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Abstract
We investigate the forecasting accuracy of several simple methods for predicting 
mortality in small regional areas in Poland. We focus on methods that scale country-
level forecasts appropriately and, therefore, can be used by official statistical agen-
cies to improve population projections. We examine data from 379 sub-NUTS-3 dis-
tricts in Poland for the period 2006–2019, divided into three subperiods. The first 
period is treated as the training sample and the latter two the testing subperiods. 
The mortality surface method delivers the most accurate forecasts of the mortality 
profiles whereas using the district-level standardized mortality rates (SMR) calcu-
lated for several broad age groups to scale the country-level mortality forecasts gives 
the best life expectancy at birth predictions. The latter approach is far better than 
using the NUTS-2-based standardized mortality rate (SMR), as practiced by the Pol-
ish statistical agency. For single age-groups predictions, the SMR-based methods 
deliver relatively accurate forecasts for young cohorts, but their forecasting accuracy 
deteriorates significantly with age.

Keywords  Mortality · Life expectancy · Forecasting · Small area · Mortality rate · 
Relational models

JEL Classification  J11 · C53

Introduction

Aging societies and the importance of accurate mortality forecasts in the effective 
design of national pensions and healthcare systems seem to drive the interest in 
mortality forecasting. As a result, many methods of forecasting mortality rates for 
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different populations or for several, suitably large, sub-populations have been devel-
oped in the recent decades.

The mortality forecasting methods for large, single populations are dominated by 
the seminal Lee-Carter model (Lee and Carter, 1992) and its numerous extensions, 
summarized by Booth and Tickle (2008), Janssen (2018) or Basellini et al. (2023). 
Coherent, that is ensuring non-divergence of mortality trajectories for several sub-
populations, multi-population forecasting is the natural extension of this baseline 
model and to that end, Li and Lee (2005), Cairns et al. (2011), and Hyndman et al. 
(2013) have developed popular algorithms.

From a national policy perspective, mortality forecasting for relatively small, 
regional areas, inhabited by several dozen or tens of thousands of people, is seen 
as less important. Thus, significantly less attention has been paid to developing 
and testing appropriate methods for this. Nonetheless, such research is critical for 
regional demographic projections based on cohort component methods. These pro-
jections, most often prepared by national statistical agencies, are crucial for the 
development and evaluation of regional policies, such as healthcare and urban plan-
ning. Although migration is the key component shaping the future state and struc-
ture of populations at the local level, the aging process is increasing the importance 
of accurate mortality forecasts in regional demographic projections. The catalyst for 
improvement in such projections is the growing availability of relevant demographic 
databases at the local administrative level.

The methods for small-area mortality forecasting usually differ from those 
developed for a few large subpopulations that are calculated in data-rich environ-
ments. Regional demographic datasets are often characterized by short time-series 
and noisy mortality age profiles caused by the small number of deaths, particularly 
among younger age groups (Wilson, 2018). Moreover, generally, regional mortality 
forecasts are calculated as part of larger population projections prepared by statisti-
cal agencies. Because of resource constraints, these institutions may not be able to 
apply sophisticated approaches, which can be computationally intensive with exten-
sive data manipulations and adjustments, especially in other stages of the projection, 
such as forecasting migration, which also requires a lot of work.

The usual approaches for the aforementioned requirements are primarily rela-
tional, as classified by Wilson (2018), linking regional mortality forecasts with 
national forecasts through simple relationships. These are simple national mortal-
ity age schedules scaled by a plain rate ratio (RR) or a standardized mortality rate 
(SMR) between a region and the entire country or regional death rates declining 
by the same proportion as forecasted national death rates (Smith et  al., 2013). A 
refined version of the rate ratio (RR) approach is the TOPALS (Tool for Projecting 
Age-specific rates using Linear Splines) method which involves smoothing rate ratio 
age profiles using linear splines (de Beer, 2012). Gonzaga and Schmertmann (2016) 
developed a TOPALS-based method to estimate small area age-specific mortality 
rates for small areas with incomplete death registrations in Brazil. Dyrting (2020) 
extended this method using a penalized-splines approach, where the smoothness of 
the fit is controlled with a single parameter.

A separate and more complex approach is the relational model proposed by 
Brass (1971) and its extensions (Ewbank et al., 1983; Murray et al., 2003). These 
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are regression models, where the explanatory variable is the logit of the surviving 
population count taken from regional life tables, while the explanatory variable is 
its national-level counterpart. The estimated relation is subsequently used to fore-
cast regional mortality assuming that the relationship remains constant.

An alternative method of forecasting are relational models using the so-called 
mortality surface. Regional mortality is projected in terms of life expectancy at 
birth, and then death rates which correspond to the assumed life expectancy are 
selected from the mortality surface (Wilson, 2014, 2015, 2018).

An important topic in mortality forecasting with relational methods in small 
scale population areas is the issue of input data quality as usually death data time 
series are very short, there are data gaps, especially in cohorts for first years of 
life, the data lacks consistency and can be very noisy. Simpson and Snowling 
(2011) evaluated three methods for preparing input data for small area cohort-
component forecasts where input data were not available. The difficulties in gen-
erating life table statistics for small areas that would be robust to the common 
data quality problems are shown by Scherbov and Ediev (2011). Anson (2018) 
proposed several suggestions on how to deal with this problem. Congdon (2009) 
produced county-level life expectancy estimates based on a structured random 
effects model with a regression extension.

