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Abstract
Metal Powder Bed Fusion (M-PBF) technique is one of the popular branches of Additive Manufacturing (AM). One of the 
biggest challenges in M-PBF is understanding relationship between processing parameters and produced part’s mechani-
cal properties. In this review paper, recent M-PBF and Machine Learning (ML) studies are comparatively investigated to 
guide the scientific community in selecting right ML algorithm to predict and optimize the mechanical properties of the 
parts produced by M-PBF technique. In this context, theoretical background of M-PBF techniques are discussed in terms 
of processing parameters and mechanical properties. Constraints on M-PBF processes are examined and possible solutions 
are studied. ML theory is briefly reviewed and various ML algorithms are investigated regarding their applicability and 
validity for M-PBF processes. Popular Design of Experiments (DOE) methods are reported. Future trends and suggestions 
on M-PBF techniques are discussed.
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Abbreviations
AM  Additive manufacturing
ANN  Artificial neural network
CNN  Convolutional neural network
ANFIS   Adaptive neuro fuzzy inference system
VED  Volumetric energy density
EBM   Electron beam melting
HD  Hatch distance
MIMO   Multi input multi output
ML   Machine learning
LP   Laser power
LT   Layer thickness
SISO   Single input single output
DMLS  Direct metal laser sintering
SIS  Selective inhibition sintering
DNN  Deep neural network
SVM  Support vector machines
RF  Random forest

FEA  Finite element analysis
CFD  Computational fluid dynamics
DEM  Discrete element method
M-PBF  Metal powder bed fusion
SLM   Selective laser melting
SS   Scanning speed
RD  Relative density

1 Introduction

Metal Powder Bed Fusion (M-PBF) is a specific kind of 
Additive Manufacturing (AM) production technique that 
utilizes metallic powders to build three-dimensional parts 
in layer upon layer process [1]. This process essentially has 
many components such as heat source (e.g. Laser, Electron 
beam etc.), powder chamber which stores the feedstock 
material, production chamber with a powder bed, powder 
coater mechanism and sensory equipment to monitor the 
process (Thermocouples, oxygen sensors, additional imag-
ing cameras etc.).

The basic architecture of M-PBF that includes pre-pro-
cessing, post-processing and production stage are illus-
trated in Fig. 1. In this process, parts are designed in digital 
CAD format and sliced into layers. For each layer, coater 
mechanism spreads powder onto the product ion chamber 
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(Fig. 1a), then the heat source is interacted with powder 
using the pre-defined coordinate region (Fig. 1b). Powder is 
exposed to heat in selected area and other powders are left 
as loose (Fig. 1c). After that, production chamber height is 
decreased as much as the value of layer thickness, powder 
chamber height is increased at least the value of layer thick-
ness (Fig. 1d). The next powder layer is spread by coater 
again. This process is repeated until the last layer is selec-
tively exposed to heat. At the end of iterative steps, loose 
powder is removed from the process chamber and solid parts 
are extracted. The remaining powder is generally recycled 
for the next production. Then, produced parts are post-pro-
cessed (Support structure cleaning, milling, sand-blasting, 
heat treatment etc.) in consideration of necessity.

M-PBF process has many advantages over conventional 
manufacturing methods. Lightweight and high-performance 
structural part production with minimum post-process, rela-
tively small amount of lead time, less feedstock wastage are 
prominent properties of the M-PBF process. Design param-
eters allow producing complex parts which cannot be pro-
duced in other production methods [2–6]. Especially, layer 
thickness value (20–80 micron), powder properties (spheri-
cal shape, powder size distribution), processing parameters 
(Heat Source.

Power, Scanning speed, Scanning width etc.), environ-
mental conditions (Inert gas flow rate, ambiance tempera-
ture etc.) are the main parameters that affect the quality of 
produced parts [7, 8].

Despite the unique advantages of the M-PBF, it has also 
several drawbacks which are related with part quality. There 
are significant disadvantages both in process and part scale 
[9–13]. These are simply:

• Porosity formation in parts due to the usage of non-opti-
mized processing parameters,

• High surface roughness on parts due to the powder—heat 
source interactions,

• Anisotropic mechanical properties due to layer by layer 
production phenomena,

• Inadequate characterization of process modelling analy-
sis and physics of M-PBF methods,

• Reproducibility constraint of produced parts that hurdles 
mass production in M-PBF.

There are diverse studies that aim to decrease the level of 
aforementioned drawbacks [14–25]. Yet, these studies mostly 

focus on time-dependent simulations and/or high–cost experi-
ments. Recent studies show that eliminating those drawbacks 
might be possible by using a decent organized ML algorithm 
with relatively low cost process [22, 26–28].

On the other hand, ML is a conceptual data-driven learning 
method which is used for the purpose of optimizing speci-
fied performance criteria in a given problem. It is a sub-field 
of Artificial Intelligence (AI) that makes decisions relying on 
the experiences itself. ML was firstly proposed by Arthur Lee 
Samuel in 1959 [29]. According to that, there are commonly 
two ML types, which are defined as Supervised and Unsuper-
vised Learning.

In Supervised Learning, pre-organized dataset and their 
relevance outputs are used to predict future events for the pre-
viously unobserved dataset. For unsupervised learning, the 
research needs to have dataset with some observations with-
out the need of having labelled observations. Thus, hidden 
structures of data can be extracted to infer a function without 
output label information. ML type selection strongly depends 
on the problem requirements itself [30–32].

