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Abstract
As life expectancy continues to increase, there is a growing concern that the same 
pace of health improvement may not follow. An ageing population spending more 
years in disability and long-term sickness can place a significant financial burden 
on society. It is therefore crucial for governments to accurately forecast not just life 
expectancy but also healthy life expectancy. In particular, examining the highest 
healthy life expectancy can provide valuable information, as it represents the cur-
rent best experience worldwide. Although there have been numerous studies on 
forecasting life expectancy, relatively few authors have investigated the forecasting 
of healthy life expectancy, often due to health data limitations. In this paper, we 
propose a Bayesian approach to co-model the highest healthy life expectancy and 
the highest life expectancy. The resulting forecasts would offer useful insights for 
governments in shaping healthcare and social policies to improve the wellbeing of 
seniors and retirees.

Keywords Healthy life expectancy · Life expectancy · Bayesian modelling · Vector 
autoregressive models

Introduction

Life expectancy has been rising globally for more than a century. For example, 
female (period) life expectancies at birth in the UK and US have climbed from 72.1 
and 72.0 in 1951–1955 to 82.9 and 81.0 in 2016–2020, respectively. Traditionally, 
this indicator has been used to estimate how long people are expected to live and 
assess the overall wellbeing of a population. However, recent attention has gradually 
shifted to the quality of life, not just the quantity of life. Higher life expectancy does 
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not necessarily mean more years of good health. To evaluate the situation, we have 
to delve deeper into the health states beyond the mortality patterns (e.g. Majer et al., 
2013). But while mortality data are widely available, health data are usually scarcer 
and need to be collected from multiple sources.

Despite the challenges in data availability, healthy life expectancy serves as a 
valuable alternative indicator to life expectancy. In the broad sense, it represents the 
expected number of years of healthy life remaining for a person from a hypotheti-
cal cohort in a calendar year, and it includes a range of population health measures 
that incorporate both mortality and morbidity information and can be used to esti-
mate both the length of life and the years spent in good health. Health expectancy 
(Nusselder & Looman, 2004), health-adjusted life expectancy (Australian Institute 
of Health & Welfare, 2017), disability-free life expectancy (Jagger et  al., 2016), 
and healthy working life expectancy (Lynch et al., 2022) are some examples of this 
approach. It is essential to consider healthy life expectancy alongside life expectancy 
to gain a more comprehensive understanding of the health status of a population. 
Examining the gap between life expectancy and healthy life expectancy can provide 
insights into the financial burden of disability and morbidity, which can be used to 
inform policy decisions and health interventions.

As noted in Jivraj et al. (2020), there are three possible scenarios that describe the 
relationship between life expectancy and healthy life expectancy. The first scenario 
is called “expansion of morbidity”, which occurs when life expectancy increases 
faster than healthy life expectancy due to no or slow delay in morbidity or poor 
health recovery (Fries, 1980). By contrast, the second scenario is called “compres-
sion of morbidity”, which occurs when the onset of morbidity is delayed to older 
ages at a faster rate than the improvement in life expectancy, leading to a shorter 
duration in morbidity (Olshansky et  al., 1991). The third scenario is a “dynamic 
equilibrium”, which combines the previous two scenarios (Manton, 1982). It is char-
acterised by a higher prevalence rate of mild or moderate disability but a shorter 
duration of severe disability. The expected gap between life expectancy and healthy 
life expectancy in the future has important implications for government planning on 
health and retirement policies.

When planning for health and social services, it is crucial to consider the future 
trends in population health carefully. Many policy or institution decisions, such as 
investment in medical training, research and development, or health infrastructure, 
can take years to yield results and would have consequences that last for decades. 
To make informed decisions, policymakers and healthcare professionals need to 
make accurate forecasts, which can help them allocate resources more effectively 
and prioritise health initiatives based on their potential impact. Moreover, generat-
ing alternative scenarios is an essential tool for identifying areas of uncertainty and 
mitigating potential risks. By developing the ability to adapt to changing conditions 
and more robust contingency plans, decision-makers can enhance the resilience and 
stability of health systems and social services.

Although forecasting life expectancy has been extensively covered in previous 
studies, few have examined the forecasting and simulation of healthy life expectancy. 
The challenge arises from less available health data in general and the more complex 
modelling required for multiple health states. Recently, Cao et  al. (2020) applied 
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the multiple linear regression and the autoregressive integrated moving average 
(ARIMA) model to project healthy life expectancy. Lynch et al. (2022) adopted a 
three-state model and the Lee and Carter (1992) approach to project healthy working 
life expectancy. In this paper, we take a different perspective and consider the high-
est level of healthy life expectancy observed in a calendar year (Permanyer et  al., 
2021) amongst about 200 countries. Specifically, we establish a Bayesian framework 
to jointly model the highest healthy life expectancy and the highest life expectancy. 
By utilising the historical patterns between these two measures, we can forecast and 
simulate future outcomes and scenarios. This extrapolation approach is trend-based 
and primarily uses time as the only covariate. It offers the advantage of not having 
to forecast any social or economic indicators, which can be cumbersome and unreli-
able. Moreover, as the highest healthy life expectancy represents the best experience 
worldwide, examining its trend can provide valuable information for policymakers 
and demographers. There are already a number of previous studies on the high-
est life expectancy (Canudas-Romo et al., 2019; Li & Liu, 2020; Liu & Li, 2019; 
Medford, 2017, 2021; Oeppen & Vaupel, 2002; Pascariu et  al., 2018; Shkolnikov 
et al., 2011; Torri & Vaupel, 2012; Vallin & Meslé, 2009). It would be insightful to 
do a parallel investigation on the highest healthy life expectancy to fill the knowl-
edge gap. Furthermore, there are several advantages in taking a Bayesian modelling 
approach here, including a coherent incorporation of multiple model structures, esti-
mation of missing data, and the ability to simulate future paths of healthy life expec-
tancies. We implement the proposed approach on data covering multiple countries 
and showcase its ability to produce reasonable modelling and forecasting results, 
along with probability intervals that effectively capture the uncertainty in future 
outcomes.

