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Abstract
Ergot alkaloids are secondary metabolites that are produced by fungi and contaminate cereal crops and grasses. The ergot 
alkaloids produced by Claviceps purpurea are the most abundant worldwide. The metabolites exist in two configurations, 
the C-8-R-isomer (R-epimer) and the C-8-S-isomer (S-epimer). These two configurations can interconvert to one another. 
Ergot alkaloids cause toxic effects after consumption of ergot-contaminated food and feed at various concentrations. For 
bioactivity reasons, the C-8-R-isomers have been studied to a greater extent than the C-8-S-isomer since the C-8-S-isomers 
were considered biologically inactive. However, recent studies suggest the contrary. Analytical assessment of ergot alkaloids 
now includes the C-8-S-isomers and high concentrations of specific C-8-S-isomers have been identified. The inclusion of 
the C-8-S-isomer in regulatory standards is reviewed. This review has identified that further research into the C-8-S-isomers 
of ergot alkaloids is warranted. In addition, the inclusion of the C-8-S-isomers into regulatory recommendations worldwide 
for food and feed should be implemented. The objectives of this review are to provide an overview of historic and current 
studies that have assessed the C-8-S-isomers. Specifically, this review will compare the C-8-R-isomers to the C-8-S-isomers 
with an emphasis on the biological activity and analytical assessment.
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Introduction

Cereal and grass crops can be infected by fungi which 
are associated with ergot. The fungi include Claviceps, 
Penicillium, Aspergillus, and Epichloë coenophiala, also 
known as Acremonium coenophialum or Neotyphodium 
coenophodium (Blaney et  al. 2009; Krska and Crews 
2008; Scott 2009; Gerhards et al. 2014; Chen et al. 2017). 
One of the most notable fungal infections is Claviceps 
purpurea from the Claviceps genus. The ascospores from 
the fungus Claviceps purpurea land on the stigmas of crops, 
initially infecting the ovary of the plant (Miedaner and 
Geiger 2015). An infected ovary produces a mass called 

“honeydew,” which can spread to other plants by insects, 
rain, and equipment. The honeydew hardens into a sclerotia, 
replacing the seed of the crops. The sclerotia, also known 
as an ergot body, has a dark outer coating (Menzies & 
Turkington 2015).

The most susceptible crops to ergot are cross-pollinators 
such as triticale and rye with a longer flowering stage 
(Menzies and Turkington 2015). Wheat, barley, oats, and 
millet can also become infected (Agriopoulou 2021). An 
infected wheat crop may have higher concentrations of ergot 
than a rye crop in certain geographic locations (Schummer 
et al. 2018). Grasses can also become infected (Arroyo-
Manzanares et al. 2017; Klotz et al. 2018). Cool and wet 
environmental conditions promote ergot infection in crops 
and grasses (Agriopoulou 2021). In certain years, ergot 
infections in crops or grasses may be higher than other years 
due to favorable environmental conditions.

Humans and animals are exposed to ergot through con-
sumption of ergot-contaminated food and feed products, 
respectfully. Ergot has had substantial adverse effects on 
humans and animals. Historically, it was not understood 
why ergot-contaminated products caused the adverse effects. 
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Today, it is known that the adverse effects are associated 
with compounds within the ergot bodies known as ergot 
alkaloids.

Ergot sclerotia contain secondary metabolites, ergot alka-
loids, which are a group of nitrogenous organic compounds 
(Komarova and Tolkachev 2001), concentrated on the outer 
edge of the sclerotia, with lower concentrations in the inte-
rior (Young et al. 1983). Ergot alkaloids are defined as sec-
ondary metabolites since they are produced by the fungi but 
not involved in normal physiological processes of the fungi, 
as opposed to primary metabolites that contribute to physi-
ological processes such as growth, reproduction, or develop-
ment (Susan 2023). There are 90 different known ergot alka-
loids that have been isolated worldwide (Liu and Jia 2017). 
A considerable amount of ergot alkaloids is produced within 
the ergot sclerotia by the Claviceps genus (Komarova and 
Tolkachev 2001). Ergot alkaloids can be divided into major 
groups including simple lysergic acid derivatives, peptide 
alkaloids, ergopeptam alkaloids, and clavine alkaloids which 
are classified based on their chemical structures (Komarova 
and Tolkachev 2001; Krska and Crews 2008; Strickland 
et al. 2011; EFSA 2012; Crews 2015; Sharma et al. 2016).

There are six common ergot alkaloids produced by Clavi-
ceps purpura globally. These alkaloids include ergocristine, 
alpha and beta-ergocryptine, ergocornine, ergometrine (also 
referred to as ergonovine), ergosine, and ergotamine (Crews 
2015; Chung 2021). The six common ergot alkaloids are 
classified as peptide alkaloids, apart from ergometrine which 
is classified as a simple lysergic acid derivative. Another 
common ergot alkaloid is ergovaline which is produced by 
Epichloë coenophiala (Neotyphodium spp.) (Shappell and 
Smith 2005; Blaney et al. 2009).

All ergot alkaloids share a common chemical structure con-
taining a tetracyclic ergoline ring of lysergic acid (EFSA 2005). 
Peptide alkaloids have an amino acid ring system attached to 
the ergoline ring system (Krska and Crews 2008). Side chain 
variations of the amino acids which constitute the amino acid 
ring system define the specific ergot alkaloid (Fig. 1). Lyser-
gic acid derivatives do not contain an amino acid ring system. 
Other derivatives of ergot alkaloids, such as dihydro-derivatives 
of the peptide alkaloids, can be formed synthetically (dihydroer-
gotamine) or within sclerotia (dihydroergosine) (EFSA 2012). 
All ergot alkaloids have various configurations which are 
defined by their chemical structure.

Ergot alkaloids have multiple chiral centers, and the rotation 
defines the specific configuration. A left-hand rotation at the 
carbon 8 chiral center adjacent to the 9–10 double bond forms 
a C-8-R-isomer and a right-hand rotation forms a C-8-S-isomer 
(Komarova and Tolkachev 2001; Krska and Crews 2008) 
(Fig. 2). However, other terminology states that a clockwise 
rotation at a chiral center is defined as R (rectus) vs S (sinister) 
(Cieplak and Wisniewski 2001). The C-8-S-isomer can also be 
defined with the prefix “iso” (e.g., isolysergic acid), compared 

to the C-8-R-isomer (e.g., lysergic acid) (Jastrzębski et al. 2022). 
A rotation at the carbon 5 (C5) of an ergot alkaloid may also 
signify a specific configuration and can be defined by a “d” (e.g., 
d-lysergic acid) or “l” (e.g., l-lysergic acid). The ergot alkaloids 
in either the C-8-R-isomer or C-8-S-isomer configuration are 
naturally in the d configuration at the carbon 5 (Krska et al. 
2008b; Klotz et al. 2010; National Center for Biotechnology 
Information - PubChem: Ergocristine, Ergosine, Ergocornine, 
Ergocryptine, Ergotamine, Ergometrine).

