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Abstract
This study introduces a non-invasive approach to monitor operation and productivity of a legacy pipe bending machine in 
real-time based on a lightweight convolutional neural network (CNN) model and internal sound as input data. Various sen-
sors were deployed to determine the optimal sensor type and placement, and labels for training and testing the CNN model 
were generated through the meticulous collection of sound data in conjunction with webcam videos. The CNN model, which 
was optimized through hyperparameter tuning via grid search and utilized feature extraction using Log-Mel spectrogram, 
demonstrated notable prediction accuracies in the test. However, when applied in a real-world manufacturing scenario, the 
model encountered a significant number of errors in predicting productivity. To navigate through this challenge and enhance 
the predictive accuracy of the system, a buffer algorithm using the inferences of CNN models was proposed. This algorithm 
employs a queuing method for continuous sound monitoring securing robust predictions, refines the interpretation of the CNN 
model inferences, and enhances prediction outcomes in actual implementation where accuracy of monitoring productivity 
information is crucial. The proposed lightweight CNN model alongside the buffer algorithm was successfully deployed on 
an edge computer, enabling real-time remote monitoring.

Keywords Machine sound monitoring · Sound recognition · Convolutional neural network · Remote monitoring

1 Introduction

Machine monitoring is crucial to provide visibility into 
manufacturing operations that drives improvement from 
the shop floor. With the advent of manufacturing equipment 
equipped with Information and Communication Technol-
ogy (ICT) and Internet of Things (IoT) capabilities, effective 
monitoring and the utilization of Artificial Intelligence (AI) 
have become more feasible [1, 2]. These advancements are 

allowing manufacturing companies to progressively depend 
more on the collection, analysis, and exchange of data within 
interconnected production systems [3]. Manufacturing com-
panies are progressively depending more on the collection, 
analysis, and exchange of data within interconnected pro-
duction systems. With the adoption of Industry 4.0 princi-
ples, manufacturing processes have become more efficient, 
cost-optimized, and have introduced new business models, 
resulting in heightened competitiveness in the market [4]. 
Despite these advancements, industry still relies on a sig-
nificant amount of legacy equipment, which remains pivotal 
to industrial operations [5]. A "legacy machine" is charac-
terized as manufacturing equipment that inherently lacks 
the capacity for external communication or the existence 
of an application programming interface (API) that would 
facilitate data exchange. The "legacy" pertains to the inher-
ent functionalities of the device rather than the chronologi-
cal age of the equipment [6]. It poses challenges in modern 
manufacturing environments because of incompatibility 
with the state-of-the-art technology. In other words, legacy 
machines are not able to communicate with or connect to 
newer machines or systems [7, 8]. Due to this downside, 
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integrating legacy machines into a modern manufacturing 
environment entails high costs. Despite the challenge, manu-
facturers continue using legacy machines because these are 
still in good working order in terms of producing parts. Over 
time, expertise in using these legacy machines has accumu-
lated, and they have been optimized for stable operation, 
making it difficult to simply replace them. Moreover, a tre-
mendous amount of budget is spent to replace the legacy 
machines with the latest machines that are equipped with 
exchanging data. This decision turns in reduced efficiency, 
increased maintenance costs, and limited scalability [6]. 
Maintaining and upgrading legacy machines are an impor-
tant consideration for companies who expect to stay com-
petitive in the global marketplace, especially for small manu-
facturing enterprises (SMEs) [9, 10]. Retrofitting is defined 
as a process that involves altering or adding devices to tra-
ditional machinery, aiming to improve their efficiency and 
functionality while minimizing financial and time expenses 
and risks without the need for replacing equipment [11]. 
However, retrofitting the legacy machines is challenging to 
most SMEs. The shortage of relevant skilled personnel [3, 
12] as well as the lack of awareness of advanced techniques 
to upgrade the machines [13, 14] make retrofitting the legacy 
machines difficult in SMEs.

To overcome these challenges, low-cost methods have been 
studied to enable legacy machines to be monitored. Extracting 
data directly from programmable logic controller (PLC) [5, 
15, 16] or installing sensor in the electrical circuit [10], hard 
wiring [7], or power supply [6, 17, 18] are intrusive ways that 
involves unwanted downtime to deploy the sensors and then 
stabilize the machine. Furthermore, when it comes to the lack 
of cybersecurity capability in SMEs [19, 20], the intrusive 
approach is threatened because manipulation of the deployed 
solution can potentially affect the operation of the machine 
and even disable it. This makes SMEs hesitate to adopt direct 
connections to PLCs or electrical circuits of the machines. 
Computer vision, vibration monitoring, and sound recognition 
are typical methods as non-intrusive monitoring for machine 
state and operation in the context of retrofitting legacy 
machines. Computer vision techniques with affordable cam-
eras such as webcam were applied for monitoring of legacy 
computer numerical control (CNC) machine tools [21–23], 
manual production and assembly process [24], and various 
shop floor artifacts such as equipment control panel, analog 
gauge, and so on [21]. Nonetheless, the presence of cameras 
during machine operation can impede the operator’s line of 
sight. Conversely, there is a potential for operators or other 
objects to obstruct the camera’s view, a common occurrence 
on a real factory floor, which causes trouble with vision detec-
tion. Moreover, in any vision system, object detection is sensi-
tive to light conditions of the environment [25, 26], which can 
pose challenges when implementing it on real factory floor. 
On the other hand, vibration and sound monitoring offers 

an alternative non-intrusive approach as machines generate 
vibrations and emits sounds, producing distinct vibrational 
and acoustic behaviors at different operational states. Accel-
erometers and acoustic emission (AE) sensors were utilized 
for machine operation and prognostic monitoring [27–29]. 
Although vibration monitoring using accelerometer and AE 
sensor is known for its high accuracy and has been extensively 
researched, its practical implementation is challenging due to 
the requirement for additional apparatus such as a data acqui-
sition (DAQ) system and amplifier, which contributes to high 
costs. To address this issue, low-cost accelerometers such as 
micro-electromechanical systems (MEMS) and piezoelectric-
based sensors were also employed to monitor the operational 
states of the machine [30–33]. These low-cost accelerometers 
have inherent limitations including drifting [34, 35], narrow 
frequency band and low resolution [31], and phase lag [32], 
which hinders the factory to utilize them. In the meantime, as 
sound sensors are becoming more affordable, sound recogni-
tion is a practical technique for monitoring machine opera-
tions. However, the adaptability of sound signals for machine 
and process monitoring is poor [29], especially in a real shop 
floor environment, mainly due to noise from neighboring 
machines [36] and difficulty in localizing sound signals [37].