In addition to the relational models described above, the literature also pro-
vides many other methods for forecasting demographic processes for small areas. 
An in-depth review of methods for Small Area population forecasts is presented 
by Wilson et  al. (2022). The large part of the recent literature has focused on 
developing Bayesian methods for estimation and forecasting of mortality for 
small areas multi-populations. This idea first appeared in the work of Congdon 
(2009) and was subsequently extended for Bayesian multilevel models (Alexan-
der et al., 2017; Jonker et al., 2012; Wakefield et al., 2019).

The toolbox of small area population forecasting methods and techniques is 
still modest relative to that for national and large subnational regional forecasting 
(Wilson et al., 2022). However, this field of research has been experiencing sig-
nificant development recently.

The simplest approaches are widely used in various statistical offices. For 
example, mortality rate scaling is employed for regional projections by Euro-
stat (European Commission, 2021) and in the UK (Office for National Statistics, 
2021). Scotland (National Records of Scotland, 2016) and Poland apply SMR 
scaling (Statistics Poland, 2014), although in Poland, the SMRs are calculated at 
the nomenclature of territorial units for statistics NUTS-2 level, whereas mortal-
ity forecasts are calculated for the sub-NUTS-3 areas. One of the two approaches 
is used in France as well (Insee, 2017). Italy seems to be the exception here, as its 
statistical office employs a more involved approach in which separate Lee Carter 
models are built for each region (Istat, 2018).

The aim of this study is to investigate the forecasting performance of several 
relational models for predicting small regional areas mortality in Poland. We look 
for models that generate more accurate forecasts than those currently in use, and 
at the same time are simple enough to be widely applied by statistical offices.
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We use data from 379 Polish districts, which can be classified as sub-NUTS-3 
regions with typical populations ranging from 55,000 to 110,000 inhabitants. Our 
dataset covers the period 2006–2019, divided into three subperiods. The first is the 
training period used for calculating projections for the next five and nine years, and 
the latter two are the testing subsamples utilized to assess forecast accuracy. Our 
forecasting experiment covers only relatively simple prediction methods, which can 
be applied by official statistical agencies. The above criterion for selecting research 
models means that we consider a narrow group of models. We limit ourselves only 
to numerically simple relational models whose implementation costs are acceptable 
in practice from the point of view of statistical offices. Therefore, this article does 
not include, for example, studies using multi-population Bayesian modeling and 
multipopulation modifications of the Lee-Carter model.

Most methods analyzed here rely on scaling country-level forecasts either by the 
SMR or by simple mortality RRs. Among the methods considered in this study, we 
also examine an extension to a simple scaling approach aimed at dealing with the 
data scarcity problem. Our method uses data from neighborhood districts to comple-
ment datasets with a low number of observations. To the best of our knowledge, this 
is a novel modification that has not yet been tried. We also consider slightly more 
sophisticated approaches, including the mortality surface method and the Brass 
relational model. Therefore, our study can be seen as a test of the relative perfor-
mance of the methods used by official agencies in Poland against other available 
alternatives.

Our approach is similar to the forecasting experiment conducted by Wilson 
(2018), who examined the performance of similar forecasting methods using 88 
administrative regions in Australia. However, our study differs in the following 
important aspects. First, the population of Polish districts is about one order of mag-
nitude smaller than the populations of the regions considered by Wilson (2018), 
which range between 100 and 500 thousand inhabitants. Thus, the problem of data 
scarcity in these Polish districts is considerably more pronounced. Moreover, Aus-
tralia is a developed country, whereas Poland is a developing country, which trans-
lates into considerable differences in mortality profiles. For example, life expectancy 
at birth in Poland in the recent decade is about five years less than that in Australia. 
Other differences include a neighborhood-complementing modification and a more 
detailed investigation of forecast accuracy for life expectancy. Thus, the conclusions 
of both studies may not coincide.

The results of our study show that with regard to mortality profiles and life expec-
tancy at birth, the most accurate predictions are generated by the mortality surface, 
the rate ratios methods and the SMR scaling for broad age groups. In addition, the 
simple SMR scaling at the district level outperforms the equally simple SMR scaling 
at the NUTS-2 regional level, currently used by Statistics Poland—which suggests 
room for improvement in official forecasting accuracy in Poland. The solid perfor-
mance of the mortality surface and the RR-based methods primarily results from 
their accurate mortality forecasts of the oldest cohorts. Finally, the neighborhood-
complemented versions of the SMR- and RR-based methods perform slightly better 
than their baseline counterparts, but the differences are rather small. This suggests 
that data scarcity does not pose a very serious problem in our study.
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The remainder of this paper is organized as follows. The next section describes 
our dataset, forecasting methods, and forecast accuracy measures. In Sect. 3, we pre-
sent and discuss our results. Section 4 discusses the results and concludes the study.

Data and methods

Data

We collect data on 379 districts in Poland. In the NUTS hierarchy, these are clas-
sified between the NUTS-3 subregions and municipalities that are the lowest local 
administrative levels. Of the areas, 65 are municipal districts formed by the biggest 
cities, while the remaining 314 cover smaller towns and the surrounding counties.

Our main dataset covers the period 2006–2019. The initial year is determined 
by the availability of detailed data on deaths among the older age groups in the dis-
tricts. We choose to exclude the COVID pandemic period; therefore, the dataset 
ends at 2019. We excluded the pandemic year 2020 because we didn’t want to mix 
“normal” and pandemic years. Having one pandemic year in the testing period is 
likely to deteriorate forecast accuracy for the older cohort, but would be insufficient 
to assess reliably forecasting performance during the pandemic that lasted about 
three years. Undoubtedly, it is interesting to extend the study to the pandemic period 
but we leave it for our further investigation.

