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Abstract Talin is a large cytoskeletal protein (2541 amino
acid residues) which plays a key role in integrin-mediated
events that are crucial for cell adhesion, migration,
proliferation and survival. This review summarises recent
work on the structure of talin and on some of the
structurally better defined interactions with other proteins.
The N-terminal talin head (approx. 50 kDa) consists of an
atypical FERM domain linked to a long flexible rod
(approx. 220 kDa) made up of a series of amphipathic
helical bundle domains. The F3 FERM subdomain in the
head binds the cytoplasmic tail of integrins, but this
interaction can be inhibited by an interaction of F3 with a
helical bundle in the talin rod, the so-called “autoinhibited
form” of the molecule. The talin rod contains a second
integrin-binding site, at least two actin-binding sites and a
large number of binding sites for vinculin, which is
important in reinforcing the initial integrin–actin link
mediated by talin. The vinculin binding sites are defined
by hydrophobic residues buried within helical bundles, and
these must unfold to allow vinculin binding. Recent
experiments suggest that this unfolding may be mediated
by mechanical force exerted on the talin molecule by
actomyosin contraction.
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Introduction

Integrins are a large family of cell-surface type 1 trans-
membrane adhesion receptors that mediate both cell–cell
and cell–extracellular matrix (ECM) interactions. Integrins
also have the unusual ability to support bidirectional
signalling. Thus, the binding of integrins to the ECM
potentiates the ability of growth factors to activate
intracellular pathways that regulate cell proliferation,
survival and migration ("outside-in signalling"), whilst the
affinity of integrins for ECM proteins can be regulated from
within the cell, the so-called "inside-out signalling" (Hynes
2002). Integrins are heterodimers of α and β subunits, each
containing a large extracellular domain (approx. 80–
150 kDa), a single transmembrane α-helix and a short,
largely unstructured, cytoplasmic domain or “tail” of 10–70
residues. In mammals, one of 18 α-subunits interacts with
one of eight β-subunits to form 24 distinct integrins, each
with specific but overlapping functions (Hynes 2002).The
current state of knowledge of integrins and integrin
signalling is the topic of a recent special issue of the
Journal of Cell Science (vol 122, issue 2, 2009).

Cell adhesion to the ECM is fundamental to the
development of multi-cellular organisms and involves the
coordinated assembly and disassembly of integrins into
complexes called focal adhesions. In these complexes, the
internal tails of integrin β-subunits are typically linked to
the actin cytoskeleton via cytoplasmic proteins with
scaffolding, adaptor, regulatory and mechanotransduction
functions (Legate and Fassler 2009; Zaidel-Bar et al. 2007).
An analysis of the proteins that are currently known to
assemble into focal adhesions identified 90 core compo-
nents physically located at adhesion sites (Zaidel-Bar et al.
2007), and 42 proteins have been identified that reportedly
bind just to the cytoplasmic tails of β-integrins (Legate and
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Fassler 2009). Among these proteins, the cytoskeletal protein
talin has been shown to play a pivotal role in integrin-
mediated events (Critchley 2009; Critchley and Gingras
2008). Talin promotes integrin clustering (Cluzel et al.
2005) and the switching of integrins from a low to high
affinity state (Calderwood 2004; Harburger and Calderwood
2009; Tadokoro et al. 2003), although this also requires the
kindlin family of proteins (Larjava et al. 2008). Talin also
provides a direct link between integrins and the actin
cytoskeleton (Jiang et al. 2003; Zhang et al. 2008) and acts
as a scaffold for the recruitment of other proteins, such as
vinculin (Ziegler et al. 2006). In this review we focus on
recent studies of the structure and biophysics of talin, the
results of which are beginning to throw light on the
relationship between the structural and dynamic properties
of this molecule and its function in the cell.

The domain structure of talin

There are two talin genes in vertebrates (Monkley et al.
2001; Senetar and McCann 2005). These code for talin1
and talin2, respectively, which are both large proteins (2541
amino acids; approx. 270 kDa) consisting of a globular N-
terminal head (approx. 50 kDa) and a large flexible C-
terminal rod (approx. 220 kDa) (Fig. 1). The talin head
contains a FERM domain (residues 86–400) composed of
F1, F2 and F3 domains. While initial attempts to crystallise
the entire FERM domain have been unsuccessful to date,
probably due to a large unstructured loop in F1 (Goult et
al., in preparation), the crystal structure of the F2F3
fragment (Garcia-Alvarez et al. 2003) confirmed its
structural similarity to the corresponding part of other
FERM domains, with the F3 domain having a phosphotyr-

osine binding (PTB)-like fold (Fig. 1). The 85 amino acids
preceding F1 were initially ignored, but recent nuclear
magnetic resonance (NMR) studies show that they consti-
tute a folded domain, the F0 domain, which has a ubiquitin-
like fold (Goult et al., in preparation) as does the F1
domain. The structure of an F0F1 double domain construct
with the flexible F1 loop removed shows a well-defined
and rather rigid interface between the two domains (Goult
et al., in preparation) (Fig. 1).