ML is directly connected to dataset preparation, which 
means collection of data affects the convergence performance 
of a ML type. ML have a broad range of application in data 
science. Prediction, classification, quality assessments are 
some major application fields of ML [33–37]. Since ML uti-
lizes dataset to create a model, data related disciplines are tied 
closely to ML.

The main objective of this review paper is to make a com-
parative analysis of the recent works published in the literature 
in the last seven years to guide the scientific community in 
selecting right ML technique to predict the mechanical prop-
erties of the parts produced by M-PBF technique. Hence, the 
number of experimental work can be kept to a minimum that 
is required to understand the interaction of process parameters 
and their impact on mechanical properties of the manufactured 
parts. This paper also contributes in guiding the M-PBF practi-
tioners to improve product quality, to optimize manufacturing 
process and to reduce costs.

Section four, ML theory was reviewed and various ML 
algorithms were defined and experimental design methods 
were presented and their relationship with ML algorithms were 
studied. In section five, ML algorithms were investigated in 
terms of their applicability and validity for M-PBF processes 
and recent literature findings on M-PBF manufacturing with 
ML algorithms were discussed and analysed comparatively. In 
the last section, conclusions and future trends were handled.

2  Metal Powder Bed Fusion (M‑PBF)

M-PBF process consists of various methods which differs 
from each other by several aspects such as phase change 
of materials (sintering, melting phases), heat source type, 

Fig. 1  The process architecture of M-PBF and iterative produc-
tion steps; a Coater mechanism spreads powder onto the production 
chamber b Heat source melts powder using the pre-defined coordi-
nate region c Powder is exposed to heat in selected area and other 
powders are left as loose d Production chamber height is decreased 
with value of layer thickness, powder chamber height is increased at 
least the value of layer thickness

◂
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material type, powder size and shape etc. [38]. The most 
popular methods are Selective Laser Melting (SLM), Elec-
tron Beam Melting (EBM), Direct Metal Laser Sintering 
(DMLS), and Selective Inhibition Sintering (SIS). Figure 2 
simply represents M-PBF methods in terms of phase change 
and heat source model.

2.1  Selective Laser Melting (SLM)

In this production method, laser system is used as a heat 
source and melts the feedstock selectively in the pre-defined 
region. Various powder materials can be used as feedstock 
such as Steel alloys, Aluminum alloys, Titanium alloys, 
Nickel-based alloys etc. [39]

The process is carried out in a protective gas atmosphere 
(e.g. Argon, Nitrogen) due to the risk of fire or explosion 
of melted powder and as continuously ventilating process 
chamber to hold  O2 steady at approximately 0.2–0.4% level 
[40]. As it was mentioned in the previous section, iterative 
steps are repeated until the last layer is exposed. These steps 
include laser scanning (guided by galvanometric mirrors), 
powder recoating, feedstock and build chambers’ moving 
respectively for each layer. Figure 3a represents the SLM 
process schematically.

Those produced parts are highly preferred in aerospace, 
automotive and medical fields owing to their unique design, 
mechanical strength and material properties. That parts can 
be produced as in desired quality is important so appropriate 
selection of processing parameters is vital. There are many 
studies that show the effects of parameters on various part 
criterions such as mechanical durability, distortion, surface 
properties etc. [41–43]. However, there are still significant 
challenges in SLM method in terms of process performance, 
part property assessments and productivity issues, which 
obstruct attractiveness of method itself [44]. Some specimen 
based SLM produced parts are illustrated in Fig. 3.b.

2.2  Electron Beam Melting (EBM)

EBM method is another remarkable branch of M-PBF 
production. The key process strategy is similar with SLM 
method but there are distinguishing general factors of this 
method [45–47]; these factors are given as follows:

• Powder Size Distribution varies between 45 and 105 
micron which is originated by process itself,

• Process is carried out in a vacuum environment instead 
of protective inert gas,

• Electron beam generator is mounted to the system which 
is used as a heat source,

EBM process have similar steps as in other M-PBF 
methods. After CAD data preparation, the process starts 
in a vacuuming the process chamber. Then, preheat pro-
cess is initialized to heat the chamber temperature around 
700–800 °C. Before each layer is exposed, the powder is 
preheated to a certain level to sinter the loose powder on the 
build table. This eventually makes the feedstock sintered 
around the produced part (Powder Cake) [48]. A simple 

Fig. 2  Classification of M-PBF methods

Fig. 3  a SLM Process scheme (Courtesy of [44]) b Cubic, Tensile 
and Charpy Impact specimens produced by SLM technique with 
AlSi10Mg alloy. (Courtesy of EKTAM)
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schematic representation of EBM process can be seen in 
Fig. 4a [49]. Some specimen parts produced by EBM and 
sintered powder cake are illustrated in Fig. 4b.

2.3  Direct Metal Laser Sintering (DMLS)

In Direct Metal Laser Sintering (DMLS) method, parts are 
built in a metal powder bed. However, powder’s temperature 
doesn’t exceed the powder’s melting phase. On the contrary, 
sintering phenomena occurred between powder particles. It 
involves neck formation between adjacent powder particles. 
The main driving force for sintering is lowering of the free 
energy when particles grow together. A gradient in vacancy 
concentration between the highly curved neck (high vacancy 
concentration) and the ‘flat’ surfaces (low vacancy concen-
tration) causes a flux of vacancies from the neck [50]. The 
method has broad range of material types such as Steels, 
Titanium alloys, Bronze alloys etc.