For many districts, annual data on the number of age-specific deaths contain too 
few cases to aggregate data into typical five-year intervals. As a result, we consider 
three subperiods: 2006–2010, 2011–2015, and 2016–2019. We use the first subpe-
riod to calculate the forecasts, while we use the latter two for our testing subperiods. 
Data on population and deaths for the districts are from Statistics Poland. To cal-
culate the forecasts, we also use Polish and German data on population and deaths 
from the Human Mortality Database.

The population distribution for each district is presented in Table 1.The number 
of inhabitants ranges from 211 to 1707 thousand, with the median population equal 
to 76.2 thousand. Although the upper bound is rather high, there is only one district 
with a population exceeding 1 million and five over 500 thousand inhabitants. It 
should be noted that because we consider mortality rates separately for each sex, the 
total size of the population at risk in the districts is about half of the values reported 
in the table.

The estimated life expectancies at birth for the districts are shown in Fig. 1. These 
are characterized by substantial heterogeneity. For men, life expectancy varies from 

Table 1   The quantiles of population distribution in the districts in the first subperiod. Source: Author’s 
calculation

Quantile Min 10% 25% 50% 75% 90% Max

Population [1000] 21.1 42.6 55.4 76.2 110.6 159.3 1706.6
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67.2 to 74.9 years with a standard deviation of 1.4 years. Life expectancy is some-
what longer for women, ranging from 76.9 to 82.7 years with a standard deviation 
of 0.9 years. Of note, the smallest municipal districts are characterized usually by 
longer life expectancy than their surrounding districts.

Forecasting methods

We forecast age-sex-specific central rates of mortality for the standard abridged age 
groups: 0, 1–4, 5–9, 10–14, …, 75–79, 80–84, and 85 + . These age intervals are 
the same for both men and women. The central mortality rate is defined as the ratio 
of the average number of deaths to the average population at risk in the subperiod. 
Given district i and sex s, it is calculated as follows:

where Dx,x+n(x)(i, s, t) and Px,x+n(x)(i, s, t) represent, respectively, the average num-
ber of deaths and the average population at age x to x + n(x), for given subperiod 
t ∈ {0, 1, 2}; and n(x) is the age interval width.

Most methods we examine rely on country-level mortality forecasts. To calculate 
them, generally, we follow the approach taken by Statistics Poland and employ a 
variant of the mortality surface method, with the West German population serving 
as the benchmark.1 In particular, independently for each sex, we look for the year 
when life expectancy at birth in Germany is the closest to its Polish counterpart in 
2008, the center of the first subperiod. Then, we take the percentage change in the 

(1)n(x)mx(i, s, t) =
Dx,x+n(x)(i, s, t)

Px,x+n(x)(i, s, t)
,

Fig. 1   Life expectancy at birth for men (left) and women (right) in the first subperiod for the districts. 
Source: Author’s calculation. Data source: Statistics Poland

1  In fact, Statistics Poland uses a mixture of EU countries as a benchmark. For simplicity, we choose 
to restrict the benchmark mortality to one relatively large neighborhood developed country. Germany is 
also known to have a similar structure of causes of deaths to Poland.
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sex-specific mortality rates in Germany after five and nine years (since our last sub-
period lasts just four years) and assume that the same changes occur in 2013 and 
2017 in Poland. These country-wide mortality forecasts are denoted as mf

x(POL, s, t).
We consider 10 simple methods for mortality forecasting for the districts. With 

just two exceptions, all of these are also considered by Wilson (2018).

	 1.	 Country-level mortality (POL). In this simple approach, the forecasts for the 
districts are equal to the corresponding forecasts for all of Poland:

where the index f  denotes a forecast.
	 2.	 Standardized mortality rates at the regional level (SMR-REG). This is the 

method currently used by Statistics Poland. The forecasts for the districts equal 
the corresponding forecasts for the NUTS 2 regions in which the districts are 
located. The regional forecasts equal the national mortality scaled by the stand-
ardized mortality rates calculated for a region in the first subperiod:

where the standardized mortality rate for a particular area r is calculated as 
follows.

		    In other words, SMR for an area is the ratio of the total death in this area 
to the theoretical number of deaths if mortality in the area were equal to the 
country-level mortality.

	 3.	 Standardized mortality rates at the district level (SMR).
		    This approach is similar to the previous one, but the standardized mortality 

rates are calculated at the district level:

	 4.	 Standardized mortality rates with broad age groups at the district level (SMR-
BAG). The standardized mortality rates for a district are calculated separately 
for three broad age groups: 0-64, 65-74, and 75+:

where a(x) denotes the broad age group for people of age x.
	 5.	 Neighborhood-complemented standardized mortality rates at the district level 

(SMR-NC).
		    This is a novel approach designed to be an intermediate approach between 

using SMR calculated for wide NUTS-2 regions and SMR for particular dis-
tricts. The latter can suffer from deaths scarcity problem whereas the former 

(2)n(x)m
f
x
(i, s, t) ≡ mf

x
(i, s, t) = mf

x
(POL, s, t),

(3)mf
x
(i, s, t) = SMR(REG(i), s) ⋅ mf

x
(POL, s, t),

(4)SMR(r, s) =

∑
x mx(r, s, 0) ⋅ Px,x+n(x)(r, s, 0)∑

x mx(POL, s, 0) ⋅ Px,x+n(x)(r, s, 0)

