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Abstract
In recent years, the elderly population has increased, leading to a labor shortage and the increasing cost of training expe-
rienced labor. Owing to the continuous optimization of machine vision, multi-sensor technologies, control methods, and 
end-effector structures, harvesting robots have experienced rapid development. However, most harvesting robots still require 
intelligent solutions, and the lack of integration with artificial intelligence limits them to small-scale applications without 
mass production. This paper reviews key technologies for vision-based sensing and control of harvesting robots, focusing 
on potential applications of vision for target recognition and localization in complex agricultural environments, describing 
improved solutions for different target detection and localization algorithms, and comparing their detection results. The chal-
lenges and future trends of applying these key vision sensing and control techniques in harvesting robots are also described 
and discussed in this review.
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1 Introduction

Fruits are essential to a healthy lifestyle due to their high 
concentration of vitamins [1] and essential fiber [2]. The 
nutrients in fruits have various health benefits such as dis-
ease prevention, and this is why people buy them daily to 
promote well-being [3, 4]. Therefore, the growing demand 
for fruits necessitates continuous production and supply. 
Currently, most fruits are still harvested manually because 
this task requires the knowledge and experience of seasoned 
orchard workers. The manual harvesting process often 
results in mistakes, omissions, and damage to fruits. Conse-
quently, this method of harvesting has resulted in increased 
costs throughout the agriculture industry [5] and has also 
worsened yield depression [6]. In the agricultural sector, 
modern technology, such as the use of harvesting robots, can 
assist farmers in overcoming these challenges and increasing 
their level of productivity. In recent years, computer vision 

technology has been implemented in harvesting fruits to 
detect and locate produce more efficiently [7–10].

The computer vision system initially captures raw image 
data through sensors or cameras, in which feature extrac-
tion [11], machine learning [12–14], and deep learning 
techniques [15–17] are employed to segment and detect 
fruit images. Once the location of the target is detected, it 
becomes the input for the control system. The manipulator 
then moves according to the planned trajectory, ultimately 
grabbing the target with the end-effector. The control system 
receives the input signal again to guide the manipulator to 
the next target.

Researchers have developed various types of harvesting 
robots that offer a novel approach to intelligently harvesting 
fruits. However, the unpredictability of their performance, 
low efficiency, and high costs currently prevent the large-
scale adoption and replacement of skilled orchard workers. 
Robotic grasping has been proven inaccurate and inefficient 
due to several reasons: fruit obscured by branches and leaves 
in unstructured orchard environments [18], environmental 
factors such as illumination changes, wind, and rain that 
interfere with robot functionality and contact with leaves 
[19], and inadequate color differentiation between the 
orchard background and fruit [20, 21].
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To overcome the objectively imposed disturbances, 
researchers have increased the accuracy of fruit recognition 
and localization, as well as the performance of vision-based 
control techniques, to improve the overall performance of 
the robot harvesting [22]. In this paper, the techniques pro-
posed by researchers are broadly classified into the following 
three categories:

(1) Traditional image processing techniques are based on 
low-level features such as color, texture, and shape 
[23];

(2) Classification algorithms that are based on machine 
learning, such as the Bayesian classifier algorithm 
[24], Support Vector Machine (SVM) algorithm [25], 
K-Nearest Neighbors (KNN) clustering algorithms 
[26], and so on;

(3) Object detection algorithms that are based on deep 
learning, such as Convolutional Neural Networks 
(CNN) [27–29], Faster Regions with Convolutional 
Neural Networks (Faster R-CNN) [30–32], You Only 
Look Once (YOLO) network [33–36], Fully Convolu-
tional Network (FCN) [37–39], and Single Shot Multi-
Box Detector (SSD) Network [40–42], etc..

It is worth noting that deep learning has become the 
favored technique for contemporary agricultural researchers 
to identify and detect fruit, thereby replacing conventional 
machine learning algorithms. Conventional machine learn-
ing algorithms require a manual feature extractor to extract 
underlying features like color, texture, and shape from 
image data, which is highly complex and time-consuming 
[43]. Data and algorithms are interdependent in computer 
vision, and deep neural networks require large amounts of 
high-quality data. Insufficient high-quality data makes the 
generation of an ideal model difficult, even with advanced 
algorithmic training. Various sensors are used for image data 
acquisition, such as black-and-white, RGB, hyperspectral, 
multispectral, and thermal cameras. Most researchers pre-
fer using RGB cameras for image acquisition, which solely 
provides 2D location information without real-world loca-
tion mapping [44–48]. To obtain depth information for fruit 
localization, researchers measure depth indirectly through 
binocular stereo-vision methods or physical means [44]. 
Previous results have reported the development of vision-
based control technology with application to robotic harvest-
ing, however, the low successful rate of fruit recognition, 
inefficiency localization, and inaccurate control limit the 
performance of harvesting robots. Therefore, a review of 
vision-based sensing and control technology is necessary to 
promote further developments for harvesting robots.

This paper presents a methodical review of recent 
vision-based research on harvesting robots, intending to 
propose solutions for target recognition and hand–eye 

coordination control. To provide a comprehensive over-
view of the topic, the subsequent sections of this paper 
are organized as follows: Sect. 2 introduces the key com-
ponents of harvesting robots, and Sect. 3 discusses fruit 
detection and identification techniques in detail. Further-
more, Sect. 4 presents localization methods for fruits and 
their associated sensors, while Sect. 5 focuses on vision 
control techniques for the harvesting robot. The challenges 
and future trends of harvesting robots are highlighted in 
Sect. 6. Finally, Sect. 7 provides conclusions.

2  Key Components of Harvesting Robots

Fruit detection, positioning, and separation are three fun-
damental tasks that harvesting robots must execute [45]. 
The robotic system employs sensors to collect environ-
mental data, which identifies and locates the target fruit. 
The robot control scheme then utilizes this data to maneu-
ver the manipulator to reach the cutting point of the fruit 
for harvesting [46–48]. In addition, machine vision sys-
tems recognize and locate the fruit, enabling precise con-
trol of the movements. Ultimately, the manipulator and 
end-effector operate in tandem to divide and harvest the 
fruit [49]. This section describes the primary components 
of harvesting robots mentioned earlier. As depicted in 
Figs. 1 and 2, the three central technical components of 
harvesting robots in a laboratory or natural environment 
are highlighted.

2.1  Machine Vision System

Identifying the target fruit is the primary task of a harvesting 
robot, and taking the position information of the detected 
fruit as input to the robot control system is a key step in 
robot movement. The unstructured ambient circumstances of 
orchards, as well as the shadowing of fruit by tree canopies, 
provide massive issues for machine vision systems.

Over the past few decades, researchers have developed 
and deployed various machine vision-based methods for fruit 
detection [57–59]. Standard image identification systems 
are highly sensitive to light fluctuations and require costly 
sensors to produce high-quality images. As deep learning 
applications in agriculture continue to expand, researchers 
have focused on exploring and validating novel algorithms to 
tackle the previously described issues [60–62]. Studies have 
utilized diverse techniques, e.g., monocular cameras, bin-
ocular stereo vision cameras, RGB-D cameras, and ground 
laser scanners, to provide depth information and accurately 
locate the fruit. Refer to Sects. 3 and 3 for detailed insights 
into methods for fruit detection and localization.
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Fig. 1  Harvesting robots in the 
laboratory: A Tomato harvest-
ing robot (adapted from [50]); 
B and C Apple harvesting 
robots (adapted from [51]); D 
Sweet-pepper harvesting robot 
(adapted from [52])

Fig. 2  Harvesting robots in 
the external natural environ-
ment: A Strawberry harvesting 
robot (adapted from [53]); B 
Cherry-tomato harvesting robot 
(adapted from [54]); C Guava 
harvesting robot (adapted from 
[55]); D Apple harvesting robot 
(adapted from [56])
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2.2  Manipulators

Researchers have conducted extensive studies in the fields of 
manipulator path planning and motion planning. Maneuver-
ing the manipulators towards the target fruit while finding 
the optimal cutting direction for the end-effector is a signifi-
cant challenge because of the complexity and variety of the 
environment, including branches, leaves, and other obstruc-
tions surrounding the fruit, as well as strong winds that can 
arise at any time [63–65]. Manipulators have degrees of free-
dom and joint types (rotational or prismatic), which signifi-
cantly impact kinematic flexibility, obstacle avoidance, and 
the space requirements needed to obtain the desired posi-
tion and orientation for the end-effector during maneuvering. 
Recently, researchers have utilized vision-based, servo-con-
trolled manipulators for movement planning, enabling them 
to harvest fruits while avoiding damaging their surround-
ings and navigating around obstacles [50]. According to the 
design requirements of the manipulator robot arm, the har-
vesting robot manipulator arm can be decomposed into dif-
ferent degrees of freedom, of which the linkage parameters 
and joint position parameters can determine six degrees of 
freedom (rotation, translation, and slewing) [66]. The trajec-
tory of the manipulator arm is obtained by interpolating the 
trajectory of the joint space. By transforming the coordinate 
system of the six joints in the area, it can be mapped to the 
right-angle coordinate system of the workspace, and then 
using the Lagrangian method, the force that can be with-
stood by the six joints in the process of movement is solved, 
to obtain the relationship between the force exerted on the 
six joints of the robotic arm and the parameters of the joints.

2.3  End‑Effectors

The last operation for a harvesting robotic system is fruit 
harvesting with the end-effector. To satisfy the requirements 
of actual applications, the end-effector is designed with the 
following aspects in mind:

(a) Reasonable gripping force. Excessive force would dam-
age the stem and destroy the orchard condition;

(b) Harvesting efficiency;
(c) Circulation time;
(d) The sensible structure that avoids damage to the fruit 

and canopy structure due to the bulky mechanical parts 
of the end-effector [56].

For fruit harvesting, researchers have invented end-effec-
tors with various shapes and sizes. There are two versions 
of automatic harvesting methods: (1) End-effectors apply 
mechanical force (twisting, stretching, or bending) to the 
fruit to separate it from the stem. (2) New cutting techniques 
are being sought that cut the peduncles immediately when 

the end-effector grips the fruit, as certain fruits have hard 
peduncles that make detachment difficult [67]. Soft robot 
end-effectors are increasingly replacing rigid end-effectors 
in robotic systems. They can bend to match the angle of 
the fruit, helping to prevent mechanical collisions with the 
tree canopy and trellis wires, and are more capable in that 
regard [68].

3  Detection Approaches for Harvesting 
Robot

Although harvesting robots and deep learning techniques 
have advanced significantly in recent years, controlling 
robots to detect fruits in unstructured orchards still requires 
considerable effort [69]. To develop classifiers, researchers 
gather low-level features such as textures, colors, and shapes, 
and then use machine learning techniques such as the SVM 
algorithm, K-means clustering algorithm, and AdaBoost 
algorithm to detect and classify fruits. Unlike traditional 
machine learning, deep learning allows for the creation of 
more abstract, high-level features or attribute categories that 
can improve accuracy [70]. This section mainly introduces 
traditional machine learning-based image processing meth-
ods and deep learning-based image identification methods. 
Figure 3 demonstrates the use of computer vision technol-
ogy in a strawberry-picking robot to identify strawberries at 
different levels of ripeness.