The rest of the paper is structured as follows. In the next section, we inspect the 
highest life expectancy and healthy life expectancy trends and examine their histori-
cal patterns. Then we introduce the proposed Bayesian approach for modelling the 
highest life expectancy and healthy life expectancy jointly and illustrate its applica-
tion to the data collected. Afterwards, we extend the approach to forecast healthy life 
expectancy for individual countries. Lastly, we present the concluding remarks. The 
“Appendix” gives more details about the Bayesian simulation process.

Best‑performance healthy life expectancy

Two sets of healthy life expectancy at birth data of both sexes are collected from 
the WHO (World Health Organization)1 for four years 2000, 2010, 2015, and 2019, 
covering a total of 183 countries, and from the GBD (Global Burden of Disease 
Study)2 for the period of 1990–2019 over 204 countries. The WHO data are not 
available for every calendar year, implying that there are many missing values in 

1 https:// www. who. int/ data/ gho/ data/ indic ators/ indic ator- detai ls/ GHO/ gho- ghe- hale- healt hy- life- expec 
tancy- at- birth.
2 https:// ghdx. healt hdata. org/ record/ ihmde- data/ gbd- 2019- life- expec tancy- hale- 1990- 2019.

https://www.who.int/data/gho/data/indicators/indicator-details/GHO/gho-ghe-hale-healthy-life-expectancy-at-birth
https://www.who.int/data/gho/data/indicators/indicator-details/GHO/gho-ghe-hale-healthy-life-expectancy-at-birth
https://ghdx.healthdata.org/record/ihmde-data/gbd-2019-life-expectancy-hale-1990-2019
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our Bayesian modelling process, and the GBD data are also unavailable for earlier 
periods. Life expectancy at birth data are obtained from the HMD (Human Mor-
tality Database, 2022)3 for the period of 1950–2020 for 41 populations. We fol-
low Tuljapurkar et al. (2000) and Lee and Miller (2001) and choose the HMD data 
period from 1950 to exclude the structural changes or extreme volatilities in mor-
tality levels that occurred in the first half of the twentieth century. Moreover, as 
noted in Liu and Li (2019), the highest life expectancy trend since 1751 can be split 
optimally into a few linear segments with different slopes. The most recent segment 
of 1960–2014 has a slope of 0.22, which is smaller than those of the previous two 
segments (~ 0.28) and is quite steady since then. We then record the highest life 
expectancies and the highest healthy life expectancies of females and males among 
all the populations in each year from 1950 to 2020, where data are available.

The GBD estimation strategy on mortality and morbidity is devised to work with 
the diversity of data sources and the potential biases in data. There are a number of 
major steps, including age-specific fertility estimation, under-5 mortality estimation, 
adult mortality estimation, age-specific mortality estimation (via a relational model 
life table system), allowance for fatal discontinuities (e.g. wars, natural disasters), 
and population estimation. For each step, it is required to consider the data avail-
ability, deal with the known biases, and perform the data synthesis, coping with the 
issues of missing records and differences in measurement methods.

The GBD study encountered various limitations caused by the availability of 
high-quality data or the use of low-quality data. For instance, the sparsity of census 
data in certain countries and the lag between censuses affected the completeness 
in estimation. The mortality estimation for the adult ages where there was no vital 
registration system depended heavily on estimates indirectly deduced from sibling 
survival data, household death recall from censuses and surveys, and covariates in 
data-sparse periods. Since the GBD and WHO data are the only two publicly avail-
able healthy life expectancy data sets covering numerous countries, despite their 
limitations, we investigate both data sets in parallel and compare their results in this 
paper. We note that the proposed model (in the next section) is based fundamentally 
on the best-performing countries, which are expected to have data of higher qual-
ity. As shown in the following sections, the model results and analysis are broadly 
consistent and can provide useful insights for public health policymakers, healthcare 
professionals, economists, actuaries, and demographers.

The Sullivan’s method4 is adopted by the WHO in computing healthy life expec-
tancy and is the most widely used method in practice. It requires cross-sectional data 

3 In practice, the computation of healthy life expectancy is usually based on data from several sources, 
due to health data limitations. Moreover, we need the annually available HMD data for our Bayesian 
modelling process. While the number of countries is different between the WHO, GBD, and HMD data, 
we focus on the highest expectancies, and the missing data of high-mortality countries are very unlikely 
to have any impact on the highest expectancies even if they were available.
4 This method uses the “equivalent lost healthy year fraction (adjusted for comorbidity) at each age in 
the current population (for a given year)” to divide the “hypothetical years of life lived by a period life 
table cohort at different ages” into “years of equivalent full health and equivalent lost healthy years”. The 
equivalent lost healthy year fractions are calculated as the “all-cause years lost due to disability rate per 
capita, adjusted for independent comorbidity, by age, sex, and country”.
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only as it is prevalence-based. By contrast, if one wants to model the changes in 
health state across time, a multiple-state model has to be used, which requires more 
detailed longitudinal data. Both approaches would yield similar results when transi-
tion rates change smoothly and regularly over time. This method is also used in the 
GBD for estimating healthy life expectancy.5

Oeppen and Vaupel (2002) illustrated that the highest female life expectancy at 
birth has increased steadily by 0.24 years per annum for 160 years since 1840. They 
called this measure “best-performance” or ‘best-practice’ life expectancy. Their dis-
covery has far-reaching implications for demographic studies and forecasting (Li & 
Liu, 2020). Firstly, the persistent upward trend presents strong evidence against the 
argument that future life expectancy level has a limit (e.g. Dong et al., 2016). Sec-
ondly, the highest life expectancy can be used as an important reference for policy-
makers and demographers when evaluating the validity of country-specific forecasts. 
What’s more, it offers an alternative and insightful way of forecasting mortality by 
seeing global mortality improvements as the result of an implicit and continuing 
competition between populations, instead of the more isolated perspective (e.g. Lee 
& Carter, 1992) usually taken. In particular, individual countries would experience 
different rates of mortality improvements at different stages of economic and medi-
cal development.

