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Abstract
The recovery of hand motor function can effectively improve the living standard of stroke patients and relieve their psycho-
logical anxiety. Traditional physical rehabilitation training is unable to target the cause of motor function loss; therefore, the 
rehabilitation effect is not ideal. The objective of this study is to propose a hand rehabilitation system combining brain–com-
puter interface (BCI), soft hand rehabilitation glove and virtual reality (VR), and explore its effectiveness on hand movement 
disorders in stroke patients. The corresponding comparison experiments conducted on 11 stroke patients demonstrated that 
the proposed BCI-based hand rehabilitation system can not only mobilize more cerebral cortex to participate in the process 
of hand motor rehabilitation, but also enhance the muscle strength, muscle tension, and improve the hand motor dysfunction 
of stroke patients.

Keywords Hand rehabilitation · Brain–computer interface · Virtual reality · sEMG · EEG

Abbreviations
BCI  Brain–computer interface
VR  Virtual reality
sEMG  Surface electromyography
EEG  Electroencephalogram
SCI  Spinal cord injury
WHO  World Health Organization
PT  Physiotherapy
CIMT  Constraint-induced motor therapy
NMS  Neuromuscular stimulation
MI  Motor imagery
FES  Functional electrical stimulation
ARAT   Action research arm test
FMA  Fugl–Meyer assessment
SPD  Symmetric positive definite
MDRM  Minimum distance to Riemannian mean
CSP  Common spatial pattern
LDA  Lenear discriminant analysis

SVM  Support vector machine
TSLDA  Tangent space linear discriminate analysis
PSD  Power spectral density
kNN  K-nearest neighbor
DIP  Distal interphalangeal
PIP  Proximal interphalangeal
MCP  Metacarpophalangeal
PWM  Pulse width modulation
MBI  Modified Barthel index
AHP  Analytic hierarchy process
FCE  Fuzzy comprehensive evaluation
iEMG  Integrated electromyogram
RMS  Root mean square
MF  Median frequency
BI  Barthel index
BADL  Basic activity of daily living

1 Introduction

The number of elderly people suffering from vascular dis-
orders has increased rapidly in developed countries. It has 
become a social problem, with consequences of paraly-
sis and worsening living conditions. Many diseases can 
cause paralysis, for example, stroke, spinal cord injury 
(SCI), amyotrophic lateral sclerosis, and multiple sclero-
sis, in which stroke accounts for the largest proportion. 
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According to the report of the World Health Organization 
(WHO) in 2016, stroke is now the second leading cause 
of death in the world. Most poststroke patients experience 
partial paralysis, which occurs mainly in the upper limbs, 
especially the hands [1, 2]. Ghassemi et al. [3] research 
has shown that six months after the onset of stroke, about 
65% of stroke patients still have hand dysfunction, only 
15% of stroke patients can recover about half of their hand 
function, and only 3% of patients are able to recover more 
than 70% of their original functions [4].

Stroke treatment for hand rehabilitation may require dif-
ferent equipment and methods, but physiotherapy (PT) is a 
central component of the rehabilitation process. Improving 
hand function requires repetitive task practice rehabilita-
tion, which includes breaking tasks down into individual 
movements and practicing them to improve hand strength, 
accuracy, and range of motion. Constraint-induced motor 
therapy (CIMT), neuromuscular stimulation (NMS) and 
mental practice with motor imagery are some of the most 
common treatments for the rehabilitation of paraplegic 
hands after stroke, and their efficacy has been well estab-
lished [5, 6]. However, these techniques have some impor-
tant limitations, especially for patients in chronic stages. 
For example, nearly 50 percent of chronic patients with 
severe functional affectation do not experience improve-
ment with CIMT, and residual motor activity is neces-
sary for CIMT; therefore, CIMT is not suitable for stroke 
patients with severe limb weakness [7, 8].

Stroke is a disease of brain tissue damage caused by sud-
den rupture of brain blood vessels or blockage of blood ves-
sels that prevent blood from flowing into the brain. The post-
operative rehabilitation of stroke patients not only requires 
passive rehabilitation activities to help reduce muscle and 
bone atrophy, but also requires active exercises to improve 
central nervous tension, activate physiological functions of 
various systems and organs, and improve plasticity of dam-
aged brain cells, and ultimately improve the motor function 
of patients. Traditional rehabilitation methods and rehabili-
tation equipment can not solve the above problems well, 
and the emergence of brain computer interface (BCI) and 
virtual reality (VR) technology provides a new way for the 
active rehabilitation of stroke patients and the improvement 
of brain plasticity. BCI can effectively obtain patients' active 
rehabilitation intention, and VR technology can effectively 
improve central nervous tension and activate the physiologi-
cal functions of various system organs through immersive 
experience. How to combine the two methods with tradi-
tional rehabilitation methods and equipments, effectively 
extract patients’ rehabilitation intentions, improve patients’ 
rehabilitation enthusiasm and initiative, effectively improve 
the brain motor plasticity of stroke patients, so as to achieve 
scientific and effective rehabilitation effect, is a problem that 
needs to be considered in modern rehabilitation medicine.

Hence, there is a need for improved approaches to support 
motor rehabilitation therapy for stroke patients, especially 
for patients in the chronic stages. Some new approaches to 
support therapy have been developed and have been gain-
ing attention, such as robot devices [9], functional electrical 
stimulation [10, 11], or virtual reality [12]. While these and 
other common approaches often consider neuroscientific 
principles and have fostered understanding of how the brain 
improves during stroke therapy, they typically do not utilize 
direct measures of brain activity.

BCI uses neural activity to directly control external 
devices with real-time feedback. Some BCI systems com-
bine neural activity with feedback devices to create closed-
loop multi-modal feedback designed to enhance Hebbian 
plasticity and thereby help restore lost motor function 
[13–16]. Numerous studies have shown that BCI therapy 
can induce long-lasting neurological changes and improve 
upper limb motor function in patients with subacute and 
chronic stroke [17, 18].

BCI systems can be combined with different types of 
external devices to assist the execution and learning of 
movements. In the approach for movement restoration, 
stroke patients wear EEG caps to perform motor imagery 
(MI) exercises. Decoded brain oscillations can be used to 
trigger feedback mechanism to reproduce imagined move-
ment with a paralyzed limb, such as functional electri-
cal stimulation (FES) or a robot assistant device. Hence, 
reward feedback only occurs when the patient imagines the 
desired movement. This feedback loop is most effective with 
“closed-loop” feedback, meaning that feedback is presented 
in real-time, ideally through informative, clear feedback that 
supports effective co-adaptation between the end-user and 
the system [19, 20].

The external devices combined with BCIs could be 
assistant robotic devices, or VR avatars. The robot-assisted 
devices that work in coordination with BCI systems can 
effectively help patients achieve movement functions that 
their affected limbs cannot achieve. Initially, robot hand 
rehabilitation systems that combined with BCI were mostly 
multi-degree-of-freedom exoskeletons [21–23]. Most of the 
multi-degree-of-freedom exoskeletons require the biological 
joints to be aligned with those of the exoskeleton, and a few 
have passive degrees of freedom or self-alignment features. 
Their rigid mechanical design makes the device robust and 
reliable, capable of delivering high levels of forces for more 
challenging rehabilitation programs. However, most of these 
robotic devices require experienced supervision to ensure 
patient safety, due to the high strength and force of the actua-
tors prone to injury of the patient joints.

To address these existing limitations, soft materials have 
been explored in the manufacture of rehabilitation exoskel-
eton and a type of exoskeleton named “soft wearable robot” 
has been designed [24–27]. This type of exoskeleton is 
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designed to be more in line with human limbs and a series of 
soft robots for assisting and rehabilitation training have been 
developed, including soft robot gloves [28], elbow sleeves 
[29], and the exoskeleton of the entire arm [30, 31].

