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Abstract
Finite element (FE) modeling is widely used to study the biomechanical effect of material properties, surgical procedures, 
and loading and boundary conditions on the lumbar spine. Since several studies have presented FE analyses of the lumbar 
spine in relation to spine biomechanics, soft tissue modeling, intervertebral discs, facet joints, load-sharing behaviors of 
lumbar motion segments, and FE modeling methods, detailed analyses of disc degeneration or muscle force prediction have 
been little considered. This study focused on recent developments in FE modeling of the lumbar spine, including disc degen-
eration, muscle force prediction, and clinical applications. Modeling and analysis from the bone to soft tissue and muscle 
forces, as well as the validation and application of these models were provided and discussed with material properties, ele-
ment types, loading and boundaries, geometric parameters, and muscle force modeling. Experimental data was summarized 
for validation of the FE model. Application studies were briefly reviewed, in which the majority of FE models focused on 
spinal degeneration diseases and surgical instrumentation techniques. Although muscle force prediction and optimization 
are challenging with FE modeling due to their complexity and redundancy, several studies have predicted muscle activation 
and spinal forces for injury prevention assessments and treatment strategies. The level of modeling prediction and repre-
sentation can be improved with subject-specific data, and integration of FE and musculoskeletal models could generate a 
comprehensive analysis of the lumbar spine in clinical applications.
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1 Introduction

Finite element (FE) modeling is widely used in spine biome-
chanics research because it evaluates stresses and strains in 
bony and soft tissue structures more realistically [1]. Single 
functional spinal units (FSUs) [2–4], as well as L3–L5 [5, 6],  

L2–L4 [7], L1–L3 [8], L2–L5 [9], and L1–L5 [10–14]  
spinal levels have been modeled to study the biomechanical 
effect of material properties, surgical procedures, and load-
ing and boundary conditions on the lumbar spine, where 
small segments or FSUs are often used to evaluate the effect 
of different types of surgical interventions [11]. Xu et al. [7] 
analyzed stress concentrations of fixation rods with differ-
ent fixation methods using a two-level model, while Ambati 
et al. [6] compared the stability of different fusion constructs 
using an L3–L5 lumbar FSU instrument with interbody 
fusion cages. In addition, the sacrum to lumbar spine region 
has been included in multi-segment spine models with con-
sideration of global parameters such as pelvic incidence and 
lordosis, which are of great interest to clinicians [15–23]. 
Haddas et al. [16] first modeled scoliotic lumbosacral spines 
in relation to the Cobb angle based on in vivo computed 
tomography (CT) scans of patients. Furthermore, Park et al. 
[22] investigated the effects of single-level degeneration on 
whole lumbosacral spine biomechanics. In parallel with 
these studies, several subject-specific detailed models have 
been developed [17, 24–26], such as that of Haj-Ali et al. 
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[17], who generated an L1–S1 model using patient-specific 
CT scans to simulate the spondylolysis effect on lumbar 
segments. Recently, FE models have been combined with 
musculoskeletal representations to conduct comprehensive 
and realistic biomechanical analyses [27–33].

Several studies have presented FE analyses of the lum-
bar spine in relation to spine biomechanics [34], soft tissue 
modeling [35], intervertebral discs [36], facet joints [37], 
load-sharing behaviors of lumbar motion segments [38], and 
FE modeling methods [39–45]. Schmidt et al. [36] reviewed 
an FE simulation of lumbar intervertebral discs (IVDs) 
with a focus on functional biomechanics, while Mengoni 
[37] provided a systematic review of FE modeling of the 
facet joints. In addition, Ghezelbash et al. [38] discussed 
the relevant findings of in vitro and FE modeling studies 
of lumbar motion segments, specifically with regard to the 
load-sharing contributions of spinal tissues in both normal 
and perturbed conditions. Recently, Knapik et al. [43] sys-
tematically reviewed computational modeling methodolo-
gies of the lumbar spine and identified that musculoskeletal 
models are capable of evaluating whole-body motion and 
deformations with kinematics-driven data, whereas the FE 
model enables a detailed investigation into individual tis-
sue deformations and stresses [43]. Furthermore, Dreischarf 
et al. [46] compared eight well-established FE models of the 
lumbar spine to in vitro and in vivo measurements in terms 
of intervertebral rotations, intradiscal pressure (IDP), and 
facet joint force (FJF) under pure moments and combined 
loadings to show the validity of FE analysis. Despite the 
depth of these reports, detailed analyses of disc degenera-
tion or muscle force prediction have been little considered. 
This study focuses on recent developments in FE modeling 
of the lumbar spine, including disc degeneration, muscle 
force prediction, and clinical applications. Articles were 
searched through the PubMed and Science Direct databases 