Given the significance of the highest life expectancy, it would be interesting to 
explore this concept further and conduct a parallel study on the highest healthy life 
expectancy. We now refer to the former as the best-performance life expectancy 
(BPLE) and the latter as the best-performance healthy life expectancy (BPHALE), 
and we consider both sexes instead of just females. While Permanyer et al. (2021) 
briefly examined the “best-practice healthy life expectancy” concept for females, we 
provide a more formal mathematical definition below and define the BPHALE as

where halei,j,t is the (period) healthy life expectancy of country j of sex i in calendar 
year t, given that the total number of countries is adequately large. Similarly, the 
BPLE can be expressed as

where lei,j,t is the (period) life expectancy of country j of sex i in year t.
Figure  1 plots the observed BPLEs and BPHALEs of females and males from 

1970 to 2020. It can be seen that all the trends are upward and largely linear, sug-
gesting that not only there is no sign of cessation in the overall increasing trend of 
human life expectancy, but also the human life can be expected to stay healthy for 
a longer duration in the future. Table 1 lists the top five performers in healthy life 
expectancy in 2000, 2010, 2015, and 2019 based on the WHO data. For females, 
the frequent winners include Japan, Singapore, South Korea, France, and Spain, and 

bphalei,t = max
({

halei,j,t ∶ j = 1, 2, 3,…
})

,

bplei,t = max
({

lei,j,t ∶ j = 1, 2, 3,…
})

,

5 https:// www. thela ncet. com/ journ als/ lancet/ artic le/ PIIS0 140- 6736(20) 30977-6/ fullt ext# bib31.

https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)30977-6/fulltext#bib31


 J. Li 

1 3

    8  Page 6 of 25

their rankings look quite stable over the last twenty years. For males, the top per-
formers include Japan, Singapore, Iceland, and Israel, but the competition appears to 
be slightly more open and the frontrunners swap positions in different years. While 
it is not surprising to see that the female figures are higher than the male ones, it is 
remarkable to observe that the value at each rank6 has been increasing continuously 
over the period. These observations strongly suggest that the BPHALE is likely to 
continue to reach even higher levels over time. Table 1 also provides the top per-
formers based on the GBD data. Despite the small differences in the healthy life 
expectancy values, similar countries are identified for females (Japan, Singapore, 
and South Korea) and males (Japan, Singapore, Iceland, and Israel). Again, the 
observed value at each rank has been rising over time.

Furthermore, the gap between the BPHALE and the BPLE (double arrows in 
Fig. 1) has also increased steadily during the period. Based on the WHO data, for 
females, this gap has risen from 11.0 years in 2000 to 12.6 years in 2019. For males, 
the gap has climbed from 8.4 years in 2000 to 9.5 years in 2019. (As a proportion 

Fig. 1  Observed female and male BPLEs and BPHALEs from 1970 to 2020 (top row: HMD and WHO; 
bottom row: HMD and GBD)

6 If the healthy life expectancy values of different countries in year t (i.e. halei,1,t, halei,2,t, …, halei,n,t) 
are treated approximately as independent and identically distributed random variables, the top five per-
formers can be seen as the nth, (n − 1)th, (n − 2)th, (n − 3)th, and (n − 4)th order statistics, in which the 
sample size (total number of countries) is n. As noted in Li and Liu (2020), the general trend of con-
verging mortality, particularly between high-income countries, provides some support to the working 
assumption of identical distribution. In this aspect, Liu and Li (2019) applied the maxima and minima 
generalised extreme value distributions to the highest and lowest life expectancies (i.e. nth order and 
1st order statistics), respectively. Li and Liu (2020) applied the generalised extreme value theorem with 
Archimedean copulas to the BPLE (i.e. nth order statistic).
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of the BPLE, the BPHALE has declined from 87.0% in 2000 to 85.7% in 2019 for 
females, and from 89.2% to 88.4% for males.) These findings point to an overall 
expansion of morbidity, in which the average annual increase in the gap is 0.08 years 
for females and 0.06  years for males. Based on the GBD data, over a longer 
data period, the average annual increase in the gap is 0.06  years for females and 
0.02 years for males. These statistics carry important implications for social welfare 
and healthcare policy planning, as people spending a longer time in morbidity can 
place a greater financial strain on governments and societies. It is also worth noting 
that although females live longer on average, they also experience a longer period 
of morbidity. This observation indicates that females would be more likely to suf-
fer from financial stress after retirement and would need more healthcare and finan-
cial support and social services accordingly. For individual countries, Fig. 2 further 
illustrates that the difference between life expectancy and healthy life expectancy 
(i.e. duration in morbidity) has also increased over time. For the WHO data, almost 
all cases demonstrate an increase (those points above the diagonal line) over each 
period (from 2000 to 2010, 2010 to 2015, and 2015 to 2019). For the GBD data, 

Table 1  Top five performers in healthy life expectancy in 2000, 2010, 2015, and 2019

2000 2010 2015 2019

Females (WHO data)
Japan (73.5) Japan (74.7) Japan (75.1) Japan (75.5)
France (71.1) Singapore (73.6) Singapore (74.3) Singapore (74.7)
Spain (71.0) South Korea (72.9) South Korea (73.7) South Korea (74.7)
Singapore (70.8) France (72.5) France (72.9) France (73.1)
Sweden (70.7) Spain (72.2) Spain (72.4) Cyprus (73.0)
Males (WHO data)
Japan (69.5) Japan (71.2) Singapore (72.1) Japan (72.6)
Iceland (69.3) Iceland (71.1) Japan (72.0) Singapore (72.4)
Sweden (69.0) Singapore (71.1) Iceland (71.7) Switzerland (72.2)
Israel (68.4) Israel (70.9) Israel (71.3) Israel (72.0)
Cyprus (68.3) Sweden (70.7) Switzerland (71.2) Cyprus (71.8)
Females (GBD data)
Japan (72.9) Japan (74.3) Japan (74.8) Singapore (75.2)
San Marino (71.7) Singapore (73.8) Singapore (74.7) Japan (75.1)
Andorra (71.7) Bermuda (73.1) Bermuda (73.5) South Korea (73.7)
Singapore (71.1) South Korea (72.4) South Korea (73.4) Bermuda (73.6)
Spain (70.7) Andorra (72.2) Iceland (72.8) Iceland (73.2)
Males (GBD data)
San Marino (69.4) Singapore (71.7) Singapore (73.0) Singapore (73.7)
Japan (69.3) Japan (71.1) Japan (72.0) Japan (72.5)
Iceland (69.0) Israel (70.6) Iceland (71.4) Switzerland (71.7)
Sweden (68.6) Sweden (70.4) Israel (71.3) Israel (71.7)
Andorra (68.6) Iceland (70.3) Switzerland (71.0) Iceland (71.5)
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despite the annual fluctuations (especially for males), the duration in morbidity has 
a broad increasing trend over the recent three decades. These observations provide 
more evidence for an expansion of morbidity in general for different countries.