To address the challenges in sound monitoring, the adoption 
of AI techniques and the development of a new sound sensor 
to reduce noise have been applied to make sound recognition a 
more feasible solution for monitoring machine operations. Pre-
viously in our group, a stethoscope-based internal sound sen-
sor has been developed [38]. To capture internal sound, it con-
sists of a stethoscope and a USB microphone attached to the 
end of a rubber tube. The details of configuration and system 
identification are shown in [38]. It showed better prediction 
accuracy than a microphone when the same signal processing 
and model were applied to running state prediction of CNC 
machine tools and their subcomponents [39]. It was also uti-
lized to identify anomalies caused by heavy lifting of robot arm 
[40] and predicting cutting state and productivity of CNC tube 
cutting machine [41]. Sound recognition framework based on 
MTConnect to stream multiple sound streams was suggested 
and evaluated in predicting accuracy and response time [41]. 
Moreover, other recent studies showed that machine learning 
(ML) and deep learning (DL) techniques for sound recogni-
tion are able to predict manufacturing process and machine 
operation. Dynamic time wrapping (DTW) was evaluated to 
predict operational status of legacy machines, showing that 
feature extraction affects speed and accuracy of prediction 
[36]. A study [42] introduced a learning-based acoustic defect 
detection (LearnADD) method for automating bottle inspec-
tion and compared different ML and DL techniques, revealing 
that LSTM exhibited the highest accuracy performance.

Implementing DL models on edge computers is pivotal in 
sound monitoring applications, where real-time data process-
ing with minimum latency is vital [43, 44]. Conducting sound 
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classification directly at the source not only enhances the respon-
siveness and accuracy of event detection but also preserves 
bandwidth and ensures data privacy by limiting the transmis-
sion of sound data through networks. Convolutional neural net-
work (CNN) architecture using sound signals was successfully 
applied for real-time prediction of the operational state of multi-
ple machines simultaneously [39, 45, 46]. In the study [46], the 
entire processing time for machine operational sound monitoring 
was 8 seconds even the efforts to reduce the inference time using 
a lightweight CNN architecture. For environmental sound clas-
sifications using a shallow CNN architecture [47], they achieved 
a short inference time averaging 0.255 seconds. In our previous 
study [41] concluded that supplementary algorithms on edge 
computers were necessary for robust prediction based on the 
CNN inferences. Furthermore, most prior research on edge com-
puting implementation focused on simple binary classification 
tasks such as determining the ON or OFF status of machines and 
identifying cutting operations [36, 39, 41, 46].

Based on our previous work, this study was extended 
to apply the internal sound sensors for monitoring multi-
ple operational states and productivity of a legacy manu-
facturing machine. This research suggests a workflow to 
create a lightweight CNN model aiming to reduce com-
putation load considering deployment to edge computer 
and an algorithm utilizing sequential CNN inferences to 
improve the performance of productivity prediction.

2  Monitoring System

The target system is a legacy pipe bending machine 
(SB-22X8A-MR-V-U, SOCO) on a real shop floor. Other 
machines such as CNC mills, band saws, and welding sta-
tions are located near the pipe bending machine, causing a 

noisy environment. The pipe bending machine has eight elec-
tric servo control axes, which enables this machine to draw, 
rotate, and bend the pipe. The bending amount, direction, and 
number of cuts depend on the final shape of the part. This 
machine bends the raw straight metal pipe and yields the bent 
pipe as an intermediate product. The operator manually feeds 
the raw pipe into the machine in a timely manner so that the 
machine bends and cuts the pipe as it is pre-programmed. 
The schematic of the monitoring system for the pipe bending 
machine and part example are shown in Fig. 1. The details of 
sensor deployment and data collection are as follows.

2.1  Sensor Deployment

Four sound sensors were installed at different locations of 
the pipe-bending machine. All sensors were connected to a 
single edge device (Raspberry Pi 4B). Aside from sound sen-
sors, three webcams (CyberTrack H4 web camera, ADESSO) 
were also installed at the high points around the pipe bend-
ing machine where each camera monitors the operation, and 
the captured images represent the context of sound data. The 
four sound sensors used in the study are denoted from 1 to 4. 
Sensor 1 is a USB microphone (K053, Fifine Microphone) 
to capture ambient sound, which was affixed to the backside 
of Sensor 2. Sensors 2, 3, and 4 are the internal sound sensor 
[38], the combination of a stethoscope (Littmann Classic III, 
3M) and a microphone (the same USB microphone as Sen-
sor 1). Sensor 2 was installed on the surface of the main bed 
which acts as the base for the rest of the components. Sensor 3 
was installed on the surface of the front bed, which is the most 
frequently moving component to bend a pipe. Within the front 
bed, there are clamps capable of securing raw pipes of differ-
ent sizes, along with a shear cutting blade used to trim each 
part after bending. Sensor 4 was installed on the hydraulic 

Raw material 
(Straight pipe)

End parts
(Bent pipe)Pipe bending machineInternal sound 

sensors

External 
microphone

Web camera1 Web camera2 

Raspberry Pi Raspberry Pi Raspberry Pi

Web camera3 

Raspberry Pi

Fig. 1  Outline of pipe bending machine monitoring system (left) and raw material and end part (right)
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pump which provides the power to clamp the pipe and closes 
the cutting blade. The initial locations for the sound sensors 
were determined through discussions with the machine opera-
tor and shop floor manager, aiming to choose spots that would 
not interfere with the machine’s operations or production pro-
cesses while still effectively capturing the machine’s sounds. 
The types and locations of the sound sensors are summarized 
in Table 1. The locations of the sound sensors and webcams 
are shown in Fig. 2, respectively. The stationary sample frame 
image from the video of each webcam is shown in Fig. 3.