3.1  Image Processing Techniques Based on Machine 
Learning

Due to the constantly changing backdrop and illumination 
of fruits, researchers often use extracted low-level features 
to segment and detect target fruits. The flow and methods 

Fig. 3  The use of computer vision technology in strawberry-picking 
robot (adapted from [71])
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of traditional image recognition technology, which are 
illustrated in Fig. 4, involve image preprocessing that elimi-
nates extraneous information, recovers useful information, 
improves detectability, and simplifies data to enhance fea-
ture extraction, image segmentation, matching, and detection 
reliability. Images are acquired using various types of sen-
sors, including black-and-white cameras [72], RGB cameras 
[73–75], hyperspectral cameras [76–78], multispectral cam-
eras, and thermal cameras [79–81], multispectral cameras 
[79, 80] and thermal cameras [81–83]. Image data is then 
preprocessed using color space transformation, histogram 
equalization, and noise reduction techniques [43, 84, 85]. 
The majority of the images are captured using RGB cameras. 
Any additional types of sensors involved in image fusion 
methods will be discussed individually.

3.1.1  Detection Algorithm Based on Color Features

Zhang et  al. [86] proposed a color-based technique for 
detecting cucumber fruits in greenhouses, achieving a 76% 
detection rate for mature fruits. The identification rate was 
hindered by the misclassification of fruit with high high-
lights on the surface as leaves, as well as the exclusion of 
partially occluded fruit due to its categorization as noise. To 
counteract the aforementioned issues with light and shad-
ows, Fan et al. [87] presented a pixel block segmentation 
approach based on a gray-centered red–green–blue (RGB) 
color space, which effectively distinguishes apple-fruit pix-
els from other pixels, such as shadow areas. Jidong et al. 
[88] developed a color feature-based recognition approach 
to solve the issue of overlapping apples. However, the iden-
tification rate for obscured apple fruits was only 86%, high-
lighting the need for further improvement. Identifying unripe 
fruit is crucial for farmers to optimize fertilizer application 
during the ripening phase and forecast yield before harvest-
ing. Zhao et al. [89] presented an algorithm for immature 
green-orange detection that employs color features and an 
absolute transformation difference. After classification and 
detection using the Support Vector Machine (SVM) classi-
fier, the algorithm achieved an accuracy of over 83%. Tan 

et al. [90] utilized histograms of gradient orientation and 
color features to differentiate blueberry fruits that vary in 
maturity. The authors compared the accuracy of the K-Near-
est Neighbor (KNN) classifier to the newly developed Tem-
plate Matching with Weighted Euclidean Distance (TMWE) 
classifier and determined that the TMWE classifier achieved 
higher accuracy at a lower computational cost.

3.1.2  Detection Algorithm Based on Geometric Features

Geometric features based on shape and size can be utilized 
to detect apricot species using various machine-learning-
based algorithms. Yang et al. [91] proposed an approach 
that utilized different algorithms, like decision trees, KNN, 
Naive Bayes, linear discriminant analysis, SVM, and artifi-
cial neural networks. The authors reported that SVM with 
a continuous projection algorithm led to the most accurate 
detection. Additionally, Lin et al. [92] introduced a novel 
approach for detecting apricot species by first generating a 
shape descriptor through contour information-based feature 
detection for partial shape matching. Then, the probabilistic 
Hough transform was used to locate candidate fruits, and 
lastly, the SVM classifier was used to identify all candidate 
fruits.

3.1.3  Detection Algorithm Based on Texture Features

In terms of texture features. Yamamoto et al. [93] proposed 
a machine-learning algorithm to detect various types of 
tomato fruits, including ripe, immature, and young fruits, 
by fusing multiple features. By calculating the appropri-
ate number of clusters with X-means clustering, the algo-
rithm detected individual fruits. However, the recall rate 
for young fruits was just 78%, highlighting the difficulty of 
distinguishing them from the stems due to size and appear-
ance similarities. Li et al. [94] introduced a fast normalized 
cross-correlation (FNCC) machine vision-based algorithm 
to identify immature green citrus fruits by minimizing the 
impact of lighting fluctuations on RGB images. The algo-
rithm combined color, shape, and texture features, with the 

Fig. 4  Traditional image recog-
nition technology
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KNN classifier achieving 84.4% detection. Additionally, the 
authors suggested manually adjusting the camera shutter set 
to produce a more consistent image brightness for better 
fruit-to-leaf differentiation. Zhang et al. [95] researched a 
color and texture fusion feature-backed approach to improve 
apple image segmentation. The Random Forest classifier, 
with a 94% accuracy rate, outperformed the other eight 
machine learning algorithms tested for pixel classification.

3.1.4  Multi‑feature Fusion Method

Regarding multiple features, Lin & Zou et al. [96] intro-
duced a novel segmentation method that made use of an 
AdaBoost classifier and texture-color features that fused 
Leung-Malik texture and HSV color features to detect cit-
rus by fixed-size sub-windows. Nevertheless, the LM filter 
bank was impacted by fluctuations in light, resulting in the 
over-segmentation of citrus images. Additionally, Wu et al. 
[97] introduced a method for detecting juicy peaches that 
makes use of color data and three-dimensional (3D) contour 
features. The study utilized a conditional Euclidean cluster-
ing approach to cluster preprocessed 3D point clouds of fruit 
trees. In addition, 3D contour features were used to locate 
and harvest the fruits. Unfortunately, when detecting unripe 
green fruits, the accuracy of the method was relatively low. 
To address this issue, Wu et al. [98] proposed a fruitful point 
cloud segmentation approach that blends 3D geometric fea-
tures with color features. This new method demonstrates 
superior performance compared to the traditional color seg-
mentation method, with an accuracy of 80.09%. Although 
the method is effective in detecting fruits with roughly round 
or spherical surfaces, the authors caution that it may not 
be reliable for image segmentation of fruits with irregular 
surfaces.

It is noted that the above image processing algorithms can 
be summarized in Table 1. It is further concluded that color 
can be used as the main extracted feature when the color of 
the fruit is distinguishable or it is more differentiated from 
the background color, such as apricots, peaches, and citrus 

crops with more obvious colors. However, color features 
rely too much on the ideal situation of light, so color extrac-
tion is usually performed under artificial conditions. When 
the color of the fruit is similar to its background, the shape 
feature can be used as the main extracted feature, e.g., green-
colored fruits are similar to the color of the branches and 
leaves, and their shapes can be detected to improve recogni-
tion accuracy. When branches or clusters heavily occlude 
the fruits, texture features can be used to recognize the target 
fruits more quickly and accurately. By extracting multiple 
features, the accuracy of target recognition and adaptabil-
ity to complex real-world environments can be significantly 
improved, and the constraints under non-artificial conditions 
can be reduced.

3.2  Image Recognition Technology Based on Deep 
Learning

Deep learning constitutes a subset of machine learning 
techniques [99, 100]. In traditional machine learning algo-
rithms, the ability to learn is typically constrained, and larger 
amounts of data do not necessarily result in continuous 
improvement in the information learned. Conversely, deep 
learning systems, like the machine equivalent of "more expe-
rience," are capable of enhancing performance by accessing 
vast amounts of data. To overcome the challenge of numer-
ous parameters and lengthy optimization times, the advent 
of GPU parallel computing technology has triggered a global 
rise in deep learning research. Additionally, comprehensive 
and rigorous investigations on the application of deep learn-
ing to agricultural robots have been conducted.

3.2.1  Two‑stage Object Detection Algorithm

Faster R-CNN is a typical two-stage object detection 
model, and its structural diagram is shown in Fig. 5. The 
RPN (Region Proposal Network) is a crucial innovation that 
connects the region generation and convolutional networks 
through an anchor mechanism. It achieved an increased 

Table 1  Machine learning based image processing algorithms

Detection algorithm Advantage Disadvantage Detection rate (%) Detection target References

Based on color features Easy to operate, distin-
guishing fruits and 
backgrounds

More seriously affected 
by the similarity of illu-
mination intensity and 
background color, etc

80–85 Citrus, apples, peach [87–90]

Based on geometric 
features

Obtainoutline informa-
tion of fruits without the 
influence of illumination

Affected by shading from 
branches, limbs, clusters, 
etc

80–87 Green apple, green citrus [91, 92]

Based on texture features More viable under occlu-
sion than before color 
and geometric features

Influenced by factors such 
as light intensity and 
environmental obscura-
tion

75–90 Pineapple, bitter gourd [93–95]
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detection rate of 17 frames per second [30]. With the Faster 
R-CNN as the foundation, Kaiming [101, 102] introduced 
the Mask R-CNN, an innovative instance segmentation net-
work. The key improvement can be summarized as:

(1) To resolve the accuracy loss caused by the ROI pool-
ing rounding method, the RoI Align method was intro-
duced as a replacement for the original ROI pooling 
method.

(2) A mask branch was incorporated into the image seg-
mentation model to determine the class of each pixel.

Furthermore, new and improved algorithms based on 
the two-stage detection algorithm have been introduced to 
meet the requirements of various fruit detection tasks. Jia 
et al. [103] proposed a Mask Region Convolutional Neural 
Network (Mask R-CNN) based visual detector model for 
harvesting robots. The authors tested the method with a ran-
dom test set of 120 images and achieved 97.31% accuracy 
and 95.70% recall. Parvathi et al. [104] have proposed an 
improved faster region-based convolutional neural network 
(Faster R-CNN) model for the detection of two important 
ripening stages of coconut in a complex context. The Faster 
R-CNN algorithm based on the ResNet-50 network was used 
to improve the detection scores of nuts at the two major rip-
ening stages. Table 2 provides an overview of the improved 
two-stage target detection algorithms.

3.2.2  One‑stage Object Detection Algorithm

The two-stage object detection algorithm creates region 
proposals in the first stage. In the second stage, the con-
tents of the region of interest are classified and regressed, 
but this results in the omission of spatial information for 
local objects within the entire image. To solve this prob-
lem, a one-stage object detection algorithm is proposed that 
omits the region proposal creation stage and can directly 
detect objects. One of the most representative and popular 
single-stage target detection algorithms is the YOLO series 
[113–116], whose structure is shown in Fig. 6. The YOLO 
series has a faster detection speed than the R-CNN series, 

Fig. 5  Structure diagram of Faster R-CNN (adapted from [30])

Table 2  Improved two-stage object detection algorithm

Target Description Precision (%) References

Apple ResNet and a Densely connected convolutional network were applied to form the backbone network. 
In this context, the dense block preserves certain low-dimensional features

97.31 [103, 105]

Coconut ResNet-50 was one feature extraction network that incorporated the idea of the Residual Network 
(ResNet)

89.4 [104, 106]

Cucumber Resnet-101 was chosen as the backbone of Mask R-CNN, and the logical green (LG) operator was 
introduced as a filter for non-green backgrounds

90.68 [107]

Grape cluster The efficient Channel Attention (ECA) mechanism was incorporated into the backbone, and Dense 
Upsampling Convolution (DUC) was deployed to compensate for feature information in FPN

N/A [108]

Kiwifruit Based on the Visual Geometry Group (VGG-16) network, an image fusion and feature fusion model 
were developed

90.07 [109, 110]

Mango
Orange

Loss functions were applied to convolution and pooling layers, which reduced the weights of various 
high-dimensional parameters

88.94
90.73

[8]

Sweet pepper Early or late fusion methods were implemented to merge multimodal information, including RGB 
and infrared information

83.8 [7]

Strawberry Feature Pyramid Network (FPN) was introduced into the backbone network to strengthen the extrac-
tion of fruit features at multiple scales

95.78 [111]

Tomato Edge contour detection was combined with deep learning 80 [112]
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but the detection accuracy of the YOLO series is usually 
inferior to that of the R-CNN series.