between 2013 and 2023 with the following keywords: ‘lum-
bar’, ‘spine’, ‘muscle’, ‘disc generation’, ‘finite element’, and 
‘model’. The inclusion criteria were language in ‘English’ 
and a study population of ‘humans.’ Several older significant 
and relevant studies were also included.

2  FE Modeling Methodologies

The FE model including bony structures, IVDs, ligaments, 
and facet cartilages in flexion, extension, lateral bending, 
and axial rotation was depicted in Fig. 1. The details for FE 
modeling details including material properties were sum-
marized in Table 1.

2.1  Bony Structures

Cancellous and cortical bones, as well as post-bone material, 
are generally included in FE models. Computed tomogra-
phy (CT) imaging is frequently used for generating spinal 
bony parts, although CT-based modeling requires substan-
tial manual intervention for segmentation, threshold, and 
region-growing [1, 43]. Some studies have utilized radio-
graphs [47] and geometric parameters [48]. Nikkhoo et al. 
[47] used lateral and anterior–posterior X-Ray images to 
develop an FE model of L1–S1 that automatically updated 
the spinal geometry of patients based on independent param-
eters. Bashkuev et al. [48] developed a parametric model of 
the L4–L5 motion segment considering natural variations in 
spinal geometry using 40 different parameters. In addition, 
several modeling techniques have been proposed, including 
an automated landmark identification method for subject-
specific FE modeling of the lumbar spine that identifies all 
necessary landmarks for model creation using CT geometry 
of a spinal bone [49]. A parametric computer-aided design 

Fig. 1  FE model of the lumbar 
spine including bony structures, 
IVDs, ligaments, and facet 
cartilages in flexion, exten-
sion, lateral bending, and axial 
rotation (IVD—intervertebral 
disc; ALL—anterior longitudi-
nal ligaments; PLL—posterior 
longitudinal ligament; ISL—
interspinal ligament; SSL—
supraspinal ligament; CL—cap-
sular ligaments; LF—ligament 
flavum)
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(CAD) model was used to generate a parametric FE model 
of the lumbar spine that integrated independent tuning of 
morphometrical parameters [50], and the mapping block 
technique was applied to model T12–S1, which allowed 

for a continuous mesh model from the superior to inferior 
vertebrae [51]. Lalonde et al. [52] developed a free-form 
deformation technique to deform a detailed FE mesh of 
the spine to subject-specific geometry. It should be noted 

Table 1  FE modeling details including material properties

Zhang et al. 
[21]

Park et al. 
[22]

Xu et al. 
[25]

Nikkhoo et al. 
[47]

Umale et al. 
[51]

Spina et al. 
[62]

Ellingson et al. 
[79]

Modeling levels L1–S1 L1–S1 L1–L5 L1–S1 T12–S1 L1–L5 L3–S1
Bone geometry CT CT CT Parametric- 