The talin rod contains 62 helices that are organised
into a series of helical bundles followed by a single C-
terminal helix that forms an antiparallel homodimer
(Gingras et al. 2008) (Fig. 1). Given the flexibility of the
rod, the relative orientation of the two talin molecules
within the dimer is uncertain. The rod starts with a five-
helix bundle (residues 482–655) (Papagrigoriou et al.
2004); the crystal structure of talin 482–789 shows that
residues 656–789 form a four-helix bundle that packs
tightly against the talin 482–655 five-helix bundle in a
staggered arrangement which is stabilised by an extensive
hydrophobic interface (Papagrigoriou et al. 2004). The C-
terminal half of the rod is also made up of a series of five-
helix bundles (Cheung et al. 2009; Gingras et al. 2006,
2008,2009; Goult et al. 2009), but in this region a
relatively flexible interface and end-to-end packing be-
tween the helical bundles seems to be typical. The central
part of the rod also contains four- and five-helix bundles,
but their packing with respect to one another has not yet
been established with certainty. Biophysical and electron
microscopy (EM) studies suggest that talin exists in
several different conformational states. Thus, sedimenta-
tion equilibrium experiments show that it can exist as both
monomers and dimers (Molony et al. 1987). Sedimenta-
tion velocity, gel filtration and EM studies indicate that it

Fig. 1 Diagrammatic representation of the domain structure of talin,
showing the location of the binding sites identified for other proteins,
including integrins, actin and vinculin. Helices which bind vinculin

are shown in red. Cartoon representations are shown for those
domains whose structure has been determined (see text for references)
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is globular in low salt buffers, whereas it is a flexible
elongated molecule (approx. 60 nm in length) in 0.15 M
salt and appears to have 10–12 globular domains (Molony
et al. 1987; Winkler et al. 1997). The globular state
appears to be dependent on a head/rod interaction, and
recent data have provided insights into the structural basis
of this interaction (Goksoy et al. 2008; Goult et al. 2009).

Protein partners of talin

The role of talin as an adaptor protein in linking integrins to
the cytoskeleton and to signalling pathways in the cell is
clearly indicated by the large number of proteins that have
been shown to interact with talin (Critchley 2009; Critchley
and Gingras 2008; Zaidel-Bar et al. 2007). Only a small
number of the structurally better characterised interactions
will be considered here.

The talin F3 FERM domain binds the cytoplasmic
domains of β-integrin subunits (Calderwood et al. 2002)
and the hyaluronan receptor layilin (Borowsky and Hynes
1998; Wegener et al. 2008) as well as the C-terminal region
of PIPKIγ90 (Barsukov et al. 2003; de Pereda et al. 2005;
Di Paolo et al. 2002; Ling et al. 2002), a splice variant of
phosphatidylinositol(4)- phosphate-5-kinase type Iγ which
regulates the assembly of focal adhesions. The talin head
also contains an F-actin binding site (Lee et al. 2004) and
binds acidic phospholipids (e.g. Dietrich et al. 1993;
Goldmann et al. 1995; Niggli et al. 1994).

The talin rod contains a second integrin binding site,
IBS2 (Gingras et al. 2009; Moes et al. 2007; Rodius et al.
2008; Tremuth et al. 2004; Xing et al. 2001) and at least
two actin-binding sites (Hemmings et al. 1996), the best
characterised of which is at the C-terminus (Gingras et al.
2008; McCann and Craig 1997; Senetar et al. 2004; Smith
and McCann 2007). Importantly, the rod also contains
multiple binding sites for vinculin (Gingras et al. 2005),
which itself has numerous binding partners, including F-
actin (Ziegler et al. 2006); the “cross-linking” of talin to
actin by vinculin has been proposed to stabilise the initial
weak integrin/talin/F-actin complexes (Bakolitsa et al.
2004).