2.2  Data Collection and Labeling

After the sensors were deployed, both sound and vision data 
were collected. A customized sound collection program to 
capture sound signals from all sensors simultaneously was 
written in Python using advanced Linux sound architecture 
(ALSA) and PyAudio module because Raspberry Pi OS sup-
ports ALSA for hardware and software interfaces of sound 
devices. In Windows OS, WASAPI can be utilized to ensure 
compatibility and efficient sound data collection. A webcam 
image capturing program was also developed by Python and 
OpenCV library. In daily data collection, programs for web-
cam video and sound were started at the same time. From the 
timestamp printed on each frame of video as on the left top of 
each frame in Fig. 3, the vision data and sound data were syn-
chronized correctly by using a network time protocol (NTP) 
server for all the embedded computers. The specifications 
of the collected data according to sensors are summarized 

Table 1  Type and location of sound sensor

Number Type Location

Sensor 1 External microphone Main bed
Sensor 2 Internal sound sensor Main bed
Sensor 3 Internal sound sensor Front bed
Sensor 4 Internal sound sensor Hydraulic pump

Fig. 2  Sound sensor (a) and webcam (b) placement for pipe bending machine

Fig. 3  Captured images of webcam videos: webcams 1 (left), 2 (middle), and 3 (right)
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in Table 2. After creating the files of the collected data from 
the sensors, embedded computers automatically uploaded the 
files to cloud storage to secure the disk space.

The collected data was labeled with five different classes 
according to operational states: ‘Off’, ‘Idle’, ‘Loading’, ‘Exe-
cuting’, and ‘Cut’. The definition of each label is described in 
Table 3. When an operator runs the pipe bending machine, the 
operator first feeds the straight pipe into the machine and then 
it draws the pipe in the axial direction. The machine moves 
to bend and cut the pipe to produce parts. The sum of ‘Load-
ing’, ‘Executing’, and ‘Cut’ time represents the run time of 
the machine. Therefore, machine utilization can be estimated 
according to batch, part, shift, and time, which can contribute 
to production scheduling and optimization. The operational 
state and sound signals of a single cycle for 90 s are shown 
in Fig. 4. Figure 4a is the operational state event plot, Fig. 4b 
is raw sound signals in the time domain, and Fig. 4c is sound 
spectrograms by short-time Fourier transform (STFT). In 
Fig. 4b, c, Sensor 1 to 4 signals are located from top to bot-
tom, respectively. In Fig. 4b, the y-axis represents normalized 
amplitude of sound. The time range from 0 to 90 seconds is the 
same in all the plots and each time axis is aligned vertically. 
The first ‘Executing’ and ‘Cut’ produced a byproduct and the 
following three ‘Executing’ events produced three products. 
As in Fig. 4, each operational state generates unique sounds. 
When we listened to the recorded sound after analyzing 

webcam videos, it was able to figure out which operational 
state generated corresponding sound. Moreover, according 
to sensor type and placement, different sounds were captured 
despite the same machine being monitored. Sensor 4 as in the 
bottom plots of Fig. 4b, c showed distinct sound signals when 
cutting occurred whereas it could not be able to capture other 
operational states.

The labels and accordance timestamps were created from the 
collected webcam videos as illustrated in Fig. 5. The sound sig-
nal example in Fig. 5 is from Sensor 1. The data and time range 
of Fig. 5 are the same as Fig. 4, which means data from 0 to 20 s 
of Fig. 4 was used to describe labeling procedure in Fig. 5. First, 
webcam videos were analyzed to define the operational state 
with the start and end timestamps of each state. Second, the 
operational state data and the sound signals were synchronized 
using the given timestamps. Third, the entire sound signal was 
scanned with a frame size of 0.98 s. The chunk length when 
reading the audio signal from the USB microphone is 2 to the 
power of n where n is a positive integer. In this monitoring sys-
tem, the sound chunk size was  211 sample points. This chunk 
translates to approximately 42.67 ms of sound at a sampling 
rate fs of 48 kHz. Considering further real-time implementa-
tion using the same sound data flow framework, the frame size, 
which is 23 chunks, 47,104 sample points, and 0.981 s, of the 
nearest 1 s was chosen. The frames were eventually used to 
input data for training models. The interval of each scanning 
frame was the chunk length. Therefore, the first frame starts at 
0 s as in Fig. 5, the second frame starts at 43.67 ms (a chunk), 
and the second frame starts at 85.33 ms (two chunks). The start, 
center time, and end time of the frame were defined as tf,s, tf,c, 
and tf,e, respectively in Fig. 5. The superscript means the frame 
number. In case the operational state is changed in a frame, the 
label for the frame was determined based on the center time of 
the frame. For example, if a frame’s center time tf,c falls within 
an operational state, it is labeled as such. Thus, labels for all the 
frames were determined by scanning the entire sound signals. 
All example sound signals according to the sensor and opera-
tional states are plotted in Appendix.

2.3  Sound Feature Extraction

Upon segmenting and labeling the sound signals from the 
sensors into input frames, the log-Mel spectrogram was 
adopted to extract features. These features were subsequently 
used to train the CNN models. The log-Mel spectrogram is 
the time–frequency representation of the sound signal by 
applying Mel scale on the short-time Fourier transformation 
(STFT) [48]. The Mel scale refines frequency data using Mel 
filter banks on the STFT, reducing the feature size for CNN 
models. This ensures training efficiency while preserving 
high accuracy in sound recognition. The Mel spectrogram 
has been widely employed for musical and speech recogni-
tion [49, 50] as well as machine sound monitoring [39, 41, 

Table 2  Specification of collected data

Data type Category Specification

Sound Format WAV
Duration per day 1 h
Sampling rate 48 kHz
Channel 1
Audio bit depth (resolution) 16-bit
Number of sensors 4

Vision Format AVI
Duration per day 1 h
Frames per second 30 fps
Frame size 640 × 480 pixels
Number of sensors 3

Table 3  Definition of operational state for labeling

Label Definition

Off Machine is powered off
Idle Machine is ready to run without any axis movements
Load Operator feeds a straight pipe into the machine
Executing The machine bends, rotates, or draws the pipe
Cut The cutting blade trims the pipe and yields a product 

or a by-product
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46]. The Mel scale indicates how humans perceive the fre-
quency of a pure tone compared to its objectively measured 
frequency. The relationship between the Mel and frequency 
is expressed in Eq. (1).