Villavicencio et  al. (2021) performed a simple Monte Carlo simulation and 
argued that the increasing gap between the BPHALE and the BPLE is not statisti-
cally significant in the GBD data, questioning about the data reliability. Basically, 
they assumed that the BPHALE values follow the normal distribution with their 
means equal to the point estimates and their standard deviations equal to one quar-
ter of the corresponding 95% uncertainty intervals provided in the GBD data. They 
then simulated many scenarios, applied linear regression to each scenario, and cal-
culated the sample means and 95% confidence intervals of the slope across all the 
simulated scenarios. As shown in Table 2 (first two columns), they noted that the 
95% confidence intervals for the BPHALE and BPLE overlap and concluded that 
the differences in their trends (i.e. increasing gap between the BPHALE and BPLE) 
are insignificant. However, their approximation method is probably over-simpli-
fied—they just simulated each BPHALE value directly from a very simple normal 
distribution (noted as “Method 1” in Table 2), ignoring the fact that the underlying 
health data uncertainties of individual countries can potentially “offset” one another 
to some extent in the data estimation / synthesis. An alternative approximation 
approach is to simulate the healthy life expectancy value for each single country 

Fig. 2  Observed durations in morbidity of different countries from 1990 to 2019 (first two rows: WHO 
and HMD; last two rows: GBD and HMD)
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from a similar normal distribution and then collect the maximum value amongst 
these simulated values for different countries (noted as “Method 2”). We provide 
the resulting estimates in Table 2 (last column). For comparison purposes, we also 
repeat the approach in Villavicencio et al. (2021) and report our results in Table 2 
(third column).

Using the initial approach (Method 1), we generate very similar estimates for 
females, while the estimates of the mean and 95% confidence interval are about 0.01 
smaller for males. By contrast, under the alternative approach (Method 2), the 95% 
confidence intervals estimated are narrower for both sexes. For females, the differ-
ences in the BPHALE and BPLE trends can be treated marginally as insignificant 
at 5% significance level, but they become statistically significant at 10% level. For 
males, the differences in the BPHALE and BPLE trends are statistically significant 
at 5% level. These new results suggest that the widening gap between the BPHALE 
and BPLE as reflected in the GBD data is actually valid and clear.

Figure  3 demonstrates the observed healthy life expectancy values of Aus-
tralia, Brazil, India, and Japan from 1990 to 2019. They are plotted together with 

Table 2  Regression slopes of BPLE and BPHALE trends from 1990 to 2019, with 95% confidence inter-
vals (in brackets)

Trend BPLE BPHALE BPHALE BPHALE

Method Villavicencio et al Villavicencio et al Method 1 Method 2
Females 0.187 [0.186, 0.188] 0.150 [0.085, 0.216] 0.151 [0.087, 0.215] 0.149 [0.106, 0.192]
Males 0.237 [0.233, 0.240] 0.210 [0.161, 0.261] 0.196 [0.144, 0.249] 0.178 [0.143, 0.213]

Fig. 3  Observed female and male healthy life expectancies of four selected countries from 1990 to 2019 
(top row: WHO; bottom row: GBD) with highest and lowest healthy life expectancies
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the BPHALE and the lowest healthy life expectancy,7 which represent the best 
and worst experiences respectively and may be seen as some form of upper and 
lower bounds here. The four countries shown possess different levels of economic 
development and health systems, and their healthy life expectancies spread well 
across the range between the highest and lowest values in each year. While the 
lowest healthy life expectancy trend appears to be slightly more volatile, it can 
be observed that the low-income countries have improved at a faster pace than 
the high-income countries generally. For instance, healthy life expectancy has 
increased by about seven years from 2000 to 2019 for females in India, compared 
to an increase of only less than two years for females in Australia. It means that 
the health experiences of different countries are converging quite rapidly over 
time. This convergence appears to be driven by globalisation, enabling nations 
to become more connected and share their medical knowledge and healthcare 
experiences more effectively. For instance, Mukherjee and Krieckhaus (2012) 
analysed a pooled data set of 132 countries and found that on balance globalisa-
tion has a positive impact on human wellbeing. Welander et al. (2015) used panel 
data of 70 developing countries and concluded that globalisation and democracy 
are linked with better child health. This pattern is further illustrated in Fig. 4, in 
which there is clearly a negative relationship between the increase in healthy life 
expectancy (during the period of 1990–2019) and the GPD level per capita. There 
is a strong tendency for the low-income countries to catch up with the high-
income countries.

Bayesian co‑modelling approach

Bayesian joint model

As shown in Fig. 1, the momentum of the BPLE and BPHALE increases are strong, 
and the trends are quite stable during the period. Torri and Vaupel (2012) mod-
elled this persistent (female) BPLE trend with the ARIMA(p, 1, 1) model. In order 
to cope with both sexes simultaneously, we incorporate the vector autoregressive 
integrated moving average, VARIMA(p, 1, 0) structure into the proposed Bayesian 
framework8 and treat the female and male BPLEs as bivariate time series. We apply 
the standard Box-Jenkins method and examine the sample autocorrelations and 

8 Rosenberg and Young (1999) noted that it is more computationally efficient to use the AR models 
(instead of the MA models) in Bayesian modelling. In principle, if the selected AR order p is high 
enough, the model results are comparable to those under a fully specified ARIMA model. As such, we 
set the MA order as zero here.

7 Liu and Li (2019) utilised both the highest and lowest life expectancies to develop approximate upper 
and lower bounds as a supplementary tool for forecasting life expectancy. We have excluded the data 
of Rwanda in 1994 and Haiti in 2010 when constructing the lower bound here, in order to remove the 
extreme outliers caused by historical events. The lower bound is slightly more volatile than the upper 
bound, probably due to the unstable conditions and the inadequacy in data collection in those countries 
with the lowest incomes.
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partial autocorrelations and find that p = 1 is the optimal choice for the BPLE trends. 
Furthermore, as the gap between the BPHALE and the BPLE increases continu-
ously and the progression is quite steady, we assume that the gaps of females and 
males follow the VARIMA(0, 1, 0) structure (i.e. bivariate random walk with drift) 
and integrate this structure within the Bayesian framework.