Integrin binding

As noted above, the talin F3 domain has a PTB-like fold;
canonical ligands of PTB domains are peptides containing
an NPxY-like motif sequence. The short cytoplasmic tails
of β-integrin subunits contain two such motifs, and the talin
F3 FERM domain selectively binds to the membrane
proximal to these, 744NPLY747 (Campbell and Ginsberg
2004). The structure of F3 bound to residues 739WDTANN-

PLYDEA750 of the β3-integrin tail (Garcia-Alvarez et al.
2003) shows that the integrin peptide interacts predomi-
nantly with the hydrophobic surface on strand S5 of the F3
domain; W739 inserts into a pocket on the talin surface,
with the subsequent residues forming a β-strand that
extends the sheet formed by strands 5–7 of the F3 domain.
Y747 projects into an acidic pocket in F3, whereas the
equivalent region in those PTB domains that bind phos-
photyrosine is strongly basic.

More recent studies have shown that F3 also interacts
with the membrane-proximal helix of the β3-tail; F727 and
F730, which are on the same face of this helix, bind to a
hydrophobic pocket in F3 made up of the flexible loop
between β-strands 1 and 2 (Wegener et al. 2007). A
mutation of either F727 or F730 in β3-integrin, or of the
interacting residues in F3 (notably L325), markedly
reduced the activation of αIIbβ3 integrin (Wegener et al.
2007). These authors propose that talin F3 initially binds to
β3-integrin 744NPxY747 and subsequently to the
membrane-proximal helix, thereby breaking the salt bridge
between the α- and β-integrin tails which locks the integrin
in a low affinity state. This hypothesis is supported by
results from bimolecular fluorescence complementation
studies in cells in which a talin L325R mutant was recruited
to αIIbβ3-integrin tails but was unable to activate the
integrin (Watanabe et al. 2008). However, talin F3 alone is
not sufficient to activate β1-integrins, and the F0 and F1
domains are also required (Bouaouina et al. 2008).

A variety of experiments indicate that the integrin
binding sites in full-length talin are masked (Calderwood
2004; Martel et al. 2001), and recent NMR studies show
that this is due to an interaction between the talin head and
rod (Goksoy et al. 2008). Talin F3 was shown to bind to a
talin rod fragment spanning residues 1654–2344, partially
masking the binding site in F3 for the membrane-proximal
helix of the β3 integrin tail. This rod fragment contained
higher affinity (residues 1654–1848) and lower affinity
(residues 1984–2344) F3 binding sites. The domain
boundaries of the region containing the high affinity site
have now been defined structurally (Goult et al. 2009). The
domain (residues 1655–1822) forms a five-helix bundle,
and the positively charged integrin activation loop in F3
binds to a cluster of acidic residues, predominantly on helix
4, masking the binding site for the β3 integrin tail. The
interaction is also expected to inhibit sterically the
association of the talin FERM domain with the membrane.
These results establish a structural basis for the “auto-
inihibited” form of talin. The mechanisms which disrupt
this interaction to activate talin require further investigation,
although the small GTPase Rap1 and its binding partner
RIAM have been shown to play a key role in talin
activation (Han et al. 2006; Lee et al. 2009; Watanabe et
al. 2008), and PIPKIγ90 and PIP2 have also been
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implicated (Goksoy et al. 2008; Ling et al. 2002; Ling et al.
2003; Martel et al. 2001).

There is evidence for a second integrin binding site
(IBS2) towards the C-terminal end of the talin rod (Tremuth
et al. 2004; Xing et al. 2001), which has been suggested to
correspond to a single predicted helix (Moes et al. 2007;
Rodius et al. 2008). A crystal structure has recently been
reported for the region of the rod containing IBS2: mouse
talin residues 1974–2293 (Gingras et al. 2009) comprises
two five-helix bundles—“IBS2-A” (1974–2139) and
“IBS2-B” (2140–2293)—connected by a continuous helix.
The single helix previously identified as IBS2 corresponds
to helix 4 in IBS2-A. However, tight integrin binding and
targeting to focal adhesions appears to require both the
IBS2-A and IBS2-B domains (Gingras et al. 2009), and it
remains to be established exactly how this region of the rod
binds to integrins.