(1)M(f ) = 2595log10

(

1 +
f

700

)

Fig. 4  A single cycle data of 
pipe bending machine for 90 s: 
a operational state, b time 
domain, and c sound spectro-
gram
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where M and f represent Mel and frequency, respectively. This 
expression is calibrated so that a frequency of 1000 Hz corre-
sponds to 1000 Mels. Below 1000 Hz, the relationship between 
Mel and frequency is nearly proportional. For higher frequen-
cies, however, the relationship is logarithm. In this study, 120 
Mel bands within a frequency range of 20 Hz to 24 kHz were 
chosen for feature extraction in training the CNN model. The 
lower frequency limit (20 Hz) was set based on the minimum 
frequency range of the USB microphone, while the upper limit 
(24 kHz), half of the sampling rate, was chosen as the maximum 
frequency. When transforming the time domain information to 
the STFT, A Hamming window with 2048 points of FFT (fast 
Fourier transform) was applied as a windows function to reduce 
the spectral leakage enabled by smooth tapering at the edges. 
Due to the shape of the window function in the time domain, 
there is information loss near the edge. To counteract this loss, 
a 50% window overlap was employed. The input feature dimen-
sion of the Log-Mel spectrogram is 120 × 47 where the number 
of Mel bands is 120 and the number of windows is 47.

3  CNN Training and Prediction Algorithm

3.1  Dataset

Datasets were collected on various production days for 
different parts to train and test the CNN models. Figure 6 

illustrates the structure of dataset utilized for both training 
and testing phases. The CNN model was trained using one 
hour of actual production data from a single part production 
(Day 1, Part A). Test datasets were curated to assess the 
model’s performance on identical as well as different parts. 
Different parts have various shapes, materials, cycle time, 
and so on. Arbitrary identifiers, such as Part A, B, and Day 
1, 2, and so on, were used for parts and days.

Figure 7 summarizes the distribution of label count for 
each dataset. The ‘Loading’ label consistently registered the 
shortest duration, indicating the least frequent occurrence 
among all labels. Table 4 provides a summary of the cycle 
time and operational states’ statistics. Each cell in the table 
represents averaged value and standard deviation. Cycle time 
was defined as the working duration for a single raw mate-
rial. Notably, the cycle time and operational states exhibited 
variations depending on the parts involved.

3.2  CNN Model Training

Convolutional neural network (CNNs) is one of the widely 
used Deep learning (DL) models in audio classification tasks 
for their ability to learn complex patterns [51]. While the 
complexity of a CNN model is crucial for accuracy, it is 
important to avoid excessive complexity in edge computing 
with limited resources. Minimizing prediction time is also a 
key for real-time monitoring. Therefore, it is advantageous 
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for the CNN model to balance between simplicity and per-
formance. Among various hyperparameter optimization 

strategies [52–56], grid search was employed in this study 
to fine-tune the CNN model.

The CNN model architecture, illustrated in Fig.  8, 
incorporated two convolutional layers, interposed by 
2 × 2 max pooling layers, followed by a fully connected 
layer, two hidden layers, and an output layer, with the lat-
ter being configured to classify five task states. The ReLU 
(Rectified Linear Unit) activation function was appointed 
for both the convolutional and hidden layers, while the 
output layer utilized the softmax activation function, 
defined in Eq. (2).

Fig. 6  Configuration of datasets 
for CNN model training and 
testing on the top and the 
captured images of parts on the 
bottom

Part A Part B Part C Part D

Day 1: Part A
(1 hour)

Day 3: Part B
(20 minutes)

Day 4: Part C
(20 minutes)

Day 5: Part D
(20 minutes)

CNN model training and validation

Day 2: Part A
(1 hour)

CNN model testing
(different part and different day)

CNN model testing
(same part on different day)

Training 
dataset

Test 
dataset 2

Test 
dataset 1

Fig. 7  Label count distribution 
according to dataset

Table 4  Statistics of cycle time and operational states

Part Cycle time (s) Loading (s) Executing (s) Cut (s)

A 76.56 ± 0.43 4.51 ± 0.12 14.59 ± 8.94 2.83 ± 0.05
B 128.01 ± 0.14 3.16 ± 0.21 10.85 ± 4.23 2.73 ± 0.03
C 83.40 ± 1.10 2.53 ± 0.17 22.62 ± 10.10 2.51 ± 0.04
D 159.76 ± 0.85 5.39 ± 0.09 25.88 ± 20.2 2.76 ± 0.02
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where C represents the total number of classes and ŷc and 
ŷk indicate the unnormalized outputs for classes c and k, 
respectively. The softmax function converts the raw out-
puts from the preceding layer into probabilities by expo-
nentiating and normalizing them, ensuring them to sum up 
to one across all classes, thus forming a valid probability 
distribution.

As in Table 5, a grid search strategy was employed to 
optimize various hyperparameters across predefined search 
spaces: the number of filters, kernel sizes for the convolu-
tional layers, and the neuron count for the hidden layers. 
The minimum and maximum denote the lower and upper 
bound of hyperparameters, and step size indicates the inter-
val between each step. The steps show the total number of 
steps. The total number of combinations for grid search was 
1024. In the convolutional operations, a stride of 1 and zero-
padding were consistently applied. Training was conducted 
utilizing the categorical cross-entropy loss function L. Train-
ing utilized the Adam optimizer, adopting a learning rate of 
 10–4, with data processed in batches of 64. Initial training 
was confined to 10 epochs per configuration during the grid 
search, and upon identifying the most propitious configura-
tion, further training was conducted for an additional 100 
epochs to obtain the best model for each sensor case.

Figure 9 illustrates the entire sequence of training and 
testing CNN model including the grid search for hyperpa-
rameter tuning. The dataset necessitated a mindful approach 
to splitting, considering the pronounced label imbalance 
prevalent throughout the training data (Day1, Part A) as 
shown in Fig. 7. To address this, each label category was first 
subsampled to mirror the count of the least populous label, 
ensuring equitable representation across all classes. Sub-
sequently, the curated dataset was partitioned into training 
and validation sets, adhering to an 80–20 percent division 

(2)
S(ŷc) =

exp(ŷc)

C
∑

k=1

exp(ŷk)

scheme, which was randomly implemented. The best model 
was consequently tested using the full test datasets of the 
test dataset 1 and 2, ensuring a comprehensive and unbiased 
evaluation of its predictive capabilities.

