
Vol.:(0123456789)

International Journal of Precision Engineering and Manufacturing (2024) 25:1073–1086
https://doi.org/10.1007/s12541-024-00960-6

1 3

REGULAR PAPER

Platform Supporting Intelligent Human–Machine Interface (HMI)
Applications for Smart Machine Tools

Il‑Ha Park1 · Joo Sung Yoon2 · Jin Ho Sohn3 · Dong Yoon Lee4

Received: 1 August 2023 / Revised: 3 January 2024 / Accepted: 5 January 2024 / Published online: 22 January 2024
© The Author(s) 2024

Abstract
As the Internet of Things, artificial intelligence, and the fourth industrial revolution advance, smart factories and machines
increasingly gain intelligent features that enable the integration of more sophisticated functionalities. Approaches to achiev-
ing this intelligence involve both internal systems, such as human–machine interface (HMI), and external systems, such as
big data platforms and cloud services. Although current research leans toward studying external systems, accomplishing
intelligent functions through such means poses more challenges in achieving real-time responses during machining processes
than using internal systems. When intellectualizing machine tools through internal HMI systems, three critical issues must
be addressed. First, HMI functions are structured to depend on the HMI itself, leading to a ripple effect where a problem
occurring in one HMI function impacts the entire system. Second, owing to differences in development tools and program-
ming languages, the interconnectivity between functions developed by multiple stakeholders to be loaded onto the HMI
may suffer, leading to potential inefficiencies and increased maintenance costs. Third, although various types of computer
numerical control (CNC) machines need to communicate with the HMI function, the diverse communication methods and
development tools used by each CNC manufacturer result in identical intelligent functions being developed separately for
each CNC type. To address these challenges, this study proposes an innovative HMI platform capable of executing and
developing various intelligent functions. The HMI platform and its major components are designed and implemented through
component-based development (CBD). Subsequently, the performance and effectiveness of the platform are validated using
quality attribute scenarios.

Keywords  Component-based development · Multi-vendors’ computer numerical control · Intelligent HMI · HMI
application · Smart machine tools

1  Introduction

As the Internet of Things (IoT) and artificial intelligence
(AI) technologies continue to advance, the fourth industrial
revolution is driving the transformation of smart factories
and machine tools within them into intelligent entities.
A machine tool is a machine for handling or machining
metal, the machining process is to get the desired shape by
removing the material from the larger piece of raw mate-
rial through cutting [1]. Intelligent machine tools refer to
autonomous machine tools that possess the capability to
learn and make decisions on their own [2]. Several methods
for intellectualizing machine tools are being explored, with
active research focusing on advancing the functionality and
software that can be integrated into these machines [3–15].
Table 1 provides a summary of the research about intelligent
machine tools. Loading intelligent functions onto machine

Online ISSN 2005-4602
Print ISSN 2234-7593

 *	 Joo Sung Yoon
	 jsyoon@kyungnam.ac.kr

1	 Department of Systems Management Engineering,
University of Sungkyunkwan, 2066, Seobu‑Ro, Jangan‑Gu,
Suwon‑Si, Gyeonggi‑Do, Republic of Korea

2	 School of Mechanical Engineering, Kyungnam University,
Changwon 51767, South Korea

3	 Department of Industrial & Management Systems
Engineering, KyungHee University, Deogyeong‑Daero,
Giheung‑Gu, Yongin‑Si, 1732 Gyeonggi‑Do,
Republic of Korea

4	 Digital Transformation R&D Department, Korea
Institute of Industrial Technology, 143 Hanggaulro,
Sangrok‑GuGyeonggi‑do, Ansan‑Si 15588,
Republic of Korea

http://crossmark.crossref.org/dialog/?doi=10.1007/s12541-024-00960-6&domain=pdf

1074	 International Journal of Precision Engineering and Manufacturing (2024) 25:1073–1086

1 3

tools can be achieved through two approaches: utilizing
external systems, such as big data platforms and cloud ser-
vices [16–25], or employing internal systems like the Human
Machine Interface (HMI). While significant research has
concentrated on external systems, this method of loading
intelligent functions is susceptible to network failures, and
real-time responsiveness during the machining process can
be challenging when compared to using internal systems.
Notably, DMG MORI and Okuma have released products
like CELOS [26] and OSP Suite [27], respectively, which
employ intelligent functions loaded on HMIs, presented in
the form of apps for self-diagnosis and active control.

Intelligent machine tools utilizing internal systems, such
as HMIs, must address three critical issues that may arise
during HMI development. The first issue pertains to the
design and implementation dependency of general HMI
functions, as they function as subcomponents of the HMI
application software. Consequently, a problem occurring in
one function can affect the entire HMI, potentially leading to
compromised system stability. The second issue arises from
the diversity of stakeholders capable of developing functions
to be loaded onto the HMI. Machine Tool Builders (MTBs)
are developing intelligent functions independently, and on-
site workers, as well as external vendors, can also directly
contribute to developing the necessary intelligent functions
to enhance work efficiency. With diverse developers working
on intelligent functions, variations in the development tools
and programming languages used can lead to inconsistencies
when integrating these functions onto the same HMI. This,
in turn, can hinder the data connection efficiency between
intelligent functions and result in additional costs and time
spent on maintenance tasks. The third issue highlights the
significant diversity in the types of Computer Numerical
Control (CNC) machines targeted by the HMI’s intellectual
functions. MTBs and external vendors are developing intel-
ligent functions to cater to various CNCs from manufactur-
ers such as Fanuc and Siemens, based on customer demand.
As each CNC manufacturer offers distinct communication
methods and development environments (development tools,
software programming languages, etc.), identical intelligent
functions may require separate development efforts depend-
ing on the CNC development tool being used. For example,
Fanuc has communication functions for each data, whereas
Siemens has one communication function that uses an

address assigned to the data as input parameter. Further-
more, developers working on these intelligent functions must
familiarize themselves with one or more development tools.

This study introduces an HMI platform capable of execut-
ing and developing diverse intelligent functions. The HMI
platform offers a unified execution environment where inde-
pendent intelligent functions can be executed in connection,
as well as a common development environment that allows
intelligent functions to be developed for various types of
CNCs or by different developers. To design and imple-
ment the HMI platform, the component-based development
(CBD) methodology is employed, which constructs software
architecture in independent units of components [28]. As the
HMI platform serves as an environment for various consum-
ers and suppliers of intelligent functions to interact, it must
be adaptable to accommodate the diverse requirements of all
participants. Following the CBD methodology, the proposed
HMI platform is designed and implemented with a combina-
tion of independent components, minimizing the impact on
other components in response to changes driven by specific
requirements. The reuse of independent components con-
tributes to a reduction in development time and costs as the
HMI platform continues to evolve.