For the application of hand rehabilitation devices, 
some researchers have tested the BCI-hand robot system 
for patients with chronic and subacute stroke, while some 
researchers have verified the system for healthy partici-
pants [32, 33]. Frolovet et al. [34] conducted a randomized 
controlled trial of 55 stroke patients in the BCI group. The 
experimenter underwent an MI–BCI intervention to assist 
the hand exoskeleton drive to open and clench the affected 
limb. In contrast, the 19 stroke patients in the control group 
only performed an auxiliary hand exoskeleton drive to open 
and clench the affected limbs and hands without MI–BCI 
intervention (only passive rehabilitation). The results of the 
study showed that the Action Research Arm Test (ARAT) 
and Fugl–Meyer Assessment (FMA) scores of stroke patients 
in the experimental group increased by 21.8% and 36.4%, 
respectively, while in the comparison group, the two scores 
increased by only 5.1% and 15.8%. In another study, Wang 
et al. conducted a randomized controlled trial [35]. Thirteen 
chronic stroke patients received robotic hand training based 
on electroencephalogram combined with movement obser-
vation (BCI group), and 11 chronic stroke patients received 
robotic hand training without movement observation and 
electroencephalogram (control group). Their results showed 
that the recovery of upper limb motor function of stroke 
patients in the BCI group was significantly improved over 
the long-term, which was not achieved by stroke patients in 
the control group.

In 2019, Bin he et al. proposed and validated a noninva-
sive framework using EEG to achieve the neural control of 
a robotic device for continuous random target tracking [36]. 
The proposed framework enhanced BCI learning by nearly 
60% for traditional center-out tasks, and by more than 500% 
in the more realistic continuous pursuit task. Such combined 
advances in the quality of neural decoding and the practical 
utility of noninvasive robotic arm control will have major 
implications for the eventual development and implementa-
tion of neurorobotics by means of noninvasive BCI.

VR is a relatively recent approach that may enable simu-
lated practice of functional tasks at a higher dosage than 
traditional therapies [12]. VR has been defined as the “use 
of interactive simulations created with computer hardware 
and software to present users with opportunities to engage 
in environments that appear and feel similar to real-world 
objects and events” [37]. VR has been used in a neurological 
rehabilitation population to improve upper [38] and lower 
extremity function and gait [39] as well as cognition, percep-
tion, and functional tasks such as crossing a street, driving, 
preparing food, and shopping. VR can help the user relearn 
lost movements due to disease with immersive avatars that 

can demonstrate and perform these movements only when 
the patients imagine or attempt them correctly. It is impor-
tant that the subjects feel a sense of “body ownership” over 
the virtual limbs; that is, the virtual limbs feel like each 
subject’s real limbs [40, 41].

The objective of this study is to propose a BCI based hand 
rehabilitation system that combines soft hand rehabilitation 
glove and VR, and explore the effectiveness of the proposed 
system on hand movement disorders in stroke patients. The 
proposed rehabilitation system combines MI therapy with a 
VR avatar and soft rehabilitation glove, provides real-time 
feedback based on subject’s EEG signals. Comparison reha-
bilitation experiments were conducted on 11 stroke patients 
and surface electromyography (sEMG) evaluation system, 
Fugl–Meyer assessment and modified Barthel index (MBI) 
were used to evaluate the experimental results.

The rest of this article is organized as follows: Sect. 2 
introduces the proposed BCI–VR-based hand rehabilitation 
system, including the system design and the construction 
of each part. Section 3 explains the experiment design and 
results. The fourth section discusses and analyzes the experi-
ment results, and Sect. 5 draws the conclusion.

2  Materials and Methods

2.1  System Design

Figure 1 shows the system design of the proposed hand soft 
rehabilitation system based on BCI and VR. Four modules 
construct the proposed system: EEG signal collection and 
analysis module, control center, VR module, and hand soft 
rehabilitation module. The EEG signal collection and analy-
sis module is responsible for the collection, amplification, 
preprocessing, and pattern recognition of the user's scalp 
EEG signal. The control center is the information exchange 
center of the system. On the one hand, it receives the EEG 
signal processing results and sends them to the virtual reality 
module and hand soft rehabilitation exoskeleton. The two 
modules then adopt corresponding rehabilitation exercises 
according to the EEG signal processing results. On the other 
hand, the rehabilitation therapist can also set the rehabilita-
tion parameters through the human–machine interface of the 
control center, so as to control patients to carry out specific 
rehabilitation exercises. The VR module provides patients 
with different backgrounds and modes of the virtual reality 
environment, so as to enhance the immersion and commit-
ment of patients in the rehabilitation process and improve the 
rehabilitation effect. At the same time, by synchronizing the 
rehabilitation movement information of patients' hands, vir-
tual reality can also give patients timely and accurate visual 
and auditory feedback. The hand soft rehabilitation module 
includes two parts: soft rehabilitation exoskeleton and hand 



1406 International Journal of Precision Engineering and Manufacturing (2023) 24:1403–1424

1 3

position information detection. The hand soft rehabilitation 
exoskeleton receives the rehabilitation exercise information 
sent by the control center and controls the patient's hand 
to move accordingly. The hand position information detec-
tion is responsible for detecting the real-time motion state 
of hand and communicating with the VR module. The VR 
module will show the patient's hand motion state in the form 
of dynamic visual and voice prompts, and build visual and 
auditory feedback for the patient.

Since  the  normal  communicat ion pathway 
(brain–nerve–muscle) in stroke patients is destroyed (shown 
by the blue arrow in Fig. 1), additional communication path-
ways must be established. Therefore, the system proposed 
in this paper constructs two rehabilitation modes for users: 
passive rehabilitation mode and active rehabilitation mode. 
In passive rehabilitation mode, rehabilitation therapists 
specify rehabilitation training plans for patients and set 
rehabilitation training parameters, including rehabilitation 
movements, training duration, and frequency, through the 
human–machine interface of the control center. The control 
center controls the hand soft rehabilitation exoskeleton driv-
ing the patient's hand to carry out rehabilitation training in 

accordance with the rehabilitation parameters that are set. 
At the same time, the VR module receives the rehabilita-
tion parameter information and the motion state informa-
tion of the soft rehabilitation exoskeleton, so as to provide 
patients with real-time station information and motion video 
of hands, and give patients synchronous visual and audi-
tory feedback. In the passive rehabilitation mode, patients 
passively receive rehabilitation training information and 
execute the rehabilitation plans formulated by rehabilita-
tion therapist, they are the information receivers and action 
executors. The direction of information flow and the reha-
bilitation process are shown in Fig. 1 with the red arrows. In 
the active rehabilitation mode, the patient sends rehabilita-
tion wishes through the brain–computer interface, and the 
external system assists the patient to complete rehabilitation 
actions. The patient is the sender of information and the 
active executor of rehabilitation actions. The rehabilitation 
intention is sent out from the patient, through EEG signal 
acquisition and analysis, control center, virtual reality, hand 
soft rehabilitation exoskeleton, and finally, is implemented. 
The system gives the patient triple feedback of movement, 
sound, and vision, thus constructs a closed-loop path of 

Fig. 1  The proposed hand soft 
rehabilitation system based on 
BCI and VR: a system diagram; 
b system operation diagram
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external information transmission for the patient. In the 
active rehabilitation mode, the direction of information flow 
and the rehabilitation process are shown as the green arrows 
in Fig. 1. Each part of the system will be described in detail 
below.

2.2  EEG Signal Acquisition and Analysis

The EEG signal acquisition and analysis module mainly 
completes the EEG signal acquisition, amplification, pre-
processing, and pattern recognition. The results of EEG 
signal analysis directly affect the performance of the BCI 
system, which is the core part of the BCI system. It consists 
of EEG signal acquisition and EEG signal analysis.