2.4  Selective Inhibitor Sintering (SIS)

SIS is another M-PBF method which has unique produc-
tion process. SIS have also powder bed but instead of fusing 
powders by heat source in each layer, an inhibitor is applied 
to the periphery lines of sliced layers. Inhibitor is deposited 
at the part’s boundary that impedes the sintering process 
and remainder of powder stay loose inside of the inhibited 
region. The inhibitor material is usually a liquid chemical 
solution and its main aim is to keep the contour region of 
powder from sintering. One example of sliced layer and pro-
duced Bronze alloy part can be seen in Fig. 5 [51]. Table 1 
represents general advantages and disadvantages of M-PBF 
methods.

3  Process Modelling of M‑PBF

Process modelling allows to understand physical phenom-
ena by using mathematical expressions. In this context, 
several interrelated steps are taken into consideration. 
After constructing a mathematical model which is based 
on physical theory, a numerical model can be developed 

Fig. 4  a EBM Process scheme (Courtesy of [49]) b Disk and Cylin-
drical Tensile specimens produced by EBM technique from Ti6Al4V 
alloy. (Courtesy of EKTAM)

Fig. 5  a Slice representation of a CAD data with vectors b Modi-
fied Möbius Strip part produced by SIS technique from Bronze alloy. 
(Courtesy of [51])
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to visualize the mathematical model in the way of under-
standing complex physical interactions. The numerical 
model eventually used for verification of real process in 
terms of compatibility. Finite Element Analysis (FEA), 
Computational Fluid Dynamics (CFD), Discrete Element 
method (DEM) are primary methods in numerical simula-
tions [55].

From this point of view, M-PBF process can be modelled 
and compared with experiments. M-PBF is an inherently 
multiscale process: material transformations (e.g. melting, 
evaporation and solidification of powder) take place locally 
(e.g. (10–200 μm)) over short times (e.g. 10 ms), but parts 
are big (e.g.10 cm)3 and take different scales of time (e.g. 
hours-days) to build [56]. Therefore, to be able to understand 
the process in every aspect, an accurate mathematical/physi-
cal modelling is needed. Several studies yielded results in 

M-PBF process modelling. Related examples are illustrated 
in Fig. 6.

3.1  Processing Parameters

Each M-PBF method have crucial processing parameters 
that influence the produced parts in terms of various quality 
assessments. For instance, dimensional accuracy, reliable 
mechanical properties, high productivity rates and surface 
finish are severely depending on the selection values of 
processing parameters [61]. Main effective parameters in 
M-PBF methods and effected part properties can be seen 
in Table 2.

Determination of optimal processing parameters is still 
an obstacle for producing desired part quality for research-
ers. From this point of view, ML algorithms will be a good 

Fig. 6  a M. F. Zah et  al. modelled FEA of Length/ Width ratio of 
meltpool geometry in EBM method with varying beam power and 
scanning speed (Courtesy of [57]). b Tran et  al. modelled meltpool 
geometry in SLM method through given processing parameters 
(Courtesy of [58]). c Khan et  al. numerically computed meltpool 

cross section geometry in SLM method and compared corresponding 
experimental results (Courtesy of [59]). d Le et  al.proposed CFD–
DEM modelling of powder deposition onto melted and solidified part 
in SLM method in his thesis (Courtesy of [60])
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solution for creating accurate process spaces and predicting 
corresponding processing parameters [62].

3.2  Pre‑processing in M‑PBF

M-PBF production is bounded with not only the process 
itself but also pre-processing is a vital stage to get better out-
come from produced parts. Pre-processing consist of digital 
phases such as file preparation, part design, build orienta-
tion, support structure organization etc. [63] Part’s position-
ing, support type selection, powder shape and quality highly 
effects produced parts in terms of production repeatability 
and mechanical properties [64, 65]. From this point of view, 
Günaydın et al. studied effects of pre-processing steps (build 
orientation, support structure density etc.) on mechanical 
strength of produced parts [66]. Anstaett et al. investigated 
pre-processing strategies for multi-material models in PBF 
[67]. Some pre-processing parameters were given with 
effected part properties at the end of Table 2 as well.

3.3  Post‑processing in M‑PBF

Another major topic in M-PBF is post-processing. One can-
not say that, as built parts will always have adequate mechan-
ical properties for the end use of productions. Furthermore, 
produced parts may have unsatisfactory performance in 
terms of their mechanical properties such as surface qual-
ity, fatigue strength, geometric tolerances. These lacks can 
be eliminated by implementing different post-processing 
methods [68–70] (e.g. machining, heat treatment, grinding, 
chemical polishing etc.)

Khan et al. combined post-processing studies in differ-
ent M-PBF methods and showed the effects on mechanical 
properties [71]. Afkhami and Kaletsch et al. studied M-PBF 
produced parts in terms of distinct post-processing strategies 
such as hot isostatic pressing and machining to understand 
influence on tensile strength, fatigue behavior and micro-
hardness of parts [68, 69]. Schematic representation of post-
processing operations can be further seen in Fig. 7 below. 
According to that, as-built parts have lower performances 
than post-processed parts in terms of different mechanical 
strengths such as surface roughnness, porosity, wear, hard-
ness etc.

3.4  Material Types in M‑PBF

One of unique advantages of M-PBF process is to have 
vast range of material types. Different type of metal-based 
materials is used as feedstock in M-PBF process [80]. Since 
materials have different properties in terms of their charac-
teristics, there is a great need of investigation of compatibil-
ity between M-PBF methods and material properties.