The C-terminal actin binding site in the rod

Talin has binding sites for actin in the head (the F2F3
region) and in two distinct regions of the rod (Critchley
2009; Hemmings et al. 1996). The structure of the C-
terminal actin binding site of talin1 (Gingras et al. 2008)
comprises a five-helix bundle (residues 2300–2482), similar
to the homologous region of the HIP1R protein (Brett et al.
2006); this domain is now referred to as a THATCH
domain. The actin binding site maps to a conserved
hydrophobic surface on helices 3 and 4 of the five-helix
bundle that is flanked by basic residues. Interestingly, helix
1, which packs against the opposite face of the bundle,
negatively regulates actin binding (Senetar et al. 2004).
Deletion of this helix or the mutation of residues involved
in its packing against the remainder of the bundle
significantly increases actin binding (Gingras et al. 2008;
Senetar et al. 2004), and there appear to be significant
structural changes upon removal of the helix (Gingras et al.
2008).

The C-terminal helix of talin forms an antiparallel
coiled-coil dimer (Gingras et al. 2008). F-actin only binds
efficiently to the THATCH dimer, residues 2300–2541
(Gingras et al. 2008; Smith and McCann 2007), and
residues on one face of the dimerisation helix may also
contribute to actin binding (Gingras et al. 2008). SAXS
experiments indicate that the THATCH dimer adopts an
elongated structure in solution, and the high-resolution
structures of the five-helix bundle and dimerisation
domain can be readily modeled within the SAXS
envelope. EM studies show that the THATCH dimer
binds to three actin monomers along the long pitch of the
same actin filament (Gingras et al. 2008); it does not cross-
link F-actin—presumably, the actin-bundling activity of

talin is explained by the presence of the other actin binding
sites in talin.

Binding of vinculin to the talin rod

Vinculin is a 116-kDa actin-binding protein that is localised
in focal adhesions. It is made up of a globular head linked
to a tail domain by a proline-rich region, and interaction
sites for numerous binding partners have been mapped onto
all three regions of the protein (Bakolitsa et al. 2004;
Borgon et al. 2004; Ziegler et al. 2006). All of the well-
characterised ligand-binding sites in vinculin (including
that for talin) are masked by an intramolecular interaction
between the vinculin head and tail domains (Bakolitsa et al.
2004; Borgon et al. 2004; Cohen et al. 2005; Izard et al.
2004; Johnson and Craig 1994, 1995a, b), and the molecule
is thought to exist in an equilibrium between active and
inactive states.

Initial studies identified at least three vinculin binding
sites (VBSs) in the talin rod, and these were localised to
three short peptide sequences (VBS1–3), each
corresponding to a single predicted α-helix (Bass et al.
1999). A systematic analysis of the binding of vinculin to
peptides corresponding to each of the 62 helices of the rod
revealed as many as 11 VBSs (Gingras et al. 2005),
although it is clear that not all of these are available in
the intact protein in vitro (Patel et al. 2006).

The talin-binding site in vinculin has been localised to
residues 1–258 within the vinculin head (Bass et al. 2002),
a helical domain (Vd1) which binds the vinculin tail (Vt)
with high affinity (Gilmore and Burridge 1996; Johnson
and Craig 1994). Binding the talin VBS3 peptide induces a
marked conformational change in Vd1 that displaces Vt,
and the VBS3 peptide itself sits in a hydrophobic groove
formed predominantly by helices 1 and 2 of Vd1 (Izard et
al. 2004). Similar results have been reported for Vd1 in
complex with other VBSs (Fillingham et al. 2005; Gingras
et al. 2005; Papagrigoriou et al. 2004).

The structure of the N-terminal part of the talin rod
(residues 482– 655) shows that it consists of a 5-helix
bundle in which helix 4 is equivalent to VBS1
(Papagrigoriou et al. 2004). The key vinculin-binding
determinants are five hydrophobic residues (L608, A612,
L615, V619 and L623) on one face of the VBS1 helix
which are normally buried within the hydrophobic core of
the five-helix bundle. Comparison of the structure of the
Vd1/VBS1 complex with that of talin 482–655 shows that
Vd1 helices 1–4 occupy the equivalent positions in
relation to the VBS1 helix as do helices 1, 5, 2 and 3 in
the talin 482–655 five-helix bundle, and key hydrophobic
contacts are maintained by interactions with similar side
chains in Vd1. Thus, the VBS1 helix (helix 4) is extracted
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from its own five-helix bundle and forms an equivalent
five-helix bundle with the four helices of Vd1 (Papagri-
goriou et al. 2004) (Fig. 2).