2.2.1  EEG Signal Acquisition

In this paper, a 32-channel wireless EEG acquisition sys-
tem provided by Neuracle is used to collect the EEG signals 
of users. Figure 2a illustrates the main construction of the 
Neuracle EEG acquisition system, including a 32-electrode 
cap, a wireless power amplifier, and a wireless router. The 
system sampling frequency can be set to 100–250 Hz, and in 
this paper, the sampling frequency is set to be 250 Hz. Fig-
ure 2b presents the electrode position of the Neuracle EEG 
cap. The EEG acquisition procedure is as follows: the sub-
ject generates EEG signals, the electrode cap collects EEG 
signals and transmits them to the amplifier terminal through 
wireless Wi-Fi, and finally, the amplified EEG signals are 
transmitted to the EEG analysis part for signal analysis.

2.2.2  EEG Signal Analysis

Due to the complexity of brain structure, the weakness of 
brain signals and the overlap of brain signal sources in the 
transmission process, there are many difficulties in the fea-
ture extraction and analysis of EEG signals, such as high 
misjudgment rate, low information transmission rate, and 

poor robustness. Providing an efficient, accurate, and stable 
EEG signal analysis method for BCI system, and creating 
a real-time, accurate information extraction and analysis 
method that meets the information interaction demand of 
the BCI system is an urgent problem in current BCI research.

Traditional EEG signal analysis is mostly based on the 
framework of features, which usually uses the features of 
time domain, frequency domain, space domain or the fusion 
of multiple features, and judges different brain activity states 
according to the dissimilarity among the features.

The commonly used feature extraction methods include 
signal bandpass energy (amplitude) [42], autoregressive 
model [43], phase characteristics [44], frequency domain 
statistics, wavelet (packet) transformation [45, 46], HHT 
transformation [47], and information entropy [48]. Although 
these methods have achieved good results, the commonality 
between the same brain activity features and the differences 
between different brain activity features are not obvious in 
traditional Euclidian space. Meanwhile, the existence of 
jump points and discrete points in feature data often leads 
to the misjudgment of the BCI system. Therefore, the tradi-
tional EEG signal analysis methods in the Euclidian space 
still cannot meet the application requirements of the BCI 
system.

In recent years, the Riemannian geometric method for 
symmetric positive definite (SPD) matrices has attracted 
much attention in signal processing [49, 50]. As the Rie-
mannian geometric method can operate the covariance 
matrix and its subspace directly on the basis of its geometric 
structure, it has better performance of information extraction 
and analysis than classical signal processing method based 
on feature vectors. Therefore, increasingly more attention 
has been paid to the analysis of EEG signals in the Riemann-
ian space.

Barachant et al. [49] proposed a Riemannian space analy-
sis method for EEG signals, minimum distance to Riemann-
ian mean (MDRM) method, which completed the feature 
extraction and classification of EEG signals in Riemannian 
space. The basic idea of MDRM method is: calculating the 
Riemannian mean of all the SPD matrices of EEG signals 
in a given label training set, when an EEG signal to be clas-
sified is given, the Riemannian distance between its SPD 
matrix and the mean of each class is calculated, the category 
label is defined as the label of the closest class. This method 
makes full use of the geometric framework of Riemannian 
manifold, and its classification performance is comparable 
to that of CSP + LDA(Common Spatial Pattern + Lenear 
Discriminant Analysis). However, the weaknesses of this 
method are obvious: the calculation of Riemannian mean is 
complex and time-consuming. The SPD matrix, which is the 
Riemannian feature of EEG, cannot be used as the input of 
classical classifiers, such as LDA and SVM (Support Vec-
tor Machine). Therefore, their classification effects cannot 

Fig. 2  a Main construction of the Neuracle EEG acquisition system; 
b electrode positions of the Neuracle EEG cap
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be further improved. Due to the above problems, many 
subsequent improved methods have been proposed, such 
as the tangent space linear discriminate analysis (TSLDA) 
method [49], projection classification of Riemann tangent 
space [51], and Fisher's metric discriminate criterion method 
[52]. All of them have achieved good analysis results. Nowa-
days, increasingly more EEG analysis methods based on the 
Riemann space are proposed.

In view of the great advantages and potential of Rie-
mannian space analysis method in EEG signal analysis, 
the Riemann space PSD-kNN algorithm is used in this 
paper. The PSD-kNN algorithm is proposed by Gao 
et al. [53] in 2020 and achieved much better analysis 
results compared with traditional Euclidean methods. 
Three parts construct the PSD-kNN algorithm: the con-
struction of the PSD matrix, the calculation of the simi-
larity/dissimilarity, and the classification using kNN. 
The flow chart of the PSD-kNN algorithm is shown in 
Fig. 3.

2.2.2.1 Construction of PSD Matrix Suppose the nth epoch 
for the ith subject of the multi-channel raw EEG data at time 
t can be expressed as a vector:

Thus, the nth epoch measure data matrix (representing M 
channels of measured data for a duration of T seconds) for 
the ith subject is given by

After being labeled carefully, for the i.th subject, the 
EEG signals of known categories can be expressed with 
Formula (3)

(1)S(i)
n
(t) = [s

(i)

n1
(t), ..., s

(i)

nM
(t)], t = 1, ...T ,

(2)S(i)
n
= [s(i)

n
(1), ..., s(i)

n
(T)], n = 1, ...,N

where �
n
∈ {1, 2, ..., k} represents the class tag belonging to 

the nth cycle of the motor imagery EEG signals.
For the nth epoch of the multi-channel EEG data matrix 

S
n
 , the column vector s

n
(t) = [s

n1(t), ..., snM(t)]
T
, t = 1, ..., T , 

is the measurement from the M channels and can be consid-
ered as a wide-sense stationary vector. Therefore, its ensem-
ble mean and the covariance can be evaluated approximately 
by obtaining the corresponding time averages.

That is:

The covariance matrix R
n
(�) is positive semi-definite. If 

R
n
(�) is also finite in its �

1
-norm sum, taking the discrete 

Fourier transform, the ‘Hermitian positive definite’ PSD 
matrix of the signal at frequency ω can be obtained:

Ideally, � , the time shift range in Eq.  (6) should be 
(−∞,+∞) . In practice, owing to the finite number of 
samples, Eq. (6) is evaluated for � ∈ [−(T − 1), T − 1] . In 
Eq. (6), any discrete frequency value � = �

i
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range of [�
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,�
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responding P
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(�) . Hence, the nth epoch multichannel 
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Fig. 3  The flow chart of the 
PSD-kNN algorithm in Rie-
mannian space
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EEG signal matrix S
n
 can be characterized by its PSD 

matrix sequence P
n
(�) in the frequency range. In order to 

compute the PSD matrix using the finite measured EEG 
data, the Nuttall–Strand algorithm is employed in the 
PSD-kNN algorithm. The Nuttall–Strand algorithm uses 
forward–backward linear prediction to iteratively estimate 
the residual covariance matrices arriving at an accurate 
positive semi-definite estimate of the PSD matrix with 
high-frequency resolution.

2.2.2.2 The Calculation of the Similarity/Dissimilarity of PSD 
Matrix PSD matrices are Hermitian and positive definite; 
they are no longer free points in the signal space, rather they 
form a manifold M . Each PSD matrix P (at a particular fre-
quency � ) can be regarded as a point on the manifold M and 
at different frequencies � ∈ [�min,�max] , and the positive 
definite PSD matrix of a signal epoch can be represented as 
a series of points forming a curve on M . For the same fre-
quency range [�min,�max] , two PSD matrices of the mth and 
nth epochs describe two sequences of points (two separate 
curves) on M denoted by P

m
(�) and P

n
(�) , respectively.