The structure of this paper is as follows. In Sect. 2, a
comprehensive review of the literature related to intelligent
machine tools is presented. Section 3 outlines the collection
of requirements for the design and implementation of the
HMI platform. Subsequently, in Sect. 4, design and imple-
mentation strategies are established through the definition
and analysis of use cases and quality attributes, culminating
in the composition of the architecture governing the rela-
tionship between the components of the HMI platform. The
actual implementation and validation of the HMI platform,
based on quality attribute scenarios, are discussed in Sect. 5.
Finally, in Sect. 6, the findings are summarized, and future
work in this area is explored.

2 � Related Research

2.1 � Intelligent Algorithm and Application System

Various studies have focused on intellectualizing machine
tools through the advancement of algorithms used during the
machining process. These proposed algorithms serve differ-
ent purposes and can be broadly categorized into applica-
tions before, during, and after machining processing. For
real-time monitoring during the machining process, Bhinge
et al. [8] introduced an intelligent tool abrasion monitor-
ing software utilizing support vector machines (SVM). In
the realm of control during machining, Li et al. [6] pre-
sented a fuzzy reasoning approach that optimizes the on/
off state of the device, reducing resting time, while Saini

Table 1   Intelligent machine tools researches

Method of intelligence References

Machining algorithm, software [3, 4, 6–12]
Application system [13–17]
Software with external systems [5, 18–25]
Software with internal systems [26, 27]

1075International Journal of Precision Engineering and Manufacturing (2024) 25:1073–1086	

1 3

et al. [7] proposed an intelligent wheel position search-
ing algorithm to enhance processing precision. Further-
more, energy-efficient operation of machine tools has been
addressed in research such as Maher et al. [10], who put
forward an energy demand modeling method for processing,
and Abdulshahed et al. [12], who utilized thermal imaging
cameras and applied the fuzzy c-means clustering methodol-
ogy for thermal error modeling of machine tools. In terms
of prediction after processing, where analysis of processing
data is crucial, Abdulshahed et al. [11] introduced an adap-
tive neural-fuzzy approach based on cutting force, enabling
accurate prediction of surface roughness during end milling.
Additionally, Jia et al. [9] developed an energy prediction
model employing the Gaussian process regression method.

Notably, beyond software-based approaches, some studies
have also focused on application systems, which involve a
combination of hardware and software execution. For moni-
toring and control during machining, Kang et al. [14] pro-
posed a machine tool health monitoring and control system,
while Wang et al. [15] designed a machine tool energy data
analysis system for post-processing maintenance. Further-
more, Liu and Xu [16] introduced a fault diagnosis system.

2.2 � Intelligent Machine Tools Architecture

A prominent research trend involves proposing architectures
that facilitate the integration of intellectualization software,
encompassing data collection, processing, and analysis.
Chen et al. [17] introduced a cyber-physical system (CPS)-
based structure that enables autonomous learning using
data generated from intelligent machine tools. Similarly,
Fei et al. [5] presented an information model and database,
enabling machine tools to not only perform processing but
also store data, employ data analysis algorithms, and uti-
lize interfaces for these purposes. Furthermore, Liu et al.
[18] implemented the concept of a digital twin to acquire
and integrate manufacturing data, resulting in a machine
tool architecture equipped with intelligent algorithms and a
comprehensive database. Moreover, Liu et al. [19] proposed
a machine tool architecture with three layers (NC, server,
client) to acquire, store, and monitor real-time data, demon-
strating its potential in predicting relevant relationships and
processing outcomes.

In addition to architectural frameworks, certain studies
have conceptualized intellectual functions based on specific
architectures. For instance, Zuo et al. [20] developed and
integrated modules capable of diagnosing defects, perform-
ing repair and self-maintenance of malfunctioning opera-
tions, and analyzing potential weaknesses in major com-
ponents affecting machine reliability. This implementation
was carried out within an architecture comprising appli-
cation and cloud layers. Similarly, Gao et al. [21] devised
and incorporated software for processing planning and tool

path generation within an architecture composed of factory
and cloud layers. Additionally, Tao et al. [22] designed and
implemented software to monitor real-time device states
and collect location data, utilizing an architecture consist-
ing of five layers (resource, recognition, network, service,
application). Other research efforts have focused on spe-
cialized services within CPS-based architectures. Lee et al.
[23] proposed a diagnosis and maintenance management
service applicable to CPS-based architectures. Cao et al.
[24] addressed spindle maintenance, spindle state monitor-
ing, and tool state monitoring and control, utilizing a multi-
layer architecture encompassing sensing, decision-making,
control, and physical CNC layers. Lastly, Mourtzis et al.
[25] proposed a cloud-based monitoring function within an
architecture incorporating physical factory, sensor network,
machine tool operation, cloud infrastructure, and mainte-
nance layers.

3 � Requirements Analysis

This section conducts an analysis of the existing HMI to
derive the requirements for the HMI platform's func-
tion (3.1), execution environment (3.2), and development
environment (3.3). Additionally, the requirements are cat-
egorized as functional and non-functional, specifying the
necessary conditions and capacities for the HMI platform.
Functional requirements encompass criteria that the HMI
platform must perform or enable the user to perform within
the platform. Non-functional requirements comprise criteria
essential for achieving optimal performance, such as ensur-
ing the smooth execution of the HMI platform.

3.1 � HMI Function

The HMI includes four fundamental and pivotal functions.
First, the monitoring function identifies the currently execut-
ing NC file and the activated axis coordinate system, tool,
and spindle data. Second, the file management function ena-
bles writing and execution of NC files, in addition to various
file operations like copy and paste, to manage NC files effec-
tively. Third, the tool management function is responsible
for registering and deleting tools, along with managing the
geometry and offset data of the registered tools. Lastly, the
maintenance function identifies alarms occurring during
processing and configures the necessary system parameters
to compose the HMI function. Table 2 provides a summary
of the NC data offered by each function, along with the cor-
responding data operation and communication methods.

•	 [R001] (Functional) The HMI platform supports reading/
writing NC data (axis, spindle, tool, etc.).