Mathematically, the proposed Bayesian joint model structure for the BPLEs and 
BPHALEs can be expressed as follows. The VARIMA(1, 1, 0) structure for the 
BPLEs is

in which Δ is the first difference operator, bplei,t is the BPLE value in year t (i = 1 
for females and i = 2 for males), �i ’s are the intercept parameters, �i,j ’s are the vector 

(

Δbple1,t
Δbple2,t

)

=

(

�1
�2

)

+

(

�1,1 �1,2

�2,1 �2,2

)(

Δbple1,t−1
Δbple2,t−1

)

+

(

�1,t
�2,t

)

,

Fig. 4  Observed increases in female and male healthy life expectancies of different countries (during the 
period of 1990–2019) against GDP per capita in 2021 (log scale)



 J. Li 

1 3

    8  Page 12 of 25

autoregressive parameters, and �i,t ’s are bivariate normal error terms in year t. The 
VARIMA(0, 1, 0) structure for the BPHALEs is

in which gapi,t = bplei,t − bphalei,t is the gap between the BPHALE and the BPLE 
in year t, �i ’s are the constant terms, and �i,t ’s are bivariate normal error terms in 
year t. The prior distribution for the unknown (intercept, autoregressive, constant) 
parameters θ is assumed as multivariate normal, where the hyperprior distribution 
for its mean vector M is taken as multivariate normal and the hyperprior distribu-
tion for its inverse covariance matrix Ω–1 as Wishart. The prior distributions for the 
inverse covariance matrices of the error terms, Σ−1

�
 and Σ−1

�
 , are set as Wishart.9

We utilise WinBUGS10 (Spiegelhalter et  al., 2003) to conduct the Bayesian 
Markov chain Monte Carlo (MCMC) simulations for the proposed joint model 
structure. The purpose is to simulate samples from the posterior distribution of the 
unknown parameters and from the predictive distribution of future values. In the-
ory, the posterior distribution is derived from the equation f (θ|D) ∝ f (D|θ) f (θ), 
and the predictive distribution is derived from the equation f (x|D) = ∫ f (x|θ) f (θ|D) 
dθ. For the proposed model here, these distributions are analytically intractable, 
and the MCMC simulation procedure is a practical alternative to provide a good 
approximation.

Li (2014) noted the benefits of incorporating different model structures in a 
Bayesian setting. For instance, the two model structures as described above are inte-
grated coherently within the Bayesian framework. Estimating all their parameters in 
the same Bayesian process avoids the bias in estimation that would arise if the two 
model structures were fitted to the data separately. Moreover, the missing BPHALE 
data are automatically imputed or interpolated from the other values that are avail-
able during the simulation process. This ability to approximate the missing values is 
particularly useful for health data as they are often limited or incomplete. Further-
more, future paths or scenarios of the BPHALE are generated directly from the sim-
ulation process. The prediction intervals can be constructed based on the simulated 
values, allowing for the inherent uncertainty (via the error terms of the time series 
structures above) as well as the parameter uncertainty (as the model parameters are 
treated as random variables). Taking both of these into account can more adequately 
describe the overall uncertainty of the data, modelling process, and future outcomes.

Model results

Figure  5 (left column) shows the observed/imputed and the forecasted BPHALE 
and BPLE values for both sexes from 1970 to 2050, including the 95% prediction 
intervals. Based on the simulated results, the BPHALE and BPLE upward trends 
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observed in 1970–2020 are expected to continue for the next thirty years. Back 
in 1960, 1970, 1980, and 1990 where the WHO data are unavailable, the imputed 
BPHALE values are 68.2, 68.8, 70.8, and 71.7 (66.4, 65.6, 66.2, and 68.2) years 
for females (males), respectively. The corresponding forecasted BPHALE val-
ues in 2030, 2040, and 2050 are 76.6, 77.7, and 78.9 (73.8, 75.0, and 76.1) years 
for females (males). It means that the gap between the BPHALE and the BPLE of 

Fig. 5  Observed (solid lines; round dots), imputed (dashed lines), and forecasted (dotted lines) female 
and male BPHALEs and BPLEs from 1950 to 2050, with 95% probability / prediction intervals (dotted 
lines) (first two rows: HMD and WHO; last two rows: HMD and GBD)
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females (males) is estimated to increase from 6.9 (5.5) years in 1951 to 12.7 (9.6) 
years in 2020, and further to 15.2 (11.3) years in 2050. In fact, based on the sim-
ulated posterior distribution, the 95% probability intervals of the slope difference 
between the BPHALE and BPLE upward trends are [0.04, 0.12] for females and 
[0.05, 0.07] for males during the data period. Both intervals do not cover 0, sug-
gesting that the widening gap is statistically significant for both sexes. Moreover, 
using the GBD data, the imputed BPHALE values are 66.7, 67.5, and 69.7 years for 
females and are 64.7, 64.4, and 65.5 years for males in 1960, 1970, and 1980. The 
corresponding forecasted BPHALE values are 76.6, 78.0, and 79.4 years for females 
and are 75.4, 77.0, and 78.5 years for males in 2030, 2040, and 2050. The resulting 
gap increases from 12.9 (8.5) years in 2020 to 14.7 (8.8) years in 2050 for females 
(males). Compared to the estimates using the WHO data, the backcasted BPHALE 
values using the GBD data are about one year smaller for both sexes, while the fore-
casted values are around two years larger for males but are similar for females. Con-
sequently, the gap is estimated to increase at a slower pace for both sexes (more 
so for males). These differences are in line with those reported earlier regarding 
Fig. 1. Figure 5 (right column) also shows the imputed BPHALE values from 1951, 
including the corresponding 95% probability intervals. First, the uncertainty of the 
imputed values is generally lower than the uncertainty of the forecasted values for a 
given time duration. Second, the uncertainty of the imputed values increases as one 
goes further back to the past.