In order to distinguish the categories of the EEG signals 
to the maximum extent, it is necessary to establish a simi-
larity/dissimilarity measurement to maximize the similarity 
between the same categories of EEG signals and minimize 
the similarity between the different categories of EEG sig-
nals. For the two curves on the manifold described by two 
PSD matrices P

m
(�) and P

n
(�) , a Riemannian distance 

d
R
(P

m
(�),P

n
(�)) is a non-negative real valued function of � , 

measuring the distance between the two curves on the mani-
fold M at frequency � . As � varies, the distance between 
the curves P

m
(�) and P

n
(�) in the range of  [ωmin,�max]  can 

be defined as:

It is easy to show that this Riemann integral satisfies the 
axioms of distance function. If equal frequency increment 
is used, that is, Δ�

i
 is a constant, then we can define the dis-

similarity between the two given PSD curves as:

Equation (8) shows that when the two EEG PSD matrices 
are of the same categories, the curve distance described by 
the two PSD matrices is short and the dissimilarity is small, 
which can be judged to be relatively similar. Therefore, 
Eq. (8) can be used as the basis for subsequent classifica-
tion of EEG signals.

(7)
⌈(P

m
(�),P

n
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�
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�
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⌈
R
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∑

i
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=
∑

i
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(P
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i
),P

n
(�

i
))Δ�

i

(8)
dissimilarity = ⌈(P

m
(�),P

n
(�))

=
∑

i

⌈
R
(P

m
(�

i
),P

n
(�

i
))

2.2.2.3 The Classification Using kNN As a classic classi-
fication algorithm, k-nearest neighbor (kNN) algorithm is 
mainly used in data mining technology. The kNN algorithm 
is used to classify the EEG signal characteristics, the dis-
tance between the training data set and the classification 
object is calculated, and the k-nearest neighbors are selected 
in ascending order. Finally, according to the classification 
labels of k neighborhoods, the obtained labels are assigned 
to the classification attributes of the classification objects.

In general, there is no rule to choose the best value of k in 
the kNN algorithm. If the sample size is infinite, the larger 
is k, the better is the performance of the kNN classifier. In 
actual experiments, the sample size is finite and if the sample 
size is not very large, it is necessary to select the appropriate 
k to make the algorithm achieve a better classification result.

2.3  Control Center Module

As the system brain, the control center can make logical 
judgment on the received signal instructions and issue 
corresponding control instructions to other modules. At 
the same time, functional parameters can be set on the 
human–computer interaction interface. Various parameters 
in the rehabilitation training process (such as port setting, 
control instruction sending window, continuous instruction 
sending button, virtual reality environment selection button, 
rehabilitation training gear, detection function, training dura-
tion) can be set through this interface. The human–computer 
interaction interface is shown in Fig. 4.

The port baud rate, data bit, stop bit, check bit and other 
parameters of the control center interface and the soft reha-
bilitation glove exoskeleton system can be set according to 
the configuration parameters of the Bluetooth module, so 

Fig. 4  The human–machine interface of the control center
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that the two can communicate normally. After the above 
port configuration is completed, you can click the open serial 
port button. If you normally open the serial port and com-
municate, the red indicator will display green. You can enter 
the rehabilitation action command in the text indicator box. 
The clear sending area button can clear all the rehabilitation 
action commands and stop the rehabilitation action immedi-
ately. The timing sending option controls the sending inter-
val of rehabilitation action commands. Rehabilitation action 
instructions are shown in Table 1.

Because the VR module develops several rehabilitation 
strategies with different difficulties, the Browse button can 
select the rehabilitation strategy in the local file. The detec-
tion function area is the evaluation mode of the lack of hand 
motor ability described above. The maximum extension 
angle and the minimum bending angle of each finger of the 
user can be displayed in the text prompt box. Refresh the 
detection function area button to re evaluate the lack of hand 
motor ability. The control center presets four different speed 
gears, that is, select the appropriate speed gear for patients 
with different rehabilitation periods and disease degrees 
for rehabilitation training. Regular training options can be 
selected according to the recommendations of rehabilitation 
doctors, in minutes.

2.4  Virtual Reality Module

The virtual reality (VR) module is established based on Uni-
ty3D engine. The virtual environment uses the first-person 
display of the patients' hand state, so that patients can get a 
strong sense of immersion and mutual feeling. The virtual 
reality (VR) module and EEG signal processing module use 
TCP/IP protocol to communicate, and the programming lan-
guage is C#. The flow chart of data transmission between 
virtual reality (VR) module and sensor is shown in Fig. 5.

The VR module is suitable for use with rehabilitation 
equipment because the rehabilitation equipment can not 
only assist the affected hand to stretch, grasp, and other 

movements, but also provides a certain degree of visual 
feedback. The use of virtual reality is designed to promote 
task-oriented and repetitive motor training of new motor 
skills while using a variety of stimulating environments.

In this paper, four rehabilitation task strategies were 
developed in the VR module: virtual study environment, 
billiards game, tree-chopping game, and exploration game. 
The difficulty levels increased gradually, different difficulty 
levels could gradually help improve the motor ability reha-
bilitation of patients with affected limbs.

Virtual study environment: the virtual study environment 
with high degree of reduction and high sense of immersion 
will bring patients into reality for initial passive rehabilita-
tion, while virtual reality will give patients immersive visual 
feedback. The virtual study environment is shown in Fig. 6a.

Virtual environment of billiards game: In this VR 
game, the virtual arm can grasp the billiard cue through 
the collision body detection, the MPU6050 sensor can 

Table 1  Rehabilitation action control instructions and corresponding rehabilitation actions

Control 
instructions

Rehabilitation action Control 
instructions

Rehabilitation action

1 One movement of thumb A One action of thumb and forefinger
2 One movement of index finger B One action of thumb middle finger
3 One movement of middle finger C One action of thumb and ring finger
4 One movement of ring finger D One action of thumb and little thumb
5 One movement of little thumb E Full finger half grip once
6 Continuous movement of all fingers Z Index finger no movement, the other four fingers act once
7 All fingers open U Thumb no movement, the other four fingers act once
8 All fingers close F Middle finger and index finger no movement, the other three fingers act once
9 One full finger action H Thumb and little thumb no movement, the other three fingers act once

start

System initialization

Creating task by entering 
critical area

MPU6050 data 
acquisition

Bending sensor data 
acquisition 

Bluetooth module 
sending data

Virtual Reality
Data updating

Fig. 5  Flow chart of data transmission between sensor and upper 
computer
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obtain the position information, adjust the direction to 
reach the billiard ball to hit, and complete the different 
strength of the punch through clenching the fist for energy 
storage. The aim of this game is to allow patients to imag-
ine their own hand movements and stimulate the recovery 
of damaged neural pathways. The VR environment of the 
billiards game is shown in Fig. 6b.

Virtual environment of tree-chopping game: the patient 
grasps the force of cutting bamboo by clenching his fist. 
If the force is not enough, the patient needs to keep the 
force several times. Task-based virtual games guide 
patients to achieve rehabilitation training goals. The VR 
environment of tree-chopping game is shown in Fig. 6c.

Virtual environment of exploration game: patients 
explore in the virtual environment and control the virtual 
characters to end the game, turn left, turn right, jump, 
squat, forward, backward, accelerate running, jog, and 
return to the initial state with 10 gestures from 0 to 9. The 
10 gestures representing 0–9 are shown in Fig. 6e, and the 
exploring game's VR environment is shown in Fig. 6d.

2.5  Hand Soft Rehabilitation Module

The hand soft rehabilitation module is composed of two 
parts: hand soft rehabilitation gloves and hand soft rehabili-
tation control box, which is a multi-degree-of-freedom hand 
rehabilitation exoskeleton based on line drive. One end of 
the driving line is arranged on the hand soft rehabilitation 
glove, the other end is on the side wall of the control box. 
Considering that the driving lines will interfere with each 
other during operation, the five driving lines are all in inde-
pendent driving line channels, which avoids the coupling 
problem. In addition, the line driving channel will reduce 
the loss of tension. The hand soft rehabilitation exoskeleton 
module is shown in Fig. 7.