1076	 International Journal of Precision Engineering and Manufacturing (2024) 25:1073–1086

1 3

•	 [R002] (Functional) The HMI platform supports various
NC file operations (create, delete, copy, paste, rename,
move, etc.).

•	 [R003] (Functional) The HMI platform supports com-
munication with NC in both periodic and non-periodic
manners.

•	 [R004] (Functional) The HMI platform supports data
communication between HMI functions.

To accommodate intelligent functions beyond the basic
ones, the environment must allow for HMI function expan-
sion. Moreover, to utilize results based on data analysis as
an intelligent function, the data generated during process-
ing must be stored permanently without volatilization. For
instance, the condition analyzer app of CELOS saves and
analyzes machine tool sensor data, enabling visual moni-
toring of the current device's availability and efficiency.
Similarly, the OSP-AI app of OSP Suite saves and analyzes
sensor data for self-diagnosing the state of the feed axes.

•	 [R005] (Functional) The HMI platform supports the
expansion of HMI functions.

•	 [R006] (Functional) The HMI platform supports the stor-
age of data generated during machining processing.

3.2 � Execution Environment

To ensure efficient control and limited access to each HMI
function, basic operations such as open and hide must be fea-
sible. The system parameter change availability for the HMI
system in Fanuc, for instance, requires altering the parameter
value to true, while Siemens permits revision based on the
granted authority for individual user accounts.

•	 [R007] (Functional) The HMI platform supports control
of HMI functions (e.g., show, hide).

•	 [R008] (Functional) The HMI platform supports man-
agement of access rights that can be granted per HMI
function.

To address concerns about system safety being com-
promised due to function dependency within the HMI, an
independent execution environment must be provided. For
instance, CELOS and OSP Suite load HMI intellectual func-
tions in the form of apps [25, 27], ensuring independent
execution. However, since an app is a self-contained soft-
ware unit, the data exchange between independent functions
becomes challenging when each function has separate execu-
tion environments (operating system, compile library, etc.).
Therefore, a common execution environment for HMI func-
tions is essential to facilitate fast and easy data exchange.

•	 [R009] (Non-functional) The HMI platform supports
HMI functions to execute and operate independently.

•	 [R010] (Functional) The HMI platform supports a com-
mon execution environment that enables data exchange
between various HMI functions.

3.3 � Development Environment

The diverse range of HMI function developers, including on-
site workers, CNC enterprises, and machine tool manufac-
turers, often involves multiple developers collaborating on a
single function. To optimize data connection efficiency and
minimize costs and time required for HMI function main-
tenance, a consistent development tool and function that all
developers can use must be provided. Additionally, support-
ing an environment for seamless developer cooperation is
essential.

•	 [R011] (Non-functional) The HMI platform supports
a consistent development methodology (terminology,
methods, etc.).

•	 [R012] (Non-functional) The HMI platform supports
smooth cooperation between developers.

The various types of CNC that HMI functions aim to
communicate with present a challenge, as each CNC enter-
prise offers distinct communication libraries. This can result
in the need to develop separate communication protocols
using different libraries for identical functions targeting

Table 2   Function analysis

Function Data Operation Communication

Monitoring Axis Position, File path, File name, Tool number, Tool length, Tool radius, Feed speed,
Feed override, Spindle speed, Spindle override, G modal, Part counter, Part run time

Read Periodic

File management Block string, Block counter, Sequence number, Program name, Program path, Program
edited time

Create, Delete,
Copy,
Rename,

Move

Non-periodic

Tool management Tool number, Tool name, Tool offset, Tool length, Tool radius Read, Write Non-periodic
Maintenance Alarm number, Alarm text, Axis limit plus/minus Read, Write Non-periodic

1077International Journal of Precision Engineering and Manufacturing (2024) 25:1073–1086	

1 3

different CNC types. To address this issue, the HMI plat-
form should support a communication method that remains
consistent regardless of the CNC type while also facilitating
communication with various CNC types.

•	 [R013] (Non-functional) The HMI platform supports
communication for various types of CNC.

•	 [R014] (Non-functional) The HMI platform supports an
identical communication method regardless of CNC type.

4 � HMI Platform Design

This section employs the CBD methodology to define the
use cases of both functional and non-functional requirements
and establish the analysis classes (4.1). Subsequently, the
quality attribute is determined based on the non-functional
requirements (4.2), and a design strategy, including design
patterns, is derived (4.3). Finally, candidate components are
identified, taking into account the quality attribute and use
cases, and the relationships between the components are
defined and structured (4.4).

4.1 � Use Case

Use cases represent actions performed by the system. Based
on the functional and non-functional requirements defined in
Sect. 3, the use cases of the HMI platform are summarized
in Table 3 and elaborated below.

•	 [U001] NC Communication: HMI functions loaded onto
the platform can request data read/write with periodic
and non-periodic communication for NC.

•	 [U002] NC File Management: HMI functions can man-
age NC files by creating and deleting NC files.

•	 [U003] App Communication: HMI functions can request
data read/write with periodic, non-periodic, and call-
back communication for other HMI functions.

•	 [U004] DB Communication: Each HMI function requires
a database that can be generated, deleted, and accessed
to read or revise data.

•	 [U005] App Control: HMI platform users can activate
or hide HMI functions as well as execute and complete
them.

•	 [U006] App Management: New HMI functions can be
registered and deleted in the HMI platform.

•	 [U007] Authorization Management: The authority for
reading, writing, and executing HMI functions can be
registered, deleted, and checked.

4.2 � Quality Attribute

Quality attributes represent the non-functional require-
ments that the software must fulfill. ISO/IEC 25010 [29] is
a standard used to objectively assess software quality, clas-
sifying and defining representative attributes that the soft-
ware should possess. In this study, a new quality attribute
is specified based on the standard quality attribute of ISO/
IEC 25010.

4.2.1 � Commonality

“Commonality” refers to the degree of uniform communi-
cation with different NC types using an identical approach.
As per the non-functional requirements, the HMI platform
must facilitate communication with NCs, irrespective of
their type, using the same approach ([R013], [R014]). Thus,
“commonality” is defined as a quality attribute of the HMI
platform, characterized by providing identical approaches for
various CNC types based on adaptability (ISO/IEC 25010).
Adaptability represents the effectiveness and efficiency of
supporting the system across various usage environments,
making it one of the standard quality attributes.