Moreover, a comparative analysis of prediction perfor-
mance against established CNN architectures was conducted 
to validate the effectiveness of the proposed CNN with the 
top-performing sensor. Specifically, VGG16, VGG19 [57], 
YAMNet [58], and ResNet-50 [59] were chosen for compari-
son. To facilitate training these CNN models, the size of input 
feature and output were modified to accommodate the data 
and labels, and the identical training dataset was utilized.

3.3  Prediction Algorithm for Real‑Time 
Implementation

After evaluating the trained models and selecting the best 
sensor, MTConnect was adopted as middleware to generate 
sound signal stream and implement the CNN model on a 
Raspberry Pi in real-time [41]. An MTConnect adapter for 
a sensor transmits a chunk  (211 data points) of sound signals 
in the space-delimited format continuously to MTConnect 
agent in Displacement representation and TimeSeries type 
of the MTConnect standard [60]. The example of the sound 
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Fig. 8  CNN architecture for operational state sound classification of pipe bending machine

Table 5  Search space range of hyperparameter for grid search

Hyperparameter Minimum Maximum Step size Steps

Number of filters in 2D 
Conv 1

8 32 8 4

Kernel size in 2D Conv 1 2 × 2 3 × 3 1 2
Number of filters in 2D 

Conv 2
8 32 8 4

Kernel size in 2D Conv 2 2 × 2 3 × 3 1 2
Number of neurons in 

Hidden 1
16 64 16 4

Number of neurons in 
Hidden 2

16 64 16 4
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data from MTConnect agent is shown in Fig. 10. Each data 
point is represented by a signed 16-bit integer. The data 
streamed to the MTConnect agent can be retrieved based on 
a sequence, allowing the application to request the last 1 sec-
ond (1-s) of sound data. The steps to retrieve sound signal 
for the CNN model implementation are as follows in detail.

1. Request using ‘current’ method to MTConnect agent of 
sound stream according to MTConnect Rest API. Note 
that implementation in this research was performed in 
the Raspberry Pi and the port number is 5000. There-
fore, the HTTP request is as below. 

• http:// local host: 5000/ curre nt
2. Take ‘LastSequence’ as N from Header of the XML 

response.
3. Request again for last 1-s sound data using ‘sample’ 

method. Note that because sampling rate is 48,000 
Hz and the chunk length is  211, the nearest integer to 
1 s is 23. 

• http:// local host: 5000/ sample? from=N- 23& count= 23
4. Parse the XML document in ascending order of sequence 

with converting the space-delimited chunk and then 
appending to an array (x). This ensures that x is always 
the last 1-s sound signal array.

When applying the CNN model to forecast the opera-
tional state of the pipe bending machine, the inference 
from a model output yields an immediate result for a given 
input frame of 1-s length. Operational states, labels related 
to productivity prediction such as ‘Loading’, and ‘Cut’ as 
shown in Table 4, persist for at least 2.5 seconds. An incor-
rect inference amid the duration of a continuous operational 
state amplifies prediction errors. For instance, a single false 
inference during the ‘Loading’ state can lead to dividing it 
into two separate ‘Loading’ counts. To refine the interpreta-
tion of CNN model’s inference, a buffer algorithm utilizing 
a queueing method was introduced. Figure 11 demonstrates 
the interpretation of sequential CNN model inferences with 
a buffer size of 5. Here, t represents the timestamp at which 
the CNN model inference occurs, the subscript k is an inte-
ger designated the order of the inferences, τ is the predic-
tion interval between inferences. If the prediction interval 
is shorter than the input frame length (1 second), there is 
overlap between inferences and it improves the resolution. 
Since the buffer employs a queue to maintain its size, the 
first-in element is ejected when the buffer reaches its capac-
ity to enqueue the latest element. The final prediction is 
ascertained by the majority elements within the buffer. In 
this scenario, even if an inference ‘Executing’ is incorrect at 

Day 1 
(Part A)

Training 
dataset
(80%)

Validation 
dataset
(20%)

Model training
(10 epochs)

Intermediate 
Model

Grid search 
hyperparameter 

tuner

Day 2 
(Part A)

Day 3 
(Part B)

Day 4 
(Part C)

Day 5 
(Part D)

Best model

Validation 
evaluation 
accuracy 
history

Additional model training 
with the selected best 

hyperparameters
(100 epochs)

Evaluation 
in training 
validation

Training 
dataset

Test dataset  1
(same part but different days)

Test dataset  2
(different parts and different days)

Evaluation for 
test datasets

Evaluation for 
test datasets

Evaluation for 
test datasets

Evaluation in 
test datasets

Repeat N times

Fig. 9  CNN model training and testing with hyperparameter tuning

<DisplacementTimeSeries dataItemId="sensor1" timestamp="2023-10-19T12:45:35.394052Z" name="sensor1"
sequence=“11357" sampleCount="2048" sampleRate="48000">534  -262  -1033  -1119  -631  -446  262  128  
299  104  634  1512  1235  1078  502  261  644  809  537  118  -48  -58  223  830  1047  852  287  -322  -697  -830  
-715  -647  -588  -325  133  345  516  439  147  -251  -278  596  630  749  680  193  -510  -886  -908  -726  -283  -
180  -413  -493  -1453  -1228  680  1192  707  412  245  357  841  1214  1049  -140  -159  -466  -547  -143  427  
14  -946 1247  -2514  -2758  196  632  758  68  2139  -215  -258  -879  239 -393 … </DisplacementTimeSeries>

Fig. 10  Example of sound stream from MTConnect agent

http://www.localhost:5000/current
http://www.localhost:5000/sample?from=N-23&count=23
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tk+1 , the predictive result from the buffer remains ‘Loading’. 
Algorithm 1 describes a buffer algorithm employing a queu-
ing method for continuous sound monitoring and incorporat-
ing a custom function to identify the majority element from 
the buffer array. Here, the input x represents the last one-
second length of the sound signals at the moment of request, 
ŷ denotes an inference obtained from a CNN model, and 
the output ŷbuffer denotes the final prediction derived from 
a queue buffer with a maximum length of N. In scenarios 
without a buffer, where N equals 1, ŷ invariably equals the 
output. The duration required for one loop is signified by the 
prediction interval τ. It is anticipated that utilizing computa-
tionally intensive models will prolong the loop time, thereby 
compromising the efficacy of the monitoring performance.