(5)mf
x
(i, s, t) = SMR(i, s) ⋅ mf

x
(POL, s, t)

(6)mf
x
(i, s, t) = SMRa(x)(i, s) ⋅ m

f
x
(POL, s, t),
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disregards idiosyncratic characteristics of individual districts. We suggest using 
data from neighborhood districts to calculate SMR for districts with small popu-
lations and low expected number of deaths to solve the data scarcity problems 
and keeping the district-specific characteristics. In particular, let P∗ denote the 
threshold population level under which it is necessary to complement the data 
with information from neighboring regions. The mortality rates are calculated 
using the standard formulas (4) and (1):

		    but their components D
nc

x,x+n(x)
 and P

nc

x,x+n(x)
 are complemented with data from 

neighborhood districts:

		    where the weight 0 < 𝜃(i, s) < 1 is defined as follows:

		    The weight � governs the impact of data from the neighborhood districts. It 
grows as the population of a district i is lower as compared with the threshold 
P∗ . We performed several preliminary experiments with the different definitions 
of neighborhood districts (by a geographical distance or common borders) and 
the threshold populations. In this study, we show the results that delivered the 
most accurate life expectancy at birth predictions: the neighborhood regions are 
those that share a common border and the threshold population is set at 27,500, 
implying that approximately 25% of the districts requires complementation.

	 6.	 Rate ratio scaling (RR).
		    In this method, sex-age-specific death rate ratios are calculated for each region 

and country-level forecasts are scaled by the ratios:

where,

(4’)SMRNC(i,s) =

∑
x m

nc
x
(i, s, 0) ⋅ P

nc

x,x+n(x)
(i, s, 0)

∑
x mx(POL, s, 0) ⋅ P

nc

x,x+n(x)
(i, s, 0)

,

(1’)mnc
x
(i, s, 0) =

D
nc

x,x+n(x)
(i, s, 0)

P
nc

x,x+n(x)
(i, s, 0)

,

(7)D
nc

x,x+n(x)
(i, s, 0) = Dx,x+n(x)(i, s, 0) + �(i, s)

∑
r∈nc(i)

Dx,x+n(x)(r, s, 0);

(8)P
nc

x,x+n(x)
(i, s, 0) = Px,x+n(x)(i, s, 0) + �(i, s)

∑
r∈nc(i)

Px,x+n(x)(r, s, 0)

(9)�(i, s) =

⎧⎪⎨⎪⎩

0 if
∑

xPx,x+n(x)(i, s, 0) ≥ P∗

�
P∗−

∑
xPx,x+n(x)(i,s,0)

�

P∗
otherwise.

(10)mf
x
(i, s, t) = RRx(i, s) ⋅ m

f
x
(POL, s, t),
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	 7.	 Rate ratio scaling for broad age groups (RR-BAG).
		    This approach is similar to the previous one, but the rate ratios are calculated 

separately for the BAGs:

	 8.	 Neighborhood-complemented rate ratio scaling (RR-NC).
		    Prior to calculating the rate ratios, data for regions with small populations are 

complemented with data from neighborhood districts, exactly in the same way 
as for the SMR-NC method:

		    where the neighborhood-complemented rate ratios RR_NCx(i, s) are calculated 
as follows:

and mnc
x
(i, s, 0) is defined by (1’). It should be stressed that the problem of 

data scarcity is considerably more severe in the case of rate ratios than for the 
standardized mortality rates, because the former are calculated separately for 
each age intervals, whereas the latter average over all the intervals. As a result, 
neighborhood complementation is likely to affect the results of the RR-based 
predictions more than for the SMR method.

	 9.	 Mortality surface (MS).
		    In this approach, the district forecasts are calculated in the same way as the 

country-level forecasts for Poland. In particular, we look for the year in which 
the life expectancy in West Germany is the closest to the one observed in a dis-
trict in the first subperiod and analyze the changes in mortality profiles that took 
place in Germany after five and nine years. We assume that the same changes 
will occur in the analyzed district.

	10.	 Brass relational model (BR).
		    We estimate the linear regression models between the logit-transformed sur-

viving populations for districts in the first subperiod and their counterparts for 
the whole country. Subsequently, the models are used to predict the surviving 
populations for districts in the next two subperiods, given the country-level 
forecasts. The procedure consists of the following steps:

Step I From the central rates of mortality, we calculate the probabilities of 
dying n(x)qx(r, s):

(11)RRx(i, s) =
mx(i, s, 0)

mx(POL, s, 0)

(12)mf
x
(i, s, t) = RRa(x)(i, s) ⋅ m

f
x
(POL, s, t)

(13)mf
x
(i, s, t) = RR_NCx(i, s) ⋅ m

f
x
(POL, s, 0)

(14)RR_NCx(i, s) =
mnc

x
(i, s, 0)

mx(POL, s, 0)
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where ax(s) denotes the mean life length in the last age interval of peo-
ple dying in that interval. We assume that ax(s) are time- and dis-
trict-invariant and are equal to the values taken from the country-
level abridged life tables for Poland in 2008 as reported by Human 
Mortality Database. Having qx(r, s, t) , we subsequently calculate the surviv-
ing populations lx(r, s, t) =

(
1 − qx(r, s, t)

)
lx−n(x)(r, s, t) where the radix is set at 

l0(r, s, t) = 100, 000.
Step II We estimate the parameters of the linear regression model of the form: 
Yx = � + �Zx , where Yx =

1

2
ln

(
1−lx(i,s,0)

lx(i,s,0)

)
 and Zx =

1

2
ln

(
1−lx(POL,s,0)

lx(POL,s,0)

)
.