4.2.2 � Flexibility

“Flexibility” indicates the level of support for independent
execution of HMI intelligent functions. As stated in the ear-
lier non-functional requirements, the HMI platform must
enable independent execution of HMI intelligent functions

Table 3   Use cases

ID Use case R001 R002 R003 R004 R005 R006 R007 R008 R009 R010 R011 R012 R013 R014

[U001] NC Communication ● ● ● ● ●
[U002] NC File Management ● ● ● ● ●
[U003] App Communication ● ● ● ● ●
[U004] DB Communication ● ●
[U005] App Control ● ●
[U006] App Management ● ●
[U007] Authorization Management ●

1078	 International Journal of Precision Engineering and Manufacturing (2024) 25:1073–1086

1 3

([R009]). Consequently, “flexibility” is defined as a quality
attribute of the HMI platform, denoting the characteristic
that allows intelligent functions to execute independently
and flexibly. This attribute is based on modularity (ISO/IEC
25010), representing the degree of individual composition
with minimal impact among standard quality attributes, and
modifiability (ISO/IEC 25010), representing the ability to
efficiently revise the system or product without defects.

4.2.3 � Consistency

“Consistency” pertains to the level of support for a uniform
and straightforward use of the HMI platform. As specified
in the preceding non-functional requirements, the HMI
platform must provide a simple and consistent system to
ensure smooth user experience ([R011], [R012]). Therefore,
“consistency” is defined as a quality attribute of the HMI
platform, characterized by supporting a communication sys-
tem that is both simple and consistent. It relies on learnabil-
ity (ISO/IEC 25010), representing the degree to which the
stated target can be achieved by learning the method of use,
and operability (ISO/IEC 25010), representing the ease with
which the system or product can be operated and controlled
among standard quality attributes.

4.3 � Design Strategy

4.3.1 � [Commonality] Common Data Model

To ensure communication with NC data across different NC
types, a common data model is designed. This expandable
and standardized data schema includes entities, attributes,
and their relationships [30]. In the HMI platform, the com-
mon data model is structured to store various types of NC
data in a uniform data structure.

4.3.2 � [Commonality] Template‑Method Pattern

To facilitate communication with NC data regardless of the
NC type, the NC communication component is designed
using the template-method pattern. This design pattern
defines identical functions in a superclass and only requires
subclasses to override the parts that need to be changed [31].
In the HMI platform, a representative method for communi-
cation with NC is created in a superclass, and the subclass
inherits this method, allowing the execution of methods pro-
vided by NC libraries.

4.3.3 � [Flexibility] Broker Pattern

To eliminate dependencies between HMI functions, the bro-
ker component is designed using the broker pattern. This
design pattern is employed when independent components

have different execution environments and require commu-
nication between them. Broker components are equipped
with client and server information, enabling them to coordi-
nate communication between components [32]. In the HMI
platform, the broker component treats each HMI function
as an independent component and mediates communication
between them.

4.3.4 � [Consistency] Facade Pattern

To provide a simple and consistent user experience with the
HMI platform, the facade component is designed using the
facade pattern. This design pattern offers a straightforward
and integrated interface, minimizing dependencies and com-
munication within a system comprising complex subsystems
[31]. The facade component implements the functions pro-
vided by the subsystem classes and effectively processes the
allocated tasks. By incorporating the facade component into
the HMI platform, a unified and user-friendly interface is
provided.

4.3.5 � [Consistency] Standardized Uniform Resource
Identifier

To ensure a smooth user experience, the data communication
standard of the HMI platform is designed as a standardized
uniform resource identifier (URI). The URI is a unique char-
acter string used to identify specific resources, composed of
schemas, hosts, queries, and so on [33]. The HMI platform
supports data communication not only for NC but also for
various targets, such as apps and databases. By implement-
ing and utilizing a URI communication system, consistent
communication is achieved for diverse targets within the
HMI platform.

4.4 � Platform Architecture

The candidate components that could form the architecture
are analysis classes responsible for the described behaviors
in the defined use cases. These analysis classes fall into three
types: the boundary class, acting as the interface between
users and other systems; the control class, providing system
control behavior; and the entity class, storing and managing
system data [28]. The component candidates are refined to
derive the components of the HMI platform architecture,
as illustrated in Fig. 1. The components include the unified
NC I/F, serving as the interface between external NC sys-
tems; Command I/F, providing the interface for users and
HMI apps; and various managers, such as the File Man-
ager, Security Manager, App Manager, Database Manager,
and Communication Manager, which handle system con-
trol. The Security Manager contains the permission list, the
App Manager holds the list of apps, the Database Manager

1079International Journal of Precision Engineering and Manufacturing (2024) 25:1073–1086	

1 3

manages the databases, and the Communication Manager
contains the data access point for the Machine State Map.
The Command Manager acts as an intermediary for com-
munication between the managers and HMI apps, as well as
among different managers.

4.4.1 � Communication Manager

The Communication Manager is identified as the NC com-
munication control class. It determines the type of commu-
nication (periodic/non-periodic) and read/write operations,
executes the requested communication, and saves the data in
the Machine State Map. The Machine State Map is an entity
class for NC data, designed using the common data model
strategy for “commonality.” It is internally supported by the
Communication Manager.

4.4.2 � File Manager

The File Manager is identified as the NC file management
control class. It handles requests related to file creation, dele-
tion, and renaming for the NC, as requested by the HMI app,
and performs the specified file operations.

4.4.3 � Unified NC I/F

The unified NC I/F is identified as the boundary class that
interfaces with the NC. It provides a consistent interface for
NC data, delivering and requesting NC data communication
and NC file operations as requested by the Communication
Manager and File Manager, respectively, to the NC.

4.4.4 � Database Manager

The Database Manager is the component identified as the
DB communication control class. It manages requested oper-
ations for generating, deleting, and reading/writing data in
the database, as requested by the HMI app. The Database
Manager performs the requested computations to store the
data in the database, which is an entity class supported inter-
nally by the Database Manager.

4.4.5 � App Manager

The App Manager combines three control classes, namely
communication between functions, function control, and
function management, into one component. It handles the
management of HMI functions by registering or deleting
them in the app list and executing requested operations for
the HMI apps listed. The App Manager provides computa-
tions for the activation, hiding, execution, and completion
of HMI apps, as well as read/write operations for HMI app
data. The app list, which stores the identified and registered
HMI app data as an entity class, internally supports the App
Manager.