In this review, the focus is on the C-8 rotation, and spe-
cifically the C-8-S-isomer. The C-8-R-isomer and C-8-S-
isomer are referred to as the R-epimer and S-epimer, respec-
tively. The R-epimers are defined with a -ine suffix (e.g., 
ergotamine) and the S-epimers with a -inine suffix (e.g., 
ergotaminine). The R and S-epimers are interconvertible 
(Crews 2015), and pass through an intermediate configura-
tion (Andrae et al. 2014) during the energetic conversion. 
The rationale for focusing on the S-epimers is due to the lack 
of studies on that configuration, which may be because the 
S-epimers being historically deemed as biologically inactive 
or the relative abundance of the S-epimers were not consid-
ered, which is discussed further in the review.

Biological evaluation of ergot alkaloids (R 
and S‑epimers)

Biological activity of the R and S‑epimers

Differences between the R and S-epimers of ergot alkaloids 
are reported, specifically in terms of bioactivity. Bioactiv-
ity is defined as “any response from or reaction in living 
tissue” (Mosby’s Medical Dictionary 2017, p. 209). The 
R-epimers are deemed to have biological activity (Komarova  
and Tolkachev 2001). In contrast, the S-epimers are reported 
to be inactive (Barger and Carr 1907; Berde and Schild 
1978; Pierri et al. 1982; Schiff 2006; Krska and Crews 
2008; Blaney et al. 2009; Smith et al. 2009; Nichols 2012; 
Dänicke 2016; Guo et al. 2016; Bryła et al. 2019) or have 
weak activity (Komarova and Tolkachev 2001; Haarmann 
et al. 2009; Strickland et al. 2011; Stanford et al. 2018). 
However, recent studies have demonstrated potential bio-
activity of the S-epimers of peptide alkaloids (Mulac et al. 
2012; Cherewyk et al. 2020; Cherewyk et al. 2022a, b, c).

Many studies that describe inactivity of S-epimers ref-
erence studies dating to the 1970s or prior (Stadler and 
Stürmer 1970; Berde and Schild 1978; White 1938a, b). In 
Berde and Schild (1978), the authors state that the S-epimers 
are less active than the R-epimers; however, they do not pro-
vide a supporting reference. In a table assessing adrenergic 
receptor blocking activity, ergotaminine was reported to have 
no activity when a nictitating membrane of a cat was used 
(Bacq 1934; Salzmann and Bucher 1978). Berde and Schild 
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(1978) also reported that specific ergot epimers, namely, the 
diastereomers of ergotamine and dihydroergotamine, do not 
have bioactivity, where they reference Stadler and Stürmer 
(1970, 1972). The reference Stadler and Stürmer (1972) 
could not be found. In Stadler and Stürmer (1970), the non-
bioactivity of the diastereomers (isomers) of ergotamine and 
dihydroergotamine was allegedly summarized from multi-
ple papers and was tested with 11 pharmacological assays, 
which were not described in the study with suitable refer-
ences. Another study reported the inactivity of an S-epimer, 
5S, 8S-(−)-lysergic acid diethylamide (LSD) with 2500-fold 
lower activity than the corresponding C-8-R-isomer (Nich-
ols 2012). However, when assessing the reference of that 
statement, there was no 5S, 8S-(−)-LSD analyzed (Bennett 

and Snyder 1976). The only C-8-S-isomer analyzed in the 
reference was d-iso-lysergic acid amide, which is different 
from LSD. In Bennett and Snyder (1976), d-iso-lysergic acid 
amide had an inhibitory concentration affecting 50% of the 
population (IC50) of 100–200 nM compared to d-LSD with 
IC50s of 8–10 nM, when assessed with radioligand binding 
assays. Although the IC50s for the S-epimer are higher than 
the R-epimer, the S-epimer IC50s are still relatively low. The 
authors further state that l-LSD is inactive; however, l-LSD 
is not a C-8-S-isomer.

Studies referencing the lack of biological activity of 
the C-8-S-isomers appear to have erroneous or incomplete 
information. Some studies only examined one ergot alkaloid 
or class of alkaloids or mistake the C-8-S-isomer for the 

Fig. 1  Chemical structures of the six common ergot alkaloids (National Center for Biotechnology Information - PubChem)
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C5 isomer (Stadler and Stürmer 1970; Bennett and Snyder 
1976; Salzmann and Bucher 1978). The specific alkaloids, 
dose, endpoints, methods, and animal species used could all 
contribute to the uncertainty of the C-8-S-isomers related to 
bioactivity (Saamely 1978). Studies today define all C-8-S-
isomers as non-bioactive or weakly bioactive and reference 
studies that assessed only one C-8-S-isomer with methods 
that may not be optimal. When examining the historical 
data on the non-bioactivity of the S-epimers, the methods 
and results are questioned. Limited studies assessing the 
bioactivity of the S-epimers report the ratio of the epimers 
within the experiments. However, the experimental condi-
tions used encourage the epimerization of the R-epimer to 
the S-epimer, and not vice versa. Conditions such as tem-
perature, solvent, pH, and time were all identified and set to 
minimize the back epimerization of the S to the R-epimer. 
A study assessing ratios of ergot epimers under physiologi-
cal conditions had demonstrated high concentration stabil-
ity, therefore minimal epimerization, of a specific S-epimer 
(Mulac et al. 2012). Epimerization of ergot alkaloids is 
discussed further in the review. An updated assessment of 
the S-epimers of ergot alkaloids to further understand their 
bioactivity and related mechanisms is warranted.

The R and S‑epimer — receptor interactions 

The biological activity of ergot alkaloids is related to their 
interaction with biogenic amine receptors. The ergoline 
ring system of ergot alkaloids is structurally similar to the 
biogenic amines norepinephrine, dopamine, and serotonin 
(5-HT) (Berde 1980; Klotz 2015a) (Fig. 3). The similarity 
of the structures allows ergot alkaloids to bind to dopamine, 
adrenergic (also known as adrenoceptors), and 5-HT recep-
tors (Hollingsworth et al. 1988; Klotz 2015b). The ergoline 
ring of the chemical structure has been defined as the phar-
macophore of peptide alkaloids (Weber 1980; Reddy et al. 