Step III Using the estimated coefficients as well as the country-wide fore-
casts of the surviving populations lfx(POL, s, t),we calculate the forecasts for a 
region lfx(i, s, t).
Step IV From the forecasted surviving populations lfx(i, s, t), we calcu-
late the implied central rates of mortality mf

x(i, s, t) . As it is impossible 
to derive the implied mortality for the last age group 85+ , we assume 
m

f

85
(i, s, t) = m85(i, s, 0).

Assessing forecast quality

Our forecast accuracy assessment covers three different measures. First, we ana-
lyze the accuracy of the mortality profile forecasts using the simple mean absolute 
error. By mortality profile, we mean the set of mortality rates for all 19 age intervals. 
MAE is calculated as follows:

Subsequently, we aggregate the measure over the districts, sex, and subperiods by 
calculating the appropriate means of the individual MAEs.

The simple MAE measure does not account for the fact that the true mortality 
rates mx(i, s, t) are not observed. Instead, we use the estimates based on the avail-
able data. Reliability of these estimates can vary considerably and we use weights to 
differentiate the impact of different mortality rates on the final value of the measure 
according to their reliability. Chiang (1979, p. 48) shows that the variance of the 
mortality rate s2

(
mx

)
 is given by:

In practice, it is difficult to calculate reasonable weights based on the whole for-
mula for the variance because (1) in small samples, the estimates of mx are not very 

(15)n(x)qx(r, s, t) =

{
n(x)⋅n(x)mx

(r,s,t)

1+(n(x)−ax(s))⋅n(x)mx
(r,s,t)

ifx < 85

1 otherwise

(16)MAE(i, s, t) =
100

19

∑
x

|||m
f
x
(i, s, t) − mx(i, s, t)

|||.

(17)s2
(
mx

)
=

mx ⋅

(
1 − qx

)
Px

≈
mx

Px

,
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reliable (for some methods, it happens that mf
x = 0 and the estimated variance of the 

mortality rate.
s2
(
m

f
x

)
= 0 ); (2) weighting by mx would hugely overweight groups with small mx 

(for example, 1–14 cohort gets about 50% of the weight) transforming MAE into 
MAPE, which is not a reasonable measure for assessing accuracy of the mortality 
profiles (see Wilson, 2018, p. 11). As a result, we use only the denominator of the 
variance formula (17) for weighting the forecast errors which gives us a simple, yet 
reliability-sensitive population-weighted MAE formula:

For further aggregation of the measure across the districts, sex, and time periods, 
we also employ the populations from the baseline periods. The WMAE measure 
generally puts the higher weights to younger cohorts.

A reasonable alternative approach for weighting mortality rates is to consider 
life expectancy at birth. Therefore, we also compare the life expectancies at birth 
implied by the forecasts with their observed counterparts. To calculate e0 , we use 
the same linear model for life tables as described in the Brass forecasting method. 
In particular, we employ formula (15) for qx and assume the same mean life length 
in the last age intervals. For life expectancy, we analyze the mean errors and mean 
absolute errors. MAE for life expectancy can be thought as the more sophisticated 
version of the absolute total error measure considered by Wilson (2018).

Results

We begin by analyzing the accuracy of the mortality profile forecasts. Table 2 con-
tains the mean MAE for the mortality profiles and the MAE for life expectancy at 
birth. It reports the values for the full verification sample of 379 districts, two sub-
periods, and two sexes, as well as for several subsamples. To improve readability, 
we use the color scale, where red represents high errors and green indicates more 
accurate forecasts.

For the pure mortality profiles in the full sample, the first method (POL) has the 
highest errors where the district forecasts coincide with their country-level counter-
parts ( MAE = 0.238) . However, the SMR-based methods are only marginally better. 
In contrast, the most accurate forecasts are delivered by the mortality surface (MS) 
approach ( MAE = 0.202 ). The RR, RR-NC, and SMR-BAG methods also perform 
relatively well. Almost the same results in terms of the method ranking are obtained 
when using the population-weighted MAE measure.

Also looking at the implied life expectancy, generally, the picture is similar, too, 
although now SMR-BAG is the most accurate method. For the POL method, the 
MAE is equal to 0.898  years, whereas in the current Statistics Poland approach 
(SMR-REG), the error drops by almost 0.16  years. However, switching to the 

(18)WMAE(i, s, t) = 100 ⋅

∑
xPx,x+n(x)(i, s, 0) ⋅

���m
f
x(i, s, t) − mx(i, s, t)

���∑
xPx,x+n(x)(i, s, 0)

.



	 A. Orwat‑Acedańska 

1 3

6  Page 12 of 20

district-level SMR reduces the error further by 0.23 years and using the SMR-BAG 
method decreases the error by 0.31 years compared with the SMR-REG method.

Figure 2 shows the spatial distribution of the gains from switching from the SMR-
REG to the SMR method and the most accurate SMR-BAG approach. There is some 
noticeable gain in most districts. Even the plain SMR method delivers, on average, 
more accurate forecasts in more than two-thirds of the districts. In the SMR-BAG 
method, that fraction reaches almost 75%. The effects of these two methods are even 
greater in the case of municipal districts, reaching 89 and 94%, respectively.