To balance detection accuracy and speed for optimal 
gains, another one-stage object detection algorithm called 
SSD was presented by Liu et al. [42]. During the last five 
years, several improved algorithms based on the YOLO 
or SSD framework have been developed. Tian et al. [117] 
have introduced an improved YOLOv3 model for detecting 
apples at different growth stages in orchards with fluctu-
ating light, complex backgrounds, overlapping apples, and 
complicated branches and foliage. The proposed YOLOv3 
dense model outperforms the original YOLOv3 model and 
the Faster R-CNN based on the VGG16 network, with an 
average detection time of 0.304 s/frame, which enables 
real-time detection of apples in orchards. To automatically 
identify graspable and non-graspable apples in apple tree 
images, Yan et al. [118] proposed a lightweight target detec-
tion method for an apple-picking robot based on improved 
YOLOv5s. The experimental results show that the improved 
network model can effectively identify graspable apples that 
are not occluded by leaves or only occluded by leaves, as 
well as non-graspable apples that are occluded by branches 
or occluded by other fruits. Specifically, the recognition 
recall, precision, mAP and F1 were 91.48%, 83.83%, 86.75% 
and 87.49%, respectively. The average recognition time was 
0.015s per image. Overall, the improved one-stage object 
detection algorithm used in fruit harvesting robots is out-
lined in Table 3.

4  Localization Methods for Harvesting 
Robot

Harvesting robots require 3D spatial position information 
from the detected fruit to guide the end effectors through 
the harvesting procedure. However, the camera obtains only 

the 2D image space position of the target, thus needing to 
establish a mapping relationship between the target position 
in the 2D image space and the 3D space position. Research-
ers have proposed successful solutions to address this issue, 
which is introduced in this section. The paper categorizes 
the methods for localizing fruit based on camera data into 
2D and 3D categories. The detailed comparison of 2D and 
3D cameras is shown in Table 4.

4.1  Localization Method Based on Two‑dimensional 
Images

2D cameras that contain charge-coupled device (CCD) sen-
sors or complementary metal oxide semiconductor (CMOS) 
sensors are prevalent for fruit localization and the trajec-
tory tracking of harvesting robots [146]. Mehta et al. [134] 
acquired 3D positioning information on citrus fruits using a 
monocular camera based on perspective transformation. The 
authors demonstrated that this method was less temporally 
complex than a stereo vision technique's depth estimation 
method after comparing test results. Xiong et al. [135] used 
a CCD camera with artificial lighting to detect green grapes 
and locate harvesting points, preventing the missing and 
inadvertent collection of nascent grapes during the night. 
They found that the highest accuracy in harvesting point 
detection was 92.5% at a depth of 500 mm. However, they 
also discovered that increased shot distance reduced light 
density, causing errors in point computation due to poor 
image quality.

Accurate fruit localization is crucial for effective robotic 
harvesting. Mehta et al. [136] developed a nonlinear estima-
tor based on particle filters to predict fruit locations cap-
tured from multiple CMOS cameras. However, the approach 
has limited effectiveness in the case of an obstructed view. 
Unpruned buds can hinder accurate localization by pro-
ducing vegetation that conceals new buds and affects the 

Fig. 6  Structure diagram of YOLO-v3
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Table 3  Improved one-stage object detection algorithm

Target Description F1 (%) References

Apple Utilized DenseNet as a substitute for the original transport layer to improve network performance 81.7 [117]
Designed the BottleneckCSP-2 module based on the improvement of the BottleneckCSP module, and 

embedded the SE module into the backbone
87.49 [118, 119]

A bi-directional feature integrated Pyramid Network Small (BiFPN-S) network was added to the back-
bone, and the Activate Or Not (ACON)-C activation function, which replaced the SiLU function, 
was implemented

92.8 [120, 121]

Citrus SimAM attention mechanism module is added before each feature detection layer. Combined with the 
Canopy algorithm and k-means +  + algorithm to obtain more matching anchor boxes

91.95 [122, 123]

An image fusion algorithm based on an improved Laplace pyramid was introduced, and ResNet units 
were embedded in the original network

93.56 [124]

Cherry tomato The dual path network replaced the original feature extraction network and increased the 104 104 
resolution of the feature layers in the FPN. An improved K-means +  + clustering algorithm was 
utilized to calculate the scale of the anchor box

94.18 [125]

Grape Squeeze-and-Excitation Networks (SE) attention mechanism was joined to the network, and non-
maximum suppression (NMS) was replaced with soft NMS

90.47 [119, 126, 127]

Green pepper GhostConv was applied to change the Conv layer of Cross Stage Partial (CSP). A single-layer struc-
ture, BiFPN, was chosen instead of Path Aggregation Network (PANet)

78.9 [128, 129]

Kiwifruit Adopted MobileNetV2 to displace vggnet-16 as a feature extractor. And quantized the model to obtain 
faster deduction with smaller model size

N/A [130, 131]

Longan The core component of the MobileNet model was switched out for a feature extraction network, which 
decreased the amount of time airborne computers needed to calculate and detect things

N/A [132]

Tomato A parallel sub-network, RGB-Network, was augmented to the previous SSD framework, which inte-
grated multimodal features and generated accurate feature maps

91.47 [133]

Table 4  The detailed comparison of 2D and 3D cameras

Typical sensors Advantages Disadvantages Measure-
ment range 
(m)

Error (mm) References

CCD MV-E800C, KPC-S20-CP1 Outperforms CMOS 
sensors in sensitivity, 
resolution, and noise con-
trol and provides color, 
geometry, and texture 
information

Only provides two-dimen-
sional information and is 
easily influenced by light

0.3–1.6  < 7.5 [134, 135]

CMOS C920-Pro, Galaxy A5 Low cost, low power 
consumption, and high 
integration. Provides 
color, geometry, and 
texture features

Only provides two-dimen-
sional information and is 
easily influenced by light

–  < 15 [136, 137]

Structured Light Kinect-1414 High accuracy when meas-
uring objects at close 
range

The accuracy of measuring 
objects at long distances 
is low. Affected by light 
and light reflection

0.2–3.5  < 10 [138]

Stereo ZED-2, Intel-D435 High accuracy when 
measuring objects at long 
range; less affected by 
light

High hardware cost with 
low image resolution and 
high power consumption

0.11–10.0  < 2% [139, 140]

Time of Flight Kinect-v2, Mesa-SR4000 Compact, lightweight, high 
image resolution

Poor real-time performance 
and high computational 
costs

0.1–6.0  < 8 [141–145]
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subsequent output. To address these issues, Daz et al. [137] 
developed a grape bud detection and localization method 
based on motion structure and 2D image categorization. The 
approach captured 2D images to construct a 3D model of 
the scene, achieving a localization error of 259–554 pixels.

4.2  Localization Method Based 
on Three‑dimensional Coordinates

Conventional RGB color cameras, known as 2D cameras, 
only capture objects in the sensor field of view and cannot 
acquire component depth information. However, RGB-D 
depth cameras can acquire this depth information directly. 
The depth camera captures data and calculates the distance 
of each point in the picture from the camera. The x and y 
coordinates combine to provide the 3D spatial coordinates of 
each point in the image. Researchers have used depth cam-
eras in combination with robotics to create more efficient 
robotic harvest systems. Depth cameras are categorized as 
structured light cameras, binocular cameras, and Time of 
Flight (ToF) cameras based on their operating principles.

4.2.1  Localization Based on Structured Light

A structured light camera consists of a laser projector and 
one or more structured light cameras. The projector actively 
emits infrared light onto the object's surface, which is then 
imaged with one or more structured light cameras. By cal-
culating the location and depth information based on the 
triangulation principle, 3D reconstruction is achieved [147]. 
Laser triangulation is a fundamentally structured light sys-
tem, as shown in Fig. 7.

Structured-light cameras are widely utilized in agri-
cultural automation. Nguyen et al. [138] used an RGB-D 
structured light camera to acquire images and developed an 
algorithm based on color and shape features that detected 
and located red and bi-colored apples beneath an umbrella 
blocking direct sunlight. The positioning accuracy in all 
directions was less than 10 mm. Additionally, the authors 
suggested using additional sensors for more information on 

the 3D position of the fruit and the location of the stem to 
enhance the gripping and harvesting of individual fruits.

4.2.2  Localization Based on Binocular Stereo Vision

Binocular stereo vision involves taking two pictures of the 
object of interest using cameras placed at different locations 
and then determining the positional difference between the 
corresponding points in the two images to obtain 3D geo-
metric information about the object [147]. Figure 8 shows its 
schematic diagram. The system for binocular stereo vision 
is constructed using two conventional consumer-grade RGB 
cameras due to the inexpensive nature of the camera hard-
ware requirements. Wang et al. [148] presented a technique 
for target localization using window scaling. The approach 
involves collecting photos of produce and estimating the 
three-dimensional coordinates of the target by utilizing the 
triangulation principle to achieve complete target locali-
zation. In a natural environment, Liu et al. [149] imple-
mented a binocular stereo-vision approach and an improved 
YOLOv3 model for pineapple identification and locali-
zation. At a range of 1.7–2.7 m, the absolute mean error 
was 24.414 mm, with an average relative error of 1.17%. 
Additionally, during robotic harvesting, the method took 
into account wind disturbance, mutual branch contact, and 
mechanical collisions. The visual localization of dynamic 
lychee clusters was explored by Xiong et al. [150] The har-
vesting point was determined by computing the oscillation 
angle of lychee clusters in three states of disturbance: static, 
slight, and large. The maximum depth error was 5.8 cm, and 
the minimum depth error was 0.4 cm.

In practice, biocular depth cameras have been widely 
adopted by researchers for developing vision systems for 
harvesting robots. Hou et al. [139] reported a recent tech-
nique utilizing modified YOLOv5 and binocular stereo 
vision for detecting and localizing ripe citrus. The average 
distance error between citrus fruit and the camera in non-
uniform, low, and good lighting conditions was 3.98 mm. 
The approach was found to offer accurate and swift detection 
and localization of citrus fruits in intricate orchard land-
scapes, as concluded by the authors. Occlusion of leaves, 

Fig. 7  Triangulation with a 
single laser spot (adapted from 
[147])
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branches, and other fruits often leads to imprecise bounding 
boxes of detected fruits and the associated depth measure-
ments. To manage this problem, Li et al. [140] proposed a 
distinctive 3D fruit localization method dependent on a trun-
cated cone point cloud processing algorithm. According to 
the authors, this method decreased the median and average 
fruit localization errors by 59% and 43%, respectively, when 
compared to the traditional approach. Wang et al. [152] pre-
sented a geometry-aware detection network designed for 
apple harvesting. The network utilized color and geometry 
sensory input from RGB-D cameras and executed end-to-
end instance segmentation and grasping estimates with an 
average precision of 0.61 cm and 4.8° in center and orienta-
tion, respectively.