simplified
CT and map-

ping block 
technique

CT CT

Cortical bone E = 10,000 MPa
v = 0.30

E = 12,000 MPa
v = 0.30

E = 12,000 MPa
v = 0.30

E = 12,000 MPa
v = 0.30

E = 12,000 MPa
v = 0.30

Orthotropic 
elastic

E1 = 8000 MPa
v12 = 0.40
E2 = 8000 MPa
v23 = 0.30
E3 = 12,000 MPa
v31 = 0.35

E = 12,000 MPa
v = 0.30

Cancellous 
bone

E11 = 140 MPa,
v12 = 0.45
E22 = 140 MPa,
v13 = 0.31
E33 = 140 MPa,
v23 = 0.21

E = 100 MPa
v = 0.20

E = 100 MPa
v = 0.20

E = 200 MPa
v = 0.25

E = 100 MPa
v = 0.20

Neo-Hookean
E = 100 MPa
v = 0.20

E = 100 MPa
v = 0.20

Posterior bone E = 3500 MPa
v = 0.30

E = 3500 MPa
v = 0.25

E = 3500 MPa
v = 0.25

– E = 3500 MPa
v = 0.25

Neo-Hookean
E = 3500 MPa
v = 0.30

E = 3500 MPa
v = 0.25

Cartilaginous 
endplate

E = 23.80 MPa
v = 0.40

E = 23.80 MPa
v = 0.40

E = 23.80 MPa
v = 0.40

E = 23.80 MPa
v = 0.25

– Neo-Hookean
E = 23.80 MPa
v = 0.42–0.45

E = 5 MPa
v = 0.17

Facet cartilage Frictionless 
contact

Neo-Hookean
C10 = 2
D = 0.3

Frictionless 
contact

E = 11 MPa
v = 0.4

Frictionless 
contact

Frictionless 
contact

Facet fluid: 
Viscoelastic

C0 = 17.8 kPa
C1 = 7.1 kPa
β = 1.0/s
k = 1720 MPa

Frictionless 
contact

E = 30 MPa
v = 0.4

Frictionless 
contact

Nucleus Mooney–Rivlin
C1 = 0.12
C2 = 0.03
D = 0.3

Incompressible 
fluid filled 
cavity

Mooney–Rivlin
C1 = 0.12
C2 = 0.09

Mooney–Rivlin
C1 = 0.12
C2 = 0.03

Viscoelastic
C0 = 17.8 kPa
C1 = 7.1 kPa
β = 1.0/s
k = 1720 MPa

Neo-Hookean
E = 1 MPa
v = 0.49

E = 1 MPa
v = 0.49

Annulus ground Yeoh
C10 = 0.0146
C20 = − 0.0189
C30 = 0.041
D = 0.3

Mooney–Rivlin
C1 = 0.18
C2 = 0.045

Mooney–Rivlin
C1 = 0.56
C2 = 0.14

Mooney–Rivlin
C1 = 0.18
C2 = 0.045

Hill foam
C1 = 0.115
b1 = 4
C2 = 2.101
b2 = − 1
C3 = − 0.893
b3 = − 2

Holmes–Mow
E = 1 MPa
v = 0.40

Neo-Hookean
C10 = 0.25
D1 = 0.78

Annulus fibers Nonlinear 
elastic

Hyperelastic Nonlinear 
elastic

Nonlinear 
elastic

Orthotropic 
nonlinear 
elastic

Fiber-exponen-
tial-power

β = 3.5
α = 65
β = 2.0
ξ = 0.296

Nonlinear elastic

Ligaments Nonlinear 
elastic

Hyperelastic Nonlinear 
elastic

Nonlinear 
elastic

Orthotropic 
nonlinear 
elastic

Nonlinear elastic Nonlinear 
hypoelastic
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that meshing elements affect the accuracy of the model, 
and hexahedral meshing is usually recommended for solid 
components because it is computationally efficient and has 
better numerical stability than tetrahedral meshing [50, 51]. 
Generally, bony components have been modeled with elastic 
material properties [46].

2.2  IVDs, Ligaments, and Facet Joints

The IVD is important for the regulation of flexion responses, 
whereas capsular ligaments (CL), anterior longitudinal liga-
ments (ALL), and discs are more dominant under extension 
[39]. The posterior longitudinal ligament (PLL), ligament 
flavum (LF), interspinal ligament (ISL), and supraspinal 
ligament (SSL) are generally resistant to flexion [53], while 
intertransverse ligaments (ITL) mainly contribute to the lat-
eral bending stiffness of the motion segment [2], and facet 
joints allow greater flexion, extension, and lateral bending 
movements but resist rotation [54]. Naserkhaki et al. [3] 
reported that ligaments resist 45–75% of flexion, whereas 
facet joints and discs resist 20–33% and 48–60% of the 
extension movement, respectively.