In effect, this Bayesian joint model makes use of the annual BPLE data avail-
able and the historical relationships between the BPHALE and BPLE increases. It 
provides a reasonable backcast11 of the BPHALE values before the starting year of 
the health data, which would be of interest to demographic researchers in studying 
healthy life expectancy in the more distant past, as well as a forecast for the next few 
decades, which would be useful for a range of applications in practice. However, we 
confine our forecasting analysis up to 2050 only—there are many challenges and 
uncertainties lying ahead, e.g. medical breakthroughs on ageing, cure for cancer, and 
behavioural and social changes (e.g. Christensen et al., 2009; Vaupel et al., 2021).

These results have some important implications for policymakers and healthcare 
professionals. First, as the duration in morbidity prolongs further, more resources 
need to be allocated to prepare for the higher medical and healthcare expenditure. 
Second, females continue to spend a longer time in morbidity, where its difference 
between both sexes is estimated to increase from 3.1 years in 2019 to 3.9 years in 
2050 (based on the WHO data). Females then need comparatively more financial 
support, healthcare facilities, and social services, even more so in the foreseeable 
future. Therefore, more effective planning and allocation of resources are essen-
tial to deal with the aggravating financial burden on governments and societies as a 
whole.

Nevertheless, producing a point forecast only is inadequate as there is always 
uncertainty in future outcomes. The analysis should be accompanied with alternative 

11 Wang and Chan (2022) modified the Lee–Carter method to backcast the England and Wales mortality 
rates in the seventeenth and eighteenth centuries.
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scenarios that encompass a broader spectrum of possible outcomes. This additional 
information can prove invaluable in long-term planning and investments in health-
related matters, when comparing multiple options and assessing their potential 
effects under different circumstances in the future. Based on the 5,000 simulated 
samples, using the WHO data, the 95% prediction intervals for the future BPHALE 
values in 2030, 2040, and 2050 are [74.5, 78.7], [74.7, 80.8], and [74.9, 82.9] for 
females, and are [72.0, 75.7], [72.3, 77.6], and [72.7, 79.5] for males. Figure 6 pro-
vides a density plot of the simulated values in 2050, having roughly the shape of a 
normal distribution. The range between the 2.5th and 97.5th percentiles can pro-
vide some indication on the scope for policy change. In particular, if we consider 
the 2.5th percentile as the worst-case scenario in practice,12 the mean forecasts may 

12 Examining the 2.5th percentile (which corresponds to approximately two standard deviations below 
the mean) is a commonly used but somewhat arbitrary approach. Alternatively, a less severe worst-case 
scenario could be defined using the 5th, 10th, or even 15th percentile.

Fig. 6  Kernel density plots of simulated female and male BPHALEs in 2050 (solid line: WHO and 
HMD; dashed line: GBD and HMD)
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potentially underestimate the overall duration in morbidity in the next few decades 
by up to about two years. Without proper planning and preparation, such a shortfall 
can create a substantial financial strain on retirement systems and funding. Com-
paratively, using the GBD data, the 95% prediction intervals are [74.6, 78.7], [74.9, 
81.1], and [75.6, 83.5] for females, and are [72.2, 78.6], [72.4, 81.9], and [72.4, 84.8] 
for males, in 2030, 2040, and 2050. As noted earlier, the gap between the BPHALE 
and the BPLE is estimated to increase at a slower pace with the GBD data. However, 
all the 2.5th percentile estimates from the GBD data are more or less the same as 
those based on the WHO data, which means that there could also be a larger extent 
of underestimation in the mean forecasts of the gap.

Forecasting for individual countries

Extended Bayesian joint model

We can further extend the earlier Bayesian joint model structure to forecast healthy 
life expectancy for individual countries. As discussed previously (regarding Fig. 3 
and its discussion), healthy life expectancies of different countries have been con-
verging during the last thirty years. Considering the reducing differences between 
countries and also the data limitations, we assume that the difference between a 
country’s healthy life expectancy and the BPHALE of females and that of males fol-
low another VARIMA(0, 1, 0) structure, which is specified as

where �halei,t is the difference between a country’s healthy life expectancy and the 
BPHALE in year t, �i ’s are the constant terms, and �i,t ’s are bivariate normally 
distributed error terms in year t. The prior distributions for the unknown parame-
ters can be set similarly as before. Note that all the three model structures (BPLE, 
BPHALE, individual healthy life expectancy) are integrated and estimated within 
the same Bayesian framework.

Model results

As an example, Fig. 7 illustrates the observed/imputed and the resulting forecasted 
healthy life expectancy values of Australia, Brazil, Hungary, India, Indonesia, Nige-
ria, and Spain for both sexes from 2000 to 2040. The seven countries shown rep-
resent different stages of economic development, education levels, and health sys-
tems. Their healthy life expectancies range from the highest in Spain to the lowest 
in Nigeria. It shows that the upward healthy life expectancy trends occurred during 
2000–2019 would remain strong in the coming two decades. Moreover, the low-
income countries are expected to catch up with the leading countries gradually. For 
instance, it can be seen that the healthy life expectancy values of India and Nigeria 
are forecasted to improve at a faster pace than the others. These implications appear 
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reasonable and realistic, considering the effects of globalisation, and the high GDP 
growth rates and recent economic development of the two countries over the last two 
decades. In line with our earlier discussion about Fig. 4, there is generally a negative 
relationship between the forecasted increase in healthy life expectancy (from 2019 
to 2040) and the income level. Based on the WHO data, from the lowest income 
quartile to the highest, the forecasted increases in healthy life expectancy are 9.5, 
5.0, 3.6, and 2.9 years (7.8, 3.4, 2.9, and 2.9 years) on average for females (males), 
respectively. Based on the GBD data, the corresponding figures are 5.5, 3.2, 2.2, and 
2.4 years (5.3, 2.9, 2.2, and 2.9 years). Broadly speaking, healthy life expectancy of 
a country with lower GDP per capita tends to increase faster, and vice versa, leading 
to gradual convergence of health outcomes across countries with varying income 
levels.

Next, we attempt to assess the forecasting performance further by applying the 
extended Bayesian joint model to the GBD and HMD data of 1950–2009, forecast-
ing the healthy life expectancy values in 2010–2019, and comparing the forecasted 
and actual values of the 204 countries. We split the countries into four quartile 
groups based on the observed healthy life expectancy values in 2019 and calculate 
the mean absolute error (MAE) and the mean square error (MSE)13 for each group. 
As a comparison, we also use the ARIMA(0, 1, 0) model (i.e. random walk with 
drift) on the healthy life expectancy data (only) of 1990–2009 and extrapolate the 
2010–2019 values correspondingly. Table  3 presents the numerical results of this 
out-of-sample analysis. First, the forecasting errors for females are smaller than 
the errors for males, except for the lowest quartile group of healthy life expectancy. 