Algorithm 1: Continuous sound monitoring

4  Results and Discussion

The CNN models were evaluated comprehensively, espe-
cially in the context of dealing with datasets that exhibit 
significant class imbalance among the labels as shown in 
Fig. 7. Given that the disproportionality among the classes 
may lead to a biased evaluation when relying solely on 
accuracy as a performance metric, the additional evaluation 
metrics was incorporated, namely the macro-averaged preci-
sion, recall, and F1-score with accuracy as the performance 
metrics. Accuracy offers a general view of how often the 
model is correct across all the classes. However, its limita-
tion, especially in the context of imbalanced data, emanates 
from its inability to provide specific insights into how well 
the model performs for each class. That is, a model might 
still achieve high accuracy by merely predicting the majority 
class correctly while performing poorly in the minor classes.

Given imbalanced datasets, the macro-averaged metrics 
become crucial. These metrics calculate the performance for 
each class independently and then take the average, ensuring all 
classes are treated equally. Considering C as the total number of 
classes, TP, TN, FP, and FN denote true positive, true negative, 
false positive, and false negative counts, respectively. Precision, 
recall, and F1-score are defined for each class i as follows:

The macro-averaged precision, recall, and F1-score can 
be calculated using:

(3)Precisioni =
TPi

TPi + FPi

(4)Recalli =
TPi

TPi + FNi

(5)F1i =
2 × Precisioni × Recalli

Precisioni + Recalli

Fig. 11  Interpretation based on 
selection of the most frequently 
inferred element from consecu-
tive CNN model predictions 
using a buffer
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The merit in utilizing macro-averaged metrics lies in their 
ability to provide an unbiased metric of the model’s per-
formance by equally weighing each class, irrespective of 
their sample size. This impartiality is important because the 
dataset experiences class imbalance as it avoids the metric 
being skewed towards the majority class, thereby presenting 
a more transparent view of how the model performs across 
all the classes. In the following analysis and throughout 
the manuscript, macro-averaged performance metrics were 
employed unless otherwise specified.

4.1  Sensor Selection

Table 6 provides a summary of the optimal hyperparameters for 
each sensor, determined through grid search. Figure 12 shows 
the selected models’ F1-score comparisons for training and test 
datasets. Sensor 2 showed the best prediction performance in all 
training and test datasets. Overall, the CNN models exhibited 
superior prediction performances on Test dataset 1 compared 
to Test dataset 2. One plausible explanation for this divergence 
in performance might be attributed to the nature of the datasets 
themselves. Test dataset 1 encompasses data from the same part 
production as the training dataset collected on a different day, 
thereby potentially sharing similar underlying distribution and 
patterns. Conversely, Test dataset 2 was derived from a differ-
ent part production, which might introduce new variances and 
patterns not present or learned from the training data, causing 
accurate predictions to be more challenging.

Figure 13 illustrates the F1-scores to evaluate prediction 
performances for each label using combined test datasets. 
Among the classes, prediction performances of ‘Off’ were 
the best while prediction performances of ‘Loading’ were the 
lowest in all sensors. Sensor 2 exhibited the highest perfor-
mance across most classes except for ‘Cut’ where Sensor 4 
outperformed the others. This could be attributed to the pipe 
cutting method being shear cutting, driven by the hydraulic 
pump, which allows Sensor 4 to effectively capture the asso-
ciated cutting sound from the pump. Nevertheless, Sensor 
4 delivered poor prediction performances for ‘Idle’, ‘Load-
ing’, and ‘Execution’ because it struggles to discern distinct 
sounds during different machine operations. Furthermore, 
since the hydraulic pump remains active while the machine is 

(6)Precisionmacro =
1

C

C
∑

i=1

Precisioni

(7)Recallmacro =
1

C

C
∑

i=1

Recalli

(8)F1macro =
1

C

C
∑

i=1

F1i

turned on, Sensor 4 demonstrated the best prediction perfor-
mance specifically in predicting ‘Off’. If timely operation and 
precise pipe cutting are pivotal monitoring targets, employing 
Sensor 4 could be a judicious choice.

Overall, a performance ranking of the sensors was observed: 
Sensor 2, the internal sound sensor on the machine bed, exhib-
ited the highest performance, followed by Sensor 3, Sensor 1, 
and Sensor 4. From the result, Sensor 2 was chosen for addi-
tional analysis and model implementations, taking advantage of 
its proven superior predictive capacities across all datasets. This 
selection is expected to utilize its robust predictive capability 
and thereby enhance model performance in actual applications.

4.2  Comparison with Other CNN Architectures

Comprehensively analyzing deep learning models, particularly 
CNN architectures, demands meticulous and multi-pronged 
approach to accurately capture their efficacy and applicabil-
ity across various deployment environments. In this section, 
a comparative analysis was conducted among diverse CNN 
architectures, examining not merely their computational 
demand but also their overall size, intrinsic complexity, and 
predictive performance. FLOPs (floating point operations per 
second) serve to depict the computational burden of the mod-
els, offering insights into the computational resources required 
during inferential processes [61]. While a lower FLOP count 

Table 6  Best hyperparameters chosen from grid search

Layer Parameter Sensor 1 Sensor 2 Sensor 3 Sensor 4

2D Conv 1 Filter size 16 16 24 24
Kernel size 3 × 3 3 × 3 2 × 2 3 × 3

2D Conv 2 Filter size 32 32 32 32
Kernel size 3 × 3 3 × 3 3 × 3 3 × 3

Hidden 1 Neuron size 64 64 64 48
Hidden 2 Neuron size 32 64 64 48

Fig. 12  F1-score comparison of sensor according to training and 
dataset
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typically suggests reduced computational demands, it also pro-
vides an estimate of a model’s capacity to undertake real-time 
inference. Further, the physical size of the models, articulated 
in megabytes (MB), was assessed to determine their storage 
and memory footprints. This metric is pivotal in ascertaining 
the viability of model deployment in environments where stor-
age capabilities are constrained such as in edge computers.

Table 7 presents a comparison of various trained CNN mod-
els using Sensor 2, evaluating aspects such as training accuracy, 
complexity, and computational demand. Optimal outcomes 
characterized by the highest accuracy and the minimal compu-
tational load are emphasized in bold. All the examined CNN 
models demonstrated training accuracies of nearly 99%. While 
VGG19 secured the top spot in training accuracy, it is notably 
the largest model with a size exceeding 500 MB. Conversely, 
the proposed CNN architecture yielded relatively commend-
able training accuracy with a lightweight model size which is 
approximately 100 times smaller than that of VGG19.