The IVD consists of the annulus fibrous containing 
ground substances and fibers, as well as the nucleus pulposus 
and endplates. Recent studies have used hexahedral elements 
with Mooney–Rivlin [22], neo-Hookean [55], and Yeoh [21] 
hyperelastic materials as annulus ground substances, while 
the nucleus pulposus, which represents approximately 44% 
of the surface of the disc, was modeled with fluid elements 
[22] or Mooney–Rivlin hyperelastic material [56–58]. Truss 
elements were used to model the fibers of the annulus fibro-
sus with tension-only material properties [22], as well as 
shell elements with rebar properties [16]. The fibers which 
reinforce the ground substance in the radial direction are ori-
ented approximately 30 degrees from the horizontal surface 
(the bottom portion of the IVD) [59]. The number of fiber 
layers ranges from 2 to 16 depending on the study [46]. The 
stiffness of each annular fiber layer is different since external 
layers have a greater stiffness than their internal counter-
parts [25]. The endplate was modeled to an approximate 
0.5–0.6 mm thickness with solid elements by extruding the 
surface of the vertebral body [6, 14, 58].

The ligaments were modeled using truss [60], spring [61], 
shell [16], connector [49], and solid [54] elements. During 
the creation of the FE model, ligament attachment points 
were manually defined using anatomical landmarks. Subse-
quently, the automatic modeling technique was developed 
for determining the attachment points of ligaments [49]. 
The lack of experimental data mandated the use of major 
assumptions regarding the material properties of the liga-
ments which were simulated with linear, bilinear, and non-
linear force–displacement and stress–strain properties [3].

Facet joints are among the most difficult elements to 
model and are distinguished by a uniform gap between the 
articulating surfaces [43]. Facet cartilages have often been 
modeled on the superior and inferior plane of the facet joints 
with isotropic linear elastic wedge elements since the actual 
location and thickness of the cartilage cannot be determined 
from a CT scan [22, 49]. Frictionless surface-to-surface soft 
contact and an initial gap of 0.1–0.5 mm were assumed to 
exist between cartilages [22, 62], and a friction coefficient 
of 0.1 was used for the contact of facet joints [57].

2.3  Muscle Force Modeling

An individual muscle in the lumbar region was represented 
in a model as a straight line between its origin and insertion 
to define the muscle force direction [63]. The origins and 
insertions were obtained from the literature and adapted to 
the FE model based on anatomical landmarks of bony struc-
tures [64]. Physiological cross-sectional areas (PCSAs) of 
the muscles were obtained from the literature to calculate 
muscle stress [65]. Recent FE models have included a large 
number of muscles [63–66]. Kim et al. [64] considered 58 
pairs of superficial muscles: longissimus pars lumborum (5), 
iliocostalis pars lumborum (4), longissimus pars thoracis 
(12), iliocostalis pars thoracis (8), psoas (11), quadratus lum-
borum (5), external oblique (6), internal oblique (6), and 
rectus abdominus (1); and 59 pairs of deep muscles: thoracic 
multifidus (12), lumbar multifidus (20), interspinales (6), 
intertransversarii (10), and rotatores (11). El Ouaaid et al. 
[66] used a kinematics-driven thoracolumbar FE model con-
sisting of 46 local and 10 global muscle fascicles to estimate 
muscle forces, spinal loads, and stability during elevations 
with an optimization algorithm. Muscle forces were then 
predicted to satisfy the force and moment equilibrium using 
the calculated net intersegmental forces and moments, liga-
ment forces, and facet joint forces by the conventional opti-
mization technique due to their complexity and redundancy 
[64–66]. The objective function was normally the summa-
tion of cubic muscle stresses and the maximum isometric 
muscle force was determined as the upper boundary of the 
individual muscle force.