2020). The different classes of ergot alkaloids and differing 
amino acid ring side chains for the peptide alkaloids result in 
varying affinities to the receptors and subsequent responses 
(Strickland et al. 2011; Klotz 2015b). Structural differences 
of ergot alkaloids may influence the signal transduction after 
binding to a receptor (Klotz et al. 2010). Ergot alkaloids, 
specifically the R-epimers, interact with the biogenic recep-
tors in multiple ways.

Ergot alkaloids have been defined as agonists, partial 
agonists, and antagonists to dopamine, alpha adrenergic, 
and 5-HT receptors (Hollingsworth et al. 1988; Pertz and 
Eich 1999; Klotz et al. 2016). The binding of ergot alka-
loids to various subtypes of each receptor class has been 
investigated. The 5-HT 1 (MacLennan and Martin 1990; 
Schöning et al. 2001; Schiff 2006), 5-HT 2 (Dyer 1993; 
Oliver et  al. 1993; Schöning et  al. 2001; Schiff 2006; 
Görnemann et al. 2008; Klotz 2015b; Klotz et al. 2016, 
2018), 5-HT 2A, 5-HT 2B (Klotz 2015b), alpha adrenergic 
1 (Oliver et al. 1993; Schöning et al. 2001; Görnemann 
et  al. 2008), alpha 2 adrenergic receptors (Roquebert 
et al. 1984; Oliver et al. 1998; Görnemann et al. 2008; 
Yonpiam et  al. 2021; Klotz et  al. 2016), dopamine 1 
(Saper and Silberstein 2006), and dopamine 2 receptors 
(Pertz and Eich 1999; Görnemann et al. 2008) have all 
demonstrated to interact with ergot alkaloids upon expo-
sure. Factors that influence the involvement of receptors 
include the specific ergot alkaloid, animal species, tissue 
type, dose, and experimental conditions assessed (Schiff 
2006; Klotz 2015b). For example, the 5-HT 2A receptor 
was the primary serotonin receptor causing effects fol-
lowing ergot alkaloid exposure in the vasculature (Klotz 
et al. 2018; Trotta et al. 2018). However, the receptors 
involved with ergot may depend on the type of vasculature 
assessed. Alpha adrenergic receptors are more predomi-
nant in peripheral vasculature, and specific receptors may 
not be present in all blood vessels (Klotz et al. 2018; Liu 

Fig. 2  Left: C-8-R-isomer (R-epimer). Middle: intermediate structure. Right: C-8-S-isomer (S-epimer) (Cherewyk et al. 2022b)
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et al. 2020). To assess specific receptors in vasculature 
that are involved with ergot alkaloid exposure, a combina-
tion of the ergot alkaloid and agonists/antagonists of the 
receptors have been utilized (Dyer 1993; Schöning, et al. 
2001; Klotz et al. 2016). Table 1 summarizes studies that 
have reported the involvement of a specific receptor after 
ergot alkaloid exposure and includes the specific ergot 
alkaloid(s) used in the study. Most studies assessing the 
involvement and interaction of receptors following ergot 
alkaloid exposure have only focused on the R-epimers.

The R-epimers of ergot alkaloids are known to have high 
affinity to the serotonin, alpha adrenergic, and dopamine 
receptors (Haarmann et al. 2009; Ivanova and Spiteller 2012). 
The R-epimers have a higher affinity to alpha 2 adrenergic 
receptors compared to the alpha 1 adrenergic receptors (Klotz 
et al. 2016). The high affinity may be due to the slow dis-
sociation and association of the R-epimers to the receptors 
(Schöning et al. 2001; Unett et al. 2013). Irreversible bind-
ing of the R-epimers to receptors has also been speculated 
(Schöning et al. 2001). In addition, the R-epimers have time-
dependent binding affinities with differing Ki values at 5 min 
vs 5 h post-exposure (Unett et al. 2013). These studies dem-
onstrate the involvement of the R-epimers of ergot alkaloids 
in receptor binding and activation. However, the involvement 
of the S-epimers in receptor binding and comparison of the 
data to the R-epimers is limited.

The S-epimers were reported to have weak activity in 
terms of receptor activation (Mulac and Humpf 2011; Mulac 

et al. 2012, 2013). However, S-epimers, 8S-lisuride and 
terguride, demonstrated agonist and antagonist properties 
to histamine and 5-HT receptors, respectively (Pertz et al. 
2006; Kekewska et al. 2012), using receptor and ex vivo 
assays. The 8S-lisuride demonstrated greater potency than its 
corresponding C-8-R-isomer. The 8S-lisuride and terguride 
are ergot alkaloid derivatives that have similar ergoline ring 
chemical structures to ergot alkaloids. Another S-epimer, 
8-alpha-ergoline, demonstrated relatively high affinity with 
pKi values of 6.92–8.52 to alpha 1 and alpha 2 adrenergic 
receptors, using a radioligand binding assay (Okumura et al. 
1988). In addition, a recent radioligand study demonstrated 
that isolysergol, a C-8-S-isomer, binds with high potency to 
four 5-HT receptor subtypes and had similar potency to the 
C-8-R-isomer (Tasker and Wipf 2022). Each compound, the 
C-8-S-isomer and C-8-R-isomer, had a d configuration at 
the C5 position to demonstrate sufficient potency. Recep-
tor binding of these S-epimers encourages further studies 
to assess the involvement of other classes of S-epimers in 
receptor binding. The R and S-epimer of a novel ergopep-
tine alkaloid had only slight differences in affinity to the 
adenosine and dopamine receptors (Vendrell et al. 2007). 
Therefore, the authors made a statement, “Concerning the 
effect of ergolene system chirality, the C8 configuration is 
not relevant in ergopeptides pharmacology, as the diaste-
reoisomers….showed similar behavior in the four recep-
tors evaluated” (Vendrell et al. 2007, p. 3066). For peptide 
alkaloids, in silico methods have been used to assess the 

Fig. 3  Chemical structures 
representing the amino acid and 
ergoline ring system, and the 
biogenic amines, norepineph-
rine, dopamine, and serotonin 
(chemical structures were recre-
ated from PubChem and Wiki-
media Commons: Dopamine, 
Norepinephrine, Serotonin)
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S-epimer-receptor binding relationship and have demon-
strated affinity and strong molecular interactions (Dellafiora 
et al. 2015; Spaggiari et al. 2021; Cherewyk et al. 2023a, b). 
Further assessments of the S-epimer-receptor relationship 
may lead to further understanding of the biological activity 
and associated mechanisms.