Material properties are effective on mechanical strength 
of part. Therefore, enhancement of part properties such as 
mechanical strength, elongation, ductility etc. are signifi-
cantly related with the determination of material properties 
and understanding microstructure features accurately [81]. 
Since M-PBF process have high melting and cooling rates 
(in msec levels) and mechanical strength highly depends 
on microstructures of parts, material properties of M-PBF 
manufactured parts shouldn’t be considered as identical with 
bulk state.

of the same material [82]. Due to the fact that M-PBF 
process is a layer by layer process, identical part production 
in different orientation will yield different material proper-
ties (anisotropic material properties). Figure 8 shows SLM 
parts with three different orientations (XY, XZ and ZX) and 
their corresponding Tensile Stress–Strain curves, which 
proofs anisotropic properties in M-PBF parts [83]. Table 3 
classifies several studies in terms of material types and cor-
responding properties.

4  Machine Learning Concept

Recent developments in technology show the importance of 
information gathering with computer based learning meth-
ods to minimize cost expenses. One of the possible ways 
emerged as Machine Learning (ML) technology, which 
solves field-based problems. ML is a subject of both study-
ing self-improvement methods to get new skills and abil-
ity of understanding by experience and classifying existed 
knowledge, continuously develop performance and achieve-
ments [97]. Modelling ML algorithms depend on existed 
knowledge and inferencing improvements from this source. 
Data prediction, object recognition, classification, sorting, 
optimization are the popular tasks of ML methods [98]. 
There are a lot of method which uses ML technology to 
get effective results such as Neural Networks, Fuzzy-Logic 
based methods, Support Vector Machines etc. Each method 
uses different mathematical processing to be able to achieve 
goals. Popular ML algorithms were explained with details 
in Table 4. According to that, methods were used in different 
fields for several purposes. Figure 9 shows general structures 
of selected ML Algorithms.

To be able to create accurate ML algorithms, there are 
some points to be considered [99, 100]:

• Since ML directly depends on problem itself, carefully 
modelling of problem and creation of dataset is crucial.

• Insufficient experience in labelling data may result in 
wrong relationship between model and problem.

• Lack of knowledge in selecting good features, overfitting 
or underfitting of trained model can be regarded as main 
points in ML.
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Table 2  Main process parameters of M-PBF methods

Parameter name Unit M-PBF method Parameter definition Most effected part properties

Laser power Watt SLM-DMLS It defines the heat source of process which 
mostly have Gaussian distribution shape 
[72]

Density [4],
Fatigue life [145],
Hardness [158]

Scanning speed mm/sec All It defines the heat source’s spatial motion in 
the build surface

Density[15, 175]

Hatch distance µm SLM-DMLS-SIS It defines the distance between two adjacent 
scanning vectors [73]

Tensile strength [161],
Elongation [170]

Beam diameter µm SLM-DMLS It defines effective diameter of the heat 
source’s right on the build surface

Microstructure and temperature history [179]

Layer thickness µm All It defines the positional distance of two suc-
cessive layers in build direction

Density—hardness [162]

Inert gas flow rate liter/min SLM-DMLS It defines the rate of inert gas inside of 
process chamber, this parameter helps both 
stabilize  O2 value in a certain level and 
evacuate the soot from process chamber 
which is generated by the powder—laser 
interaction

Tensile strength [159],
Surface roughness [160]

Beam current mA EBM It defines the electron beam source’s current 
value. This parameter determines power 
intensity that interacts with the powder bed 
[74]

Relative density [164],
Tensile strength [165]

Line offset mm EBM This parameter is similar to Hatch Distance 
parameter in SLM method which defines the 
distance between two adjacent vectors

Density [180]

Focus offset mA EBM This parameter is similar to beam diameter 
parameter in SLM method and it defines 
effective diameter of the heat source’s right 
on the build surface [75]

Microstructure [179]

Speed function N/A EBM This parameter is used to achieve correct 
meltpool size by dynamically controlling 
both beam’s maximum current value and 
Speed Function Index(SFI) value [76]

Tensile strength–Elongation [166],
Density [180]

Build orientation (Angle) All This is one of major pre-processing param-
eters. It defines part’s positioning onto the 
substrate and it concerns with part’s surface 
angle between horizontal surface axis [77]

Elongation [157],
Tensile strength [159],
Toughness [163]

Scanning strategy N/A All It explains in what way the scanning vectors 
expose the area of layers. Continuous and 
chess type are the most popular scanning 
strategies in M-PBF [78]

Hardness [158],
Residual stress [167],
Density [168]

Support type N/A All It describes the selection of non-solid and 
deformable printing samples which is used 
for heat dissipation, build part integrity etc. 
It is a pre-processing parameter and highly 
dependent with Build Orientation parameter

Surface roughness [160]
Printability [169]
Residual stress [167]
Energy consumption [184]

Re-coater geometry N/A All It defines the coater mechanism’s geometry 
which can be polymer or metal based 
materials. Coater material’s resistance to 
high temperatures, rigidness during coating, 
powder interactions with coater material are 
key factors in this parameter [79]

Printability-density[169]

Powder shape and 
size distribution

N/A All This is a powder related pre-processing 
parameter and key factors are flowability 
and packing ratio of feedstock. That is used 
to show whether powder is spread homog-
enous to build table or not

Density[181]
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4.1  Dataset Preparation Strategies

Dataset is utilized as the source of ML algorithms. There-
fore, performance of an ML algorithm will be connected 
either how well the dataset is organized or the amount of 
dataset used. As long as the data, which is prepared by high-
fidelity resources, is adequate for modelling and spread 

through the entire process window, ML algorithm fits with 
established mathematical problem [115].