The concept of the follower load (FL) has been used to 
assume that resultant muscle forces follow a path through 
the vertebrae [25, 61, 67]. The FL concept was applied to 
the lumbar spine FE model to simulate standing and com-
pared with other loading modes [68]. It was indicated that 
FL delivers the most probable intersegmental rotations and 
FL of 500 N was suggested for the simulation of a standing 
position with the lumbar spine model. In addition, Han et al. 
[69] demonstrated that spinal muscle can create a compres-
sive FL in the lumbar spine during a standing posture, and 
recommended this approach for experimental and numerical 
studies. Kim et al. [64] proposed a modified concept of the 
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FL, whereby the compressive load aimed for a half-radius 
of the body near the body center, and analyzed muscle coor-
dination and trunk muscle activation using an optimization 
scenario. Shih et al. [70] compared the effects of concen-
trated, follower, and muscular loads on lumbar biomechanics 
during flexion. The results showed that the FL can aid in the 
avoidance of unreasonably high flexion and anterior shear at 
the disc level. Moreover, a realistic location for the FL path 
was studied for the lumbar in a neutral standing position.

3  Clinical Applications

3.1  Model Validation

Models are validated using comparisons with available 
experimental or computational data, which provides con-
fidence to the model predictions [37, 46]. Most FE models 
are validated using in vitro range of motion (ROM), FJF, 
and IDP data with single or combined loadings [14, 53–55, 
71] where experimentally observed moment-rotation data 
are commonly available [46, 67, 72, 73]. Rohlmann et al. 
[72] measured the ROM of the human lumbar spine under 
pure moments of 3.75, 7.5, and 7.5 Nm with a follower load 
of 280 N in vitro and found that at 7.5 Nm the experimen-
tally observed L1–5 ROMs were 24°–37° in flexion–exten-
sion, 18°–42° in left–right lateral bending, and 7°–17° in 
left–right axial rotation [72]. Moreover, models can be 
validated using FJF [74–76] and IDP [77, 78]. Wilson 
et al. [75] measured FJFs in cadaver lumbar spines using 
flexible resistive sensors (Tekscan) under pure moments 
of 7.5 Nm and reported values of 55–110 N for axial rota-
tion and 10–50 N for extension. In addition, extra-articular 
strains were applied to measure the FJF during axial rota-
tion (71 ± 25 N), extension (27 ± 35 N), and lateral bend-
ing (25 ± 28 N). Wilke et al. [78] measured the IDP in the 
L4–5 disc in vivo and returned values in flexion, extension, 
lateral bending, and axial rotation of 1.08, 0.60, 0.59, and 
0.70 MPa, respectively.

3.2  Spinal Degeneration Modeling

Spinal degeneration has been the subject of many lumbar 
spine FE models, whereby various parameters have been 
altered to understand the role of each structure in spinal bio-
mechanics [79]. Disc degeneration can be predicted with 
the FE model by determining the locations of the greatest 
stresses in the endplates and annulus where failures can initi-
ate [80], and numerous studies have modeled the disc degen-
eration process [9, 22, 48, 79]. Li et al. [9] simulated lum-
bar decompression surgery for moderated disc degeneration 
where the disc height was reduced by 40%. Park et al. [22] 
investigated intersegmental rotation, nucleus pulposus IDP, 

and FJF under various grades of disc degeneration. Those 
authors simulated disc degeneration by changing the geom-
etry and material properties based on clinical classifications. 
Three parameters were used to describe disc degeneration: 
disc height, compressibility increase, and material property 
changes of the annulus fibrosis and ligaments. Rohlmann 
et al. [81] reported that a 20% decrease in disc height can 
generate mildly degenerated discs with increased nucleus 
compressibility. Bashkuev et al. [48] used a probabilistic FE 
model and found that stiffening of the motion segment led 
to an increase in the disc degeneration process. Disc height 
has been indicated as the most influential parameter on the 
mechanical behavior of discs, and reducing the height by 
only 10% has opposite results to those previously identi-
fied [36]. Other studies have investigated spinal degenera-
tive disease models including those of osteoporosis [82] and 
osteophytes [58]. Kang et al. [82] modeled the osteoporosis 
bone model with lower bone density and elastic modulus, 
while the osteophyte formation model was created with disc 
height losses from 16 to 82% [58]. However, there are few 
studies on the effects of ligament properties or failures on the 
lumbar spine [3, 79]. Ellingson et al. [79] investigated the 
impacts of ligament degeneration on the functional mechan-
ics of the lumbar spine by gradually removing ligaments 
from the motion segment and reported that incremental 
ligament failure produced an increased ROM and decreased 
stiffness in the lumbar spine FE model.