Mechanisms of toxic effects of the R and S‑epimers

Ergot alkaloid binding to receptors is the first step of the 
biological process that leads to downstream apical effects. 
Serotonin and alpha-adrenergic receptors are located in 
the smooth muscle cells of vasculature and the interaction 
between ergot alkaloids and the biogenic receptors nega-
tively affects the vasculature. The most notable biological 
response is the contraction of various blood vessels in the 
peripheral and central vasculature (MacLennan and Martin 
1990; Oliver et al. 1993; Klotz et al. 2019). Low concentra-
tions of ergot have produced arterial effects (Cowan et al. 
2018). Vasculature that have been reported to be affected 
by R-epimers include, but not limited to, the dorsal pedal 

(metatarsal) artery and vein, mesenteric artery and vein, lat-
eral saphenous vein, ruminal artery and vein, medial palmar 
artery and vein, and umbilical vasculature (Solomons et al. 
1989; Klotz et al. 2006, 2007, 2009, 2010, 2018, 2019; Foote 
et al. 2012; Egert et al. 2014; Klotz and McDowell 2017; 
Trotta et al. 2018; Yonpiam 2018).

The R-epimers of peptide alkaloids have demonstrated 
a concentration-dependent response of various vasculature 
(Klotz et al. 2010; Foote et al. 2011). In addition, a pro-
longed/sustained vascular contractile response following 
R-epimer exposure has also been observed (Solomons et al. 
1989; Klotz et al. 2007; Pesqueira et al. 2014; Klotz 2015b). 
The rationale for the sustained vascular contractile response 
is bioaccumulation of ergot alkaloids in the tissues (Klotz 
et al. 2007, 2009, 2016; Klotz 2015b) or high irreversible 
affinity binding to receptors (Pesqueira et al. 2014), resulting 
in persistent receptor signaling and delayed recovery (Klotz 
et al. 2016). The delayed recovery of vasculature may lead to 
further adverse implications and potentially reduced elimi-
nation of ergot alkaloids. Ergot alkaloid concentrations in 
vascular tissue have been observed analytically (Klotz et al. 

Table 1  A summary of studies reporting the involvement of specific receptors following ergot alkaloid exposure and which R-epimer, from the 
six common ergot alkaloids and ergovaline, was reported along with the relationship observed

Receptor Ergot alkaloid Agonist/antagonist Reference

5-HT1 Ergometrine Agonist MacLennan and Martin (1990)
5-HT1A Ergometrine

Ergotamine
Agonist Pertz and Eich (1999)

5-HT1B/D Ergometrine
Ergovaline
Ergotamine

Agonist Pertz and Eich (1999), Schöning et al. (2001), Schiff (2006) and Klotz et al. (2018)

5-HT2 Ergometrine
Ergovaline

Agonist MacLennan and Martin (1990) and Dyer (1993)

5-HT2A Ergometrine
Ergotamine
Ergovaline

Agonist
Antagonist

Hollingsworth et al. (1988), Pertz and Eich (1999), Klotz et al. (2016), Schöning 
et al. (2001) and Klotz et al. (2018)

5-HT2B Ergotamine Antagonist Pertz and Eich (1999)
5-HT2C Ergotamine Antagonist Pertz and Eich (1999)
5-HT5A/5B Ergotamine n/a Pertz and Eich (1999) and Tfelt-Hansen et al. (2000)
5-HT4 Ergotamine Agonist Jacob et al. (2023)
Alpha-adrenergic Ergotamine Partial agonist Schiff (2006)
Alpha-2 Mixture Agonist Oliver et al. (1993) and Tfelt-Hansen et al. (2000)
Alpha-2a Ergovaline Antagonist Klotz et al. (2016)
Alpha-2c Ergovaline Antagonist Klotz et al. (2016)
Alpha-1 Ergovaline

Mixture
Partial agonist Tfelt-Hansen et al. (2000), Schöning et al. (2001) and Yonpiam et al. (2021)

Alpha-1a Ergotamine
Ergocristine

Partial agonist
Antagonist

Görnemann et al. (2008)

Alpha-1b Ergotamine
Ergocristine

Partial agonist
Antagonist

Görnemann et al. (2008)

Alpha-1d Ergotamine
Ergocristine

Partial agonist
Antagonist

Görnemann et al. (2008)

D2 Ergotamine Agonist Tfelt-Hansen et al. (2000)
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2009). In contrast, lysergic acid amides do not cause a sus-
tained vascular constriction (Berde and Schild 1978; Klotz 
et al. 2006; Pesqueira et al. 2014). As a result, the lyser-
gic acid amides may not bioaccumulate in vascular tissue; 
therefore, do not have prolonged effects compared to peptide 
alkaloids. The effects of ergot alkaloids on the vasculature 
have been attributed to the R-epimers. The contribution 
of the S-epimers to vasculature contraction has remained 
limited.

The S-epimers of peptide alkaloids have caused contrac-
tions of an artery and uterus. Ergocristinine, ergocryptinine, 
ergocornine, and ergotaminine produced a cumulative dose 
response using a dorsal metatarsal artery (Cherewyk et al. 
2020). In addition, ergocristinine demonstrated sustained 
vascular contraction and appeared to have a slower onset of 
action compared to the corresponding epimer (Cherewyk 
et al. 2022c). Likewise, utilizing a rabbit uterus, ergosinine 
demonstrated similar effects to ergosine, but had slightly 
weaker and slower onset of action (Saamely 1978). Ergo-
sinine also elicited a contractile response in a guinea pig 
uterus when assessed with a myocardiograph (White 1938b). 
Ergometrinine demonstrated 3.9% of uterine contraction 
compared to ergometrine; however, the concentration used 
was not provided (Saamely 1978). The authors assessed the 
uterine contraction at 2–5 min. Potentially, the time at which 
the contraction was assessed may have been insufficient to 
observe the response related to the S-epimer, especially if 
the S-epimer has a slower onset of action. The observations 
of the S-epimers to cause contraction as observed in the 
above studies suggest potential bioactivity of the S-epimers.

Other studies demonstrating the potential effects of 
S-epimers involve cellular toxicity. The S-epimers accumu-
late in cells (Shappell and Smith 2005; Mulac and Humpf 
2011; Mulac et al. 2013). Ergocristinine accumulated to a 
greater extent than ergocristine in two different cancer cell 
lines (human colon (HepG2) and human liver (HT-29)) 
(Mulac et al. 2013). Uptake and accumulation into cells 
may result in cytotoxicity attributed to the S-epimers (Mulac 
and Humpf 2011). In addition, ergocristinine accumulated in 
the blood–brain barrier, affecting the integrity of the barrier 
(Mulac et al. 2012), which could be a potential toxicological 
mechanism. Ergovalinine crossed intestinal cells at similar 
rates to ergovaline (Shappell and Smith 2005); therefore, 
both epimers may contribute to toxic effects following ergot 
exposure. In addition, ergometrinine demonstrated toxicity 
in animal smooth muscle cells, supporting that S-epimers 
may contribute to cytotoxicity (Zhang et al. 2014). In a study 
assessing cAMP in cell lines with adenosine and dopamine 
receptors, the levels of cAMP did not differ between a spe-
cific R and S-epimer (Vendrell et al. 2007). The potential for 
S-epimers of ergot alkaloids to accumulate, demonstrate tox-
icity, and produce cAMP in cells encourages further research 

to understand the bioactivity and mechanisms of S-epimers 
and their potential to cause toxic manifestations.