Prediction performances of the trained CNN architectures 
using Sensor 2 for the combined test datasets are summarized 
in Table 8, presenting a detailed insight into the models’ capa-
bilities. The bolden value is the best one in the column. While 
VGG16 exhibited the highest prediction performances across 
all metrics, the proposed CNN model closely followed, dem-
onstrating only marginal differences in performance outcomes. 
ResNET50 showed the worst prediction performances across 
all the metrics. The proposed CNN model manifested an equi-
librium among the metrics, not only achieving an impressive 
accuracy of 97.08% but also securing robust precision, recall, 
and F1-score, at 94.58%, 93.8%, and 94.19%, respectively. 
Considering these metrics and computational efficiency, the 
proposed lightweight CNN model demonstrates comparable 
predictive performance combined with efficient resource use.

4.3  Real‑Time Implementation on Edge Computer

The CNN models were implemented to the same Rasp-
berry Pi with Sensor 2 on the shop floor to evaluate the 

prediction accuracy and speed of the proposed CNN model 
in real-time integrated with the buffer algorithm. The 
inference time τinference of the CNN models was assessed. 
TensorFlow Lite was employed to execute the CNN mod-
els, and the inference time was calculated based on the 
duration required to obtain the CNN model output, as 
indicated in line 4 of Algorithm 1. Throughout each itera-
tion of Algorithm 1, the inference time was recorded and 
stored. To test the computation time in the same environ-
ment, each model was loaded for 1 hour long respectively 
on the same day. Figure 14 illustrates the average inference 
time results over a 1 hour period of ResNET, YAMNet, 
and the proposed CNN model. The error bar in Fig. 14 
represents the standard deviation. The Raspberry Pi was 
unable to load VGG16 and VGG19 due to an out-of-mem-
ory error encountered during program execution. Even if 
VGG16 showed the highest accuracy in both training and 
testing phase, it could not be used for the model deploy-
ment on the edge computer. The proposed CNN model 
demonstrated the quickest speed, at 0.0039 seconds, while 
ResNET50 and YAMNet recorded approximately 0.173 
and 0.017 seconds, respectively. Evidently, the inference 
time ratio among the models is proportional to several 
factors such as the number of parameters, model size, or 
FLOPs shown in Table 7.

Fig. 13  F1-score of each label 
on all test datasets according to 
sensor

Table 7  Comparative analysis of CNN architectures trained using 
Sensor 2

CNN architec-
ture

Training 
accuracy 
(%)

Parameter 
(million)

FLOP 
count (mil-
lion)

Model size 
(MB)

VGG19 99.58 43.12 3946.1 505.5
VGG16 99.06 37.81 3137.3 443.2
ResNET50 98.85 23.59 960.9 227.0
YAMNet 99.51 1.57 60.4 18.5
Proposed CNN 99.55 0.51 4.1 5.9
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While assessing the inference time for the production of 
another part, distinct from the model training, a substan-
tial number of prediction errors in operation counting were 
identified. The count for each operation was defined as incre-
mented by one upon a change in the operational state. Fig-
ure 15 demonstrates the model output probability (top) and 
the predicted state (bottom) without the buffer algorithm 
during ‘Executing’ operation in all the time range. The raw 
output values (logits) from the CNN model, denoted as z , are 
transformed into probabilities through the softmax function, 
yielding a probability vector ŷ represented as Eq. (9).

with each element indicating the predicted probability 
of a class. The softmax function normalizes the raw net-
work outputs to provide values representing probabilities 
for each class, ensuring the sum of the probabilities in the 
model’s final class prediction equals one. Eventually, the 
model’s inference ŷ is obtained by selecting the class with 
the highest probability. The probabilities depicted in Fig. 15 
signify the probabilities associated with labels ‘Loading’ 
and ‘Executing’. At approximately 2.8 s in Fig. 15, the pro-
posed CNN model incorrectly inferred the ‘Executing’ state 
as ‘Loading’. While this does not significantly impact the 
accumulated operation time, it can be crucial when count-
ing the operational state. The count of ‘Loading’ operations 
directly correlates with the number of parts produced. Fur-
thermore, the cutting blade for the pipe, being an expensive 

(9)ŷ = Softmax(z)

replacement, has its replacement time determined by the 
number of cuts. Therefore, it is crucial to count these opera-
tions accurately.

The buffer algorithm (Algorithm 1) was implemented using 
buffer size of 5 alongside the proposed CNN model on the 
Raspberry Pi. The decision to implement 5 buffers was made to 
ensure robust detection of operational states while reducing pre-
diction delays. This was chosen to minimize the change of con-
fusion that might arise with an even number of buffers, where 
conflicting inferences could lead to ambiguous predictions. The 
choice of 5 buffers effectively balances the necessity for immedi-
ate response capabilities with the precision required to accurately 
capture and respond to brief operational changes, such as those 
seen in 'Cut’ or ‘Loading’ events. These events, often lasting just 
a few seconds, demand a buffer length that can quickly pro-
cess and reflect changes without significant delays. Thus, the 
selection of five buffers represents a thoughtful compromise, 
ensuring our monitoring system remains both responsive and 
accurate in its real-time analysis of operational state changes. 
During this test, webcam videos were also recorded to retrieve 
true operational states for the real-world performance of the 
implementation and comparison. The ‘Off’ state did not exist 
in this test. In each iteration of the loop, the timestamp, ŷ , and 

Table 8  Performance metrics 
of CNN architectures on test 
datasets using Sensor 2

CNN architecture Accuracy (%) Precision (%) Recall (%) F1-score (%)

VGG19 96.14 91.07 93.09 92.07
VGG16 97.62 95.39 94.28 94.83
ResNET50 93.89 86.86 92.64 89.19
YAMNet 97.32 91.24 94.21 92.7
Proposed CNN 97.08 94.58 93.8 94.19

Fig. 14  Inference time according to CNN model on Raspberry Pi

Fig. 15  Inference probability (top) and predicted state (bottom)
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ŷbuffer were stored for a duration of 1 hour. Here, ŷ represents the 
model prediction result without applying the algorithm, while 
ŷbuffer denotes the result obtained with the algorithm applied. 
Table 9 summarizes the results of prediction performances of 
counting ability and time accuracy in comparisons between the 
proposed CNN model and the model with the buffer algorithm. 
The bolden values indicate ones with less error from the true 
value. Error values are presented in parentheses as percentages. 
The employment of the buffer algorithm effectively reduces 
the predictive count discrepancy in all labels. Notably, ‘Load-
ing’ exhibits a 0% error, indicating accurate prediction with the 
buffer algorithm. Predictions of the accumulated time on each 
label are relatively accurate compared to the count predictions, 
with both models presenting relatively minor error percentages 
across all the labels. The model employing the buffer algorithm 
demonstrated a substantial enhancement in predicting count of 
operational state occurrences.