3.3  Surgical Interventions

FE analysis of spine biomechanics can be used to assess sce-
narios for a range of spinal disorders or associated surgical 
interventions through the evaluation of tissue deformations 
and stresses [37, 43]. The majority of studies have simu-
lated the impacts of various surgical procedures as well as 
designed and assessed new surgical instrumentation on the 
lumbar spine based on validated intact models. such as screw 
fixation and fusion cages [6, 7, 13, 60, 83–90], artificial discs 
[14] cement discoplasty [91], facetectomy [54], laminec-
tomy [9, 62, 92], and osteotomy [93]. Stress concentrations 
in rods and pedicle screws have been investigated since the 
material properties and geometry variations in the fixation 
devices affect spinal biomechanics, which is related to the 
possible failure of spinal instrumentation such as broken 
screws and rods. Guo et al. [13] used topology optimization 
to determine the optimal rod and fixation design to reduce 
stress in the rods while decreasing pressures and stresses in 
spinal tissues. In surgical simulation studies, the ROM or 
instability of the spine segment has been mainly compared 
among surgical procedures when experimental investiga-
tions are difficult or impossible [62]. Furthermore, the FE 
method has been expanded to the fields of scoliosis [94] 
and spinal disorder prevention and treatment [20, 95, 96]. 
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In addition, the influence of loading rate and frequency on 
the lumbar spine has been reported [8, 97].

3.4  Muscle Force Prediction

Recently, muscle force modeling and prediction have been 
effective for assessments of spinal injury risk and the design 
of effective prevention and treatment programs because mus-
cles act important role in spine stabilization by generating the 
substantial increase in internal loads to support external loads 
on the human spine [98]. Some studies have investigated the 
effects of muscle volume on the lumbar spinal column by 
including a passive muscle volume in the model [99, 100], 
while others have predicted muscle activation and spinal loads 
using the optimization method. Jamshidnejad and Arjmand 
[101] investigated the effects of paraspinal muscle intraopera-
tive injuries on muscle activation and spinal loads and reported 
that trunk strength was reduced by 23% as a result of reductions 
in the cross-sectional area of the extensor muscles. El Ouaaid 
et al. [65] predicted trunk muscle forces using an FE model of 
the thoracolumbar spine with an optimization algorithm during 
lifting activities and noted that spinal force prediction was help-
ful to improve rehabilitation and stabilization exercise designs.

4  Conclusion

We reviewed the recent advances in FE modeling of the lumbar 
spine, including modeling and analysis from the bone to soft tis-
sue and muscle forces, as well as the validation and application 
of these models. The discussion was associated with material 
properties, element types, loading and boundaries, and geomet-
ric parameters. In addition, muscle force modeling and the fol-
lower load concept were introduced. Furthermore, we summa-
rized experimental ROM, FJF, and IDP data for validation of the 
lumbar spine FE model since all new models should be verified 
based on recognized intact models. Application studies were 
briefly reviewed, in which the majority of FE models focused 
on spinal degeneration diseases and surgical instrumentation 
techniques. Although muscle force prediction and optimization 
are challenging with FE modeling due to their complexity and 
redundancy, several studies have predicted muscle activation and 
spinal forces for injury prevention assessments and treatment 
strategies. The level of modeling prediction and representation 
can be improved with subject-specific data, and integration of 
FE and musculoskeletal models could generate a comprehensive 
analysis of the lumbar spine in clinical applications.
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