inversely proportional to the average number of
fluorescent molecules and the decay time represents the diffu-
sion capability (Elson 2011). FCS is a relatively non-invasive
technique and it works best at low molecule concentration
(nM concentration with respect to the μM concentration for
FRAP), which hinders the use of simple transient transfections
to make cells fluorescent. In contrast to FRAP, FCS is well
suited for fast diffusion systems (in the order of sub-
millisecond) and it is able also to determine the density and
aggregation state of the protein of interest.

Using photo-perturbation approaches or FCS, it is possible
to measure the mobility properties corresponding to the aver-
age behavior of the observed molecules, but the data need to
be fitted with the right diffusion model to avoid inaccurate
interpretation (Mueller 2012, 2013). The main limitation of
FCS is to provide information on a single point of the sample
that is often not useful in a non-homogeneous system–like
cells. For these kinds of samples, new techniques were devel-
oped, including both spatial and temporal correlation of fluo-
rescence that reveals the direction and velocity of systematic
motion. For example, the pair correlation fluorescence (pCF)
technique has been widely used to study nucleocytoplasmic
protein translocation. Its basic principle is to measure the time
the molecule takes to migrate between two points, analyzing
fluorescence fluctuation on a linear ROI. The spatial and tem-
poral correlation among two arbitrary points of the line pro-
vides a map of protein transport and shows the presence of
barriers or obstacles to diffusion with a millisecond time res-
olution (Cardarelli and Gratton 2010). Thanks to these tech-
nical advancements, in the last decade, correlation spectrosco-
py techniques appeared as ideal alternative strategies to inves-
tigate nucleocytoplasmic shuttling (Cardarelli 2011b). In par-
ticular, the pair correlation function (pCF) method guarantees
single-molecule sensitivity also in samples with high concen-
tration of fluorescent molecules. pCF is therefore suitable to
investigate the nucleocytoplasmic translocation of fluorescent
proteins and the role of the NLS in nuclear facilitated trans-
port. Cardarelli et al., for example, calculated the NLS-GFP
transit time through the nuclear pore in the 1–40-ms range and
demonstrated that fastest cytoplasm-to-nucleus transit hap-
pens very close to the NE barrier, where endogenous importin
carriers are accumulated (Cardarelli and Gratton 2010).

The single-molecule tracking (SMT) technique allows to
detect and track in time and space individual fluorescent
particles. It provides rich data sets that describe diffusion
and binding kinetics of the protein of interest (Liu 2016).
During an image acquisition, a fluorescent single molecule
produces a spot limited by the diffraction law. If molecules

are at a very low concentration, they can be resolved and
localized with a precision up to 20 nm by using post-
processing algorithms (Mortensen 2010). The particle local-
ization precision depends, besides the molecule concentra-
tion, on the signal to noise ratio (SNR) of the images.
Therefore, to maximize localization and SNR, it is primary
to minimize the contribution of out-of-focus molecules and
to express protein at very low concentration (pM), for ex-
ample by using microinjection techniques or new labelling
technology (like SNAP-TAG or HALO-TAG approaches).
To avoid imaging photo-bleaching it is suitable to use very
stable and bright fluorophores (Chow 2016; Los 2008;
Keppler 2002). Therefore, to maximize the SNR, a highly
illuminated and laminated optical light sheet (HILO) set-up
is used: the highly inclined and thin laser beam creates an
excitation volume in a limited depth range (microns) and in
the center of the object field. Since only a thin layer of the
sample is illuminated, the SNR increases about eight times
with respect to epi-illumination (Tokunaga 2008). Using this
technique, the frame rate acquisition of the particle tracking
spans from 100 to 10,000 frames/s, depending on the speed
of the camera readout and the illumination time necessary to
detect the optical probe (Liu 2016). It allows a wide range of
investigations like particle tracking, molecular interaction
site, and molecule association/dissociation kinetics
(Loffreda 2017; Cui 2018). Using the single-molecule track-
ing to analyze the nucleocytoplasmic transport allowed to
show that the movement along the pore axis is bidirectional
and it has the characteristics of a random walk. Furthermore,
this technique provided a measurement of the interaction
time (or residence time) between the fluorescent molecule
and the pore, which is the spending time the protein takes to
interact with the nuclear pore central channel proteins (Yang
2004; Kubitscheck 2005; Dange 2008). The range spans
from 1 to around 33 ms, as a function of the protein feature,
but most of the proteins take 5–10 ms to cross the NPC (Tu
and Musser 2011). Interestingly, not all signal-dependent
nuclear import events complete the translocation through
the NPC. In fact, molecules in proximity to the cytoplasmic
periphery and those partially penetrated the central channel
can more easily abort the transport, spending the majority of
its interaction time moving within the NPC central pore.
Moreover, cargo signal-dependent transport efficiency is a
function of importin concentration. In fact, for example,
NLS-2XGFP flux is reduced up to 50% in case of low
importinβ level (Yang 2004; Yang and Musser 2006).
Recently, by introducing the single-point edge-excitation
sub-diffraction microscopy method (SPEED) again, Yang
and colleague obtained a three-dimensional density map of
the transient interactions with a spatiotemporal resolution of
9 nm and 400 μs (Ma and Yang 2010; Goryaynov 2012;
Goryaynov and Yang 2014). They demonstrated the
following:
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1. electrostatic interaction between transiting molecules and
FG-Nups does not play a dominant role in determining
nuclear transport;