The main factor in dataset preparing is creation of a pro-
cess mapping. A process map represents the model with 
using inputs and output(s). Data will be used as guide points 
in ML which then converges other points in the map. A vis-
ual example of process mapping with 2 inputs and 1 output 
of a M-PBF problem can be seen in the Fig. 10. According 
to that, ML creates the process map by using data points as 
reference and fill the voids by interpolation—extrapolation 
process that visualize entire window to use for the new data. 
It can also be visualized as in 3D planes as well.

It is possible to combine dataset preparation under the 
title of Design of Experiments (DOE). Following principles 
are implemented in the basis of DOE [116, 121]:

• Identification of factors which effects process perfor-
mance,

• Selection of reasonable levels for each of these factors,
• Organization of a set of combinations of factor levels,
• Execution of experiments according to the defined exper-

imental design

DOE methods are usually implemented to create data-
set for ML problems owing to its systematic principle and 
cost & time effective features. There are various methods in 
DOE. Some popular methods are shown in Table 5, namely 
Full–Factorial, Orthogonal, Box Behnken Design(BBD), 
Central Composite Design(CCD).

Full–Factorial design shows that large amount of factor 
and level numbers will increase experimental work expo-
nentially which eventually will be unfeasible. Orthogonal 
DOE has been utilized in several PBF studies to prepare 
the training and testing datasets. Orthogonal property gives 
advantages to be able to get cost-effective dataset [17, 27]. 

Fig. 7  Schematic representation of the effect of post-processing oper-
ations (Courtesy of [71])

Fig. 8  a CAD model of pre-produced tensile specimen parts with different orientations b Stress – Strain Curve of produced SLM as-built parts 
(Courtesy of [83])
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Table 3  Material types and properties in M-PBF

Material types M-PBF methods Material properties Application fields Example materials

Steel iron-based alloys [84–87] SLM
EBM
DMLS

High corrosion resistance
Surface roughness
Relative density (> 93%)

Medical and biomedical (i.e., 
implants)

Aerospace (i.e., Heat exchangers)
Lightweight structures

304L stainless steel
316L stainless steel
H13 tool steel
Maraging steel

Titanium based alloys [88–90] SLM
EBM
DMLS

High relative density (> 98%)
Superior shear strength

Lightweight structures (i.e., 
scaffolds)

Medical and dental (i.e., body 
prosthesis, dental implants)

Ti–6Al–4V
Ti–6Al–7Nb
Ti–13Zr–Nb

Nickel based alloys [91, 92] SLM
EBM

High-temperature resistance
Fatigue strength
Corrosion resistance

Aerospace (Aircraft engines, 
Combustion chambers)

Die models for automotive parts
Porous filtration media

Inconel 625
Inconel 718
Hastelloy X
Nimonic 263

Other metals (aluminum, copper, 
cobalt-chrome, tungsten, gold, 
silver, bronze) [93–96]

SLM
EBM
SIS

High relative density of alumin-
ium and cobalt-chrome (> 96%) 
and other metals (82–85%)

High strength

Biomedical applications (i.e., 
crowns and bridges)

Automotive parts
Jewellery

Al6061
AlSi10Mg
CoCr

Table 4  Popular ML algorithms

Algorithm Definition

Neural networks Neural Network is one of the popular supervised ML methods which is mostly preferred to simulate a physical process 
through utilizing the neural network logic which is inspired by human neural system [101]. It has layers, nodes and biases 
which are interconnected by snaps having weights. Most promising examples of this algorithm are Artificial Neural Net-
works (ANN)-Convolutional Neural Network(CNN)-Deep Neural Network (DNN). The main goal of neural networks is to 
obtain the desired output according to variations in the input. To do so, weights are adjusted iteratively in a process called 
“training” by using the datasets that include inputs and outputs [102]. ANN is the fundamental neural network model which 
is used for predictions and optimizations, it has generally one hidden layer. CNN is a neural network algorithm which uses 
mathematical terms called “convolution” [181]. It is generally used for object classification, image or sound recognitions 
[103]. DNN is an extended version of an ANN because it has more than one hidden layers. It has more advantageous on 
large size dataset applications in terms of performance and time

ANFIS This ML type is a combination of neural networks and fuzzy inference systems (FIS). FIS has linguistic rules that constructs 
the model with fuzzy reasoning method. ANFIS topology consists of layers, nodes and interconnections as well. This 
method uses linguistic rules with membership functions (MF) in the training stage instead of crisp values [104]

Support vector 
machines 
(SVM)

SVM is one of classification based supervised learning method. The objective of the support vector machine algorithm is 
to find a hyperplane that has the maximum margin, i.e. the maximum distance between data points of both classes, in an 
N-dimensional space that distinctly classifies the data points. One of the advantages of SVM in classification is that method 
is effective in higher dimensional spaces [105]

Gaussian The Gaussian Algorithm uses Gaussian probability distribution and can be used for non-parametric machine learning algo-
rithms for classification and regression problems. The method is efficient in statistical analyses [106]

Naïve Bayes This ML algorithm is originated by Bayes theorem and it uses probability theory in classification of dataset [107]. The method 
calls Naïve itself for the reason of using independent input features. Since it does not fit with real world problems, this is one 
of the main drawbacks of the algorithm

