Skip to main content
Log in

Development of Customized Insole Design Framework Based on Digital Twin

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Variable insoles can freely adjust the position of the insole, so they have been actively developed for posture and gait correction. This study proposed a customized insole design framework for individual foot shapes by constructing a digital twin model between a finite element analysis (FEA)-based virtual model and an actual physical model. Foot pressure data from the physical model were used as a load condition for the FEA model, and the insole material properties were tuned to maximize the similarity between the FEA model and the real model using virtual sensors. The obtained digital twin model corrected the abnormal arch index of the cavus foot to normal through position optimization of the partial insole, and subsequently balanced the front and rear of the foot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ferdousi, R. (2022). Digital twins for well-being: An overview. Digital Twin, 2022, 1–20.

    Google Scholar 

  2. Rahul, M. R., & Chiddarwar, S. S. (2023). Integrating virtual twin and deep neural networks for efficient and energy-aware robotic deburring in industry 4.0. International Journal of Precision Engineering and Manufacturing, 24, 1517–1534.

    Article  Google Scholar 

  3. Lee, J., Chua, P. C., Chen, L., Ng, P. H., Kim, Y., Wu, Q., Jeon, S., Jung, J., Chang, S., & Moon, S. K. (2023). Key enabling technologies for smart factory in automotive industry: status and applications. Journal of Precision Engineering and Manufacturing-Smart Technology, 1, 93–105.

    Article  Google Scholar 

  4. Wang, L., Jones, D., Chapman, G. J., Siddle, H. J., Russell, D. A., Alazmani, A., & Culmer, P. (2020). A review of wearable sensor systems to monitor plantar loading in the assessment of diabetic foot ulcers. IEEE Journal of Transactions on. Biomedical Engineering, 67, 1989–2004.

    Google Scholar 

  5. Chen, J.-L., Dai, Y.-N., Grimaldi, N. S., Lin, J.-J., Hu, B.-Y., Wu, Y.-F., & Gao, S. (2021). Plantar pressure-based insole gait monitoring techniques for diseases monitoring and analysis: A review. Advanced Materials Technologies, 7, 2100566.

    Article  Google Scholar 

  6. Liu, Y., Zhang, L., Yang, Y., Zhou, L., Ren, L., Wang, F., Liu, R., Pang, Z., & Deen, M. J. (2019). A novel cloud-based framework for the elderly healthcare services using digital twin. IEEE Access, 7, 49088–49101.

    Article  Google Scholar 

  7. Sun, T., He, X., & Li, Z. (2023). Digital twin in healthcare: Recent updates and challenges. Digital Health, 9, 1–13.

    Article  Google Scholar 

  8. Zhuang, C., Gong, J., & Liu, J. (2021). Digital twin-based assembly data management and process traceability for complex products. ELSEVIER Journal of Manufacturing Systems, 58, 118–131.

    Article  Google Scholar 

  9. Wu, Y., Zhou, L., Zheng, P., Sung, Y., & Zhang, K. (2022). A digital twin-based multidisciplinary collaborative design approach for complex engineering product development. Advanced Engineering Informatics, 52, 101635.

    Article  Google Scholar 

  10. Milazzo, M., Spezzaneve, A., Persichetti, A., Tomasi, M., Peselli, V., Messina, A., Gambineri, F., Aringhieri, G., & Roccella, S. (2020). Digital and experimental synergies to design high-heeled shoes. Springer Advanced Manufacturing Technology, 109, 385–395.

    Article  Google Scholar 

  11. Yang, C., & Li, L. (2018). A systematic selection method between neutral and control of running footwear insole products. Journal of Textile Science & Fashion Technology, 1, 1–10.

    Google Scholar 

  12. Sinha, A., Kulkami, D., & Mehendale, P. (2022). Plantar pressure analysis and customized insoles in diabetic foot ulcer management: Case series. Journal of Diabetology, 11, 204–208.