In general, the results for the whole sample, displayed in the top section of 
Table 2, are robust to changes in the scope of the sample. However, stratifying the 

Table 2   Mean absolute errors for the mortality profiles. Source: Author’s calculation

Measure POL SMR-
REG SMR SMR-

BAG
SMR-

NC RR RR-
BAG

RR-
NC MS BR

Full sample
MAE 0.238 0.228 0.221 0.214 0.220 0.214 0.226 0.212 0.202 0.217
WMAE 0.147 0.133 0.114 0.106 0.114 0.112 0.116 0.110 0.105 0.112
e0-MAE 0.898 0.740 0.506 0.431 0.500 0.461 0.495 0.448 0.463 0.482

2011-2015
MAE 0.220 0.214 0.203 0.192 0.202 0.196 0.203 0.194 0.203 0.217
WMAE 0.128 0.116 0.096 0.086 0.096 0.093 0.096 0.092 0.098 0.105
e0-MAE 0.907 0.743 0.477 0.392 0.480 0.429 0.473 0.425 0.460 0.456

2016-2019
MAE 0.256 0.243 0.240 0.237 0.237 0.233 0.249 0.231 0.201 0.217
WMAE 0.166 0.151 0.132 0.127 0.132 0.130 0.136 0.128 0.111 0.120
e0-MAE 0.888 0.737 0.536 0.470 0.520 0.492 0.518 0.471 0.465 0.509

Men
MAE 0.280 0.277 0.258 0.247 0.257 0.239 0.256 0.243 0.235 0.244
WMAE 0.155 0.141 0.110 0.105 0.110 0.110 0.115 0.110 0.110 0.113
e0-MAE 1.071 0.897 0.545 0.517 0.546 0.559 0.605 0.547 0.527 0.586

Women
MAE 0.196 0.179 0.185 0.182 0.183 0.190 0.195 0.182 0.170 0.190

WMAE 0.139 0.126 0.118 0.107 0.117 0.113 0.117 0.111 0.099 0.112
e0-MAE 0.724 0.584 0.467 0.345 0.454 0.362 0.386 0.349 0.398 0.379

Municipal districts
MAE 0.335 0.313 0.240 0.197 0.242 0.179 0.205 0.181 0.170 0.195

WMAE 0.199 0.177 0.123 0.100 0.124 0.097 0.117 0.097 0.093 0.106
e0-MAE 1.280 1.059 0.505 0.431 0.513 0.413 0.620 0.422 0.437 0.413

Other districts
MAE 0.218 0.211 0.217 0.218 0.215 0.222 0.230 0.219 0.209 0.222

WMAE 0.121 0.112 0.109 0.109 0.109 0.119 0.116 0.117 0.110 0.115
e0-MAE 0.819 0.674 0.506 0.431 0.497 0.470 0.469 0.453 0.468 0.497

MAE represents the mean of the mortality profile MAE values given by formula (16). WMAE stands for 
the population-weighted mean of the mortality profile MAE values. e0-MAE is the mean absolute error 
for the life expectancy at birth forecasts. The color scales represent the values of the measures: the high-
est are marked with red and the lowest with green.
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sample reveals some interesting differences. For example, the SMR-BAG method 
performs very well in the shorter 5-year horizon, whereas MS dominates the longer 
one. Also, the BR approach generates relatively accurate forecasts in the longer hori-
zon. The last two parts of the table show that the poor forecasting performance of the 
POL and SMR-REG methods are driven primarily by large errors in the municipal 
districts, which are about two times higher than those of the other methods. Finally, 
it is also worth noting that the neighborhood-complemented methods deliver only 
slightly more accurate forecasts than their baseline counterparts. The highest accu-
racy gains can be observed in the case of life expectancy forecasts.

We also investigate, to what extent the forecast errors are affected by the calibra-
tion errors of the model. For that purpose, we calculate the forecasts for 2006–2010 
period using the observed mortalities in Poland in this period. The results are 
reported in Table 3. Excluding RR-based methods for which the calibration error by 
construction is small or 0, the calibration errors are large relative to MAE for both 
horizons (taken from Table 2 in the manuscript) and amount between 59 and 95%. 
The error is correlated with the forecast accuracy measures (Spearman correlation 
coefficient for the two series is equal to 0.69) but the differences in MAE 2011–16 
are much smaller than the differences in the calibration errors.

Table 4 shows the bias in the life expectancy forecasts. Interestingly, in the full 
testing sample and the two separate testing subperiods, the first two methods are 
characterized by the lowest absolute bias, while the remaining methods, on average, 
underestimate life expectancy by 0.12–0.24 years. However, these results are highly 
unstable across sex and district types. By construction, the bias of the forecasts for 
individual districts are primarily driven by the accuracy of the gender-specific coun-
try-level predictions. Therefore, if the forecast for Poland is negatively biased, the 
forecasts for individual districts will also be negatively biased, on average.

Forecast accuracy for each single age group is summarized in Table 5. Here, the 
forecasting accuracy of the methods differs significantly from the mortality profile 
case. Generally, the most accurate forecasts are generated by the SMR, SMR-BAG, 

Fig. 2   Spatial distribution of the decrease in MAE for life expectancy forecasts by switching from SMR-
REG to SMR-BAG (left) and SMR (right). Source: Author’s calculation. Data source: Statistics Poland, 
Human Mortality Database
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and SMR-NC methods. The performance of the MS method, which is the best 
among the mortality profile forecasts, is poor, particularly for young age groups. 
This is also the case for the RR and RR-NC methods. The accuracy of the POL and 
SMR-REG methods varies considerably by age group. They are more accurate in 
forecasting life expectancy than most other methods for young age groups, but their 
relative forecasting accuracy deteriorates with age. This is especially true for the 
POL method.