4.4.6 � Security Manager

The Security Manager is the component responsible for
access authority management. It handles the registration,
deletion, and verification of authorities, such as read/write
and execution of HMI functions, using the permission list.
The permission list, which stores the authority data of the

Fig. 1   HMI platform architec-
ture

CNC

App App App

CNC CNC

Command I/F

Command Manager

File
Manager

Security
Manager

App
Manager

Database
Manager

Communication
Manager

Database

Unified NC I/F

Machine
State Map

Permission
List

App List

1080	 International Journal of Precision Engineering and Manufacturing (2024) 25:1073–1086

1 3

apps as an entity class, supports the Security Manager
internally.

4.4.7 � Command Manager

The Command Manager functions as a broker component,
following the broker pattern as a design strategy for the
“flexibility” quality attribute. It also serves as a facade com-
ponent, following the facade pattern as a design strategy for
the “consistency” quality attribute. The Command Manager
acts as an intermediary for communication between HMI
functions (broker component) and between HMI functions
and the HMI platform (facade component). It mediates the
execution of delivered commands between HMI functions.

4.4.8 � Command I/F

The Command Interface is the boundary class that inter-
faces with HMI functions. It acts as a single interface for
the Command Manager, serving as the interface for both
the HMI manager and the HMI functions. The Command
Interface receives commands from HMI users, functions,
and managers, relaying them to the Command Manager, and
returns the results of the command execution by the Com-
mand Manager.

5 � HMI Platform Implementation
and Validation

To validate the proposed HMI platform, the major compo-
nents derived based on the quality attributes were imple-
mented (5.1). Experimental scenarios were designed for
each quality attribute, and the necessary experimental
environment was set up accordingly (5.2). The validation
of whether the HMI platform satisfied the quality attributes
was performed through experimentation (5.3).

5.1 � Component Implementation

5.1.1 � Machine State Map

The Machine State Map is a component designed according
to the common data model. To enable rapid data search,
the map container from the standard template library (STL)
provided by C++ was utilized for the implementation. In a
previous study [34], a common machine tools state model
that structuralized data components was proposed by ana-
lyzing the ISO 14649 process, machine tools, device data
model, and commercialized CNC API to extract neutral data
components. Based on these research findings, a data code
capable of identifying NC data was assigned as the key of

the map container, while the actual value of NC data was
assigned as the corresponding value.

5.1.2 � Unified NC I/F

The unified NC I/F was implemented using the template-
method pattern design strategy to achieve the commonal-
ity quality attribute, as illustrated in Fig. 2. C++ in Visual
Studio 2012 Professional, based on.NET Framework 4.5,
was used for the implementation. Building on the results of
previous research [34], the super class NC communication
module, containing around 140 standardized functions, was
implemented. Additionally, three subclass communication
modules for Siemens, Fanuc, and CSCAM were developed,
redefining the upper-class standard functions using Siemens
Programming Package 4.7, Fanuc FOCAS2, and CSCAM
HX20.

5.1.3 � Command Manager and Command I/F

The Command Manager and Command I/F were imple-
mented using the design strategies of flexibility and con-
sistency, employing the broker pattern and facade pattern,
respectively. C++ in Visual Studio 2012 Professional, based
on.NET Framework 4.5, was used for the implementation.
The Command Manager, acting as a broker component,
mediates communication between HMI apps and incor-
porates functions enabling command and data requests for
other HMI apps. As a facade component, it also implements
functions provided by HMI managers that correspond to the
subsystem, thereby facilitating minimized communication
for several HMI managers. These functions are implemented
in a library comprising 45 functions, which are distributed to
HMI platform users and HMI app developers. Furthermore,
communication mediation between HMI app-HMI app and
HMI app-HMI manager is achieved using gRPC, a commu-
nication technology between processes that allows execu-
tion of functions or procedures from spaces with different

NC Communication module

NC Capsulation module

CNC1 Lib CNC2 Lib …

CNC Library
CNC header

Ethernet Ethernet Ethernet

CNC Library
CNC header

Fig. 2   Unified NC I/F [31]

1081International Journal of Precision Engineering and Manufacturing (2024) 25:1073–1086	

1 3

addresses without separate coding. gRPC, an open-source
advanced RPC framework developed by Google, enables
communication between servers developed in different
languages and frameworks. The communication rules are
defined based on standardized URIs, ensuring consistency.
URIs consist of four components: protocol, provider name,
address, and filter, with the structure {Protocol}://{Pro-
vider_name}/{Address} ? {Filter}. The protocol represents
the data address of the platform, provider_name is the name
of the data provider (e.g., app or NC), address is the data
address within the internal structure of the data provider, and
filter is a specific condition that can identify data in detail,
particularly in cases where the data provider is an NC.

•	 {Protocol}://{Provider_name}/{Address} ? {Filter}

5.2 � Experimental Design

5.2.1 � Definition of Experimental Scenario

The quality attribute scenario is determined based on six
factors: source, stimulus, artifact, environment, response,
and response measure [35]. For the three quality attributes,
commonality, flexibility, and consistency, stimuli are gener-
ated for the artifact within a specific environment, and cor-
responding scenarios to measure the response are defined,
as shown in Fig. 3. To validate “commonality,” the HMI
platform requests NC data communication in an environ-
ment where one CNC is connected to one app. The goal
is to identify whether the data response values requested
for the connected NC type are identical to the NC display
for all three NC types. For “flexibility” validation, NC data
communication is simultaneously requested for the HMI
platform in an environment where one CNC is connected to
two apps. The objective is to determine whether the remain-
ing apps and HMI platform state operate normally when
one app undergoes forced termination. To validate “consist-
ency”, the HMI platform requests NC data communication
in an environment where one CNC is connected to two apps.
Additionally, other app data communication is requested in

another environment to identify whether a normal value has
been returned, and the command that requests data is under
an identical manner.

5.2.2 � Establishment of Experimental Environment

C# in Visual Studio 2012 Professional, based on.NET
Framework 4.5, was used to implement the apps. The apps,
commandTester, commandTesterM, and commandTesterT,
consist of three text boxes and one button. The first text
box receives the address for data communication based on
the address system rule as input, and the second text box
filter receives the filter according to the address system rule
for data communication as input. Clicking the read button
executes the getData() function within the I/F library, using
the address and filter inputs as parameters. The result of the
getData() function is then displayed in the third text box.