    Article  Google Scholar 

  13. Lopez-Lopez, D., Becerro-de-Bengoa-Vallejo, R., Losa-Iglesias, M. E., Palomo-López, P., Rodríguez-Sanz, D., Brandariz-Pereira, J. M., & Calvo-Lobo, C. (2018). Evaluation of foot health related quality of life in individuals with foot problems by gender: A cross-sectional comparative analysis study. British Medical Journal Open, 8, 023980.

    Google Scholar 

  14. Taha, Z., Norman, M. S., Omar, S. F. S., & Suwarganda, E. (2016). A finite element analysis of a human foot model to simulate neutral standing on ground. Procedia Engineering, 147, 240–245.

    Article  Google Scholar 

  15. Tang, L., Wang, L., Bao, W., Zhu, S., Li, D., Zhao, N., & Liu, C. (2019). Functional gradient structural design of customized diabetic insoles. Mechanical Behavior of Biomedical Materials, 94, 279–287.

    Article  Google Scholar 

  16. Jafarzadeh, E., Sohelifard, R., & Ehsani-Seresht, A. (2021). Design optimization procedure for an orthopedic insole having a continuously variable stiffness/shape to reduce the plantar pressure in the foot of a diabetic patient. Medical Engineering & Physics, 98, 44–49.

    Article  Google Scholar 

  17. Nouman, M., Chong, D. Y. R., Srewaradachpisal, S., & Chatpun, S. (2023). The effect of customized insole pads on plantar pressure distribution in a diabetic foot with neuropathy: Material and design study using finite element analysis approach. Applied Science, 13, 399.

    Article  Google Scholar 

  18. Hernández-Lara, D., Rodríguez-Cañizo, R. G., Merchán-Cruz, E. A., Santiago-Miguel, Á. M., Juárez-Velázquez, E. T., & Trejo-Villanueva, C. A. (2022). Optimal design of a foot prosthesis insole with composite materials applying metaheuristic algorithms. Results in Engineering, 13, 100322.

    Article  Google Scholar 

  19. Chatzistergos, P. E., Naemi, R., & Chockalingam, N. (2015). A method for subject-specific modelling and optimization of the cushioning properties of insole materials used in diabetic footwear. Medical Engineering & Physics, 37, 531–538.

    Article  Google Scholar 

  20. Huang, C. N., Lee, M. Y., & Chang, C. C. (2011). Computer-aided design and manufacturing of customized insoles. Computer Graphics and Applications, 31, 74–79.

    Article  Google Scholar 

  21. Telfer, S., Woodbum, J., Collier, A., & Cavanagh, P. R. (2017). Virtually optimized insoles for offloading the diabetic foot: A randomized crossover study. Biomechanics, 60, 157–161.

    Article  Google Scholar 

  22. Tang, Y., Dong, G., Xiong, Y., & Wang, Q. (2021). Data-driven design of customized porous lattice sole fabricated by additive manufacturing. Procedia Manufacturing, 53, 318–326.

    Article  Google Scholar 

  23. Niu, J., Liu, J., Zheng, Y., Ran, L., & Chang, Z. (2020). Are arch-conforming insoles a good fit for diabetic foot? Insole customized design by using finite element analysis. Human Factors and Ergonomics in Manufacturing & Service Industries, 30, 303–310.

    Article  Google Scholar 

  24. Jonnala, U. K., Sankineni, R., & Kumar, Y. R. (2023). Design and development of fused deposition modeling (FDM) 3D-Printed Orthotic Insole by using gyroid structure. Journal of the Mechanical Behavior of Biomedical Materials, 145(106005), 14.