In order to make patients feel comfortable when wear-
ing rehabilitation gloves, hand soft rehabilitation gloves 
are made of microfiber and polyester fabric, and cowhide 
patches are added to the palms and joints to improve wear 
resistance. The thermosetting pressure plates on the back of 
the fingers and the joints under the gloves are in a walking 

Fig. 6  Rehabilitation task strategy in VR module: a the virtual environment of the study; b the virtual environment of billiards game; c the vir-
tual environment of tree-chopping game; d the virtual environment of exploration game; e the ten gestures used in the exploration game
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band to ensure that the rotation center of the connecting 
rod structure coincides with the rotation axis of the human 
joints. Otherwise, the force transmission may not be on the 
safety track, and causing damage to the user's fingers. The 
driving force of the driving system is transmitted to the 
finger joints through the flexible steel wire rope, and the 
coupling action between the fingers during the rehabilita-
tion training process is avoided through the driving wire 
conduit. Combining with the recommendations of rehabili-
tation doctors, in order to transmit the driving force in the 
direction of fingers, the block guide rail is placed at the distal 
interphalangeal joint (DIP), proximal interphalangeal joint 
(PIP) and metacarpophalangeal joint (MCP) of the fingers on 
the back of the hand, and the block guide rail at the palm is 
placed at the distal phalanx, middle phalanx and metacarpal 
bone near metacarpophalangeal joint (MCP). The physical 
drawing of soft rehabilitation gloves and drive line drive 
catheter is shown in Fig. 8.

Through the analysis of the existing drive system, servo 
motor is chosen as the power output source to provide power 
for patients' rehabilitation training. Servo motor is usually 
called steering engine, which has the advantages of high 
control accuracy, low power, large output torque, simple 
control and easy operation. The selected steering engine 
model is SG90 produced by Dongguan Desheng Intelligent 

Technology Co., Ltd. The steering engine is a servo driver 
controlled by pulse width modulation (PWM). The rotation 
angle of the steering wheel of the steering engine SG90 
is 0°–180°, which is controlled by signals with a cycle of 
20 ms and a width of 0.5–2.5 ms.

Through the analysis of finger bones and kinematics, and 
combined with the recommendations of rehabilitation doc-
tors, after the field investigation and Research on the force 
on the fingers of patients during finger rehabilitation train-
ing, the system finally uses five steering engines with a limit 
output torque of 20 kg cm to assist the rehabilitation training 
of five fingers of patients. The specific physical drawing of 
the steering engine is shown in Fig. 9.

Five bending sensors are connected to the circuit board, 
which adopt the STM32F40LCBUb as the main control 
chip. The main control circuit board is integrated with volt-
age and resistance conversion circuit, data format selection 
switch, MicOR-USB charging interface, Bluetooth module 
and MPU6050 sensor. The bending sensor and the main con-
trol circuit board are shown in Fig. 10.

Detection function of hand soft rehabilitation module: 
the bending sensor is fundamental to realize the detection 

Fig. 7  Hand soft rehabilitation module: hand soft rehabilitation 
gloves and hand soft rehabilitation control box

Fig. 8  Multi angle display of soft rehabilitation gloves and drive line 
conduit

Fig. 9  Steering engine SG90

Fig. 10  Bending sensor of hand soft rehabilitation glove: a the bend-
ing sensor is a flex bending sensor produced by Shanghai Fengyou 
Information Technology Co., Ltd. with high sensitivity; b five bend-
ing sensors and the main control board. A TDK mpu6050 attitude 
sensor is integrated on the main control board to collect spatial atti-
tude data during hand movement
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function of the hand soft rehabilitation module. It is com-
posed of an electronic element with variable resistance 
(9 K ohms when not bent, 22 K ohms when bent at 180°). 
The bending angle of the sensor can be obtained by quan-
tifying the resistance value. The sensor is integrated into 
the hand soft rehabilitation glove to obtain the maximum 
range and acceleration of the user's finger movement. When 
the user wears the hand soft rehabilitation gloves, bend-
ing fingers will drive the bending sensor to deform. At 
this time, the sensor resistance will change, and the main 
control circuit board will send real-time data packets to 
the control center and virtual reality module. The control 
center records relevant data, and the virtual reality module 
refreshes the virtual reality environment according to the 
received data to achieve synchronization with the actual 
finger movement of the patient.

The hand soft rehabilitation control box is provided 
with five servo motors (steering engine), each steering 
engine’s driving line is connected to the corresponding 
finger to control its movement. The reason for choosing 
the steering engine as the driving unit is that the steer-
ing engine has high control accuracy and can accurately 
control the driving stroke, which can adapt to the needs 
of different users. When the steering engine is initialized, 
the operating angle is 0°, corresponding to the unbending 
state of the finger. The maximum operating angle is 180°, 
and the user's finger is completely bent at this time. As 
the Arduino controller controls the five steering engines 
separately, users can be assisted to complete the actions 
of a single finger, full fingers, and opposite fingers by con-
trolling the operation of a different steering engine. The 
internal structure of the hand soft rehabilitation control 
box is shown in Fig. 11.

3  Experiment Setup and Results

In collaboration with the Rehabilitation Department of 
Shandong Provincial Hospital of Traditional Chinese Med-
icine, our team conducted a series of rehabilitation experi-
ments from November 2020 to March 2021. Participants 
in the rehabilitation experiment were all stroke patients 
of the Rehabilitation Department of Shandong Provincial 
Hospital of Traditional Chinese Medicine.

3.1  Experiment Setup

3.1.1  Subjects

During the subjects’ selection procession, the following 
criteria were followed:

Inclusion criteria: 1. Stroke or cerebral infarction 
occurred for the first time (first illness). 2. Unilateral 
limb loss. 3. Meets the diagnostic criteria established 
by the 4th National Cerebrovascular Academic Confer-
ence: 4.35 ≤ age ≤ 65 years old. 5. No cognitive impair-
ment, MMSE (mini-mental state examination) score ≥ 27 
points. 6. Fewer or no serious complications. 7. Cerebral 
infarction confirmed by CT or MRI. 8. Have not received 
formal motor imaging treatment before clinical trials. 9. 
Clear consciousness, good compliance, can clearly express 
the feelings of rehabilitation training. 10. Agrees to par-
ticipate in this clinical trial and have signed an informed 
consent form.

Exclusion criteria: 1. Deterioration of the disease, new 
infarction, or large-scale cerebral infarction. 2. Those who 
have a history of epilepsy, cerebral hemorrhage, and severe 
heart, lung, liver, kidney, and other important organ failures. 
3. Severe cognition (MMSE score < 27 points) and commu-
nication barriers that cannot be trained. 4. Patients receiving 
other clinical central nervous system interventions at the 
time of enrollment. 5. Those who cannot complete the basic 
course of treatment and have poor compliance. 6. Allergic 
to metals, polymer materials or other related foreign bodies 
used in this equipment. 7. There is a local skin infection or 
damage below the elbow of the upper limb. 8. The affected 
limb is congenital or due to other reasons before the onset of 
the disease, resulting in limb deformity, abnormal planing, 
skeletal differences, and joint insufficiency. 9. Participated 
in other clinical trials 1 month before the trial. 10. The accu-
racy of sports imagination has not reached 60%.

Interruption criteria: 1. If any adverse reactions or other 
complications occur during the experiment, it is not advis-
able to continue the experiment. 2. The compliance becomes 
worse and does not meet the test standards. 3. Withdrawal by 
oneself or unable to continue clinical trials for other reasons.

Fig. 11  The internal structure of the hand soft rehabilitation control 
box
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Based on the above criteria, a total of 11 stroke patients 
(9 males and 2 females, aged between 28 and 65) partici-
pated in this study. The stroke patients’ information is 
shown in Table 2. It is worth noting that the rehabilitation 
experiment conducted in this paper did not affect patients’ 
other rehabilitation training in the hospital, and patients’ 
normal rehabilitation training in the hospital was carried 
out as usual.