4.2.3  Localization Based on the Principle of ToF

A time-of-flight camera consists of a light transmitter 
and a receiver. The receiver detects the light emitted by 
the transmitter once it reflects off the object in view, and 
the distance to the target object is determined by measur-
ing the time taken for the signal to travel to and reflect off 
the object [147]. Wu et al. [141] developed a platform of 
robotic devices resembling bananas that utilize stereo vision 
to improve 3D localization accuracy at the truncation point. 
The study found a median error of 8 mm and a median abso-
lute deviation of 2 mm for the depth coordinates. Lin et al. 
[55] utilized Euclidean clustering guided by fruit binary 
maps and RGB-D depth pictures to separate point clouds 
into individual fruits to enable collision-free harvesting. By 
determining the center location of each fruit and its rela-
tion to the mother branch, it was possible to accurately esti-
mate the 3D poses of the fruits. The study found that the 3D 
posture error, calculated using the spherical fitting method, 
was 23.43° ± 14.18° and that the method took 0.565 s to 
execute per fruit. Li et al. [143] employed principal compo-
nent analysis (PCA) to estimate the positioning for lychee 

harvesting, specifically targeting the random scattering and 
uneven appearance of lychee clusters. The study achieved a 
detection precision of 83.33% and a placement precision of 
17. 29° ± 24.57°. Therefore, further improvements in accu-
racy were deemed necessary by the authors.

5  Vision‑Based Control for Harvesting Robot

Vision servo control is a widely used robotics technique 
that utilizes vision sensors to gather environmental data 
and translate it into appropriate kinematic commands for 
the controller of robots. Early robot vision systems utilized 
open-loop vision control, employing a "look then move" 
approach rather than employing closed-loop control. Ongo-
ing advancements in computer hardware and related algo-
rithms have led to the recent and rapid development of tech-
nology in this field, as shown by recent research [153–155]. 
This section presents an overview of the control methods 
utilized in vision-based harvesting robots, as discussed 
previously. Table 5 details the various control methods and 
overall performance metrics of harvesting robots utilized in 
prior years.

5.1  Open‑loop Visual Control

Silwal et al. [158] employed RGB-D cameras to develop a 
robot for apple harvesting with open-loop vision control. 
The study found a successful harvesting rate of 0.846 and 
attributed the partial failure to progressive position errors 
in open-loop vision control systems and difficulty catch-
ing apples on long, thin, flexible branches. Ling et al. [156] 
developed a dual-arm cooperative technique utilizing bin-
ocular vision sensors to improve the efficiency of tomato 
harvesting robots, which involved tomato detection, target 
localization, trajectory planning, and real-time control of 
dual-arm motions. The study achieved a success rate of up 

Fig. 8  Schematic diagram of 
binocular stereo vision (adapted 
from [151])
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to 87.5% using suction cup grabbing and wide-range cut-
ting during robotic harvesting. Yu et al. [156] introduced 
a humanoid robot designed for efficient and flexible apple 
harvesting, utilizing the scale-invariant feature transforma-
tion (SIFT) feature point detection and matching mechanism 
to identify the pixel coordinates of the optimal apple contour 
and target apple center. The authors reported several practi-
cal issues that adversely impact the performance of robot:

(1) All the electric motors and components of the robot 
operated on lithium-ion batteries that were inadequate 
in meeting the necessary driving force.

(2) The research assumed uniform apple size, yet apples 
have varying sizes, requiring the claws to be more 
adaptable or the addition of a tactile sensor for better 
performance.

(3) Although the color segmentation-based identification 
accuracy of binocular camera systems is unsatisfac-
tory, it can be improved by using RGB-D cameras and 
advanced identification algorithms.

5.2  Visual Servo Control

Errors in the vision input device and system, localization 
errors in vision-based recognition, coordinate transforma-
tion errors, and other factors affect the operational efficiency 
of harvesting robots in an open-loop system. Cumulative 
mistakes fail to accurately pick certain fruits. To improve 
the accuracy of the robot, the visual feedback loop identi-
fies deviations between the actual and intended positions of 

the manipulator [164]. Conventionally, visual servo control 
is either a position-based visual servo (PBVS) or an image-
based visual servo (IBVS) [154, 155] depending on whether 
the feedback signal is a 3D spatial coordinate value or an 
image feature value.

5.2.1  Position‑based Visual Servo (PBVS)

The position-based vision servo (PBVS) system determines 
the intended poses via image analysis and the geometric 
model of the target. The deviation between the current 
and goal poses informs the trajectory planning [165, 166]. 
PBVS control technology is built on the basis of precise 
measurement of the spatial coordinates of the target fruit by 
the visual sensor. First of all, the visual sensor must obtain 
accurate spatial position information of the target fruit, and 
then through the establishment of an accurate hand-eye coor-
dinate conversion model, the position information under the 
visual sensor coordinate system will be converted to the spa-
tial coordinates under the robot coordinate system. Finally, 
the positional relationship between the target fruit and the 
robot end-effector can be used to carry out the motion plan-
ning, which in turn can control the movement of the end-
effector of the picking robot to the target fruit position. The 
schematic structure of the system is illustrated in Fig. 9.

5.2.2  Image‑based Visual Servo (IBVS)

In image-based visual servoing, the control quantity is com-
puted directly from the error signal in the image to drive 

Table 5  Control mode and 
performance of harvesting robot

Robot Vision-based control Success rate (%) Speed (s) References

Apple harvesting robot Open loop visual control 72 14.6 [156]
Image-based visual servo 77 15 [157]
Open loop visual control 84.67 7.6 [158]
Image-based visual servo 91.2 13.8 [159]

Cherry-tomato harvesting robot Image-based visual servo 83 8 [160]
Citrus harvesting robot Image-based visual servo NR  < 8 [161, 162]
Tomato harvesting robot Open loop visual control 87.5  < 30 [156]
Sweet-pepper harvesting robot Image-based visual servo NR 45 [163]

Fig. 9  Position-based visual servo
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the robot to move toward the target fruit and complete the 
picking task. The critical problem of image-based visual 
servo control is the need to estimate the image Jacobi matrix, 
which is the bridge to construct the transformation between 
the image coordinate system and the robot coordinate system 
[165, 166]. This image-based visual servo control is rela-
tively insensitive to robot kinematic calibration and camera 
model errors compared to position-based visual servo con-
trol, and does not require estimation of the position of the 
target fruit in the robot coordinate system, thus reducing 
computational latency. Therefore, it has become one of the 
most preferred solutions nowadays. The schematic structure 
of the system is depicted in Fig. 10.

In practice, image-based vision servoing is considered 
less computationally challenging compared to position-
based servoing, making it the preferred control mecha-
nism. Mehta et al. [161, 162] proposed a cooperative vision 
servo controller that addressed external disruptions, such as 
mechanical contact between the robot and trees, by incor-
porating a feedback term that compensated for positioning 
flaws, allowing the end-effector to micro-adjust the posi-
tion. However, when the robot interacted with dense crops, 
it potentially missed the target, leading to harvesting fail-
ure. Barth et al. [163] designed a servo control framework 
to address agricultural settings with dense plant cover. The 
servo control framework achieved motion control of a sweet 
pepper harvesting robot with visual information, success-
fully harvesting sweet peppers under laboratory conditions. 
Chen et al. [159] developed a vision-based servo control for 
a harvesting robot using an upgraded fuzzy neural network 
sliding mode algorithm. The enhanced algorithm signifi-
cantly increased not only the design efficiency but also the 
success rate of the harvest. However, the procedure was only 
tested in a laboratory setting, and the authors acknowledged 
potential obstacles when harvesting in natural settings.

6  Challenges and Future Trends

The potential of harvesting robots to revolutionize smart 
agriculture is immeasurable. The advancements in 
machine vision and artificial intelligence technologies have 

significantly accelerated the transition of harvesting robots 
from laboratory settings to practical orchards. However, 
fruit-harvesting robots encounter various challenges in their 
current implementation. These include issues associated 
with energy consumption and unstructured orchard environ-
ments. Fruit blockage by branches and leaves, uncertainty 
caused by the similarity of the background color to the fruit's 
body color, direct contact with fruit by bulky and inflexible 
robots, and the need to consider the degree of fruit ripeness 
and defects during harvesting are just a few examples of 
such challenges. Researchers must explore and enhance fruit 
detection, localization, and control techniques to address 
these problems.

6.1  Building a Structured Environment Suitable 
for Harvesting Robots

The haphazard growth of fruit leaves in natural environ-
ments poses a significant challenge to harvesting robots. It 
is often the most difficult issue for fruit-harvesting robots 
to detect and tackle. In recent years, contemporary garden 
management techniques have been employed to create struc-
tured environments that are suitable for harvesting robots. 
For instance, apple trees have been pruned to form a flat 
crown, leaves and branches are cleaned manually or mechan-
ically, chamber agricultural systems are used to seed fruits 
[167–169].

6.2  Designing the End Effector Suitable for Fruit 
Detachment

Robots used for picking fruits are often in motion during 
operation, and the movement caused by wind and picking 
can cause the fruit to swing back and forth, resulting in dam-
age to the fruit skin and affecting its quality. Harvesting usu-
ally involves grabbing the fruit and pulling it off the vine, 
which may cause mechanical damage. Therefore, designing 
high-precision end effectors to grab fruits is a direction for 
future improvement. To design an end-effector appropriate 
for picking robot, the following factors must be taken into 
account: its ability to adjust to various shapes and sizes of 
produce, its lightweight and flexibility to enable swift robot 

Fig. 10  Image-based visual servo
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motion, and its high-precision and stability to ensure gentle 
and accurate picking. Moreover, the end-effector must be 
easy to maintain given the prolonged timeframe of opera-
tion. Therefore, it is advisable to use durable materials and 
a simplistic design [168, 170, 171].

6.3  Developing a More Accurate Fruit Detection 
and Localization Algorithm

Despite the emergence of several high-performing fruit rec-
ognition algorithms, image processing algorithms are con-
tinually being improved upon. In recent years, new vision 
sensors, such as light field cameras and chlorophyll fluo-
rescence cameras, have garnered increased attention. The 
use of these advanced sensors to acquire higher-detail visual 
data would undoubtedly enhance the recognition of complex 
environments. The accuracy and efficiency of vision control 
are other areas that require improvement. Although pose-
based visual servoing (PBVS) control has been applied in 
a variety of applications, most agricultural producers con-
tinue to employ image-based visual servoing (IBVS) control, 
given the economic costs and the current state of vision sen-
sor technology. However, we should devote future efforts to 
implementing PBVS control [172–174].

6.4  Training a Lightweight Model for Fruit Target 
Detection

To enhance the recognition performance of the vision sys-
tem, it is common to improve recognition algorithms. How-
ever, these methods result in a more complex algorithm and 
longer computing time, despite the improvement in recog-
nition accuracy. Meeting actual production requirements 
becomes challenging due to the real-time nature of vision 
systems employed by picking robots. Consequently, prior-
ity should be given to develop lightweight target detection 
models that support real-time fruit detection on edge devices 
and enhance the performance of visual recognition systems 
in embedded devices [175].

6.5  Other Feasible Directions

Using multiple robotic arms can enable the efficient grasp-
ing of multiple fruits simultaneously. A collaborative effort 
can reduce the risk of errors and failures while improving 
the accuracy of grasping [144, 176]. In specific scenarios, 
a single robotic arm may find it challenging to accomplish 
the task at hand, which makes having multiple robotic arms 
collaborate ideal. This gives the robotic arm system more 
flexibility and adaptability in its application range. In the 
field of agriculture, visual recognition and detection tech-
nology can be incorporated into intelligent agricultural sys-
tems to help farmers achieve automated management and 

production. For instance, the growth status, fruit maturity, 
and yield of fruit trees can be monitored in real-time in the 
orchard through corresponding sensors. Diseases and pests 
can also be detected at early stages by visual recognition 
and detection technology, leading to reduced fruit loss and 
pesticide use [177]. Additionally, image analysis algorithms 
can automatically grade fruits based on their size and color, 
resulting in increased efficiency and yield quality [178, 179].