13 The MAE and MSE are computed as the sample means of |
|̂

x − x
|

|

 and 
(

x̂ − x

)2 over time and the coun-
tries in the same quartile group, respectively, where x̂ and x are the forecasted and observed values in 
2010–2019.

Fig. 7  Observed/imputed and forecasted female and male healthy life expectancies of seven selected 
countries from 2000 to 2040 (top row: WHO and HMD; bottom row: GBD and HMD)
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This result is broadly in line with the earlier findings on the higher volatility and the 
wider prediction intervals for males. Second, the forecasting errors tend to increase 
from the highest quartile group to the lowest. This observation can be explained 
by the fact that the low-income countries with poorer health outcomes often have 
more volatile healthy life expectancy trends (probably due to unstable conditions 
and data inadequacy), and so it is more difficult to make accurate forecasts. More-
over, it is interesting to see that the extended Bayesian joint model outperforms 
the ARIMA(0, 1, 0) model for the two highest quartile groups, but the situation is 
reversed for the remaining two groups. It appears that the extended Bayesian joint 
model, which exploits the BPHALE trend, works better with the high-income coun-
tries, capturing their more stable relationships with the best performing countries in 
health outcomes. Besides the mean forecasts, Table 3 also provides the proportion of 
the observed values falling outside the 95% prediction interval. Under the extended 
Bayesian joint model, the proportions are largely around 5% or lower (except for the 
lowest quartile group), indicating that the level of uncertainty allowed is adequate 
and reasonable. By contrast, under the ARIMA(0, 1, 0) approach, the proportions of 
outliers are all around 20% or higher. It means that the estimated prediction intervals 
fail to capture the actual observations adequately and the implied level of uncer-
tainty is too low.

Note that this extended Bayesian joint model for individual countries is a “top-
down” approach, where the consideration starts from the record level of life expec-
tancy and the record level of healthy life expectancy to a country’s own healthy life 
expectancy. It follows the spirit of Pascariu et al. (2018), in which the structuring 
starts from the record level of life expectancy to a country’s life expectancy. This 
approach exploits the consistent BPLE and BPHALE trends and their steady rela-
tionships observed over time, resulting from ongoing competition and interactions 
between a large number of countries. Alternatively, one can take a “bottom-up” 
approach, where each country’s healthy life expectancy is modelled and forecasted 
and then the BPHALE is computed as the maximum value across different countries. 

Table 3  Results of out-of-sample analysis

Error Extended Bayesian Joint Model ARIMA(0, 1, 0)

Measure MAE MSE % Outlier MAE MSE % Outlier

Females
1st Quartile 0.3693 0.3441 0.8 0.4461 0.4615 26.7
2nd Quartile 0.6098 0.7788 1.4 0.6453 0.8158 16.1
3rd Quartile 0.8544 1.8651 6.9 0.8490 1.8714 25.9
4th Quartile 2.2449 14.3470 23.9 2.1408 13.4951 38.4
Males
1st Quartile 0.4644 0.4607 0.0 0.5174 0.5854 20.8
2nd Quartile 1.0139 3.7002 3.3 1.0029 3.7105 17.5
3rd Quartile 0.9348 2.0946 4.3 0.9283 1.9615 19.4
4th Quartile 1.9181 10.4034 13.3 1.8146 9.7199 29.8
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While forecasting each country on its own may be beneficial for the low-income 
countries as discussed above, putting together the individual forecasts for different 
countries and then calculating the maximum value would have a number of potential 
issues. First, if each country is forecasted separately, the results would be affected 
by the higher volatility at the individual level. The trend of a single country is often 
less stable, especially for those that have high mortality or a small population size. 
One would also lose the opportunity to “borrow” information from the other coun-
tries for the modelling process. Second, if different countries are forecasted jointly 
instead, the dimension of the problem becomes very high. It involves multivariate 
time series, the dimension of which is equal to the number of countries included in 
the study. Some methods for dealing with this problem are the dimension reduction 
techniques and sparse vector autoregressive models. Regardless of the method used, 
however, there is no guarantee that the resulting forecasts would be reasonable, due 
to the sophistication of these methods and the arbitrariness of the required assump-
tions. We deem that the extended Bayesian joint model is a natural way to extrapo-
late the best-performance trends and provides a useful and practical alternative for 
modelling healthy life expectancy for individual countries (e.g. Li, 2023).

As a final check, we compare the forecasted BPHALE values in Fig. 5 with the 
maximum values amongst the forecasted healthy life expectancy values of all the 
individual countries in this section. For females (males), the previously forecasted 
values are 75.86, 76.58, 77.28, and 77.97 (74.57, 75.38, 76.19, and 76.99) in 2025, 
2030, 2035, and 2040. The corresponding maximum values from the extended 
Bayesian joint model are 75.76, 76.46, 77.15, and 78.11 (73.16, 74.12, 75.65, and 
77.18), respectively. The two sets of results are very close, suggesting that the over-
all Bayesian framework is reasonably coherent and consistent.

Concluding remarks

We present a novel approach of examining the highest level of healthy life expec-
tancy and develop a Bayesian joint model for co-modelling the BPHALE and the 
BPLE. The proposed modelling approach is extrapolative by nature—it exploits the 
historical relationships between the highest levels of life expectancy and healthy life 
expectancy and does not require the forecasting of any social or economic indica-
tor variables. The Bayesian process allows one to integrate multiple model struc-
tures coherently, approximate the missing values, and simulate future paths and sce-
narios, incorporating both the inherent uncertainty and parameter uncertainty. The 
BPHALE reflects the best global performance and provides useful information for 
policymakers in designing retirement and healthcare policies and for demographers 
in studying the long-term trend of health.