Toxic manifestations of the R and S‑epimers

Ergot alkaloids can be consumed orally through contami-
nated food and feed. Absorption of ergot alkaloids occurs 
in the gastrointestinal tract, specifically the small intestine 
(Strickland et al. 2011). The extent of the absorption of 
the ergot alkaloids is dependent on the chemical structure 
of each compound (Völkel et al. 2011). Another potential 
route of absorption is through the lymphatic system (Klotz 
2015b). In ruminants, ergot alkaloids can be absorbed during 
ruminal passage (Völkel et al. 2011). Ergot alkaloids exhibit 
hepatic metabolism and enterohepatic recirculation (Völkel 
et al. 2011; Sharma et al. 2016), which may result in low 
bioavailability. However, if hepatic clearance reaches capac-
ity, the ergot alkaloids may not be metabolized and enter 
the systemic circulation. The absorption of compounds from 
the gastrointestinal circulatory system directly to the sys-
temic circulation has also been suggested (Talevi and Bellera 
2021). Ergot alkaloids have been documented to accumulate 
in cells (Mulac and Humpf 2011); therefore, the exposure 
of low concentrations of ergot alkaloids may still result in 
adverse effects. Ergot alkaloids are excreted mostly through 
the urinary and biliary systems (Klotz 2015b). The ergot 
alkaloid concentrations eliminated do not always equal the 
concentrations consumed. The potential rationales as to why 
the concentration consumed does not equal the concentra-
tion excreted may be due to accumulation or metabolism of 
the ergot alkaloids. Accumulation of ergot alkaloids within 
humans and animals may lead to prolonged adverse effects 
leading to toxic manifestations.

One of the predominant syndromes of ergot intoxica-
tion is gangrenous ergotism (Schiff 2006; Klotz 2015a). 
Gangrenous ergotism is related to the vascular constriction 
induced by the R-epimers of ergot alkaloids. The constric-
tion of blood vessels leads to reduced blood flow and poten-
tially loss of limbs or extremities such as ears and tail tips 
(Rahimabadi et al. 2022). Peripheral arteries may be more 
sensitive to ergot than central arteries (Cowan et al. 2018). 
Blood flow restriction can also cause harm to reproductive 
organs (Poole et al. 2018; Klotz et al. 2019; Poole and Poole 
2019). Implications of impaired cardiovascular function 
include altered nutrient transport, temperature regulation, 
and waste elimination (Strickland et al. 2011). The adverse 
effects attributed to ergot may lead to health complications 
in humans and animals, which in severe cases can result in 
death. Based on the literature, vasoconstriction leading to 
adverse health effects is a main issue associated with ergot 
consumption, especially in livestock, and should be a pri-
mary focus of studies assessing ergot.



8 Mycotoxin Research (2024) 40:1–17

1 3

Other manifestations of ergot alkaloid intoxication con-
tributing to the adverse health effects have been reported. 
Nervous ergotism, which involves the nervous system, 
is manifested as paranoia, hallucinations, twitches, and 
spasms (Schiff 2006; Haarmann et al. 2009; Klotz 2015a). 
Decreased milk production has been observed and is asso-
ciated with decreased prolactin (Bernard et al. 1993; Klotz 
2015a; Burnett et al. 2018; Chohan et al. 2021; Cowan et al. 
2023). In addition, decreased weight gain and feed intake 
(Coufal-Majewski et al. 2017; Dänicke 2015; Klotz 2015a), 
reduced circulating serotonin (Valente et al. 2020), liver and 
intestine lesions (Maruo et al. 2018), and altered total biliru-
bin and albumin concentrations (Dänicke 2016) have been 
described following ergot alkaloid exposure. The manifesta-
tions of ergot exposure cause various health issues, leading 
to a decrease in the well-being of animals and economic 
losses. The toxic manifestations following ergot alkaloid 
exposure have been attributed to the R-epimer and not the 
S-epimer. Only historical studies have assessed toxic mani-
festations following S-epimer exposure.

Various S-epimers of ergot alkaloids have produced toxic 
manifestations in animals. Isoergine, an S-epimer, produced 
visual adverse manifestations in monkey, cat, and fowl spe-
cies (White 1938a). Allegedly, the animals recovered hours 
later; however, the recovery was based on the observed 
clinical signs of the organism. Ergosinine produced adverse 
effects in monkey, cat, rabbit, guinea pig, and fowl species. 
Slower onset and progress toward recovery was observed 
compared to ergosine (White 1938a). White (1938a) noted 
that “if ergosinine were allowed to act for longer than 
the prescribed time its sympatholytic activity was more 
marked” (p. 143). Some claims regarding the non-activity of 
S-epimers were based on rectal temperature of mice (White 
1938a). The conclusion of these historical studies may be 
inconsistent with regards to recent studies referencing the 
non-bioactivity of the S-epimers. The lack of current stud-
ies addressing the S-epimers, and the potential bioactivity 
of the S-epimers, reinforces the need for investigation into 
the S-epimer of ergot alkaloids to further understand their 
biological relevance. The assessment of the concentrations 
of both R and S-epimers of ergot alkaloids in contaminated 
matrices is important from a food and feed safety perspec-
tive, for the protection of human and animal health.

Analytical evaluation of ergot alkaloids (R 
and S‑epimers)

Methods of R and S‑epimer detection 
and quantification

The toxic nature of ergot alkaloids encourages continuous 
monitoring and quantifying in food and feed (Drakopoulos 

et al. 2021). The European Union reported that the six com-
mon R and S-epimers should be monitored (Chung 2021). 
The quantification of ergot alkaloids has been conducted in 
multiple food matrices (Liang et al. 2022). For ergot alka-
loid analysis, certain variables related to sample handing 
are important. These include homogeneity, particle size, 
and amount of sample (European Commission 2013; Chung 
2021). Appropriate methods and analysis for both configura-
tions of ergot alkaloids are needed.