The HMI platform is installed on one PC (CPU: INTEL
i7 6,700K, RAM: DDR4 16GB X4EA, VGA: NVDIA
GTX1070 8G), which connects to three types of CNCs:
Fanuc (31i-B), Siemens (840Dsl), and CSCAM (Hz) con-
troller simulator through Ethernet communication. The com-
munication setting (machineList.xml) file is revised to estab-
lish the connection between the HMI platform and NC. This
file contains fields for ID, LIB, Name, IP Address, and Port.
The ID of the NC that will be connected is inserted (default:
1), and the NC library and NC dll names for connection
are input in LIB and Name, respectively. The IP Address
and Port fields are used to input the IP and Port of the NC
Ethernet communication that will be connected. To register
the developed app into the HMI platform, an app info file is
created, registering the app ID and app name for each app,
and the corresponding file is added to a certain path.

5.3 � Validation Experiment

5.3.1 � Commonality

The HMI platform was connected to one of the three NC
types: Fanuc, Siemens, or CSCAM. NC data communication

Fig. 3   Experimental concept

1082	 International Journal of Precision Engineering and Manufacturing (2024) 25:1073–1086

1 3

was requested for the HMI platform using commandTest-
erM. The NC data were virtualized based on the Machine
State Map, which established a hierarchical relationship
between data entities, and each NC data was assigned an
address. The data requested in the experiment was the
machine coordinate value (machine position), which is a
lower attribute of the machine-channel-axis entity. The NC
address for the machine coordinate value was as follows:

•	 NC address : Da t a : / /mach ine /channe l / ax i s /
machineposition?machine = 1&channel = 1&axis = 1

The return value from commandTesterM was compared
to the output value displayed on the screen to determine
whether they were identical. The experimental results
depicted in Fig. 4 indicated that when the HMI platform
was connected to the first CNC Siemens, the machine coor-
dinate value 1,000 of the 3rd axis of Siemens was identi-
cal to the displayed value of 1,000 (a). Similarly, when the
HMI platform was connected to the second CNC Fanuc,
the machine coordinate value − 19.255 of the second axis
of Fanuc 2 matched the displayed value of − 19.255 (b).
Moreover, when connected to the third CNC CSCAM, the
machine coordinate value 176 of the first axis of CSCAM
was identical to the displayed value of 176 (c).

The results demonstrated that a consistent address sys-
tem was used for reading communication requests across
the three types of NCs, and the return values from the com-
munication were identical to the displayed values. This is a
important difference from other HMI where identical intelli-
gent functions may require separate development efforts, and
confirmed that communication for various types of CNCs
was supported, satisfying the non-functional requirement
for identical approaches regardless of the NC type [R014].
The HMI platform’s implementation using inheritance for
the unified NC I/F and standardized shared memory enabled
consistent communication for other types of CNCs, fulfilling
the quality attribute of “commonality” [R010].

5.3.2 � Flexibility

The HMI platform was connected to the Fanuc NC, and two
data requests were made: one for NC monitoring using com-
mandTesterM to retrieve the machine position value of the
first axis and another for tool monitoring using command-
TesterT to retrieve the name of the first tool. Additionally,
a forced termination of commandTesterM was performed
during the experiment.

The experimental results displayed in Fig. 5 indicated
that commandTesterM successfully read the machine
coordinate value of 213.943, and commandTesterT con-
currently retrieved the value of TOOL1. The data request
logs for both commandTesterM and commandTesterT were

simultaneously recorded. Furthermore, the results of the
forced termination of commandTesterM revealed that the
machine coordinate value request was abnormally halted, but
the tool name request of commandTesterT and the overall
platform continued to operate smoothly without any errors.

These findings demonstrate that despite the forced ter-
mination of commandTesterM due to an error, command-
TesterT and the HMI platform operated independently and
effectively. This is a significant difference from other HMI
where a problem occurring in one function can affect the
entire HMI, and confirms the fulfillment of the non-func-
tional requirement for supporting independent execution of
HMI functions [R009]. The HMI platform’s design, which
separates apps by mediating communication between them
using a Command Manager as a broker component, ensures
that apps remain independent, and any issues occurring
within one app do not adversely affect other apps.

5.3.3 � Consistency

The HMI platform was connected to Siemens, and two data
requests were made: one for NC monitoring using com-
mandTesterM to retrieve the machine coordinate value of the
second axis, and another for app data using commandTester
to retrieve the app name data of the “App Sample” using the
following app address:

•	 NC address : Da t a : / /mach ine /channe l / ax i s /
machineposition?machine = 1&channel = 1&axis = 1

•	 App address: Data://app sample/data

The normal return of the app name value of the requested
App Sample by commandTester is identified. The experi-
mental results showed that commandTesterM returned the
value of − 17.31, and the app name value of the requested
“App Sample” by commandTester was returned as {“name”:
[app sample]}.

These results displayed in Fig. 6 indicate that the NC
data request address system and the app data request
address system were consistent according to the standard
communication criterion {Protocol}://{Provider_name}/
{Address}?{Filter}. This meets the non-functional require-
ments [R12, R11] that the HMI platform supports smooth
collaboration between developers and consistent develop-
ment rules, unlike existing development environments where
standardized development rules are not provided when mul-
tiple developers collaborate to develop HMI functions. The
design and implementation of the HMI platform involved
mediating communication between apps and managers,
with the Command Manager serving as a facade compo-
nent, and providing a simple and consistent communication
system to one or more components through the command
I/F. Consequently, the communication standards for NC

1083International Journal of Precision Engineering and Manufacturing (2024) 25:1073–1086	

1 3

Fig. 4   Commonality experiment results

1084	 International Journal of Precision Engineering and Manufacturing (2024) 25:1073–1086

1 3

communication and communication between apps remain
identical, ensuring a coherent and standardized approach
within the HMI platform.

6 � Conclusions

This study presented an HMI platform capable of expand-
ing HMI intelligent functions while supporting a common
execution and development environment for such functions.
Using the CBD development methodology, the requirements
of the HMI platform were gathered, defined, and further
refined as use cases and quality attributes. Based on the
analysis of these use cases and quality attributes, the HMI
platform was designed and implemented using a combina-
tion of independent components. The quality attributes cho-
sen for the HMI platform were commonality, flexibility, and
consistency, and the platform’s validation was conducted
based on scenarios devised for each quality attribute.