2. the spatial density of interaction sites between importinβ1
and FG-Nups increases as a function of the space and
reaches its maximum in the central pore region;

3. cargo rarely occupies the central NPC channel to pass
from the cytosol to the nucleus;

4. the facilitated translocation pathway strictly depends on
the FG-Nups interaction.

Mechanoregulation of nucleocytoplasmic
translocation

While it has been extensively proven that mechanotransduction
regulates cellular mechanisms, such as cytoskeleton organiza-
tion and gene regulation (Buxboim 2010; McMurray 2015;
Bao 2018; Keeling 2017; Tajik 2016; Miroshnikova 2017),
only in recent years a new idea is emerging that mechanical
signals are transduced also by the nuclear membrane and, in
particular, by the NPC. The connection between focal adhe-
sions and the nucleus via the actin cytoskeleton likely allows
to transmit internal forces that stretch the nuclear membrane
and the NPCs, reducing the resistance to molecular transport
through the nuclear membrane, thus increasing the molecules
fluxes (Garcia 2016).

The current understanding of mechanosensing at the nucle-
ar envelope byNPC stretch activation and its possible effect in
physiology and pathology is still poor (Donnaloja 2019).

Currently, there are two theories concerning the mechanical
opening of the pore. The first suggests that the tensions inside
the cell stretch the nuclear envelope, increasing the pore size
(Elosegui-Artola 2017). However, nowadays, the measure-
ments supporting this theory are not completely reliable be-
cause they are carried out with a standard transmission elec-
tron microscopy procedure. This means that the sample must
be fixed and included in resin, then cut using the microtome to
obtain the slices imaged by the TEM. The use of a sliced plane
does not allow to know the effective direction and depth of
microstructures and, therefore, involves a systematic error in
the measure. To overcome this limitation, it would be neces-
sary to use a scanning EM tomography (STEM) or a focused
ion beam combined with scanning electron microscopy (FIB-
SEM) that allows a three-dimensional imaging of the sample
and the measure of the effective dimension of the NPC with-
out parallax errors. Using the STEM microscopy, we mea-
sured the nuclear ring area in non-adherent MSCs (which take
roundish shape) and spread MSCs finding no significant dif-
ferences (Garcia 2016).

The second theory, which is yet to be proven, is that the
cellular internal forces act on the nuclear part of the nuclear

pore and precisely on the basket. The hypothesis seems to be
reasonable, since it would give an explanation to the presence
of the basket in the nuclear pore complex and above all plau-
sible since the basket is formed by eight nucleoplasmic fila-
ments resulting in a rotational symmetry (Lezon 2009;
Knockenhauer and Schwartz 2016). An external force, com-
ing from the cytoskeleton and acting on the basket, could
unroll the net facilitating the passage of TF collected in the
basket (Donnaloja 2019).