There are multiple methods for detection and quantifica-
tion of ergot alkaloids. The methods include colorimetric 
analysis, thin layer chromatography, enzyme-linked immu-
nosorbent assay (ELISA), liquid chromatography with ultra-
violet (UV) detection or mass spectrometry (MS) detection, 
and near-infrared spectroscopy (Scott 2007). However, col-
orimetric, ELISA, and the use of MS without liquid chro-
matography (LC) separation cannot quantify the S-epimers 
of ergot alkaloids (Scott 2007). Liquid chromatography-
florescence detection (Holderied et  al. 2019), capillary 
electrophoresis (Frach and Blaschke 1998), liquid chroma-
tography mass spectrometry (Krska et al. 2008b), and ion 
mobility mass spectrometry (Carbonell-Rozas et al. 2022) 
can quantify both R and S-epimers of ergot alkaloids. Liquid 
chromatography coupled with tandem mass spectrometry 
(LC-MS/MS) has been labeled the gold standard for ergot 
quantification (Tittlemier et al. 2020).

A review of published methods for epimer specific 
quantification has been prepared recently (Chung 2021). 
Multiple studies have quantified the six common R and six 
common S-epimers (Diana Di Mavungu et al. 2012; Krska 
et al. 2008b; Malysheva et al. 2013; Guo et al. 2016; Arroyo-
Manzanares et al. 2018; Schummer et al. 2018; Holderied 
et al. 2019; Arroyo-Manzanares et al. 2021; Mulder et al. 
2015; Carbonell-Rozas et al. 2021; Poapolathep et al. 2021; 
Cherewyk et al. 2022a). However, some studies quantified 
only the R-epimer (Lehner et al. 2005; Mohamed et al. 2006; 
Ruhland and Tischler 2008; Martos et al. 2010; Kowalczyk  
et al. 2016; Grusie et al. 2017; McKinnon et al. 2018; Shi 
et al. 2019). Cherewyk et al. (2022a) demonstrated that 
differences occurred between the R and S-epimer valida-
tion parameters, potentially due to greater ionization of the 
S-epimers than the R-epimers. Studies should quantify both 
configurations associated with the potential epimerization 
between the R and S-epimer and the questionable S-epimer 
biological activity. Accurate and reliable assessments for 
the concentrations of R and S-epimers of ergot alkaloids 
are needed.

Concentration stability of the R and S‑epimers 
of ergot alkaloids

Ergot alkaloid concentrations, including the R and 
S-epimers, are not stable under various conditions. Multiple 
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variables may affect the concentrations including solvent, 
pH, light, and temperature (Komarova and Tolkachev 2001; 
Hafner et al. 2008; Krska et al. 2008a; Lea et al. 2014; 
Coufal-Majewski et al. 2017; Schummer et al. 2020). The 
R-epimer can convert, or epimerize, to the S-epimer in the 
“presences of alkalis” (Komarova and Tolkachev 2001, 
p. 506), under aprotic (e.g., acetonitrile, acetone, chloro-
form) and protic solvents (e.g., methanol or water:methanol 
mix) at room temperature over days, at 37 °C in various 
matrices over hours (Smith and Shappell 2002), and during 
the extraction process of cereals (Krska et al. 2008a). The 
S-epimer may convert to the R-epimer in organic solvent, 
water, or acidic solutions (Komarova and Tolkachev 2001).

Optimal storage conditions for pure standards of R and 
S-epimers of ergot alkaloids should be below −20 °C, in 
non-protic solvents (Hafner et al. 2008; Krska and Crews 
2008; Crews 2015), and in amber vials (Smith and Shappell 
2002), for accurate concentration assessments of the R and 
S-epimers. Further, analytical run time should be minimized 
to also avoid epimerization throughout the analysis (Diana 
Di Mavungu et al. 2012). An extraction solvent with pH 8.5 
demonstrated optimal extraction of both R and S-epimers 
while recognizing that higher pH increase epimerization. 
Further, a dry down temperature of 40 °C had less epimeri-
zation that 60 °C. Extraction procedures with shorten sample 
preparation and instrument conditions, such as autosampler 
temperature, help reduce epimerization within analytical 
methods. The concentration stability and epimerization of 
the R and S-epimers may depend on the specific ergot alka-
loid assessed (Schummer et al. 2020).

Ergot alkaloids have varying pKa values which may 
contribute to the extent of epimerization (Schummer et al. 
2020). The pKa values of the R-epimers vary from 5.5 
(ergocristine) to 6.0 (ergometrine) and the S-epimers vary 
from 4.8 (ergocorninine) to 6.2 (ergometrinine) (Krska et al. 
2008b). In addition, steric hindrance may also contribute 
to the extent of epimerization for specific ergot alkaloids 
(Schummer et al. 2020). The concentration of ergocristi-
nine has demonstrated near-complete stability at physiologi-
cal conditions with greater than 90% of the initial dose of 
ergocristinine remaining following incubation in cell culture 
media (Mulac et al. 2012). According to quantum calcu-
lations, an S-epimer configuration was slightly preferred 
for ergocornine/inine with 60% of the S-epimer present 
at equilibrium, whereas alpha-ergocryptine/inine was bal-
anced (Andrae et al. 2014). However, in solvent mixtures, 
the S-epimers, alpha-ergocryptinine and ergocorninine, 
were the preferred configuration with K values greater than 
1 ranging from 1.06 to 2.83, depending on the solvent mix-
ture and alkaloid assessed. The K values greater than 1 rep-
resent a shift in the equilibrium to the S-epimer. Ergovaline 
converted to ergovalinine at various rates depending on the 
matrix and pH assessed at 37 °C (Smith and Shappell 2002). 

For example, in water, acetonitrile, and a solution of 0.1 M 
 PO4 pH 3, equilibrium was not reached within 72 h. How-
ever, 0.1 M  PO4 pH 7.5 reached equilibrium within 75 min. 
In addition, equilibrium was not reached until approxi-
mately 11 h in 9.1% fetal bovine serum in water with pH 7.5. 
Epimerization of the R and S-epimers depends on multiple 
factors, one of which is the matrix of ergot contamination.

The R and S-epimer configurations may behave differ-
ently in certain matrices. In raw material contaminated with 
ergot, the S-epimer concentration increased when stored for 
an extended period or improper storage conditions for a 
shorter period (Krska et al. 2008a; Tittlemier et al. 2015). 
In barley extracts, there was a 10% increase in the S-epimer 
concentrations for ergocristinine, ergocryptinine, and ergo-
corninine when stored at 4 °C over 2 weeks (Krska et al. 
2008a). However, in rye extracts under the same conditions, 
greater than 50% increase in ergocorninine was observed 
and a high increase in ergocristinine and ergocryptinine con-
centrations. The sum of the S-epimer concentrations have 
been 36% in grain samples stored for years, and 20% stored 
for months (Tittlemier et al. 2015).