During the experiments, all participants were ran-
domly divided into two groups: a BCI–VR rehabilita-
tion training group and a soft rehabilitation glove train-
ing group. The BCI–VR rehabilitation group performed 
the active rehabilitation training with BCI, VR and 
rehabilitation glove, and the soft rehabilitation glove 
rehabilitation group performed the passive rehabilita-
tion training only with the rehabilitation glove. The 
training time, frequency, and experiment duration of the 
two groups were the same, but the training content was 
different. The information and grouping of participants 
are listed in Table 2.

3.1.2  Experiment Schedule

The rehabilitation experiment is divided into six stages, from 
stage 0 to stage 5, of which stage 0 is the preparation stage, 
stage 5 is the rehabilitation evaluation stage, and stages 1–4 
is the rehabilitation training stage. Stage 0 lasts for one week 
(week 0). The main purpose of stage 0 is to let participants 
understand the content of rehabilitation training, master the 
operation of rehabilitation equipment, and be familiar with 
the rehabilitation process. Stages 1–4 are rehabilitation train-
ing stages (from the first week to the 16th week), and each 
stage lasts for four weeks. These four stages gradually carry 
out rehabilitation training strategies with different degrees of 
difficulty. The difficulty, complexity and intensity of rehabil-
itation training are gradually increasing. In the rehabilitation 
training stage, participants receive rehabilitation training at 
least 5 times a week, and the length of each training is not 
less than 1 h and not more than 2 h, so as to avoid fatigue and 
boredom of participants. Stage 5 is the rehabilitation evalu-
ation stage, from the 17th week to the 20th week. In stage 5, 
the participants did not receive rehabilitation training, only 
received rehabilitation evaluation tests once a week. The 
main purpose was to observe the sustainability and effec-
tiveness of the rehabilitation effect after the first to fourth 
stages of rehabilitation training, and to conduct a compara-
tive observation experiment before and after rehabilitation. 
The specific rehabilitation schedule is shown in Table 3.

3.1.3  EEG Signal Analysis Experiment

In the EEG analysis experiment, 60 trials of EEG data were 
collected for every participant per day, and the experiment 
lasted for 5 days, that is, 300 trials of training data were 
collected for every participant. In every trial, participants 
sat in a comfortable chair in a quiet environment and wore 
an electrode cap to collect EEG signals, with a computer 

Table 2  Rehabilitation experiment subjects’ information

Subject Gender Age Affected side Group

S1 Male 41 Right BCI–VR
S2 Male 28 Right BCI–VR
S3 Female 55 Right Soft rehabilitation glove
S4 Female 53 Left BCI–VR
S5 Male 48 Left Soft rehabilitation glove
S6 Male 49 Right Soft rehabilitation glove
S7 Male 64 Right BCI–VR
S8 Male 37 Left Soft rehabilitation glove
S9 Male 65 Right BCI–VR
S10 Male 58 Right Soft rehabilitation glove
S11 Male 56 Left Soft rehabilitation glove

Table 3  Experiment schedule

Stage Duration (week) Experiment content

BCI + VR group Soft rehabilitation glove

Preparation stage Stage 0 Week 0 Become familiar with the rehabilitation process and equipment
EEG analysis experiment

Rehabilitation training stage Stage 1 Week 1–4 BCI + Virtual study environment + Soft reha-
bilitation glove

Hand opening/clenching training

Stage 2 Week 5–8 BCI + billiards game + Soft rehabilitation 
glove

Single finger exercises training

Stage 3 Week 9–12 BCI + tree-chopping game Two finger exercises training
Stage 4 Week 13–16 BCI + exploration game Hand combined rehabilitation training

Evaluation stage Stage 5 Week 17–20 EEG signal analysis, FMA, MBI, statistical analysis
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monitor 60–70 cm away from the patient's face. Every trial 
lasted 10 s. After two seconds’ blank screen time, a beep 
prompted the subject that the trial was beginning. Then the 
subject opened/clenched his/her affected hand according 
to the virtual hand’s action on the computer screen. The 
opening/clenching action lasted for five seconds, followed 
by a two-second rest before moving on to the next trial. The 
paradigm of one trial is depicted in Fig. 12. In each trial, the 
system randomly determined whether patients performed 
opening or clenching actions.

3.1.4  Evaluation Method

Before and after the rehabilitation training, all the par-
ticipants were evaluated by a therapist who did not know 
the grouping situation. The evaluation methods included 
the surface electromyography (sEMG) evaluation system, 
FMA [54] and MBI [55]. The sEMG rehabilitation evalu-
ation system adopts the rehabilitation evaluation system 
based on analytic hierarchy process and fuzzy evaluation 
method developed by our research group [56]. FMA includes 
two items of fingers and wrist, and MBI includes two items 
closely related to hand functions: eating and dressing.

3.1.4.1 Surface electromyography (sEMG) evaluation sys‑
tem In the sEMG evaluation system used in this paper, the 
sEMG signals of the affected and healthy sides of patients 
with specific movements are collected through a three-
electrode module. Then the features of sEMG are extracted 
and the difference between them is calculated. Based on 
the basic knowledge of clinical rehabilitation evaluation, 
the analytic hierarchy process (AHP) and Fuzzy Compre-
hensive Evaluation (FCE) are organically combined to con-
struct the rehabilitation evaluation model, and finally the 
rehabilitation evaluation of patients based on sEMG signals 
is realized.

The three electrodes used in the sEMG system contain 
one reference electrode and two measuring electrodes. Dur-
ing the measurement, the reference electrode should be 
placed away from the active muscle, and the two measur-
ing electrodes should be placed on the surface of the active 
muscle. For example, when measuring the sEMG signal of 
the abductor brevis muscle, the reference electrode can be 
placed at the wrist, and two measuring electrodes can be 
placed on the abductor brevis muscle surface.

After collecting the sEMG signals, three features are 
extracted: integrated Electromyogram (iEMG) value, root 
mean square (RMS) and median frequency (MF), which can 
respectively represent muscle strength, muscle tension and 
fatigue degree of muscle. Finally, the AHP_FCE evaluation 
model is established to evaluate the degree of rehabilita-
tion of patients based on above features. For the specific 
details of signal acquisition, model building and rehabili-
tation assessment of the evaluation system, please refer to 
literature [56].

3.1.4.2 FMA (Fugel–Meyer assessment scale) FMA was 
further quantified and accurately developed by Fugel–
Meyer et al., based on the Brunnstrom Scale 6-level func-
tional classification. It is a motor function assessment 
method specially designed for stroke patients. It covers five 
areas of motion, sensation, balance, range of motion and 
pain, and contains 113 assessment items. Among them, the 
assessment of motor function is the most widely used and 
recognized assessment method in the clinical and scientific 
evaluation of stroke efficacy.

3.1.4.3 MBI (modified Barthel index rating scale) At pre-
sent, the Barthel Index (BI) is the most widely used basic 
activity of daily living (BADL) evaluation method for 
stroke patients in clinic, which reflects the self-care ability 
of patients in self-care activities such as dressing, eating, 
personal hygiene, as well as metastatic activities such as sit-
ting, standing and walking. BI is simple and clear, but its 
sensitivity is low, and the scale is slow to reflect the func-
tional changes of patients. In 1989, Canadian scholars Shah 
and vanchay [55] subdivided the BI level into five levels and 
made the modified Barthel Index (MBI).

Meanwhile, the EEG topographic map, EEG signal analy-
sis, and the statistical analysis of the evaluation data were 
all adopted to evaluate the rehabilitation results between the 
two comparison groups.

In the statistical analysis, SPSS19.0 software was used. �2 
test was used for counting data, independent sample t test or 
independent sample nonparametric rank sum test was used 
for inter-group comparison of measurement data, and paired 
sample t test or paired sample nonparametric rank sum test 
was used for intra-group comparison. P ≤ 0.05 indicates 
significant difference.

3.2  Experiment Results

3.2.1  EEG Analysis Results

In this paper, the PSD-kNN algorithm is used to analyze 
the EEG signals. The key points of the algorithm need to 
be clarified in the process of EEG signal analysis: This 
algorithm uses the kNN algorithm for classification. The 

Fig. 12  The paradigm of the EEG analysis experiment trial



1416 International Journal of Precision Engineering and Manufacturing (2023) 24:1403–1424

1 3

question in this experiment is how much K can be selected 
to achieve a more satisfactory effect?