Decision tree Decision Tree algorithm is a non-parametric ML algorithm which is used for regression and classification problems. It can 
have discrete/categorical dataset to perform the task. Boolean logic is used during training which makes the model simply 
visualized and interpreted [108]

Random forest Random forest is an ensemble classifier which includes multiple Decision Tree architecture. Training samples are selected 
randomly from database and decision trees are randomly constructed for each input [109]

K-means K-means is one of the simplest and popular unsupervised machine learning algorithms. This algorithm aims to classify the 
dataset by only using own data with given the number of clusters “k”. Each cluster’s dataset has the most similarities in 
itself compared to other clusters. Similarity criteria are generally used as Euclidian distance between dataset and pre-selected 
centroid of clusters [110, 111]

Apriori Apriori algorithm is one of the classic unsupervised methods in terms of uncovering association properties in dataset. The 
objective of this algorithm is to identify frequently used items in dataset and extend the boundaries of transactions as long as 
those items appear sufficiently at the end of the process [112]
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Fig. 9  a Simple representa-
tion of Artificial Neural 
Networks(ANN) including lay-
ers, inputs and output (Courtesy 
of [117]), b General Structure 
of ANFIS model(Courtesy of 
[118), c General flow chart 
of Random Forest algorithm 
(Courtesy of [113]), d Classifi-
cation charts of SVM algorithm 
by using an 2D & 3D hyper-
plane e Flowchart of K-means 
algorithm (Courtesy of [114])
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BBD Design is highly preferred in PBF studies to get effec-
tive results as well [18, 24]. In CCD, the biggest advantage 
is the model doesn’t need for a three-level factorial experi-
ments for building a second-order quadratic model [21, 22].

5  ML in M‑PBF Methods

M-PBF part quality are evaluated in terms of various 
mechanical properties such as density, dimensional accu-
racy, fatigue life, surface roughness hardness, etc. Even 
though, design freedom leads to produce complex parts 
such as lattice structures and sandwich types, M-PBF still 
has significant drawbacks related with the part quality [154, 
186]. Especially, high specific strength parts are yet to be 
designed and produced [117].

In previous section, it was explained that M-PBF meth-
ods use different variants of process parameters (PP). Proce-
dures for optimal parameter selection are generally based on 
experimental works or high-fidelity simulations. Most of the 

time, either of them is time-consuming and expensive, owing 
to the trial and error principle. Therefore, one of the effi-
cient ways in order to predict part properties is developing a 
mathematical model for the process, which is a sub-domain 
of ML study. In this manner, ML algorithms and platforms 
helps to improve product quality, optimize manufacturing 
process, and reduce costs [118].

Figure 11 illustrates a simple taxonomy of machine learn-
ing studies in M-PBF method in terms of general objectives 
and related fields. According to that, supervised learning is 
relevant ML type for M-PBF process, which includes predic-
tion, optimization and control problems. Besides the clas-
sification methods, which is related with produced parts, 
powder and material, is applicable with Supervised learning 
[119]. Unsupervised learning is generally used for moni-
toring of process, cost estimation and quality management 
problems [120, 121].

Table 6 represents ML algorithms specifically with 
related M-PBF applications. Literature studies gener-
ally focus on predicting single mechanical property but 

Fig. 10  a Guide points in process map and visualization of entire window in 2D b ML algorithm convergence in 3D
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there are only a few studies, which combines the multi-
ple outputs in ML model [58, 122]. Shen et al. and Wang 
et al. have utilized ML models to predict DMLS parts in 
their studies which confirms that prediction and experi-
mental results fits well [14, 15]. Though many DMLS 

studies use different material than metals, it is worth to 
show those studies due to their remarkable results [19, 22, 
185]. Fotovvati et al. studied the effects of most influen-
tial PPs on SLM manufactured Ti6Al4V parts in terms of 
their density, hardness and, surface roughness. ML model 

Table 5  Popular DOE methods

Design of experi-
ment (DOE) method

Symbolic representa-
tion

Definition Design of experiment 
(DOE) method

Symbolic representa-
tion

Definition

Full-factorial design Given k factors and l 
levels for each factor, 
lk experiments will 
be needed in this 
design to extract nec-
essary information in 
process map

Box Behnken Design 
(BBD)

In this design, mid-
points of the edges 
and 3 center points 
are positioned for 
process space. Each 
factor has three 
levels and one of 
the factor always 
remains in the mid-
dle point in every 
experiment [152]

Orthogonal design This design method 
utilizes the orthogo-
nality property of 
vectors which tells 
that each vector 
interacts indepen-
dently. Unlike the 
Full-factorial design

Central Composite 
Design (CCD)

This experimental 
design is a combina-
tion of two—level 
factorial design 
(each factor includes 
2 levels), 2*k addi-
tional axial points 
and 2 center points 
[153]

Fig. 11  Application fields of machine learning types in M-PBF methods
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was trained based on these experiments and accurately 
predict the response of various properties of SLM parts 
[123]. Neural Network – based ML methods such as Deep 
Neural Network (DNN), Convolutional Neural Network 
(CNN) were generally preferred to obtain process space 
and understand the process interactions [23, 28, 124, 125]. 
Researchers mainly focus on developing ML models for 
SLM production technique with different mechanical prop-
erty prediction [126–131, 141–147], and yet there are a 
few studies with other M-PBF methods.