In biological matrices, the epimer configurations may 
also vary. In cell medium, equilibrium between R and 
S-epimers was observed between 8 and 24 h, depending on 
the ergot alkaloid (Mulac and Humpf 2011), with uptake 
and accumulation of ergocristinine within the cells. Ergova-
line and ergovalinine crossed human intestinal cells at the 
same rate; however, epimer ratios in the cells differed as a 
resulted of decreased ergovaline concentrations (Shappell 
and Smith 2005), which could be associated with epimeri-
zation of the R to the S-epimer. Similarly, as mentioned 
above, in media with varying pH’s and buffers at physi-
ological temperature (37 °C), there was conversion of an 
R-epimer, ergovaline, to the S-epimer, ergovalinine, which 
depending on the media used, did not reach epimeriza-
tion for hours (Smith and Shappell 2002). The concentra-
tion of each epimer was not equal once equilibrium was 
reached in certain media. Epimerization may be induced 
in the bile and pancreatin (Merkel et al. 2012) and may 
occur from stomach to large intestine (Dänicke 2016); how-
ever, it is also dependent on the ergot alkaloid assessed. 
Using an in vitro digestion model, ergocorninine, alpha/beta 
ergocryptinine, and ergocristinine, which are all S-epimers, 
demonstrated an increase in concentrations compared to 
their corresponding R-epimers (Merkel et al. 2012). Con-
versely, ergotamine and ergosine (R-epimers) demonstrated 
increased concentrations. Epimerization appeared to occur 
in the duodenal juice section of the method. Very few stud-
ies, if any, have described the kinetics and rate of equilib-
rium of the S-epimers to the R-epimers in various matrices 
and biological fluids. From the above studies, it appears 
that the S-epimers may be the favored configuration in 
the equilibrium, depending on the ergot alkaloid assessed. 
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The conversion of the R-epimer to the S-epimer may be 
more energetically favored, and the steric hindrance of the 
S-epimers may limited the epimerization of the S-epimers 
to the R-epimers (Andrae et al. 2014; Schummer et al. 
2020). Further, the rate of conversion of the R-epimer to the 
S-epimers may take hours to days, depending on the experi-
mental conditions assessed. The stability of ergot alkaloids 
in various matrices may determine the concentration and 
proportions of each configuration.

Proportions of ergot epimers

Each ergot sclerotia may contain a variable concentration 
of ergot alkaloids (Carbonell-Rozas et al. 2021). The total 
ergot alkaloid concentrations can differ from 0.01 to 1.04% 
in a single ergot body (Ruhland and Tischler 2008). The six 
common ergot alkaloids have different percentages within 
an ergot body depending on type of crop, fungi, individual 
ergot bodies, year, and geographical location (Grusie et al. 
2017; Kodisch et al. 2020). Since the concentrations of ergot 
alkaloids can vary extensively, certain ergot alkaloids may 
be more important to assess in specific regions worldwide.

The proportions of ergot epimers differ globally. In Can-
ada, ergocristine and ergocristinine are the most prevalent 
epimers (Coufal-Majewski et al. 2017; McKinnon et al. 
2018; Cherewyk et al. 2023b). Ergocristine and ergocris-
tinine constituted 35 and 17%, respectively, in Canadian 
wheat samples (Cherewyk et al. 2023b), with the total sum 
of the S-epimers constituting 35% (Cherewyk et al. 2022a). 
Ergocristinine had the highest concentration of 29–35% of 
the total ergot alkaloid concentrations in various matrices 
(Tittlemier et al. 2019). Similarly, ergocristinine had the 
highest mean concentration of 16.15 µg/kg and 26.75 µg/
kg, compared to the other six common R and S-epimers, in 
swine and dairy feed samples, respectively (Poapolathep 
et al. 2021). In Algeria, ergometrine had the highest mean 
concentration of 13.5 µg/kg and 33.1 µg/kg out of the 12 
common epimers analyzed in barley and wheat (Carbonell-
Rozas et al. 2021), and was the most frequently detected 
epimer in Belgian baby food products (Huybrechts et al. 
2021). In Slovenia, ergometrine/inine (17% and 15.3%, 
respectively) and ergosine/inine (13% and 11.5%, respec-
tively) were the most abundant in various matrices (Babič 
et al. 2020). Ergocristinine (0.11%) and ergotaminine (17%) 
had the higher concentrations than their corresponding 
R-epimers (0.02 and 2%, respectively) in rye samples from 
Germany (Kodisch et al. 2020). Ergotamine had the highest 
concentration (1411 mg/kg) and ergotaminine had the fifth 
highest (196 mg/kg) concentrations out of 10 analyzed ergot 
epimers in rye samples (Blaney et al. 2009). Ergotamine 
also had the highest mean concentration (554 µg/kg) and 
ergotaminine (71 µg/kg) out of 12 the common epimers 
analyzed in barley grain (Drakopoulos et al. 2021). It is 

important to quantify all six common ergot alkaloids since 
their concentrations vary. In addition, the concentrations 
of the S-epimers of the common ergot alkaloids are found 
in high concentrations and proportions worldwide. The 
S-epimer concentrations are commonly found at higher con-
centrations than the R-epimers (Arroyo-Manzanares et al. 
2017). The high concentrations of the S-epimers and their 
potential bioactivity encourage inclusion of the S-epimers 
in food and feed safety guidelines globally.

Ergot regulations

The six common ergot alkaloids in all cereals should be mon-
itored (Crews 2015; Schummer et al. 2018; Tittlemier et al. 
2019). Ergot alkaloid intoxication is still an issue in devel-
oping countries (Maruo et al. 2018; Debegnach et al. 2019; 
Wielogorska et al. 2019; Agriopoulou 2021), and remains 
a concern for livestock (Schummer et al. 2020). Specific 
regulations have been set for the contamination of myco-
toxins within grain. For ergot-contaminated grain, visual 
inspection of the harvested grain is conducted (Walkowiak  
et al. 2022). Ergot sclerotia are counted and a percent of 
weight of sclerotia per weight of grain is assessed. Similarly, 
depending on the level of ergot contamination, the grain is 
graded to determine how the grain will be processed or uti-
lized. Currently, 0.05% and 0.02% ergot sclerotia in wheat 
and durum, respectively, are the maximum values set for 
human food consumption in Canada (Tittlemier et al. 2019). 
Maximum sclerotia concentrations of 0.5 g/kg and 5 g/kg 
in wheat and durum, respectively, have been set by Codex 
Alimentarius for human consumption (Maruo et al. 2018).