It should be stressed that the apparent contradiction in results between Tables 2 
and 5 and results from the fact that the mortality rates for the oldest cohorts are much 
higher than for the remaining groups. Therefore, the MAE values are dominated by 

Table 4   Bias (ME) of the life expectancy forecasts. Source: Author’s calculation

Testing sample POL SMR-
REG SMR SMR-

BAG
SMR-

NC RR RR-
BAG

RR-
NC MS BR

All -0.097 0.056 -0.173 -0.149 -0.152 -0.230 -0.145 -0.200 -0.120 -0.231

2011-2015 -0.091 0.065 -0.166 -0.141 -0.146 -0.224 -0.137 -0.193 -0.213 -0.225

2016-2019 -0.104 0.047 -0.179 -0.157 -0.159 -0.237 -0.153 -0.207 -0.027 -0.238

Men -0.142 0.011 -0.296 -0.334 -0.274 -0.427 -0.318 -0.374 -0.231 -0.441

Women -0.053 0.101 -0.049 0.036 -0.030 -0.034 0.029 -0.025 -0.009 -0.021

Municipal dist. -0.454 -0.367 0.059 -0.119 0.038 -0.181 -0.464 -0.204 -0.061 -0.167

Other districts -0.024 0.144 -0.221 -0.155 -0.192 -0.241 -0.079 -0.199 -0.132 -0.244

The color scales represent the absolute values of the accuracy measures: the highest are marked with red 
and the lowest with green.

Table 5   MAE of the mortality rate forecasts for the different age groups. Source: Author’s calculation.

Age group POL SMR-
REG SMR SMR-

BAG
SMR-

NC RR RR-
BAG

RR-
NC MS BR

0 0.144 0.142 0.142 0.146 0.142 0.171 0.150 0.164 0.171 0.160

1-4 0.014 0.013 0.014 0.014 0.013 0.016 0.014 0.016 0.017 0.014

5-9 0.009 0.009 0.009 0.009 0.009 0.011 0.009 0.011 0.011 0.009

10-14 0.010 0.010 0.010 0.010 0.010 0.013 0.010 0.012 0.013 0.010

15-19 0.019 0.019 0.019 0.019 0.019 0.022 0.020 0.021 0.022 0.019

20-24 0.021 0.021 0.020 0.020 0.020 0.023 0.020 0.022 0.024 0.020

25-29 0.022 0.021 0.020 0.019 0.020 0.025 0.019 0.024 0.025 0.021

30-34 0.028 0.027 0.026 0.025 0.026 0.031 0.025 0.029 0.029 0.027

35-39 0.039 0.037 0.035 0.032 0.035 0.040 0.032 0.038 0.038 0.036

40-44 0.055 0.051 0.051 0.046 0.051 0.060 0.047 0.057 0.056 0.053

45-49 0.086 0.078 0.079 0.071 0.078 0.086 0.071 0.084 0.084 0.080

50-54 0.106 0.096 0.090 0.077 0.090 0.091 0.081 0.087 0.095 0.089

55-59 0.133 0.116 0.104 0.093 0.104 0.107 0.103 0.102 0.107 0.106

60-64 0.169 0.155 0.121 0.131 0.122 0.169 0.152 0.164 0.161 0.125

65-69 0.248 0.232 0.203 0.229 0.204 0.251 0.230 0.236 0.234 0.225

70-74 0.337 0.339 0.270 0.263 0.275 0.287 0.263 0.279 0.280 0.297

75-79 0.486 0.475 0.367 0.421 0.369 0.420 0.431 0.398 0.415 0.453

80-84 0.703 0.687 0.588 0.578 0.593 0.678 0.621 0.649 0.669 0.800

85- 1.892 1.808 2.035 1.870 1.997 1.567 1.989 1.643 1.391 1.575

The color scales represent values of the accuracy measures: the highest are marked with red and the low-
est with green.
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forecast errors for these groups. As a result, a method that performs well for most of 
age intervals but fails for the oldest groups exhibits a poor overall performance in 
terms of MAE.

In Table 6 and Fig. 3, we show the spatial distribution of the forecast errors. For 
brevity, the errors in Table 6 are aggregated into 16 NUTS-2 regions. The accuracy 
ranking for the regions is summarized in the last column, which shows the median 
error for the methods.

The most accurate forecasts of mortality rates are observed in eastern and south-
eastern Poland, when the life expectancy is generally higher. On the other side the 
largest errors are observed in northern Poland and Opolskie region in southern 
Poland. It should also be noted that the most accurate approaches, namely SMR-
BAG and MS generally perform well in all regions.

Table 6   MAE of the mortality rate forecasts for the different regions. Source: Author’s calculation.