There are a number of major results in this study. First, based on the WHO and 
HMD data, the BPHALE and BPLE have increased annually by about 0.1 and 
0.2 years over the last few decades. Their upward trends are persistent and approxi-
mately linear and are forecasted to continue under our Bayesian model. Second, the 
gap between the two measures has also increased annually by about 0.07 years dur-
ing the period. These results suggest that while the human life is expected to live 
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longer in the future, more years will also be spent in morbidity. Accordingly, more 
effective planning and distribution of resources are needed to address the mounting 
medical and healthcare needs and costs, particularly for females. Moreover, the sim-
ulation of alternative scenarios provides a robust assessment of future uncertainty, 
and the width of the 95% prediction interval indicates the potential scope for policy 
adjustments. Considering the worst-case scenario thoroughly can help prepare for 
the possibility of a longer-than-anticipated duration in morbidity. Furthermore, we 
extend the Bayesian model for forecasting healthy life expectancy for a single coun-
try. We find that the low-income countries would continue to improve at a faster 
speed than the leading countries. Finally, the Bayesian modelling process also offers 
a statistically sound way to backcast the past BPHALE values, which would be of 
interest to those demographers studying longer-term health trends.

One limitation of this study is the nature of the healthy life expectancy data. As 
noted in Villavicencio et  al. (2021), the definitions of healthy life expectancy can 
vary significantly between different studies and databases. We attempt to deal with 
this problem (partially) by investigating two data sets from different sources at the 
same time for comparison, where both results show a rising BPHALE trend and an 
increasing gap between the BPHALE and the BPLE. However, the underlying meth-
ods for producing those data are rather opaque, and their estimations have been per-
formed for a large number of countries with very different situations. Furthermore, 
the definition of healthy life expectancy can also change over time. As diagnostic 
methods improve with medical advances and the awareness of health maintenance 
(including mental health) rises with higher education and economic development, it 
may be more likely for some people to appear as unhealthier than otherwise. Further 
research with more detailed health data is called for.

Another limitation of this research is that the extrapolation approach adopted 
is arguably not as interpretable as the expectation approach and the explanation 
approach (Booth, 2006). The expectation approach makes use of individuals’ expec-
tations and experts’ opinions. The explanation approach uses theories to describe 
the underlying relationships between demographic variables and the relevant social, 
economic, and environmental factors. However, experts’ opinions are often limited 
by the present knowledge which may not reflect possible future developments ade-
quately. Moreover, it is difficult to build such explanation theories due to the intri-
cacy of the problem and the general lack of detailed data covering a sufficiently long 
period of time, leading to a high risk of model misspecification. Despite its limita-
tions, the extrapolation approach remains the most common approach in practice 
and can help one exploit the remarkable regularity in certain demographic trends 
over a sustained period of time.

The improvement in mortality and morbidity rates is a complex outcome of 
advances in various factors such as income, education, nutrition, and medicine. 
These factors differ between ages, time periods, birth cohorts, sexes, populations, 
and types of diseases. The aggregate result is a consistent and mostly linear increase 
in the BPLE and BPHALE, which suggests that these improvements are not isolated 
events but instead a continuous and regular stream of progresses. These trends have 
significant socioeconomic implications and point to the need for reforming retire-
ment systems and revising the pension age. Social welfare and pension policies for 
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seniors can remain solvent only when there is a large proportion of people being 
active in the workforce. When society is ageing rapidly, however, the sustainability 
of the current policies and systems would become highly questionable. It is vital for 
government officials to make more accurate forecasts and allow for different scenar-
ios, where an underestimation of just a few years could lead to significant shortfall 
and financial strain. An inability to do so would mislead people’s life cycle decisions 
and give politicians an excuse to delay making painful but unavoidable changes to 
the current welfare and healthcare systems. The interaction between policy deci-
sions, innovation in technologies, and growing social, environmental, and geopoliti-
cal risks need to be investigated carefully and extensively to provide a sustainable 
and healthy environment for the current and the next generations.

The extent that a country’s healthy life expectancy is below the BPHALE can be 
a useful measure of the potential for further improvement under the existing knowl-
edge, technology, and practices. After rapid improvements when catching up with 
the leaders, progress would eventually slow down. But it does not mean that the 
healthy life expectancy level of the country will reach a maximum any time soon. 
As more health data becomes available, future research can explore in more detail 
how the rates of increase of different countries converge in the long term. In this 
regard, an autoregressive kind of model would be more suitable than the random 
walk with drift for making longer-term forecasts.

Appendix

Regarding the Bayesian MCMC simulation process, we first generate 1000 simu-
lated samples and discard them to remove the effects of the initial values. We then 
produce another 5000 simulated samples, using a thinning of 100, i.e., collecting 

Table 4  Monte Carlo errors and 
sample standard deviations

Variable Monte Carlo error Sample SD Propor-
tion %

Females
BPHALE in 2030 0.0140 1.066 1.3
BPHALE in 2040 0.0228 1.581 1.4
BPHALE in 2050 0.0258 2.022 1.3
BPLE in 2030 0.0121 0.878 1.4
BPLE in 2040 0.0188 1.301 1.4
BPLE in 2050 0.0218 1.641 1.3
Males
BPHALE in 2030 0.0121 0.922 1.3
BPHALE in 2040 0.0181 1.347 1.3
BPHALE in 2050 0.0238 1.723 1.4
BPLE in 2030 0.0118 0.910 1.3
BPLE in 2040 0.0179 1.327 1.4
BPLE in 2050 0.0241 1.697 1.4
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the samples from every 100th iteration. Table 4 reports the Monte Carlo errors 
and the sample standard deviations of the simulated BPHALE and BPLE values 
in 2030, 2040, and 2050 using the WHO and HMD data. All the Monte Carlo 
errors turn out to be smaller than 1.5% of the sample standard deviations, sug-
gesting that the level of convergence of the MCMC simulation is acceptable. As 
a rule of thumb, the Monte Carlo error for each variable of interest should be less 
than 5% of the sample standard deviation (Spiegelhalter et  al., 2003). Figure  8 
displays some autocorrelation plots over successive iterations (after thinning). 
The sample autocorrelations are all immaterial, which provide further indication 
that the level of convergence is adequate here, since high sample autocorrelations 
over successive samples and high Monte Carlo errors are often associated with 
poor convergence (Spiegelhalter et al., 2003). Moreover, Fig. 9 shows that there 
are no particular trends in the simulated values across iterations. The extent of 
convergence hence looks reasonable.
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Fig. 8  Sample autocorrelations over successive iterations (after thinning)
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