7  Conclusions

This paper presents a comprehensive review of the recent 
progress in fruit-harvesting robots developed by research-
ers in the past five years. The study discusses the advance-
ments in target recognition and detection techniques and the 
methods for achieving target localization in fruit-harvesting 
robots. The paper compares the vision-based control tech-
niques for harvesting robots, and after conducting a thorough 
survey, visual servo control is identified as the most widely 
used control method. The primary contribution of this 
paper is to provide a comprehensive and in-depth analysis 
of the core technologies utilized in fruit-harvesting robots. 
Additionally, the paper highlights significant advancements 
achieved through multi-sensor fusion technology, deep 
learning-based target detection algorithms, novel end-effec-
tors, and vision servo-based closed-loop control, which have 
the potential to further enhance the intelligence, accuracy, 
flexibility, and efficiency of fruit-harvesting robots.

Acknowledgements This work is supported by the Open Project 
Program of Shandong Marine Aerospace Equipment Technological 
Innovation Center, Ludong University (Grant No. MAETIC2021-02).

Declarations 

Conflict of interest The authors declare that they have no conflict of 
interest.

References

 1. Van Duyn, Ma. S., & Pivonka, E. (2000). Overview of the health 
benefits of fruit and vegetable consumption for the dietetics pro-
fessional: selected literature. Journal of the American Dietetic 
Association, 100(12), 1511–1521.

 2. Dreher, M. L. (2018). Whole fruits and fruit fiber emerging 
health effects. Nutrients, 10(12), 1833.

 3. Siriamornpun, S., Weerapreeyakul, N., & Barusrux, S. (2015). 
Bioactive compounds and health implications are better for green 
jujube fruit than for ripe fruit. Journal of Functional Foods, 12, 
246–255.

 4. Osborne, J. D., Da Silva, M., Frace, A. M., Sammons, S. A., 
Olsen-Rasmussen, M., Upton, C., Buller, R. M., Chen, N., 
Feng, Z., Roper, R. L., & Liu, J. (2013). Fruit quality and 
bioactive compounds relevant to human health of sweet cherry 



423International Journal of Precision Engineering and Manufacturing (2024) 25:409–428 

1 3

(Prunus avium L.) cultivars grown in Italy. Food Chemistry., 
140(4), 630–638.

 5. Zhang, Z., Heinemann, P. H., Liu, J., Baugher, T. A., & 
Schupp, J. R. (2016). The development of mechanical apple 
harvesting technology: A review. Transactions of the ASABE, 
59(5), 1165–1180.

 6. Bargoti, S., & Underwood, J. P. (2017). Image segmentation for 
fruit detection and yield estimation in apple orchards. Journal 
of Field Robotics, 34(6), 1039–1060.

 7. Sa, I., Ge, Z., Dayoub, F., Upcroft, B., Perez, T., & McCool, C. 
(2016). Deepfruits: A fruit detection system using deep neural 
networks. Sensors, 16(8), 1222.

 8. Wan, S., & Goudos, S. (2020). Faster R-CNN for multi-class 
fruit detection using a robotic vision system. Computer Net-
works, 168, 107036.

 9. Gené-Mola, J., Sanz-Cortiella, R., Rosell-Polo, J. R., Morros, 
J. R., Ruiz-Hidalgo, J., Vilaplana, V., & Gregorio, E. (2020). 
Fruit detection and 3D location using instance segmentation 
neural networks and structure-from-motion photogrammetry. 
Computers and Electronics in Agriculture, 169, 105165.

 10. Rahnemoonfar, M., & Sheppard, C. (2017). Deep count: Fruit 
counting based on deep simulated learning. Sensors, 17(4), 
905.

 11. Liu, X., Zhao, D., Jia, W., Ji, W., & Sun, Y. (2019). A detec-
tion method for apple fruits based on color and shape features. 
IEEE Access, 7, 67923–67933.

 12. Zhuang, J., Luo, S., Hou, C., Tang, Y., He, Y., & Xue, X. Y. 
(2018). Detection of orchard citrus fruits using a monocular 
machine vision-based method for automatic fruit picking appli-
cations. Computers and Electronics in Agriculture, 152, 64–73.

 13. Lu, J., Lee, W. S., Gan, H., & Hu, X. (2018). Immature citrus 
fruit detection based on local binary pattern feature and hierar-
chical contour analysis. Biosystems Engineering, 171, 78–90.

 14. Tao, Y., & Zhou, J. (2017). Automatic apple recognition based 
on the fusion of color and 3D feature for robotic fruit picking. 
Computers and Electronics in Agriculture, 142, 388–396.

 15. Wu, F., Duan, J., Chen, S., Ye, Y., Ai, P., & Yang, Z. (2021). 
Multi-target recognition of bananas and automatic positioning 
for the inflorescence axis cutting point. Frontiers in Plant Sci-
ence, 12, 705021.

 16. Moreira, G., Magalhães, S. A., Pinho, T., & Cunha, M. (2022). 
Benchmark of deep learning and a proposed HSV colour space 
models for the detection and classification of greenhouse 
tomato. Agronomy, 12(2), 356.

 17. Zhang, W., Chen, K., Wang, J., Shi, Y., & Guo, W. (2021). 
Easy domain adaptation method for filling the species gap in 
deep learning-based fruit detection. Horticulture Research, 8, 
119.

 18. Mao, S., Li, Y., Ma, Y., Zhang, B., & Wang, K. (2020). Auto-
matic cucumber recognition algorithm for harvesting robots in 
the natural environment using deep learning and multi-feature 
fusion. Computers and Electronics in Agriculture, 170, 105254.

 19. Williams, H. A., Jones, M. H., & Nejati, M. (2019). Robotic 
kiwifruit harvesting using machine vision, convolutional neu-
ral networks, and robotic arms. Biosystems Engineering, 181, 
140–156.

 20. Bac, C. W., Hemming, J., Van Tuijl, B., Barth, R., Wais, E., & 
Van Henten, E. J. (2017). Performance evaluation of a harvest-
ing robot for sweet pepper. Journal of Field Robotics, 34(6), 
1123–1139.

 21. Fountas, S., Mylonas, N., Malounas, I., Rodias, E., Hellmann 
Santos, C., & Pekkeriet, E. (2020). Agricultural robotics for field 
operations. Sensors, 20(9), 2672.

 22. Li, P., Lee, S.-H., & Hsu, H.-Y. (2011). Review on fruit har-
vesting method for potential use of automatic fruit harvesting 
systems. Procedia Engineering, 23, 351–366.

 23. Zhao, Y., Gong, L., Huang, Y., Liu, C., et al. (2016). A review 
of key techniques of vision-based control for harvesting robot. 
Computers and Electronics in Agriculture, 127, 311–323.

 24. Amatya, S., Karkee, M., Gongal, A., Zhang, Q., & Whiting, M. 
D. (2016). Detection of cherry tree branches with full foliage in 
planar architecture for automated sweet-cherry harvesting. Bio-
systems Engineering, 146, 3–15.

 25. Zhang, C., Zhang, K., Ge, L., Zou, K., Wang, S., Zhang, J., & Li, 
W. (2021). A method for organs classification and fruit counting 
on pomegranate trees based on multi-features fusion and support 
vector machine by 3D point cloud. Scientia Horticulturae, 278, 
109791.

 26. Ghazal, S., Qureshi, W. S., Khan, U. S., Iqbal, J., Rashid, N., & 
Tiwana, M. I. (2021). Analysis of visual features and classifiers 
for Fruit classification problem. Computers and Electronics in 
Agriculture, 187, 106267.

 27. Jahanbakhshi, A., Momeny, M., Mahmoudi, M., & Zhang, Y. D. 
(2020). Classification of sour lemons based on apparent defects 
using stochastic pooling mechanism in deep convolutional neural 
networks. Scientia Horticulturae, 263, 109133.

 28. Momeny, M., Jahanbakhshi, A., & Jafarnezhad, K. (2020). 
Accurate classification of cherry fruit using deep CNN based on 
hybrid pooling approach. Postharvest Biology and Technology, 
166, 111204.

 29. Zhang, Y. D., Dong, Z., Chen, X., Jia, W., Du, S., Muhammad, 
K., & Wang, S. H. (2019). Image based fruit category classifica-
tion by 13-layer deep convolutional neural network and data aug-
mentation. Multimedia Tools and Applications, 78, 3613–3632.

 30. Ren, S., He, K., Girshick, R., & Sun, J. (2015) Faster r-cnn: 
Towards real-time object detection with region proposal net-
works. Advances in neural information processing systems, 28.

 31. Girshick, R. (2015). Fast r-cnn; proceedings of the Proceedings 
of the IEEE international conference on computer vision.

 32. Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich 
feature hierarchies for accurate object detection and semantic 
segmentation. In Proceedings of the Proceedings of the IEEE 
conference on computer vision and pattern recognition.

 33. Junos, M. H., Mohd, K. A., Thannirmalai, S., & Dahari, M. 
(2022). Automatic detection of oil palm fruits from UAV images 
using an improved YOLO model. The Visual Computer, 38(7), 
2341–2355.

 34. Wang, D., & He, D. (2021). Channel pruned YOLO V5s-based 
deep learning approach for rapid and accurate apple fruitlet 
detection before fruit thinning. Biosystems Engineering, 210, 
271–281.

 35. Lawal, M. O. (2021). Tomato detection based on modified 
YOLOv3 framework. Scientific Reports, 11(1), 1–11.

 36. Gai, R., Chen, N., & Yuan, H. (2021). A detection algorithm for 
cherry fruits based on the improved YOLO-v4 model. Neural 
Computing and Applications, 2021, 1–12.

 37. Barreto, A., Lottes, P., Yamati, F. R. I., Baumgarten, S., Wolf, 
N. A., Stachniss, C., & Paulus, S. (2021). Automatic UAV-based 
counting of seedlings in sugar-beet field and extension to maize 
and strawberry. Computers and Electronics in Agriculture, 191, 
106493.

 38. Marset, W. V., Pérez, D. S., Díaz, C. A., & Bromberg, F. (2021). 
Towards practical 2D grapevine bud detection with fully con-
volutional networks. Computers and Electronics in Agriculture, 
182, 105947.

 39. Peng, Y., Wang, A., Liu, J., & Faheem, M. (2021). A comparative 
study of semantic segmentation models for identification of grape 
with different varieties. Agriculture, 11(10), 997.

 40. Vasconez, J. P., Delpiano, J., Vougioukas, S., & Cheein, F. A. 
(2020). Comparison of convolutional neural networks in fruit 
detection and counting: A comprehensive evaluation. Computers 
and Electronics in Agriculture, 173, 105348.



424 International Journal of Precision Engineering and Manufacturing (2024) 25:409–428

1 3

 41. Magalhães, S. A., Castro, L., Moreira, G., Dos Santos, F. N., 
Cunha, M., Dias, J., & Moreira, A. P. (2021). Evaluating the 
single-shot multibox detector and YOLO deep learning models 
for the detection of tomatoes in a greenhouse. Sensors, 21(10), 
3569.

 42. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. 
Y., & Berg, A. C. (2016). Ssd: Single shot multibox detector. In 
Proceedings of the European conference on computer vision. 
Springer.