Region POL SMR-
REG SMR SMR-

BAG
SMR-
NC RR RR-

BAG
RR-
NC MS BR Mean

DOLNOSL 0.228 0.235 0.248 0.235 0.242 0.225 0.243 0.216 0.218 0.219 0.231
KUJ-POM 0.235 0.247 0.256 0.244 0.258 0.246 0.257 0.239 0.219 0.255 0.246
LUBELSK 0.208 0.209 0.198 0.212 0.199 0.221 0.230 0.225 0.206 0.216 0.211
LUBUSK 0.242 0.249 0.247 0.230 0.239 0.220 0.234 0.207 0.219 0.215 0.232
LODZKIE 0.187 0.258 0.235 0.205 0.232 0.221 0.232 0.212 0.213 0.237 0.226
MALOPOL 0.233 0.167 0.146 0.164 0.152 0.185 0.175 0.192 0.178 0.195 0.177
MAZOWIE 0.217 0.211 0.194 0.186 0.193 0.202 0.208 0.198 0.198 0.211 0.200
OPOLSKIE 0.314 0.284 0.257 0.250 0.259 0.213 0.236 0.213 0.200 0.225 0.243
PODKARP 0.280 0.186 0.165 0.192 0.164 0.201 0.199 0.207 0.177 0.215 0.195
PODLASK 0.268 0.189 0.184 0.204 0.184 0.236 0.212 0.223 0.219 0.234 0.216
POMORSK 0.279 0.236 0.240 0.234 0.238 0.210 0.242 0.211 0.195 0.216 0.235
SLASKIE 0.276 0.295 0.290 0.235 0.290 0.193 0.235 0.198 0.172 0.199 0.235
SWIETOK 0.198 0.185 0.177 0.183 0.169 0.212 0.217 0.210 0.205 0.214 0.201
WAR-MAZ 0.253 0.245 0.254 0.224 0.251 0.223 0.216 0.220 0.221 0.209 0.224
WIELKOP 0.194 0.199 0.193 0.209 0.191 0.213 0.235 0.219 0.202 0.207 0.204
ZACHODN 0.256 0.258 0.258 0.249 0.257 0.235 0.243 0.227 0.223 0.229 0.246

Municipal 0.335 0.313 0.240 0.197 0.242 0.179 0.205 0.181 0.170 0.195 0.201

The color scales represent values of the accuracy measures: the highest are marked with red and the low-
est with green. The ranking in the last column is created for the regions.

Fig. 3   Spatial distribution of the 
MAE measure. Source: Author’s 
calculation. Data source: Statis-
tics Poland, Human Mortality 
Database
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Discussion and conclusion

Generally, the results presented in the previous section are well in line with 
those obtained by Wilson (2018). In particular, we find that the mortality sur-
face method outperforms slightly the other approaches like the SMR-BAG, RR, 
and Brass models in terms of MAE but the differences between the best meth-
ods are rather small. Similarly, the SMR-BAG method delivers the most accurate 
forecasts of life expectancy with the RR and MS approaches sharing the second 
place and the Brass model following them. Exactly the same rating is given by 
Wilson (2018) for the values of his absolute total error measure. It should also 
be noted that the values of errors obtained for Poland is very close to those cal-
culated for Australia. For example, the overall MAE for our best mortality sur-
face method equal to 0.202 corresponds to the total absolute error equal to 0.038 
which matches exactly the number reported by Wilson (2018). Nevertheless, our 
study offers several other, novel insights.

First, as far as forecasting mortality profiles, the SMR-REG approach currently 
used by Statistics Poland is far from optimal. There are other simple approaches 
that deliver considerably more accurate forecasts, such as the RR, RR-NC, and 
MS methods. While the latter two can be more involved than the SMR-REG 
method, the pure RR requires RR calculations for each district and age group and 
then scaling country-level forecasts by these numbers. Thus, the calculations are 
as simple as those for the SMR-REG approach and can be performed readily on 
a spreadsheet. It should also be noted that for implied life expectancy, the dis-
trict-level SMR method outperforms the SMR-REG approach considerably. These 
findings are robust to changes in the periods covered by the test sample and sex.

Second, this study analyzes a novel method that uses data from neighbor-
hood districts to generate more accurate estimates of SMRs and RRs. While this 
modification increases forecast accuracy, the improvement is small. This seems to 
imply that aggregating district mortality data across age and time is sufficient for 
reliable estimation of mortality rates. We suppose that the modification could be 
more successful in more data-scarce environments.

Third, the ranking of the methods changes significantly when analyzing the 
forecasts by single age groups. In general, the relative performance of the vari-
ous methods is very much age-dependent. Specifically, the SMR-REG method 
performs well for young cohorts, and the alternatives offer only a slight or no 
improvement. Thus, this method seems a reasonable choice for infant mortality 
forecasting. However, the alternatives that use standardized mortality rates, such 
as the SMR, SMR-BAG, or SMR-NC methods, still outperform the SMR-REG 
method for most age groups. Notably, the methods that are the most accurate for 
forecasting mortality profiles (RR, RR-NC, MS) are definitely more accurate than 
the alternatives for the oldest cohort, which dominates our accuracy measures.

Given the heterogeneity of the forecasting performance for the different age 
intervals it would be interesting to consider a joint forecasting method that blends 
a SMR-based approach for most of the intervals with the MS, BR, or RR approach 
for the oldest cohorts. However, we leave this possibility for future research.
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The reliability of our conclusions is limited by several issues. The most important 
is our short dataset that consists of just three subperiods, with one as the training 
subsample and the remaining two as the testing periods. In Poland, longer compara-
ble series at the district level are not available. As a result, we are not able to assess 
forecasting accuracy for horizons longer than 10 years. However, the lack of a longer 
time series is, to some extent, compensated for by the number of districts used for 
our forecasts, which considerably improves the reliability of the forecast accuracy 
assessment. It should be also remembered that past forecasting performance may not 
hold in the future, as stressed by Booth and Tickle (2008).

In addition, we do not examine several more involved methods for small-area 
mortality predictions. Currently, advanced software or data requirements make it 
difficult for statistical agencies to apply these methods in practice and the potential 
gains in accuracy from switching to these remain unknown. This issue also remains 
open to future investigation. The Author hopes that due to the simplicity of calcula-
tions, the models used in this study have a chance to be implemented in practice by 
the Statistics Poland.
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