Scanning strategy is playing a key role in describing 
residual stress, porosity etc. Demir et al. proposed a well-
established four-layer DNN model to predict defects and 
residual stresses of SLM manufactured parts with laser scan-
ning strategy input [131].

On the other hand, there are several studies that connects 
ML with pre&post-processing stages of M-PBF. Liu, Jia, 
et al. and Wang, Peng et al. investigated ML applications 
of laser based PBF technique with comprehensive process 
modelling and controllability of process [118, 132]. Jiang 
et al. presented a comprehensive study of ML with many 
kind of Additive Manufacturing methods including poly-
mer and resin based methods [182]. Li et al. evaluated a 
comprehensive review of ML assisted pre & post-processing 
stages M-PBF production method. It shows that prediction 
and optimization of those stages are as significant as produc-
tion stage [70]. Mythreyi et al. studied machine-learning-
assisted prediction of the corrosion behavior of post-pro-
cessed Inconel 718 [133]. Günaydın et al. and Zhang et al. 
studied multi-objective optimization techniques to optimize 
pre-processing parameters such as build orientation, build 
time and support structure volume. The study yielded vis-
ualization possibilities to allow researchers to choose the 

optimum orientation between the support structure volumes 
and build time [66, 134].

Structural Optimization is another vital issue of AM 
processes. Since MPBF opens new doors in terms of part 
design; intricate and innovative parts can be produced. One 
of the effective ways for this manner, is to optimize part in 
terms of its geometrical constraints. FEM based residual 
stress or thermal models guide to create new generation 
designs for traditionally produced parts [135, 136]. It aims 
to minimize lead-time of M-PBF process and consump-
tion rate of feedstock, maximize mechanical strength with 
lightweight design. In this way, ML is also used for geo-
metrical optimization in MPBF production [137, 138]. In 
the literature, Iver et al. proposed a structural optimization 
method called Producibility-Aware Topology Optimization 
(PATO) to ensure the performance of PBF parts in terms of 
cracks and warpages due to the method’s prone to thermal 
stress based fails [139]. Garbrecht et al. investigated post 
hoc analysis of AM parts to enhance mechanical strength 
by using a novel ML method called Genetic programming-
based symbolic regression (GPSR). A topology optimization 
example was then conducted using the GPSR results that 
constitutes application of the automated framework and post 
hoc analyses [140].

Hong et al. investigated geometry deformations of cir-
cle cross section lattice parts produced in SLM technique. 
An ANN model is designed for compensation of lattice 
structures which have different angles with horizontal axis. 
Results show that ANN compensated parts achieve higher 
printing dimensional accuracy compared to the uncompen-
sated structures [141].

AI is a quicker way to identify of the optimum set of pro-
cessing parameters. Chi Hun et al. proposed an ANN model 

Table 6  ML algorithms with 
M-PBF applications

ML type Algorithm Method M-PBF applications

Supervised Regression Neural Networks Property prediction [58]
Process parameter optimization [27]
Topology optimization [141]
Defect classification [173]

Regression ANFIS Property prediction [21, 174, 178]
Process parameter optimization [24]

Classification SVM Defect detection [171, 176, 187]
Classification CNN Meltpool monitoring [183]
Classification Naïve Bayes Defect detection [172]
Classification Gaussian Dimensional accuracy [144]
Regression & Classification Decision tree Defect classification [109]
Regression & Classification Random forest Surface roughness prediction [172]

Hardness prediction [113]
Unsupervised Clustering K-means In-situ Monitoring & process quality 

control [114, 155, 156]
Clustering K-means Cost estimation [177]
Association Apriori N/A
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for determining optimal PPs of newly used metal powder 
(Ti–5Al–5V–5Mo–3Cr) in terms of part density. Negligi-
ble error rates were achieved in prediction of density, and 
also determining optimal PPs from pre-defined density val-
ues [142]. Sanchez et al. applied ML techniques in order to 
understand the effect of PPs on the creep rate of parts. The 
creep rate was predicted with a percentage error of 1.40%. 
The most important material descriptors were found to be 
part density, number of pores, build orientation and scan 
strategy, in order [124]. Table 7 shows overall literature stud-
ies chronologically.

In Fig. 12, ML performances are compared for prediction 
of mechanical properties such as surface roughness, rela-
tive density, dimensional accuracy and fatigue life. Different 
ML performance metrics  (R2 and Root-Mean Square Error 

(RMSE)) are used. Results show that, ANN algorithms are 
capable of predicting most significant properties of addi-
tively manufactured parts. Fuzzy logic based algorithms are 
often implemented in prediction problems. Different ML 
algorithms such as Random Forest, Gaussian algorithm give 
sufficient performance in Fatigue Life prediction.