The developed HMI platform allows for the expansion of
HMI functions within a single machine tool. Additionally,

it provides an environment where HMI functions can be
executed commonly, thereby enabling efficient support for
the connectivity between HMI functions. Moreover, the
platform offers a development environment with a standard-
ized approach, ensuring that various types of CNC are not
dependent on specific NC types. This resolution addresses
the issue of developers having to understand different library
development methods for each NC and eliminates the inef-
ficiency of developing identical software and intellectual
functions twice. As the type and amount of data stored in the
HMI platform’s database increases, intelligent functions can
be further advanced by applying AI technology to this data.

The HMI platform resulting from this research is cur-
rently available at the Intelligent HMI platform (http://​www.​
torus.​co.​kr/), and it is freely accessible to individuals, non-
profit organizations, and businesses. While the scope of
this research focused on the intellectualization of a single
machine tool, it is evident that future advancements would
involve extending the platform to accommodate multi-
machine tool intellectualization. For the realization of smart
manufacturing and production sites and their digitalization

Fig. 5   Flexibility experiment results

Fig. 6   Consistency experiment results

http://www.torus.co.kr/
http://www.torus.co.kr/

1085International Journal of Precision Engineering and Manufacturing (2024) 25:1073–1086	

1 3

in the future, the HMI platform will be expanded to enable
interconnection with IoT devices capable of acquiring sensor
signals and PLC-based non-processing devices. Addition-
ally, it will facilitate the integration of multiple CNC devices
into the HMI platform proposed in this research.

Acknowledgements  This work is supported by the Ministry of Trade,
Industry and Energy, Korea (20012807).

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Mostaghimi, H., Park, C. I., Kang, G., Park, S. S., & Lee, D. Y.
(2021). Reconstruction of cutting forces through fusion of accel-
erometer and spindle current signals. Journal of manufacturing
processes, 68, 990–1003.

	 2.	 Chen, J., Hu, P., Zhou, H., Yang, J., Xie, J., Jiang, Y., Gao, Z., &
Zhang, C. (2019). Toward intelligent machine tool. Engineering,
5(4), 679–690.

	 3.	 Nam, J. S., & Kwon, W. T. (2022). A study on tool breakage
detection during milling process using LSTM-autoencoder and
gaussian mixture model. International Journal of Precision Engi-
neering and Manufacturing (IJPEM), 23(6), 667–675.

	 4.	 Mostaghimi, H., Park, S. S., Lee, D. Y., Nam, S., & Nam, E.
(2023). Prediction of tool tip dynamics through machine learn-
ing and inverse receptance coupling. International Journal of
Precision Engineering and Manufacturing (IJPEM), 24(10),
1739–1752.

	 5.	 Fei, Z., Li, S., Chang, Q., Wang, J., & Huang, Y. (2018). Fuzzy
petri net based intelligent machine operation of energy efficient
manufacturing system. In 2018 IEEE 14th International Confer-
ence on Automation Science and Engineering (CASE), pp. 1593–
1598. IEEE.

	 6.	 Li, G., Zhou, H., Jing, X., Tian, G., & Li, L. (2017). An intelligent
wheel position searching algorithm for cutting tool grooves with
diverse machining precision requirements. International Journal
of Machine Tools and Manufacture, 122, 149–160.

	 7.	 Saini, A., Vanraj, D. G., Pabla, B. S., & Dhami, S. S. (2017). Intel-
ligent tool wear monitoring in machining TI6AL4V alloy using
support vector machines.

	 8.	 Bhinge, R., Biswas, N., Dornfeld, D., Park, J., Law, K. H., Helu,
M., & Rachuri, S. (2014). An intelligent machine monitoring sys-
tem for energy prediction using a Gaussian Process regression. In
2014 IEEE International Conference on Big Data (Big Data), pp.
978–986. IEEE.

	 9.	 Jia, S., Tang, R., & Lv, J. (2014). Therblig-based energy demand
modeling methodology of machining process to support intelli-
gent manufacturing. Journal of Intelligent Manufacturing, 25(5),
913–931.

	10.	 Maher, I., Eltaib, M. E. H., Sarhan, A. A., & El-Zahry, R. M.
(2015). Cutting force-based adaptive neuro-fuzzy approach for
accurate surface roughness prediction in end milling operation
for intelligent machining. The International Journal of Advanced
Manufacturing Technology, 76(5), 1459–1467.

	11.	 Abdulshahed, A. M., Longstaff, A. P., Fletcher, S., & Myers,
A. (2015). Thermal error modelling of machine tools based on
ANFIS with fuzzy c-means clustering using a thermal imaging
camera. Applied Mathematical Modelling, 39(7), 1837–1852.

	12.	 Abdulshahed, A. M., Longstaff, A. P., & Fletcher, S. (2015). The
application of ANFIS prediction models for thermal error com-
pensation on CNC machine tools. Applied Soft Computing, 27,
158–168.

	13.	 Klancnik, S., Brezocnik, M., & Balic, J. (2016). Intelligent CAD/
CAM system for programming of CNC machine tools. Interna-
tional Journal of Simulation Modelling, 15(1), 109–120.

	14.	 Kang, H. S., Lee, J. Y., & Lee, D. Y. (2020). An integrated
energy data analytics approach for machine tools. IEEE Access,
8, 56124–56140.

	15.	 Wang, C., Lin, W.-Y., & Young, H.-T. (2014). An intelligent fault
diagnosis system for machine tools. International Journal of Auto-
mation and Smart Technology, 4(3), 150–156.

	16.	 Liu, C., & Xu, X. (2017). Cyber-physical machine tool–the era of
machine tool 4.0. Procedia Cirp, 63, 70–75.

	17.	 Chen, J., Yang, J., Zhou, H., Xiang, H., Zhu, Z., Li, Y., Lee, C.,
& Xu, G. (2015). CPS modeling of CNC machine tool work pro-
cesses using an instruction-domain based approach. Engineering,
1(2), 247–260.

	18.	 Liu, C., Vengayil, H., Zhong, R. Y., & Xu, X. (2018). A systematic
development method for cyber-physical machine tools. Journal of
Manufacturing Systems, 48, 13–24.

	19.	 Liu, W., Kong, C., Niu, Q., Jiang, J., & Zhou, X. (2020). A method
of NC machine tools intelligent monitoring system in smart fac-
tories. Robotics and Computer-Integrated Manufacturing, 61,
101842.

	20.	 Zuo, Y., Wang, H., Wu, G., Gu, Y., & Qiao, W. (2019). Research
on remote state monitoring and intelligent maintenance system
of CNC machine tools. The Journal of Engineering, 2019(23),
8671–8675.