This striking observation implies that the helical bundle
of talin 482–655 must unfold to allow the vinculin binding
sequence to bind in the hydrophobic groove of the vinculin
head. While there are now many examples of proteins
which are intrinsically disordered but which adopt a well-
defined three-dimensional structure on binding to a protein
or nucleic acid partner (e.g. Dyson and Wright 2005;
Sugase et al. 2007), the observation of a protein which
exists in a stable folded conformation but which must
unfold in order to interact with a partner protein is much
more unusual. Observations by a range of different
biochemical and biophysical techniques have demonstrated
this unusual “unfolding for binding” behaviour in VBS-
containing constructs from different parts of the rod. These
include:

& The talin 482–655 five-helix bundle binds Vd1 only
weakly. Removal of the C-terminal helix destabilises the
helical bundle and leads to the partial unfolding of the
protein, as shown by NMR, yet this is accompanied by
tighter binding to vinculin (Papagrigoriou et al. 2004).

& Talin 482–655 is stable to proteolysis by trypsin,
whereas the four-helix construct talin 482–636 is
readily degraded. In the complex of Vd1 with talin
482–636, Vd1 and the VBS1 sequence within the talin
domain become stable to proteolysis, but all of the
remaining talin helices are degraded (Papagrigoriou et
al. 2004).

& In the [1H,15N]-HSQC NMR spectrum of the complex
between Vd1 and 15N-labeled talin 1843–1973, fewer
cross-peaks are observed compared to the free protein,
and these have a much smaller chemical shift disper-
sion. Cross-peaks which are not observed in the
complex map onto helix H4 (the helix that binds
vinculin), the C-terminal half of helix H3, and a short
stretch at the C-terminus of helix H1. The highest cross-
peak intensities correspond to helix H2 and the N-
terminal part of helix H3 (Gingras et al. 2006). This
provides direct evidence for substantial conformational
mobility of those parts of the talin domain which are not
in contact with vinculin, and hence for the unfolding of
the helical bundle. Similar observations were made with
talin 755–889 (Fillingham et al. 2005).

& The talin 755–889 4-helix bundle has two threonine
pairs (T775/T809 and T833/T867) within the hydro-

Fig. 2 a Topological equivalence of vinculin binding site (VBS)1
helix (red) within the talin 482–655 structure (blue) and the Vd1/
VBS1 complex structure (green). b End-on view of the superposed
helices of talin 482–655 (blue) and the Vd1/VBS1 complex (green)—
with the VBS1 helix in red in each case. Data in a and b are from
Papagrigoriou et al. (2004). c Electron paramagnetic resonance (EPR)
spectra of spin-labelled talin 1843–1973. Top Room temperature
(298 K) spectra of a sample spin-labelled at residue 1927. In the
absence of Vd1 (black line), the line shape indicates a moderately
mobile spin label with signs of tertiary interaction. After the addition

of Vd1, the mobility increases (red line), showing a line shape
corresponding to an opened, disordered structure. Bottom Measured
(solid) and calculated (dashed) low-temperature (155 K) spectra of a
sample spin-labelled at residues 1887 and 1927 in the absence (black)
and presence (red) of Vd1. The theoretical spectra were calculated
using a Gaussian distance distribution of 4.0 Å and a mean distance of
<9 Å in the first and >20 Å in the second case, indicating a dramatic
increase of the distance between the two labeled positions on binding
to Vd1. Data from Gingras et al. (2006)
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phobic core of the bundle (Fillingham et al. 2005). A
mutant in which these were replaced by isoleucine/
valine pairs (T775V/T809I/T833I/T867V) was much
more stable than the wild-type construct but bound Vd1
much more weakly (Patel et al. 2006).

& The effects of vinculin Vd1 binding on talin 1843–1973
have been studied by site-directed spin-labeling (Ging-
ras et al. 2006). Cysteine residues were placed at key
positions by mutagenesis; these were labeled with a
nitroxide spin label to give singly or doubly spin-
labeled proteins. Analysis of the EPR spectra to obtain
information on the local mobility and on the distances
between the nitroxides (Fig. 2) provided clear evidence
that, on binding Vd1, the helical bundle unfolds as do at
least two of the constituent helices, the VBS-containing
helix 4 being immobilised in the complex.

The activation of vinculin binding to talin

The variations in the stability of the individual helical
bundles that make up the talin rod are undoubtedly
significant factors in determining vinculin binding. For the
isolated domains, one could envisage either that the talin
bundle is dynamic, and unfolds spontaneously to release the
VBS which then binds to Vd1, or that an initial interaction
of Vd1 with the folded talin bundle promotes unfolding of
the latter. However, it is clear that the majority of the VBSs
in intact talin are in a cryptic or low affinity state (Patel et
al. 2006). Therefore, it appears that addition of vinculin is
not in itself sufficient to lead to their activation.