The correlation between ergot sclerotia quantity and the 
concentration of ergot alkaloids is poor (Babič et al. 2020), 
especially at low ergot alkaloid concentrations (Grusie et al. 
2017; Kodisch et al. 2020). Furthermore, some studies 
assessing the relationship do not quantify all six common 
ergot alkaloids or the S-epimers (Tittlemier et al. 2015; 
Grusie et al. 2017). Since ergot alkaloid concentrations 
cannot be reliably predicted based on the amount of ergot 
sclerotia presence, an analytical method should be used 
to ensure that ergot alkaloid concentrations meet safety 
regulations (Coufal-Majewski et al. 2016; Kodisch et al. 
2020). Recommendations for the regulations of ergot-
contaminated grain should be based on ergot alkaloid 
concentrations, and not on the presence of ergot sclerotia 
alone (EFSA 2012; McKinnon et al. 2018).

New regulations for ergot alkaloid concentrations in food 
stuff include both the R and S-epimers (European Commis-
sion 2021). The lowest concentration within the regulatory 
recommendations is based on vulnerable populations such 
as infants and children at 20-µg/kg total ergot alkaloids. 
Studies from multiple countries reported mean ergot alka-
loid concentrations in food stuff that were below or close to 
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the regulatory recommendation (Veršilovskis et al. 2020; 
Carbonell-Rozas et al. 2021; Huybrechts et al. 2021). How-
ever, certain samples had ergot alkaloid concentrations that 
exceeded the regulatory recommendation; therefore, vul-
nerable groups may be at risk. For humans, the European 
Food Safety Authority (EFSA) reported a total daily intake 
(TDI) of ergot alkaloids of 0.6-µg/kg body weight per day 
total ergot alkaloids, and an acute reference dose of 1-µg/
kg body weight (EFSA 2012; Debegnach et al. 2019; Malir 
et al. 2023). The total ergot alkaloids refer to the sum of 
the six common R and S-epimers (Carbonell-Rozas et al. 
2022). The TDI is the estimated concentration that can be 
consumed over a lifetime without risk to health, and an 
acute reference dose is the maximum concentration that can 
be consumed in a day without risk (Liu and Chen 2003). 
Guidelines may vary from country to country related to 
variable consumption of contaminated food products, and 
the intended population consuming the products. Not only 
should the S-epimers of ergot alkaloids be included in food 
safety recommendations, but they should be included in feed 
safety recommendations as well.

Harvested grain and screened grain contaminated with 
ergot may be used for animal feed (Coufal-Majewski et al. 
2016). The European Commission 2002 set a limit of 
1000 mg/kg of rye ergot (Claviceps purpurea, sclerotia) 
in feedstuff without ground cereal, and was not changed in 
the updated European Commission 2011. The US limit for 
ergot in cereals is 0.3% ergot sclerotia and Australia and 
New Zealand set limits of 0.05% (Scott 2009). In Canada 
currently, limits are set for the concentration of ergot alka-
loids in animal feed; however, only the R-epimers of ergot 
alkaloids are considered (CFIA, 2017). In Uruguay, there is 
a limit of 450-μg/kg total alkaloids in feed; however, there 
is a zero tolerance for vulnerable populations (Scott 2009). 
A concentration of 200–250-µg/kg ergot alkaloids has been 
recommended for higher risk livestock such as pregnant or 
lactating animals (Coufal-Majewski et al. 2016; Lea and 
Smith 2021). In a case study, multiple beef claves had died 
with concentrations of total ergot alkaloids (only R-epimers 
reported) in the diet reaching 495 µg/kg (Leuschen et al. 
2014). The concentration of both R and S-epimers should 
be accounted for in feed for livestock as reported by govern-
ment and industry of the protection of animal health.

Many countries worldwide have reported a high percent 
of ergot-contaminated feed samples. Studies have demon-
strated that the average concentration of ergot alkaloids in 
feed were below safety standards; however, specific sam-
ples had ergot alkaloid concentrations that were higher 
than the recommended safety standards in various matrices 
(Schummer et al. 2018; Babič et al. 2020; Kodisch et al. 
2020; Arroyo-Manzanares et al. 2021; Poapolathep et al. 
2021). Concentrations lower than safety standard guidelines, 
such as 100–200-µg/kg total ergot alkaloids, have produced 

adverse effects to livestock (Evans 2011; Craig et al. 2015; 
Miskimins et al. 2015; Coufal-Majewski et al. 2016; Cowan 
et al. 2018; Arroyo-Manzanares et al. 2021).

Current regulatory standards may not provide sufficient 
protection against ergot alkaloids (Maruo et  al. 2018); 
therefore, ongoing studies are needed to re-evaluate these 
standards until adequacy is met (Debegnach et al. 2019) 
and include the S-epimers in feed standards for the protec-
tion of animal health. As the analytical detection of R and 
S-epimers is more fully understood, greater consistency of 
guidelines will occur. The use of a marker compound would 
not be useful for ergot alkaloid analysis based on varying 
ergot alkaloid compositions worldwide (Klotz et al. 2016; 
Tittlemier et al. 2019; Drakopoulos et al. 2021), and the 
toxicities of the individual ergot alkaloids are not well 
understood (Arroyo-Manzanares et al. 2017). In addition, 
certain alkaloids behave differently in terms of their concen-
trations when exposed to various external factors (Roberts 
et al. 2014; Schummer et al. 2020); therefore, the analysis 
of one ergot alkaloid as a marker may not reflect the con-
centration of other ergot alkaloids. Initially, the inclusion 
of the S-epimers in monitoring guidelines was associated 
with the potential for this configuration to convert back to 
the R-epimers (EFSA 2012). However, the S-epimers should 
also be included in the guidelines based on the potential bio-
activity of the S-epimers which may lead to adverse effects 
(Mulac et al. 2012; Cherewyk et al. 2020, 2022c), and high 
concentrations in natural contaminated matrices (Tittlemier 
et al. 2019; Cherewyk et al. 2022a). In addition, the extent of 
the S-epimer bioactivity and stability in terms of their con-
centrations needs to be further researched to gain a greater 
understanding of their effects. The full impact on existing 
ergot guidelines and food and feed safety remains unknown.

Conclusions

Globally, ergot alkaloid contamination is an issue in food 
and feed and can effect the health and well-being of humans 
and animals. Historical and current studies on the C-8-S-
isomers have been collected to demonstrate and highlight 
the progression of C-8-S-isomer research and compare it to 
the C-8-R-isomer. The biological and analytical aspects of 
the C-8-S-isomers are important to consider because of the 
potential effects to the health of humans and animals.

This review reveals the importance of the inclusion of 
the C-8-S-isomer in future research and may aid in assess-
ing the C-8-S-isomers. Future research on the mechanisms 
and biological effects of the C-8-S-isomers is warranted. It 
is important to quantify the C-8-S-isomers in contaminated 
matrices since the concentration may be high. Once there is 
a greater understanding of the C-8-S-isomers, acceptance of 
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the C-8-S-isomers into the regulatory recommendations for 
food and feed worldwide for the protection of human and 
animal health may occur.
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