	21.	 Gao, W., Zhang, C., Hu, T., & Ye, Y. (2019). An intelligent CNC
controller using cloud knowledge base. The International Journal
of Advanced Manufacturing Technology, 102(1), 213–223.

	22.	 Tao, F., Zuo, Y., Da Xu, L., & Zhang, L. (2014). Iot-based intel-
ligent perception and access of manufacturing resource toward
cloud manufacturing. IEEE Transactions on Industrial Informat-
ics, 10(2), 1547–1557.

	23.	 Lee, J., Bagheri, B., & Kao, H.-A. (2015). A cyber-physical sys-
tems architecture for industry 4.0-based manufacturing systems.
Manufacturing Letters, 3, 18–23.

	24.	 Cao, H., Zhang, X., & Chen, X. (2017). The concept and pro-
gress of intelligent spindles: A review. International Journal of
Machine Tools and Manufacture, 112, 21–52.

	25.	 Mourtzis, D., Vlachou, E., Milas, N., & Xanthopoulos, N. (2016).
A cloud-based approach for maintenance of machine tools and
equipment based on shop-floor monitoring. Procedia Cirp, 41,
655–660.

	26.	 DMG Mori (2023). Celos. Retrieved July 25, 2023. https://​en.​
dmgmo​ri.​com/​produ​cts/​digit​izati​on/​celos

	27.	 Okuma (2023). OSP suite. Retrieved July 25, 2023. https://​www.​
okuma.​com/​osp-​suite

	28.	 Brown, A. W. (2000). Large-scale, component-based development
(Vol. 1). Prentice Hall PTR.

	29.	 ISO/IEC 25010 (en) Systems and software engineering (2011).
Retrieved July 25, 2023. https://​www.​iso.​org/​obp/​ui/#​iso:​std:​iso-​
iec:​25010:​ed-1:​v1:​en.

http://creativecommons.org/licenses/by/4.0/
https://en.dmgmori.com/products/digitization/celos
https://en.dmgmori.com/products/digitization/celos
https://www.okuma.com/osp-suite
https://www.okuma.com/osp-suite
https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en

1086	 International Journal of Precision Engineering and Manufacturing (2024) 25:1073–1086

1 3

	30.	 Microsoft. (2022). Common data model. Retrieved July 25, 2023.
https://​learn.​micro​soft.​com/​en-​us/​common-​data-​model/

	31.	 Gamma, E. (2012). Design patterns: Elements of reusable object-
oriented software. Addison-Wesley.

	32.	 Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal,
M. (2013). Pattern-oriented software architecture. Wiley.

	33.	 Berners-Lee, T., Fielding, R., & Masinter, L. (2005). RFC 3986:
Uniform resource identifier (uri): Generic syntax.

	34.	 Yoon, J. S., Park, I. H., Sohn, J. H., & Kim, H. J. (2018). Devel-
opment of unified interface for multi-vendors’ CNC based on
machine state model. Journal of the Korean Society for Precision
Engineering, 35(2), 151–156.

	35.	 Bass, L., Clements, P., & Kazman, R. (2003). Software architec-
ture in practice. Addison-Wesley Professional.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Il‑Ha Park  received the M.S.
degree in Industrial Engineering
from Dongguk University. She
worked at Korea Institute of
Industrial Technology, until
April 2021. She is currently
researcher in the Advanced Insti-
tute of Convergence Technology
and a Ph.D. student in Sungk-
yunkwan university. Her current
research topics are anomaly
detection and big data.

Joo‑Sung Yoon  received the
Ph.D. degree in Industrial Engi-
neering from POSTECH. He
worked at Korea Institute of
Industrial Technology, until June
2020. He is currently Assistant
Professor in the School of
Mechanica l Engineer ing ,
Kyungnam University. His cur-
rent research topics are smart
machine tool system and intelli-
gent HMI of CNC.

JinHo Sohn  received a master's
degree in Computer Engineering
from TECH UNIVERSITY OF
KOREA. He worked at LS
MECAPION, until November
2012. He is currently a senior
researcher with the SW Develop-
ment team #2 in HYUNDAI
WIA CORP. and he is a doctoral
student in the Department of
Industrial & Management Sys-
tems Engineering at Kyung Hee
University. His current research
topics are smart factory plat-
forms based on machine tools,
collaborative robots, and AMRs.

Dong Yoon Lee  received the
Ph.D. degree in Mechanical
Engineering from KAIST. He
worked at Samsung Corning Pre-
cision Glass, until June 2006. He
is cur rent ly a Pr incipal
Researcher with the Digital
Transformation R&D Depart-
ment, Korea Institute of Indus-
trial Technology. His current
research topics are in-process
monitoring/control via CNC
communication and sensors, vir-
tual machining, and process
optimization.

https://learn.microsoft.com/en-us/common-data-model/

	Platform Supporting Intelligent Human–Machine Interface (HMI) Applications for Smart Machine Tools
	Abstract
	1 Introduction
	2 Related Research
	2.1 Intelligent Algorithm and Application System
	2.2 Intelligent Machine Tools Architecture

	3 Requirements Analysis
	3.1 HMI Function
	3.2 Execution Environment
	3.3 Development Environment

	4 HMI Platform Design
	4.1 Use Case
	4.2 Quality Attribute
	4.2.1 Commonality
	4.2.2 Flexibility
	4.2.3 Consistency

	4.3 Design Strategy
	4.3.1 [Commonality] Common Data Model
	4.3.2 [Commonality] Template-Method Pattern
	4.3.3 [Flexibility] Broker Pattern
	4.3.4 [Consistency] Facade Pattern
	4.3.5 [Consistency] Standardized Uniform Resource Identifier

	4.4 Platform Architecture
	4.4.1 Communication Manager
	4.4.2 File Manager
	4.4.3 Unified NC IF
	4.4.4 Database Manager
	4.4.5 App Manager
	4.4.6 Security Manager
	4.4.7 Command Manager
	4.4.8 Command IF

	5 HMI Platform Implementation and Validation
	5.1 Component Implementation
	5.1.1 Machine State Map
	5.1.2 Unified NC IF
	5.1.3 Command Manager and Command IF

	5.2 Experimental Design
	5.2.1 Definition of Experimental Scenario
	5.2.2 Establishment of Experimental Environment

	5.3 Validation Experiment
	5.3.1 Commonality
	5.3.2 Flexibility
	5.3.3 Consistency

	6 Conclusions
	Acknowledgements
	References