 43. Maheswari, P., Raja, P., Apolo-Apolo, O. E., & Pérez-Ruiz, M. 
(2021). Intelligent fruit yield estimation for orchards using deep 
learning based semantic segmentation techniques—a review. 
Frontiers in Plant Science, 12, 684328.

 44. Fu, L., Gao, F., Wu, J., Karkee, M., & Zhang, Q. (2020). Applica-
tion of consumer RGB-D cameras for fruit detection and locali-
zation in field: A critical review. Computers and Electronics in 
Agriculture, 177, 105687.

 45. Lehnert, C., English, A., Mccool, C., Tow, A. W., & Perez, 
T. (2017). Autonomous sweet pepper harvesting for protected 
cropping systems. IEEE Robotics and Automation Letters, 2(2), 
872–879.

 46. Kwak, J., Lee, S., Baek, J., & Chu, B. (2022). Autonomous UAV 
target tracking and safe landing on a leveling mobile platform. 
International Journal of Precision Engineering and Manufactur-
ing, 23(3), 305–317.

 47. Park, J., An, B., Kwon, O., Yi, H., & Kim, C. (2022). User inten-
tion based intuitive mobile platform control: Application to a 
patient transfer robot. International Journal of Precision Engi-
neering and Manufacturing, 23(6), 653–666.

 48. Lee, D. G., Baek, D., Kim, H., Kim, J., & Kwon, D. (2023). 
Learning-based discrete hysteresis classifier using wire tension 
and compensator for flexible endoscopic surgery robots. Inter-
national Journal of Precision Engineering and Manufacturing, 
24(1), 83–94.

 49. Yuan, L. H., Zhao, J. C., Li, W. H., & Hou, J. (2023). Improved 
informed-RRT* based path planning and trajectory optimization 
for mobile robots. International Journal of Precision Engineer-
ing and Manufacturing, 24(3), 435–446.

 50. Jun, J., Kim, J., Seol, J., & Son, H. I. (2021). Towards an efficient 
tomato harvesting robot: 3D perception, manipulation, and end-
effector. IEEE access, 9, 17631–17640.

 51. Kang, H., Zhou, H., & Chen, C. (2020). Visual perception and 
modeling for autonomous apple harvesting. IEEE Access, 8, 
62151–62163.

 52. Lehnert, C., Mccool, C., Sa, I., & Perez, T. (2020). Performance 
improvements of a sweet pepper harvesting robot in protected 
cropping environments. Journal of Field Robotics, 37(7), 
1197–1223.

 53. Xiong, Y., Ge, Y., & From, P. J. (2020). An obstacle separation 
method for robotic picking of fruits in clusters. Computers and 
Electronics in Agriculture, 175, 105397.

 54. Gao, J., Zhang, F., Zhang, J., Yuan, T., Yin, J., Guo, H., & Yang, 
C. (2022). Development and evaluation of a pneumatic finger-
like end-effector for cherry tomato harvesting robot in green-
house. Computers and Electronics in Agriculture, 197, 106879.

 55. Lin, G., Tang, Y., Zou, X., & Liu, J. (2019). Guava detection 
and pose estimation using a low-cost RGB-D sensor in the field. 
Sensors, 19(2), 428.

 56. Zhang, K., Lammers, K., Chu, P., Li, Z., & Lu, R. (2021). System 
design and control of an apple harvesting robot. Mechatronics, 
79, 102644.

 57. Liu, T. H., Ehsani, R., Toudeshki, A., Zou, X. J., & Wang, H. J. 
(2018). Detection of citrus fruit and tree trunks in natural envi-
ronments using a multi-elliptical boundary model. Computers in 
Industry, 99, 9–16.

 58. Liu, J., Yuan, Y., Zhou, Y., Zhu, X., & Syed, T. N. (2018). Exper-
iments and analysis of close-shot identification of on-branch cit-
rus fruit with realsense. Sensors, 18(5), 1510.

 59. Qureshi, W. S., Payne, A., Walsh, K. B., Linker, R., Cohen, O., 
& Dailey, M. N. (2017). Machine vision for counting fruit on 
mango tree canopies. Precision Agriculture, 18, 224–244.

 60. Faisal, M., Albogamy, F., Elgibreen, H., Algabri, M., & Alqershi, 
F. A. (2020). Deep learning and computer vision for estimat-
ing date fruits type, maturity level, and weight. IEEE Access, 8, 
206770–206782.

 61. Bresilla, K., Perulli, G. D., Boini, A., Morandi, B., Corelli Grap-
padelli, L., & Manfrini, L. (2019). Single-shot convolution neural 
networks for real-time fruit detection within the tree. Frontiers 
in plant science, 10, 611.

 62. Pourdarbani, R., Sabzi, S., Hernández-Hernández, M., Hernán-
dez-Hernández, J. L., García-Mateos, G., Kalantari, D., & 
Molina-Martínez, J. M. (2019). Comparison of different classi-
fiers and the majority voting rule for the detection of plum fruits 
in garden conditions. Remote sensing, 11(21), 2546.

 63. Zahid, A., Mahmud, M. S., & He, L. (2021). Technological 
advancements towards developing a robotic pruner for apple 
trees: A review. Computers and Electronics in Agriculture, 189, 
106383.

 64. Son, J., Kang, H. Y. A., & Kang, S. H. (2023). A review on robust 
control of robot manipulators for future manufacturing. Inter-
national Journal of Precision Engineering and Manufacturing, 
24(6), 1083–1102.

 65. Bae, J., Moon, Y., Park, E., Kim, J., Jin, S., & Seo, T. (2022). 
Cooperative underwater vehicle-manipulator operation using 
redundant resolution method. International Journal of Precision 
Engineering and Manufacturing, 23(9), 1003–1017.

 66. Levin, M., & Degani, A. (2019). A conceptual framework and 
optimization for a task-based modular harvesting manipulator. 
Computers and Electronics in Agriculture, 166, 104987.

 67. Navas, E., Fernández, R., Sepúlveda, D., & Armada, M. (2021). 
Soft grippers for automatic crop harvesting: A review. Sensors, 
21(8), 2689.

 68. Zhang, B., Xie, Y., Zhou, J., Wang, K., & Zhang, Z. (2020). 
State-of-the-art robotic grippers, grasping and control strategies, 
as well as their applications in agricultural robots: A review. 
Computers and Electronics in Agriculture, 177, 105694.

 69. Rachmawati, E., Supriana, I., Khodra, M. L., & Firdaus, F. 
(2022). Integrating semantic features in fruit recognition based 
on perceptual color and semantic template. Information Process-
ing in Agriculture, 9(2), 316–334.

 70. Tang, Y., Chen, M., Wang, C., Luo, L., Li, J., Lian, G., & Zou, 
X. (2020). Recognition and localization methods for vision-based 
fruit picking robots: A review. Frontiers in Plant Science, 11, 
510.

 71. Xiong, Y., Ge, Y., Grimstad, L., & From, P. J. (2020). An autono-
mous strawberry-harvesting robot: Design, development, inte-
gration, and field evaluation. Journal of Field Robotics, 37(2), 
202–224.

 72. Edan, Y., Rogozin, D., Flash, T., & Miles, G. E. (2000). Robotic 
melon harvesting. IEEE Transactions on Robotics and Automa-
tion, 16(6), 831–835.

 73. Ji, W., Zhao, D., Cheng, F., Xu, B., Zhang, Y., & Wang, J. (2012). 
Automatic recognition vision system guided for apple harvesting 
robot. Computers & Electrical Engineering, 38(5), 1186–1195.

 74. Wang, C., Tang, Y., Zou, X., Luo, L., & Chen, X. (2017). Rec-
ognition and Matching of Clustered Mature Litchi Fruits Using 
Binocular Charge-Coupled Device (CCD) Color Cameras. Sen-
sors, 17(11), 2564.

 75. Arad, B., Kurtser, P., Barnea, E., Harel, B., Edan, Y., & Ben-Sha-
har, O. (2019). Controlled lighting and illumination-independent 



425International Journal of Precision Engineering and Manufacturing (2024) 25:409–428 

1 3

target detection for real-time cost-efficient applicationsl. The case 
study of sweet pepper robotic harvesting. Sensors, 19(6), 1390.

 76. Okamoto, H., & Lee, W. S. (2009). Green citrus detection using 
hyperspectral imaging. Computers and electronics in agriculture, 
66(2), 201–208.

 77. Wendel, A., Underwood, J., & Walsh, K. (2018). Maturity esti-
mation of mangoes using hyperspectral imaging from a ground 
based mobile platform. Computers and Electronics in Agricul-
ture, 155, 298–313.

 78. Fatchurrahman, D., Amodio, M. L., & Chiara, M. (2020). Early 
discrimination of mature-and immature-green tomatoes (Sola-
num lycopersicum L.) using fluorescence imaging method. Post-
harvest Biology and Technology, 169, 111287.

 79. Feng, J., Zeng, L., & He, L. (2019). Apple fruit recognition algo-
rithm based on multi-spectral dynamic image analysis. Sensors, 
19(4), 949.

 80. Li, J., Zhang, R., Li, J., Wang, Z., Zhang, H., Zhan, B., & Jiang, 
Y. (2019). Detection of early decayed oranges based on multi-
spectral principal component image combining both bi-dimen-
sional empirical mode decomposition and watershed segmenta-
tion method. Postharvest Biology and Technology, 158, 110986.

 81. Gan, H., Lee, W. S., Alchanatis, V., Ehsani, R., & Schueller, J. 
K. (2018). Immature green citrus fruit detection using color and 
thermal images. Computers and Electronics in Agriculture, 152, 
117–125.

 82. Osroosh, Y., & Peters, R. T. (2019). Detecting fruit surface wet-
ness using a custom-built low-resolution thermal-RGB imager. 
Computers and Electronics in Agriculture, 157, 509–517.

 83. Gan, H., Lee, W. S., Alchanatis, V., & Abd-Elrahman, A. (2020). 
Active thermal imaging for immature citrus fruit detection. Bio-
systems Engineering, 198, 291–303.

 84. Iqbal, Z., Khan, M. A., Sharif, M., & Shah, J. H. (2018). An 
automated detection and classification of citrus plant diseases 
using image processing techniques: A review. Computers and 
electronics in agriculture, 153, 12–32.

 85. Hameed, K., Chai, D., & Rassau, A. (2018). A comprehensive 
review of fruit and vegetable classification techniques. Image and 
Vision Computing, 80, 24–44.

 86. Zhang, L., Yang, Q., Xun, Y., Chen, X., Ren, Y., Yuan, T., Tan, 
Y., & Li, W. (2007). Recognition of greenhouse cucumber fruit 
using computer vision. New Zealand Journal of Agricultural 
Research, 50(5), 1293–1298.

 87. Fan, P., Lang, G., Yan, B., Lei, X., Guo, P., Liu, Z., & Yang, F. 
(2021). A method of segmenting apples based on gray-centered 
RGB color space. Remote Sensing, 13(6), 1211.

 88. Jidong, L., De-An, Z., Wei, J., & Shihong, D. (2016). Rec-
ognition of apple fruit in natural environment. Optik, 127(3), 
1354–1362.

 89. Zhao, C., Lee, W. S., & He, D. (2016). Immature green citrus 
detection based on colour feature and sum of absolute trans-
formed difference (SATD) using colour images in the citrus 
grove. Computers and Electronics in Agriculture, 124, 243–253.

 90. Tan, K., Lee, W. S., Gan, H., & Wang, S. (2018). Recognising 
blueberry fruit of different maturity using histogram oriented 
gradients and colour features in outdoor scenes. Biosystems engi-
neering, 176, 59–72.