6  Conclusions

In this review article, recent ML studies on part property 
improvements of M-PBF parts are comparatively investi-
gated. Furthermore, M-PBF production techniques were 
studied in terms of their processing stages (pre-processing, 
post-processing), parameters and material types. Recent 

Table 7  Literature studies in chronological order

Year Research paper Material type M-PBF method ML method Target outputs

2016 Chowdhury et al Ti6Al4V DMLS ANN Geometry compensation
2017 Ahmet et al Ti6Al4V EBM ANN Surface roughness
2018 Rajamani et al HDPE SIS FIS Wear rate
2018 Baturynska et al Polyamide 2200 DMLS ANN Dimensional accuracy
2018 Zhang et al Ti6Al4V EBM ANN Powder spreading layer roughness
2018 Derahman et al Glass filled polyamide SLM ANFIS Surface roughness
2018 Sohrabpoor et al Glass filled polyamide DMLS ANFIS Elongation, tensile strength
2018 Yuan, Bodi, et al SS 316 L SLM ANN Track width prediction
2019 Gajera et al CL50WS Steel SLM FIS PP optimization
2019 Zhang et al SS 316L SLM ANFIS Fatigue life
2019 Marrey et al Ti–6Al–4V SLM ANN PP optimization
2019 Tran et al SS 316 L SLM ANN Meltpool depth, peak temperature
2019 Khorasani et al Ti–6Al–4V SLM ANN Surface roughness
2019 Scime et al Inconel 718 SLM K-means Meltpool quality
2020 Nguyen et al Ti6Al4V SLM ANN PP optimization
2020 Chen et al AlSi10Mg SLM ANN Printability, track defect
2020 Hassanin et al Ti6Al4V SLM ANN Mechanical strength
2020 Fotovvati et al Ti6Al4V SLM ANN Hardness, relative density, surface roughness
2021 Barrionuevo et al SS 316L SLM SVM Relative density
2021 Demir et al N/A SLM ANN Residual stress
2021 Hong et al Maraging steel SLM ANN Geometry compensation
2021 Chi Hun et al Ti–5Al–5V–5Mo–3Cr SLM ANN Relative density
2021 Sanchez et al Inconel 718 SLM ANN Creep rate
2021 Park et al Pure titanium SLM ANN Relative density
2021 Mehrpouya et al NiTiHf SLM ANN Phase transformation temperature
2021 Cao et al SS 316L SLM Gaussian Dimensional accuracy, surface roughness
2021 Zhan et al SS 316L SLM ANN, SVM Fatigue life
2021 Perdomo et al SS 316L SLM ANN, ANFIS Surface roughness
2022 Elangeswaran et al N/A SLM Gaussian Fatigue Life
2022 Park et al Ti6Al4V SLM ANN Relative density, surface roughness, PP optimi-

zation
2022 Kumar et al Inconel 718 SLM ANN, RF, Naïve Bayes Relative density
2023 Z. Yao et al Ti6Al4V SLM SVM, decision tree, RF Tensile ductility
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studies show that, time and cost dependent factors were 
pushed research strategies to search novel methods such as 
AI, ML algorithms etc. Process modelling and experimental 
design improvements yielded sufficient results in prediction, 
classification problems. Accurate M-PBF process modelling 
was a vital resource in ML construction. Since process mod-
elling in M-PBF is still in progress, research trends should 
focus more onto this field.

Especially, powder particle attractions during thermo-
chemical process, spreading of powder particles, heat trans-
fer between particles and substrate, process parameters effect 
on production should be investigated thoroughly. Exploiting 
some of the high-fidelity simulations which are developed 
lately, would be a possible solution for those factors.

State of the art indicates that ML modelling can predict 
mechanical properties of produced parts with a negligible 
error and optimization techniques are applied efficiently 
to maximize/minimize the given target output. Literature 
studies also showed that SLM process is the most preferred 
method, which is combined with ML algorithms. There 
are only a few studies with other M-PBF methods possibly 

because of insufficiency in process modelling ability. Due 
to fact that the experimental process of M-PBF is expen-
sive, DOE methods are guiding researchers to evaluate the 
process space with an affordable way. Research trends show 
that, orthogonal DOE is the most preferred method among 
the DOE methods. For instance, CCD and BBD design 
methods have systematic approach in creating process space 
of problem and they were often implemented in M-PBF for 
the reason of creating input & output relations more clear 
and independent.

The frequently studied materials on ML are SS 316L, 
Ti6Al4V, Inconel alloys etc. Literature studies also indicated 
that most of ML algorithms in M-PBF were used as super-
vised ML algorithms which mainly yield adequate solu-
tions in the cases such as; prediction of mechanical proper-
ties, process parameter optimization regard to specific part 
property, classification of process anomalies and geometric 
deviations in parts etc.

Since M-PBF method covers wide range of material 
types, different unique materials such as Al alloy series, 
Cr-Co, Copper should be chosen for the future ML studies 

Fig. 12  ML performance metrics of different studies in terms of mechanical part properties
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which will further expose the relationship between novel 
material properties and AM methods. Furthermore, a gen-
eralized ML model that predicts mechanical responses for 
a given input, which is independent of material selection, 
could be another future direction.

Most of the study reveal that experimental strategy 
doesn’t include DOE methods. It is proven that systemati-
cally gathered data gives effective results on ML models 
[149, 150]. Therefore, ML modelling shall be organized with 
systemic data collection (DOE methods) to be able to get 
results with minimized cost and high performance.

On the other hand, produced parts were investigated in 
terms of their mechanical properties, however there are only 
a few study which uses ML models to predict and optimize 
dynamic characteristics of parts(e.g. natural frequencies, 
mode shapes). So, one of the future perspectives should be 
regarding the investigation of dynamic behavior of produced 
M-PBF parts by using ML technology.

Finally, despite the fact that there are several challenges, 
M-PBF methods have remarkable advantages in terms of 
complex structural part production with minimum post-
process need, relatively small amount of lead time, less 
feedstock wastage etc. Therefore, ML modelling will be one 
of the appropriate technique to be able to implement those 
advantages into the industrial practices in the near future 
with a cost-effective way.
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