3.2.1.1 The Selection of k For small data sets, the selection 
of k value has great influence on the classification accuracy 
of kNN algorithm. In this paper, the average classification 
accuracy of the five participants in the BCI–VR group under 
different k values was calculated and the curve of classifica-
tion accuracy was drawn, as shown in Fig. 13.

Figure 13 shows, as k value changes, that the accuracy 
rate also changes. In the process of k increasing gradually, 
the accuracy curve rises gradually. When k equals 23, the 
upward trend of the curve slows down and the subsequent 
classification accuracy rates are all above 80%, and the clas-
sification accuracy rate reaches the maximum value, 86.7%, 
at k equals 29. As k continues to increase, the accuracy drops 
slightly at k equals 31. The above analysis shows that, in the 
case of a certain training sample set, a relatively ideal clas-
sification effect can be obtained by selecting a reasonable 
k value, an excessive k value is unnecessary. For a small 
sample training data set, too large a k value may cause devia-
tion, leading to the decline of accuracy. Therefore, in the 
following experiments, k is set to be 29.

3.2.2  EEG Analysis Results

3.2.2.1 EEG Topographic Map For the participants in the 
BCI–VR group, two states (relaxed state and clenching hand 
state) and EEG topology maps were obtained at two stages 
(stage 0 and stage 5), aiming at comparing and analyzing the 
influence of the 16-week BCI–VR rehabilitation training on 
the brain activation degree of the participants.

Figure 14 is the EEG topology map of participant s7 in 
two states at two stages, in which (a) and (b) were collected 
in stage 0, (a) was in relaxed state, (b) was in clenching hand 
state, and (c) and (d) were collected in stage 5, (c) was in 
relaxed state, and (d) was in clenching hand state. Figure 14 
shows that in relaxed state, the EEG topology map of stage 
0 and stage 5 had little difference, that is, there was no obvi-
ous difference in voltage distribution between different brain 
regions in relaxed state. While in clenching hand stage, the 
difference of EEG topology map in stage 0 and stage 5 was 
obvious. As the affected hand of s7 was the right hand, in (b) 
and (d), the EEG topology map had obvious voltage varia-
tion in the left region, and both the voltage amplitude and 
the voltage changes area, figure (d) were bigger than figure 
(b), which shows that 16 weeks BCI–VR rehabilitation train-
ing had obvious activation in the cerebral cortex, the degree 
and scope of activation cerebral cortex were significantly 
expanded.

3.2.2.2 sEMG (Surface Electromyography, sEMG) Evalua‑
tion The sEMG rehabilitation evaluation experiment was 
conducted for all participants at stage 0 (before rehabilita-
tion training) and stage 5 (after rehabilitation training), and 
the rehabilitation effects of the two groups were compared, 
respectively. Figure 15 is the strength muscle comparison 
diagram of two participants (s3—soft rehabilitation glove 
group, s1—BCI–VR group) at stage 0 and stage 5, and the 
detecting part is abductor pollicis brevis muscle. In Fig. 15a 
and b are the muscle strength comparison diagram of s3, 
(a) is in stage 0, (b) is in stage 5, (c) and (d) are the muscle 
strength comparison diagram of s1, (c) is in stage 0, and 
(d) is in stage 5. In the muscle strength comparison dia-

Fig. 13  Classification accuracy of different k values
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grams, the red line represents the muscle strength curve of 
the healthy hand, and the blue line represents the muscle 
strength curve of the affected hand.

Figure 15 shows that, no matter for participant s3 or par-
ticipant s1, for the same participant, the muscle strength of 
the affected hand was much weaker than that of the healthy 
hand at stage 0, as shown in (a) and (c). After 16 weeks of 
rehabilitation training, the muscle strength of the affected 
hand was obviously improved, even though there was still a 
certain gap between the muscle strength of the affected hand 
and the healthy hand. In terms of muscle strength improve-
ment degree of affected hand, participant s1 had a slight 
advantage over s3, indicating that BCI–VR rehabilitation 
training had an advantage over traditional passive rehabilita-
tion training in muscle strength improvement, but the advan-
tage was not obvious.

3.2.2.3 Statistical Analysis Table  4 shows the statisti-
cal analysis of sEMG evaluation data of patients in the 

two groups (BCI–VR group and soft rehabilitation glove 
group) before and after rehabilitation training. Two fea-
tures were tested: muscle strength and muscle tension. For 
each feature, four muscle parts were selected for detection: 
flexor carpi muscle, extensor carpi muscle, extensor digi-
torum muscle, and abductor pollicis brevis muscle. Before 
rehabilitation training, there was no significant difference 
in muscle tension and muscle strength of the four muscle 
parts between two groups (P > 0.05). After rehabilitation 
training, the features between two groups were statisti-
cally significantly different (P < 0.05), which indicates the 
rehabilitation effects of the proposed BCI–VR rehabilita-
tion system. For the same group, the differences between 
the two stages (stage 0, before rehabilitation training and 
stage 5, after rehabilitation training) were large, and the 
difference for the BCI–VR group (P < 0.001) is larger 
than that of soft rehabilitation glove group (maximum P 
is 0.044). This phenomenon shows that the rehabilitation 
effect of the BCI–VR rehabilitation training system pro-

Fig. 14  The EEG topographic map of s7 in two states at two stages: 
a EEG topographic map of s7 in the relaxed state at stage 0; b EEG 
topographic map of s7 in clenching hand state at stage 0; c EEG topo-

graphic map of s7 in relaxed state at stage 5; d EEG topographic map 
of s7 in the clenching hand state at stage 5
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posed in this paper is more obvious and superior than the 
traditional passive rehabilitation glove system.

In the rehabilitation evaluation process, in addition to 
the sEMG-based rehabilitation evaluation system, FMA 
(Fugl–Meyer assessment) and MBI (modified Barthel 
index), which are commonly used in stroke patients’ rehabil-
itation evaluation, were also adopted in this paper. In FMA 
evaluation, only the patient's hand and wrist functions were 
scored for rehabilitation; in MBI, only the eating and dress-
ing functions, which are closely related to hand functions, 
were scored. Statistical analysis of FMA and MBI scores 
of patients in the two groups before and after rehabilitation 
training is shown in Table 5.

In terms of the FMA score of patients, there was no signif-
icant difference in the hand motor function between the two 
groups before rehabilitation training (P = 0.809, P = 0.241), 
but after rehabilitation training, the FMA score of patients in 
the two groups was significantly improved, while the reha-
bilitation score of patients in the BCI–VR group was more 
significantly improved (P = 0.026, P = 0.001). Compared to 
the functional rehabilitation of wrist and finger, it could be 

seen that the motor function of fingers was more obviously 
improved (P = 0.001).

The MBI score was similar to the FMA score. Before the 
rehabilitation training, there was no significant difference in 
eating and dressing in the two groups, but after the 16-week 
rehabilitation training, the scores of eating and dressing were 
significantly improved (P < 0.05), and the improvement of 
dressing ability was better than that of eating (P = 0.001).

4  Discussion

In this paper, the PSD-kNN algorithm is used as the EEG 
signal analysis algorithm. The relationship between the 
value of K and the classification accuracy for a small data 
set in a brain–computer interface system is verified through 
a series of experiments, as depicted in Fig. 13. Figure 13 
shows that for small data sets and the choosing of k, bigger 
is better is not always true. If the value of k is too large, it 
may cause overfitting of the system, leading to the decline 

Fig. 15  Muscle strength comparison diagram of two participants 
(s3—soft rehabilitation glove group, s1—BCI–VR group), before 
and after rehabilitation training, the detecting part is abductor pollicis 
brevis muscle, the action is clenching hand. In figure, the red line is 
the muscle strength of health hand, and the blue line is the muscle 

strength of the affected hand: a Muscle strength comparison of par-
ticipant s3 before rehabilitation training; b Muscle strength compari-
son of participant s3 after rehabilitation training; c Muscle strength 
comparison of participant s1 before rehabilitation training; d Muscle 
strength comparison of participant s1 after rehabilitation training
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of classification accuracy. Therefore, when using kNN algo-
rithm for feature classification, it is necessary to conduct 
system test experiments and select the k value with the best 
performance for a specific number of data sets.