Finally, the proposed CNN model paired with the buffer algo-
rithm and Sensor 2 was applied for web-based remote monitor-
ing of the legacy pipe bending machine. Figure 16 presents an 
outline of the monitoring system. MySQL was employed for the 
database, while the Grafana interface was utilized for the web-
based dashboard. In each iteration of the proposed algorithm, 
the operational state prediction, ŷbuffer , is transmitted to the 
database. Data is efficiently stored by writing only the changing 

operational state result along with the timestamp to the database. 
Consequently, productivity is calculated by counting operational 
states, and operational time-related metrics such as runtime and 
downtime are monitored by measuring the timestamps between 
changes in the operational state. Figure 17 is the capture of the 
web-based dashboard includes a discrete time panel for state 
history change, cut and loading counts, and executing cycle.

Following the presentation of the real-time implementation 
on an edge computer, it is crucial to acknowledge a limita-
tion regarding long-term reliability. Continual learning for 
long-term reliability is an important topic that this research 
did not focus on, but it deserves more attention in the future. 
The necessity for models to adapt over time, particularly in 
response to factors such as equipment wear and the introduc-
tion of new operational conditions, highlights the importance 
of continuous learning strategies. Looking forward, the dis-
cussion on enabling continual learning within this monitoring 
system is relevant. This could involve developing mechanisms 
for incremental model updates, where the system regularly 
integrates new data, learning from evolving operational pat-
terns without the need for complete retraining [62]. Addition-
ally, exploring techniques such as transfer learning, where a 
pretrained model is fine-tuned with new data, could prove 
valuable for efficiently adapting to changes in the operational 
environment [63]. Future research in these areas will be 

Table 9  Prediction performance 
comparisons in real 
implementation

Metric Label True value Proposed CNN model only Proposed CNN model 
with buffer algorithm

Count Idle 41 91 (121.9%) 50 (22.0%)
Loading 17 29 (70.6%) 17 (0%)
Executing 112 215 (92.0%) 120 (3.57%)
Cut 66 112 (69.7%) 67 (1.52%)

Accumulated 
time [sec]

Idle 834.5 848.4 (1.73%) 850.9 (2.04%)
Loading 88.3 86.1 (− 3.43%) 83.32 (− 6.59%)
Executing 2495.2 2489.4 (− 0.16%) 2490.9 (− 0.209%)
Cut 182.7 176.6 (− 3.26%) 175.5 (− 2.46%)

Fig. 16  Schematic of real-time 
remote monitoring for pipe 
bending machine



 International Journal of Precision Engineering and Manufacturing

1 3

crucial for advancing the adaptability and sustainability for 
machine learning models in industrial monitoring, ensuring 
they remain robust and effective over extended periods.

5  Conclusion

This study introduced a real-time sound monitoring technique 
employing a lightweight CNN model to monitor operation 
and productivity of a legacy pipe bending machine on a real 
shop floor. Initially, four sensors were deployed to determine 
the optimal sensor type and placement, collecting sound data 
alongside webcam videos to generate labels for training the 
CNN model. Various datasets gathered from different produc-
tion phases and durations were labeled, then utilized to train 
and test the lightweight CNN model. The model leverages 
Log-Mel spectrogram for feature extraction and employs a grid 
search method to optimize hyperparameters across two con-
volutional and two hidden layers. Amongst training and test-
ing datasets, a CNN model, utilizing an internal sound sensor 
located on the main bed, exhibited superior prediction perfor-
mances with accuracies of 99.55% and 97.07%, respectively.

The proposed CNN model was compared with state-of-the-
art DL architectures, such as VGG16, VGG19, ResNET50, and 
YAMNet, to discern both prediction performance and efficacy 
in edge computing. While VGG16 exhibited the highest predic-
tion performance with a 97.62% accuracy on testing datasets, 
VGG16 and VGG19 were not implemented on the edge com-
puter due to their substantial size, inhibiting their applicability 
on Raspberry Pi. Moreover, the inference time of the proposed 

CNN model on Raspberry Pi was measured, revealing an aver-
age inference time of 3.9 ms, the shortest amongst the com-
pared architectures. However, during real-world application, the 
model encountered a significant number of errors in predicting 
operational state occurrences. To mitigate this, a buffer algo-
rithm was introduced to enhance count performance. A queuing 
method was proposed for continuous sound monitoring, effec-
tively mitigated predictive count discrepancies in operational 
states. This is particularly vital for accurately counting load-
ing and cutting operations, which directly correlate with the 
number of parts produced, thereby ensuring precise monitor-
ing and operational efficiency in the manufacturing process. In 
conjunction with the buffer algorithm, the proposed lightweight 
CNN model was successfully deployed on the edge computer 
for remote monitoring of the machine in real-time.

Future work will delve deeper into the buffer algorithm and 
related techniques to enhance the robustness and prediction 
performances of CNN models in sound monitoring. A key 
focus will also be on exploring continual learning methods 
to ensure the system adapts and evolves with changing opera-
tional conditions, aiming to maintain the long-term effective-
ness of our monitoring solutions. Additionally, the scope of 
sound monitoring and recognition for legacy machines will be 
expanded to encompass condition-based monitoring (CbM).

Appendix

See Fig. 18.

Fig. 17  Capture of web-based dashboard
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Fig. 18  Sound signal in time domain and sound feature of each oper-
ational state (row) and sensor (column) in grid: Each cell contains 
time domain plot (top) and Log-Mel spectrogram (bottom) and the 

colormap throughout all Log-Mel spectrograms is the same with it in 
Off case of Sensor 4. The time axis is the same as in Fig. 4
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