 91. Yang, X., Zhang, R., Zhai, Z., Pang, Y., & Jin, Z. (2019). 
Machine learning for cultivar classification of apricots (Prunus 
armeniaca L.) based on shape features. Scientia Horticulturae, 
256, 108524.

 92. Lin, G., Tang, Y., Zou, X., Xiong, J., et al. (2020). Fruit detection 
in natural environment using partial shape matching and proba-
bilistic Hough transform. Precision Agriculture, 21(1), 160–177.

 93. Yamamoto, K., Guo, W., & Yoshioka, Y. (2014). On plant detec-
tion of intact tomato fruits using image analysis and machine 
learning methods. Sensors, 14(7), 12191–12206.

 94. Li, H., Lee, W. S., & Wang, K. (2016). Immature green citrus 
fruit detection and counting based on fast normalized cross 
correlation (FNCC) using natural outdoor colour images. Pre-
cision Agriculture, 17(6), 678–697.

 95. Zhang, C., Zou, K., & Pan, Y. (2020). A method of apple 
image segmentation based on color-texture fusion feature and 
machine learning. Agronomy, 10(7), 972.

 96. Lin, G., & Zou, X. (2018). Citrus segmentation for automatic 
harvester combined with adaboost classifier and Leung-Malik 
filter bank. IFAC-PapersOnLine, 51(17), 379–383.

 97. Wu, G., Zhu, Q., Huang, M., Guo, Y., & Qin, J. (2019). Auto-
matic recognition of juicy peaches on trees based on 3D con-
tour features and colour data. Biosystems Engineering, 188, 
1–13.

 98. Wu, G., Li, B., Zhu, Q., Huang, M., & Guo, Y. (2020). Using 
color and 3D geometry features to segment fruit point cloud 
and improve fruit recognition accuracy. Computers and elec-
tronics in agriculture, 174, 105475.

 99. Ren, S., Zhang, Y., Sakao, T., Liu, Y., & Cai, R. (2022). An 
advanced operation mode with product-service system using 
lifecycle big data and deep learning. International Journal of 
Precision Engineering and Manufacturing-Green Technology, 
9(1), 287–303.

 100. Zheng, C., Li, W., Li, W., Xu, K., Peng, L., & Cha, S. W. 
(2022). A deep reinforcement learning-based energy manage-
ment strategy for fuel cell hybrid buses. International Journal 
of Precision Engineering and Manufacturing-Green Technol-
ogy, 9(3), 885–897.

 101. He, K., Gkioxari, G., Dollár, P. (2017) Mask r-cnn. In Proceed-
ings of the IEEE international conference on computer vision.

 102. Huang, W. W., Gao, X. D., Huang, Y. H., & Zuang, Y. (2023). 
Improved convolutional neural network for laser welding defect 
prediction. International Journal of Precision Engineering and 
Manufacturing, 24(1), 33–41.

 103. Jia, W., Tian, Y., Luo, R., Zhang, Z., Lian, J., & Zheng, Y. 
(2020). Detection and segmentation of overlapped fruits based 
on optimized mask R-CNN application in apple harvesting 
robot. Computers and Electronics in Agriculture, 172, 105380.

 104. Parvathi, S., & Selvi, S. T. (2021). Detection of maturity 
stages of coconuts in complex background using Faster R-CNN 
model. Biosystems engineering, 202, 119–132.

 105. Huang, G., Liu, Z., Van Der Maaten, L. (2017) Densely con-
nected convolutional networks. In Proceedings of the IEEE 
conference on computer vision and pattern recognition.

 106. He, K., Zhang, X., Ren, S., Sun, J. (2016) Identity mappings 
in deep residual networks. In Proceedings of the European 
conference on computer vision. Springer.

 107. Liu, X., Zhao, D., Jia, W., Ji, W., Ruan, C., & Sun, Y. (2019). 
Cucumber fruits detection in greenhouses based on instance 
segmentation. IEEE Access, 7, 139635–139642.

 108. Shen, L., Su, J., Huang, R., Quan, W., Song, Y., Fang, Y., & Su, 
B. (2022). Fusing attention mechanism with Mask R-CNN for 
instance segmentation of grape cluster in the field. Frontiers 
in plant science, 13, 934450.

 109. Liu, Z., Wu, J., Fu, L., Majeed, Y., Feng, Y., Li, R., & Cui, 
Y. (2019). Improved kiwifruit detection using pre-trained 
VGG16 with RGB and NIR information fusion. IEEE Access, 
8, 2327–2336.

 110. Simonyan, K., Zisserman, A. (2014). Very deep convolutional 
networks for large-scale image recognition. arXiv preprint 
arXiv:14091556.

 111. Yu, Y., Zhang, K., Yang, L., & Zhang, D. (2019). Fruit detec-
tion for strawberry harvesting robot in non-structural environ-
ment based on Mask-RCNN. Computers and Electronics in 
Agriculture, 163, 104846.



426 International Journal of Precision Engineering and Manufacturing (2024) 25:409–428

1 3

 112. Hu, C., Liu, X., Pan, Z., et al. (2019). Automatic detection of 
single ripe tomato on plant combining faster R-CNN and intui-
tionistic fuzzy set. IEEE Access, 7, 154683–154696.

 113. Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You 
only look once: Unified, real-time object detection. In Proceed-
ings of the IEEE conference on computer vision and pattern 
recognition.

 114. Redmon, J., Farhadi, A. (2017). YOLO9000: Better, faster, 
stronger. In Proceedings of the Proceedings of the IEEE confer-
ence on computer vision and pattern recognition.

 115. Redmon, J., Farhadi, A. (2018). Yolov3: An incremental improve-
ment. arXiv preprint arXiv:180402767

 116. Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y. M. (2020) Yolov4: 
Optimal speed and accuracy of object detection. arXiv preprint 
arXiv:200410934

 117. Tian, Y., Yang, G., Wang, Z., Wang, H., Li, E., & Liang, Z. 
(2019). Apple detection during different growth stages in 
orchards using the improved YOLO-V3 model. Computers and 
Electronics in Agriculture, 157, 417–426.

 118. Yan, B., Fan, P., Lei, X., Liu, Z., & Yang, F. (2021). A real-
time apple targets detection method for picking robot based on 
improved YOLOv5. Remote Sensing, 13(9), 1619.

 119. Hu, J., Shen, L., Sun, G. (2018). Squeeze-and-excitation net-
works. In Proceedings of the IEEE conference on computer 
vision and pattern recognition.

 120. Lv, J., Xu, H., Han, Y., Lu, W., Xu, L., Rong, H., Yang, B., Zou, 
L., & Ma, Z. (2022). A visual identification method for the apple 
growth forms in the orchard. Computers and Electronics in Agri-
culture, 197, 106954.

 121. Tan, M., Pang, R., Le ,Q. V. (2020). Efficientdet: Scalable and 
efficient object detection. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition.

 122. Chen, W., Lu, S., Liu, B., Chen, M., Li, G., & Qian, T. (2022). 
CitrusYOLO: A algorithm for citrus detection under orchard 
environment based on YOLOv4. Multimedia Tools and Appli-
cations, 81(22), 31363–31389.

 123. Yang, L., Zhang, R. Y., Li, L., & Xie, X. (2021). Simam: A 
simple, parameter-free attention module for convolutional neu-
ral networks. In Proceedings of the International conference on 
machine learning, PMLR.

 124. Chen, D., Tang, J., Xi, H., & Zhao, X. (2021). Image recognition 
of modern agricultural fruit maturity based on internet of things. 
Traitement du Signal, 38(4), 1237.

 125. Chen, J., Wang, Z., & Wu, J. (2021). An improved Yolov3 based 
on dual path network for cherry tomatoes detection. Journal of 
Food Process Engineering, 44(10), e13803.

 126. Li, H., Li, C., Li, G., & Chen, L. (2021). A real-time table grape 
detection method based on improved YOLOv4-tiny network in 
complex background. Biosystems Engineering, 212, 347–359.

 127. Bodla N., Singh B., Chellappa R., & Davis, L. S. (2017). Soft-
NMS--improving object detection with one line of code. In 
Proceedings of the IEEE international conference on computer 
vision.

 128. Wang, F., Sun, Z., Chen, Y., et al. (2022). Xiaomila green pepper 
target detection method under complex environment based on 
improved YOLOv5s. Agronomy, 12(6), 1477.

 129. Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., & Xu, C. (2020). 
Ghostnet: More features from cheap operations. In Proceedings 
of the IEEE/CVF conference on computer vision and pattern 
recognition.

 130. Zhou, Z., Song, Z., Fu, L., Gao, F., Li, R., & Cui, Y. (2020). 
Real-time kiwifruit detection in orchard using deep learning on 
Android™ smartphones for yield estimation. Computers and 
Electronics in Agriculture, 179, 105856.

 131. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, 
L. C. (2018). Mobilenetv2: Inverted residuals and linear 

bottlenecks. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition.

 132. Li, D., Sun, X., Elkhouchlaa, H., Jia, Y., Yao, Z., Lin, P., Li, J., 
& Lu, H. (2021). Fast detection and location of longan fruits 
using UAV images. Computers and Electronics in Agriculture, 
190, 106465.

 133. Wang, Y., Chen, Y., & Wang, D. (2022). Recognition of multi-
modal fusion images with irregular interference. PeerJ Com-
puter Science, 8, e1018.

 134. Mehta, S., & Burks, T. (2014). Vision-based control of robotic 
manipulator for citrus harvesting. Computers and Electronics 
in Agriculture, 102, 146–158.

 135. Xiong, J., Liu, Z., Lin, R., Bu, R., He, Z., Yang, Z., & Liang, 
C. (2018). Green grape detection and picking-point calculation 
in a night-time natural environment using a charge-coupled 
device (CCD) vision sensor with artificial illumination. Sen-
sors, 18(4), 969.

 136. Mehta, S. S., Ton, C., Asundi, S., & Burks, T. F. (2017). Mul-
tiple camera fruit localization using a particle filter. Computers 
and Electronics in Agriculture, 142, 139–154.

 137. Díaz, C. A., Pérez, D. S., Miatello, H., & Bromberg, F. (2018). 
Grapevine buds detection and localization in 3D space based 
on structure from Motion and 2D image classification. Comput-
ers in Industry, 99, 303–312.

 138. Nguyen, T. T., Vandevoorde, K., Wouters, N., Kayacan, E., De 
Baerdemaeker, J. G., & Saeys, W. (2016). Detection of red and 
bicoloured apples on tree with an RGB-D camera. Biosystems 
Engineering, 146, 33–44.

 139. Hou, C., Zhang, X., Tang, Y., Zhuang, J., Tan, Z., Huang, H., & 
Luo, S. (2022). Detection and localization of citrus fruit based 
on improved You Only Look Once v5s and binocular vision in 
the orchard. Frontiers in Plant Science, 13, 972445.

 140. Li, T., Feng, Q., Qiu, Q., Xie, F., & Zhao, C. (2022). Occluded 
apple fruit detection and localization with a frustum-based 
point-cloud-processing approach for robotic harvesting. 
Remote Sensing, 14(3), 482.

 141. Wu, F., Duan, J., Ai, P., Chen, Z., Yang, Z., & Zou, X. (2022). 
Rachis detection and three-dimensional localization of cut off 
point for vision-based banana robot. Computers and Electron-
ics in Agriculture, 198, 107079.