Apart from the opening mechanism of the pore that still
must be investigated, what is known today is that in a cell
subjected to mechanical stimulation, the transcription factors
flow towards the nucleus increases. Elosegui-Artola and col-
leagues studied the NPC mechanotransduction evaluating the
YAP nucleocytoplasmic translocation in fibroblasts
(Elosegui-Artola 2018). YAP is a mechanosensitive transcrip-
tion factor, notoriously involved in cancer, regeneration, and
organ size control. They analyzed several elements related to
the NPC mechanotransduction by using the FRAP technique.
They demonstrated that applying forces to the cell nucleus, the
YAP nuclear translocation increased by decreasing the restric-
tion of NPC to protein transport. Moreover, modulating the
stiffness of the substrate or using drugs to depolymerize the
cell cytoskeleton, they have proven that YAP translocation
was mediated by forces transmitted to the nucleus and that
the import is related to the force transmission via actin cyto-
skeleton and not microtubules organization.

In the las t years , we are working on the TF
nucleocytoplasmic transport in MSCs. We evaluated the inert
green-fluorescent protein (GFP) nucleocytoplasmic passive
diffusion in MSCs grown on flat substrates or in three-
dimensional substrates able to modify cell morphology
(García-González 2018). We cultured MSCs in a three-
dimensional (3D) substrate, the “Nichoid,” able to condition
cell adhesion at the single-cell scale, in order to maintain a
roundish nuclear configuration, and on a flat glass substrate
where the spread cell configuration induces a disk-like shape
to the nucleus. We set up a numerical model of diffusive mol-
ecules transport through the NE, based on NPC deformation,
and we compared results with those obtained measuring the
GFP diffusion through the nuclear envelope by fluorescence
recovery after photo-bleaching (FRAP). Our results show that
cell stretching modulates the characteristic time needed for
passive nuclear import of diffusive molecules, correlating a
faster import with the nuclear spreading (Fig.6).

The question arisen is whether the flow of transcription
factors in the nucleus is really due to a mechanical stimulus
or if it was triggered by a molecular process. In fact, since
scaffolds generate gradual and constant mechanical condition-
ing, it is reasonable to think that the mechanoregulation events
could involve also not-immediate mechanical phenomena,
such as chemical regulation given by importins and RAN-
GTP concentration. However, the nuclear protein import
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results obtained from Elosegui-Artola by coupling the fluores-
cence microscopy atomic force microscopy (AFM) tech-
niques, removed any doubt. They used AFM to apply a con-
stant force to the cell nucleus and observed that force applica-
tion increased the nuclear/cytosolic YAP ratio and that the
YAP localization returned to the cytosol upon force release
(Fig. 7). Therefore, they demonstrated that force application
to the nucleus is enough to drive an immediate YAP nuclear
translocation independently of RAN-GTP concentration and
scaffold stiffness.

Despite MSCs being extremely sensitive to mechanical
stimuli and therefore an optimal candidate to investigate
mechanotransduction mechanisms, to the best of our knowl-
edge, in literature, there are no other articles investigating the
TF nucleocytoplasmic transport in MSCs. This is probably
due to the difficulty of achievingMSCs expressing fluorescent
molecules. In fact, standard DNA transfection procedures re-
sult less efficient in the case of stem cells (Maurisse 2010;
Hamann 2019). On the other hand, other techniques useful
to directly insert fluorescent probes into cells—like microin-
jection—are very time consuming and often unsuitable for
application on non-standard substrates, such as truly 3D scaf-
folds like the Nichoid.

Nowadays, as well as understanding the effective mecha-
nisms of the nuclear pore opening, the other important ques-
tions still open in the field of nucleocytoplasmic translocation
are related to the characterization of TF-facilitated transport in
relation to the cell environment and the nuclear shape.

Currently, we are studying the facilitated transport of a
transcription factor involved in MSC differentiation towards

the myocardial phenotype: MyoD (Vandromme 1995). The
main difference compared with the work conducted by
Elosegui-Artola et al. is that the scaffold we use for cell
growth (the Nichoid) is truly 3D and more representative of
the physiological stem cell niche than a two-dimensional
system.