Talin is required for the formation of the initial weak
linkage between a fibronectin/integrin complex and acto-
myosin (Jiang et al. 2003), but reinforcement of this link by
the recruitment of additional components is thought to be
essential for focal adhesion assembly. Activation of the
cryptic VBSs could increase the number of vinculin

molecules bound simultaneously to talin and, because the
vinculin tail binds F-actin (Ziegler et al. 2006), a progres-
sive increase in vinculin binding to talin could provide a
mechanism for a graduated strengthening of the link
between integrins and the actin cytoskeleton. Since talin is
clearly subject to the force exerted by actomyosin contrac-
tion and given that external mechanical force induces focal
adhesion assembly (Galbraith et al. 2002), we have
proposed that mechanical stretch may activate the VBSs
in talin (Gingras et al. 2005; Papagrigoriou et al. 2004;
Ziegler et al. 2006).

Direct evidence for this has recently come from elegant
single molecule experiments on talin 482–889 reported by
the Sheetz laboratory (del Rio et al. 2009). A construct
containing residues 482–889 with a His-tag at the N-
terminus and a biotin tag at the C-terminus was bound at
one end to a Ni-NTA glass surface and at the other to an
avidinated magnetic bead; the molecule could then be
stretched by magnetic tweezers, and the binding of
fluorescently labelled vinculin head detected by total
internal reflection fluorescence (TIRF) microscopy. In the
absence of mechanical force, binding of at most a single
molecule of vinculin could be detected, which is consistent
with earlier conclusions that many of the VBSs in this
region are cryptic (Patel et al. 2006). However, the
application of a force of 12pN to the talin led to a clear
increase in the number of vinculin molecules bound, up to
as many as three. Parallel force extension experiments
showed mechanical unfolding of talin 482–889. These
experiments demonstrate clearly that force-induced stretch-
ing can expose previously cryptic binding sites for vinculin
in the N-terminal part of the talin rod (Fig. 3).

The pathway by which mechanical force unfolds talin
bundles remains to be established, but recent steered
molecular dynamics simulations on talin 482–889 (Hytonen
and Vogel 2008) give an indication of the possibilities. The
structure assumed for talin 482–889 was a five-helix bundle
packed against a seven-helix bundle; this is a model

Fig. 3 Cartoon illustrating a
possible mechanism for the ac-
tivation of cryptic vinculin
binding sites in the talin rod by
mechanical stretch. For details
see text. ECM Extracellular ma-
trix
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(Fillingham et al. 2005) rather than an experimental
structure. Two kinds of simulation were carried out: one
in which the force was applied to the N– and C-termini of
the molecule and one in which it was applied laterally in a
distributed fashion along the length of the two terminal
helices. In both cases, the structure broke apart during the
simulation into three components, comprising helices 1–5,
6–8 and 9–12. However, when the force was applied to the
termini, this was preceded by the unraveling of helices 1
and 12, followed by partial unraveling of helix 2, so that at
least one of the VBSs (helix 12) would be in a random coil
state and would have to re-form its helical conformation to
bind vinculin. The different behaviour according to the
direction of the applied force is interesting and may imply
different unfolding and activation mechanisms for VBSs
within domains in different parts of the rod. In the N-
terminal region, where successive bundles pack closely
against one another, the mechanical force is likely to act
laterally on the helices, whereas in the C-terminal half of
the rod, where the bundles have relatively flexible
interfaces and end-to-end packing seems to be typical, the
force would most probably act through the N– and C-
termini of each bundle.

Conclusion

It is clear that a picture of talin in which it binds at one
end to integrin and at the other to actin is too
simplistic. Both the talin head and rod contain binding
sites for integrins and F-actin, although the significance
of this remains to be established. Both the head and the
rod also bind acidic phospholipids, and it will be
important to establish whether the molecule lies along
the cytoplasmic face of the membrane. It is also clear
that talin exists in several conformational states (mono-
mer/dimer and open and closed states). Much of talin
exists in the cytoplasm in an autoinhibited form in
which the talin rod masks the integrin binding site in
the talin head, and the relative importance of the Rap1/
RIAM and PIPKIγ90/PIP2 pathways in talin activation
remain to be explored. Moreover, it has now been
established from in vitro studies that the conformation
of the talin rod is regulated by force, and it will be
necessary to develop methods that allow this and the
recruitment of vinculin to integrin/talin/actin complexes
to be explored in real time and in a cellular context.
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