 142. Tian, Y., Duan, H., Luo, R., Zhang, Y., Jia, W., Lian, J., & Li, 
C. (2019). Fast recognition and location of target fruit based 
on depth information. IEEE Access, 7, 170553–170563.

 143. Li, J., Tang, Y., Zou, X., Lin, G., & Wang, H. (2020). Detec-
tion of fruit-bearing branches and localization of litchi clus-
ters for vision-based harvesting robots. IEEE Access, 8, 
117746–117758.

 144. SepúLveda, D., Fernández, R., Navas, E., Armada, M., & Gon-
zalez-De-Santos, P. (2020). Robotic aubergine harvesting using 
dual-arm manipulation. IEEE Access, 8, 121889–121904.

 145. Costa, J. M., Vaz, M., Escalona, J., Egipto, R., Lopes, C., 
Medrano, H., & Chaves, M. M. (2016). Modern viticulture in 
southern Europe: Vulnerabilities and strategies for adaptation to 
water scarcity. Agricultural Water Management, 164, 5–18.

 146. Gongal, A., Amatya, S., Karkee, M., & Lewis, K. (2015). Sen-
sors and systems for fruit detection and localization: A review. 
Computers and Electronics in Agriculture, 116, 8–19.

 147. Giancola, S., Valenti, M., & Sala, R. (2018). A survey on 3D 
cameras: Metrological comparison of time-of-flight, structured-
light and active stereoscopy technologies. Springer.

 148. Wang, C., Luo, T., Zhao, L., Tang, Y., & Zou, X. (2019). Window 
zooming–based localization algorithm of fruit and vegetable for 
harvesting robot. IEEE Access, 7, 103639–103649.

 149. Liu, T. H., Nie, X. N., Wu, J. M., Zhang, D., Liu, W., Cheng, 
Y. F., Qiu, J., & Qi, L. (2023). Pineapple (Ananas comosus) 
fruit detection and localization in natural environment based on 



427International Journal of Precision Engineering and Manufacturing (2024) 25:409–428 

1 3

binocular stereo vision and improved YOLOv3 model. Preci-
sion Agriculture, 24(1), 139–160.

 150. Xiong, J., He, Z., Lin, R., Liu, Z., Bu, R., Yang, Z., Peng, H., 
& Zou, X. (2018). Visual positioning technology of picking 
robots for dynamic litchi clusters with disturbance. Computers 
and Electronics in Agriculture, 151, 226–237.

 151. Wang, M.-S. (2018). Eye to hand calibration using ANFIS for 
stereo vision-based object manipulation system. Microsystem 
Technologies, 24, 305–317.

 152. Wang, X., Kang, H., & Zhou, H. (2022). Geometry-aware fruit 
grasping estimation for robotic harvesting in apple orchards. 
Computers and Electronics in Agriculture, 193, 106716.

 153. Hutchinson, S., Hager, G. D., & Corke, P. I. (1996). A tutorial 
on visual servo control. IEEE transactions on robotics and 
automation, 12(5), 651–670.

 154. Chaumette, F., & Hutchinson, S. (2006). Visual servo control. 
I. Basic approaches. IEEE Robotics & Automation Magazine, 
13(4), 82–90.

 155. Corke, P. I., Hager, G. D. (1998). Vision-based robot control. 
In Control problems in robotics and automation. (pp. 177–92). 
Springer.

 156. Ling, X., Zhao, Y., Gong, L., Liu, C., & Wang, T. (2019). 
Dual-arm cooperation and implementing for robotic harvest-
ing tomato using binocular vision. Robotics and Autonomous 
Systems, 114, 134–143.

 157. Chen, W., Xu, T., Liu, J., Wang, M., & Zhao, D. (2019). Pick-
ing robot visual servo control based on modified fuzzy neural 
network sliding mode algorithms. Electronics, 8(6), 605.

 158. Silwal, A., Davidson, J. R., Karkee, M., Mo, C., Zhang, Q., 
& Lewis, K. (2017). Design, integration, and field evaluation 
of a robotic apple harvester. Journal of Field Robotics, 34(6), 
1140–1159.

 159. Barth, R., Hemming, J., & Van Henten, E. J. (2016). Design of 
an eye-in-hand sensing and servo control framework for har-
vesting robotics in dense vegetation. Biosystems Engineering, 
146, 71–84.

 160. De-An, Z., Jidong, L., Wei, J., Ying, Z., & Yu, C. (2011). 
Design and control of an apple harvesting robot. Biosystems 
engineering, 110(2), 112–122.

 161. Hussein, M. (2015). A review on vision-based control of flex-
ible manipulators. Advanced Robotics, 29(24), 1575–1585.

 162. Mehta, S., Mackunis, W., & Burks, T. (2014). Nonlinear robust 
visual servo control for robotic citrus harvesting. IFAC Pro-
ceedings Volumes, 47(3), 8110–8115.

 163. Mehta, S. S., Mackunis, W., & Burks, T. F. (2016). Robust 
visual servo control in the presence of fruit motion for robotic 
citrus harvesting. Computers and Electronics in Agriculture, 
123, 362–375.

 164. Yu, X., Fan, Z., & Wang, X. (2021). A lab-customized autono-
mous humanoid apple harvesting robot. Computers & Electri-
cal Engineering, 96, 107459.

 165. Shirai, Y., & Inoue, H. (1973). Guiding a robot by visual feed-
back in assembling tasks. Pattern recognition, 5(2), 99–108.

 166. Sun, X., Zhu, X., Wang, P. (2018). A review of robot control 
with visual servoing. In Proceedings of the 2018 IEEE 8th 
annual international conference on CYBER Technology in 
automation, control, and intelligent systems (CYBER).

 167. Feng, Q., Zou, W., Fan, P., Zhang, C., & Wang, X. (2018). 
Design and test of robotic harvesting system for cherry tomato. 

International Journal of Agricultural and Biological Engineer-
ing, 11(1), 96–100.

 168. Nguyen, T. T., Kayacan, E., De Baedemaeker, J., & Saeys, W. 
(2013). Task and motion planning for apple harvesting robot. 
IFAC Proceedings Volumes, 46(18), 247–252.

 169. Yeshmukhametov, A., Koganezawa, K., & Yamamoto, Y. 
(2022). Development of continuum robot arm and gripper for 
harvesting cherry tomatoes. Applied Sciences, 12(14), 6922.

 170. Bac, C. W., Van Henten, E. J., Hemming, J., & Edan, Y. 
(2014). Harvesting robots for high-value crops: State-of-the-
art review and challenges ahead. Journal of Field Robotics, 
31(6), 888–911.

 171. Rong, J., Wang, P., Yang, Q., & Huang, H. (2021). A field-
tested harvesting robot for oyster mushroom in greenhouse. 
Agronomy, 11(6), 1210.

 172. Wang, X., Kang, H., Zhou, H., Au, W., Wang, M. Y., & Chen, 
C. (2023). Development and evaluation of a robust soft robotic 
gripper for apple harvesting. Computers and Electronics in 
Agriculture, 204, 107552.

 173. Li, S., Li, D., Zhang, C., & Xie, M. (2020). RGB-D Image Pro-
cessing Algorithm for Target Recognition and Pose Estimation 
of Visual Servo System. Sensors, 20(2), 430.

 174. Zubler, A. V., & Yoon, J.-Y. (2020). Proximal methods for plant 
stress detection using optical sensors and machine learning. 
Biosensors, 10(12), 193.

 175. Lu, H., Li, Y., Uemura, T., Kim, H., & Serikawa, S. (2018). 
Low illumination underwater light field images reconstruction 
using deep convolutional neural networks. Future Generation 
Computer Systems, 82, 142–148.

 176. Hua, X., Li, H., Zeng, J., Han, C., Chen, T., Tang, L., & Luo, 
Y. (2023). A review of target recognition technology for fruit 
picking robots: from digital image processing to deep learning. 
Applied Sciences, 13(7), 4160.

 177. Barnett, J., Duke, M., Au, C. K., & Lim, S. H. (2020). Work 
distribution of multiple Cartesian robot arms for kiwifruit 
harvesting. Computers and Electronics in Agriculture, 169, 
105202.

 178. Chen, Z., Wu, R., Lin, Y., Li, C., Chen, S., Yuan, Z., & Zou, 
X. (2022). Plant disease recognition model based on improved 
YOLOv5. Agronomy, 12(2), 365.

 179. Lu, Z., Zhao, M., Luo, J., Wang, G., & Wang, D. (2021). 
Design of a winter-jujube grading robot based on machine 
vision. Computers and Electronics in Agriculture, 186, 106170.

 180. Apolo-Apolo, O. E., Martínez-Guanter, J., Egea, G., Raja, P., 
& Pérez-Ruiz, M. (2020). Deep learning techniques for estima-
tion of the yield and size of citrus fruits using a UAV. Euro-
pean Journal of Agronomy, 115, 126030.

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.



428 International Journal of Precision Engineering and Manufacturing (2024) 25:409–428

1 3

Jingfan Liu received the B.S. 
degree (2021) in Mechanical 
Engineering from Changsha 
University of Science and Tech-
nology, China. He is currently 
pursuing his M.S. degree in 
Mechanical Engineering at 
Wuhan University of Technol-
ogy. His research interests 
include sensing and control of 
robotic systems.

Zhaobing Liu received his B.S. 
degree (2006) in Automation and 
the M.S. degree (2008) in Con-
trol Theory and Control Engi-
neering from Northeastern Uni-
versity, China, and the Ph.D. 
degree (2014) in Mechanical 
Engineering from The Univer-
sity of Queensland, Australia. 
Now, he is an Associate Profes-
sor with Wuhan University of 
Technology. His current research 
interests include advanced man-
ufacturing, robotics, system 
dynamics and control.


	The Vision-Based Target Recognition, Localization, and Control for Harvesting Robots: A Review
	Abstract
	1 Introduction
	2 Key Components of Harvesting Robots
	2.1 Machine Vision System
	2.2 Manipulators
	2.3 End-Effectors

	3 Detection Approaches for Harvesting Robot
	3.1 Image Processing Techniques Based on Machine Learning
	3.1.1 Detection Algorithm Based on Color Features
	3.1.2 Detection Algorithm Based on Geometric Features
	3.1.3 Detection Algorithm Based on Texture Features
	3.1.4 Multi-feature Fusion Method

	3.2 Image Recognition Technology Based on Deep Learning
	3.2.1 Two-stage Object Detection Algorithm
	3.2.2 One-stage Object Detection Algorithm


	4 Localization Methods for Harvesting Robot
	4.1 Localization Method Based on Two-dimensional Images
	4.2 Localization Method Based on Three-dimensional Coordinates
	4.2.1 Localization Based on Structured Light
	4.2.2 Localization Based on Binocular Stereo Vision
	4.2.3 Localization Based on the Principle of ToF


	5 Vision-Based Control for Harvesting Robot
	5.1 Open-loop Visual Control
	5.2 Visual Servo Control
	5.2.1 Position-based Visual Servo (PBVS)
	5.2.2 Image-based Visual Servo (IBVS)


	6 Challenges and Future Trends
	6.1 Building a Structured Environment Suitable for Harvesting Robots
	6.2 Designing the End Effector Suitable for Fruit Detachment
	6.3 Developing a More Accurate Fruit Detection and Localization Algorithm
	6.4 Training a Lightweight Model for Fruit Target Detection
	6.5 Other Feasible Directions

	7 Conclusions
	Acknowledgements 
	References