We are considering two methods of investigation,
FRAP and SMT, and facing their technical challenges.
Apart from the difficulty of achieving MSCs expressing
fluorescent transcription factors, each of these two
methods has specific complexities. In the case of
FRAP, for example, the extensive cellular three-dimen-
sionality, induced by the cell growth in the Nichoid,
complicates the measurement. In fact, what occurs dur-
ing the bleaching phase of a nuclear ROI is that also
many fluorescent proteins in the cytosol are bleached
out. Moreover, as shown in Figs. 6 and 8, the nuclear

Fig. 7 Top: Nuclear/cytosolic YAP ratio (red) and Hoechst nuclear aver-
age intensity (blue) for fibroblast cells seeded on 5 kPa gels (n = 9 cells)
and transfected with EGFP-YAP during AFM indentation. Force was
applied with an AFM cantilever with a 20-mm-diameter spherical tip.
Sequentially: No force (1 min), 1.5 nN force (5 min), and no force
(4 min). Bottom: Examples of color maps showing YAP fluorescence
intensity in the conditions measured. Image taken from (Elosegui-
Artola 2017) with permission

Fig. 6 GFP fluorescence recovery after photo-bleaching curves measured
on spread cells adhered on a flat substrate or roundish cells adhered in a
Nichoid. (b) SEM image of a Nichoid. (c) Examples of GFP-expressing
MSCs (green) grown into the Nichoid. In red, the Nichoid fluorescence
and the cell DNA are visible. (d) Examples of GFP-expressing MSCs
(green) grown on flat glass substrate. Nuclei (in red) are stained with
DRAQ5 dye.
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section area on which the bleaching is carried out is
about 3–4 times greater for cells grown on glass flat
substrate than in the Nichoid. Although it is very diffi-
cult to carry out these measures, we have obtained the
first results and we have developed a computational
model of nuclear diffusion/deformation to better inter-
pret the results from FRAP measurements.

Regarding SMT, the major problems with this tech-
nique concern the three-dimensionality of the investigated
systems and the sample fluorescence of the Nichoid. In
fact, using a HILO microscope, the highly inclined beam
does not allow the observation of the entire sample.
Acquiring only a small part of the sample, the three-
dimensionality is partially lost. This limitation could theo-
retically be overcome using a light sheet microscope.
Instead, the Nichoid fluorescence problem is more compli-
cated to solve. In fact, as explained in the previous para-
graph, to make good SMT measurements, it is very im-
portant to maximize the SNR to contrast the brightness of
the single molecules with respect to the background and
to be able to make an accurate tracking. Since our sample
fluoresces in the same wavelengths as the fluorophore, the
application of this technique on cells grown in the

Nichoid is still challenging (Fig. 9). We are trying to
overcome this concerning aspect by varying the composi-
tion of the material in which it is produced and
diminishing the Nichoid fluorescence.

Conclusion

Mechanosensors and mechanotransduction mechanisms have
a key role in modulating MSC fate by controlling the master
switch between stemness maintenance and differentiation in
these cells. As it has clearly emerged in some recent studies,
the NPC plays a determinant role as a mechanosensor by
regulating the nuclear import of transcription factors likely
based on a stretch-activation mechanism. Despite the huge
advancements in fluorescence microscopy to measure
nucleocytoplasmic shuttling and to deepen the involvement
of NPC in mechanotransduction, the optimal acquisition
method is still to be defined, mainly due to the difficulty of
transferring the existing techniques to 3D cell models.

The understanding of these mechanisms will allow the de-
velopment and design of more performing substrates to
mechanoguide and control cellular fate. These innovative

Fig. 8 Images showing MSCs
expressing MyoD-GFP grown on
glass flat substrate (a) and in the
Nichoid (b).
The yellow circles highlight the
cell nuclei

Fig. 9 Examples of a SMT
acquisition with HILO
microscope on glass flat substrate
(a) and in the Nichoid (b). Cells
are MCF7 expressing fluorescent
p53 protein. Images acquired at
Istituto Scientifico Ospedale San
Raffaele, Centro di Imaging
Sperimentale, Milano
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systems could be used to improve cell-based therapy in regen-
erative medicine and in the field of personalized medicine.
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