    Google Scholar 

  25. Rajasrivalli, V., Reddy, K. S., & Kumar, B. A. (2023). Development of customized orthotic insole for leg length discrepancy using 3D printing. Materials Today Proceedings. https://doi.org/10.1016/j.matpr.2023.06.1570

    Article  Google Scholar 

  26. Guiotto, A., Santini, D., Bertoncello, E., & Sawacha, Z. (2022). Gait analysis driven design and 3D printing of plantar foot orthosis. Gait & Posture, 97(Supplement 2), 35.

    Article  Google Scholar 

  27. Park, S. Y. (2019) An insole with balancing pads. Korea patent KR200488994Y1.

  28. Perry, S., Radtke, A., Mcllroy, W. E., Fernie, G. R., & Maki, B. E. (2008). Efficacy and effectiveness of a balance-enhancing insole. Gerontology, 63, 595–602.

    Google Scholar 

  29. Chen, T. H., Chou, L. W., Tsai, M. W., Lo, M. J., & Kao, M. J. (2014). Effectiveness of a heel cup with an arch support insole on the standing balance of the elderly. Clinical Interventions in Aging, 9, 351–356.

    Google Scholar 

  30. Cen, X., Xu, D., Baker, J. S., & Gu, Y. (2020). Effect of additional body weight on arch index and dynamic plantar pressure distribution during walking and gait termination. PeerJ, 2020, 8998.

    Article  Google Scholar 

  31. Kenny, R. P. W., Eaves, D. L., Martin, D., Hatton, A., & Dixon, J. (2019). The effects of textured insoles on quiet standing balance in four stance types with and without vision. BMC Sports Science. Medicine and Rehabilitation, 11, S13102-019-0117–9.

    Google Scholar 

  32. Luo, G., Houston, V., Garbarini, M. A., Beattie, A. C., & Thongpop, C. (2011). Finite element analysis of heel pad with insoles. Biomechanics, 44, 1559–1565.

    Article  Google Scholar 

  33. Widdle, R., Bajaj, A., & Davies, P. (2008). Measurement of the poisson’s ratio of flexible polyurethane foam and its influence on a uniaxial compression model. Engineering Science., 46, 31–49.

    Google Scholar 

  34. Linul, E., Marsavina, L., Voiconi, T., & Sadowski, T. (2013). Study of factors influencing the mechanical properties of polyurethane foams under dynamic compression. IOP Physics, 451, 012002.

    Google Scholar 

  35. Li, P., Guo, Y. B., Zhou, M. W., & Shim, V. P. W. (2019). Response of anisotropic polyurethane foam to compression at different loading angles and strain rates. Impact Engineering, 127, 154–168.

    Article  Google Scholar 

  36. Lo, W. T., Yick, K. L., Ng, Z., & Yip, J. (2015). Numerical simulation of orthotic insole deformation for diabetic foot. Fiber Bioengineering and Informatics, 8, 401–411.

    Article  Google Scholar 

  37. Pradipta, L. P., Anggoro, P. W., Fergiawan, P. K., & Bayuseno, A. P. (2021). Optimization of insole shoe for diabetic mellitus type 2 using finite element analysis. In 2021 IEEE international biomedical instrumentation and technology conference (IBITeC) (pp. 52–58). IEEE.

  38. Park, K. B., Kim, H. T., Her, N. Y., & Lee, J. M. (2019). Variation of mechanical characteristics of polyurethane foam: Effect of test method. Materials, 12, MA12172672.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Ministry of Education (No. 2018R1D1A1A02086093), the Korea government (MSIT) (2020R1A5A8018822 and 2021R1A2C101355711).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Young-Jin Kang or Yoojeong Noh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

See Figs. 11 and 12.

Fig. 11
figure 11

Response surfaces of objective and constraint functions for material property tuning

Fig. 12
figure 12

Response surface of objective function for insole design

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Choi, J., Kang, YJ. et al. Development of Customized Insole Design Framework Based on Digital Twin. Int. J. Precis. Eng. Manuf. 25, 785–798 (2024). https://doi.org/10.1007/s12541-023-00952-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-023-00952-y

Keywords

Navigation