In order to verify and analyze the activation of cerebral 
lesion regions and the improvement of brain plasticity of 
stroke patients by the proposed system, EEG signals were 
collected in the BCI–VR rehabilitation group at two states 
before and after rehabilitation. Figure 14 shows the EEG 
distribution of S7 in the BCI–VR rehabilitation group before 
and after rehabilitation training. As can be seen in Fig. 14, 
after 16 weeks of BCI–VR rehabilitation training, more 
areas of the contralateral cerebral cortex of the affected 
limb were activated in ‘clenching hand’ state, and the extent 
and range of activation were significantly expanded and 
improved upon compared with before rehabilitation training. 

This indicates that the BCI–VR rehabilitation system pro-
posed by this paper can mobilize more cerebral cortex to 
participate in the process of hand movement rehabilitation 
while patients carry out hand movement rehabilitation, thus 
improving brain plasticity and improving hand movement 
dysfunction caused by lesions.

In the process of measuring the rehabilitation degree of 
patients' hand movement function, this paper adopts the 
sEMG-based rehabilitation evaluation system developed 
by our team. Aiming at the rehabilitation of patients' hand 
function, four muscles of patients were evaluated in terms 
of muscle strength and muscle tension. The four muscles 
selected for evaluation were the flexor carpi, extensor carpi, 
extensor digitorum, and abductor pollicis brevis. Statisti-
cal analysis was also performed for all patients in the two 
rehabilitation groups. Figure 15 shows the muscle strength 

Table 4  Muscle tension and muscle strength comparison of the two groups at two stages

Selected muscle (µV) Group Stage 0 Stage 5 Z P

Muscle tension Flexor Carpi Muscle tension (µV) BCI–VR 25.56 ± 10.56 52.89 ± 3.33 − 10.789 < 0.001
Soft rehabilitation glove 26.49 ± 10.62 40.71 ± 17.28 − 3.410 0.003
Z − 0.219 − 3.896
P 0.829 0.001

Extensor Carpi Muscle tension (µV) BCI–VR 41.55 ± 11.95 64.46 ± 7.29 − 8.242 < 0.001
Soft rehabilitation glove 41.24 ± 11.38 53.68 ± 6.28 − 3.889 0.001
Z − 0.232 − 6.094
P 0.975 < 0.001

Extensor Digitorum muscle tension (µV) BCI–VR 37.89 ± 14.25 59.46 ± 7.86 − 7.169 < 0.001
Soft rehabilitation glove 37.88 ± 12.26 49.27 ± 9.05 − 4.233 0.001
Z − 0.159 − 4.576
P 0.953 < 0.001

Abductor Pollicis Brevis Muscle tension (µV) BCI–VR 32.88 ± 12.53 54.70 ± 9.58 − 6.448 < 0.001
Soft rehabilitation glove 31.82 ± 10.50 42.24 ± 12.59 − 2.818 0.011
Z − 0.298 − 3.885
P 0.769 0.001

Muscle strength Flexor Carpi Muscle strength (µV) BCI-VR 52.49 ± 14.00 73.08 ± 14.45 − 5.056 < 0.001
Soft rehabilitation glove 50.53 ± 13.00 60.38 ± 13.75 − 2.455 0.024
Z − 0.188 − 2.524
P 0.853 0.021

Extensor Carpi Muscle strength (µV) BCI-VR 70.08 ± 11.93 95.68 ± 14.31 − 7.427 < 0.001
Soft rehabilitation glove 69.70 ± 9.85 85.18 ± 12.66 − 5.416 < 0.001
Z − 0.483 − 2.870
P 0.635 0.010

Extensor Digitorum Muscle strength (µV) BCI-VR 82.48 ± 20.14 114.02 ± 15.50 − 3.900 0.001
Soft rehabilitation glove 82.69 ± 17.17 94.73 ± 15.72 − 2.161 0.044
Z − 0.362 − 2.707
P 0.722 0.014

Abductor Pollicis Brevis Muscle strength (µV) BCI-VR 72.36 ± 21.94 111.12 ± 21.23 − 5.150 < 0.001
Soft rehabilitation glove 71.58 ± 18.06 89.24 ± 20.28 − 2.337 0.031
Z − 0.701 − 2.927
P 0.991 0.009
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comparison between the affected and healthy hands of 
patient S3 (soft rehabilitation glove group) and S1 (BCI–VR 
group). The action of hand is ‘clenching hand’ and the 
detection muscle is abductor brevis pollicis. As can be seen 
from Fig. 15, the 16-week rehabilitation training, whether 
BCI–VR rehabilitation training or soft rehabilitation glove 
rehabilitation training, significantly improved the muscle 
strength of the affected hand. Before rehabilitation training, 
compared with the healthy hand, the muscle strength of the 
affected hand was weak for both patients. After 16 weeks 
of rehabilitation training, both patients’ muscle strength 
of the affected hands increased significantly. Even though 
there was still a gap compared with the healthy hand, the 
ascension of muscle strength was obvious. This depicted that 
continuous rehabilitation training, either active or passive 
training, can obviously improve the muscle strength of the 
training limb. The phenomenon that there was no signifi-
cant difference in the degree of improvement between the 
two groups indicates that there was little difference between 
passive rehabilitation and active rehabilitation in terms of 
short-term recovery of limb muscle strength. The evaluation 
of the sustained effect of the active and passive rehabilita-
tion training requires long-term follow-up observation and 
motor function evaluation of patients. In this paper, due to 
the influence of patients discharged from hospital, follow-up 
evaluations of patients were not carried out; this is a future 
area to be improved upon by this research team.

The statistical analysis of muscle strength and muscle 
tension of patients in the two groups showed that regard-
less of BCI–VR rehabilitation group or soft rehabilita-
tion glove group, the improvement of muscle strength and 
muscle tension in the four parts of patients was obvious. 
By contrasting the rehabilitation effect of the two groups, 

it can be seen that the rehabilitation effect of the BCI–VR 
rehabilitation group is better than that of the soft rehabili-
tation glove group. The reason is that the loss of motor 
function in stroke patients is caused by brain injury. In 
passive rehabilitation training, the direction of information 
transmission is from muscle to brain, which is opposite to 
the real information transmission direction of the human 
body. In this kind of rehabilitation training mode, the brain 
can receive stimulation from muscles’ training, but the 
recovery effect is limited.

While the BCI technology in the BCI–VR rehabilitation 
system makes the brain directly involved in the patients’ 
hand movement control, the stimulation to the lesions in 
active rehabilitation is more direct than that in the passive 
rehabilitation. At the same time, because of the addition of 
VR technology, the visual stimulation in the virtual envi-
ronment and the hands’ synchronous movement feedback 
makes the rehabilitation more immersive; therefore, the 
BCI–VR rehabilitation training can achieve better rehabili-
tation effects than traditional passive rehabilitation training.

Comparison of the recovery degree of muscle strength 
and muscle tension between the two groups led to the find-
ing that the recovery effect of muscle strength and muscle 
tension in the BCI–VR rehabilitation group was obvious, 
while the recovery effect of muscle tension in the soft 
rehabilitation glove group was better than that of muscle 
strength. Muscle tension refers to the tension of muscles 
in the relaxed state and the resistance encountered dur-
ing passive exercise; muscle strength mainly reflects the 
strength of muscle contraction. For stroke patients, mus-
cle tension represents the state of muscle spasm. There-
fore, the above analysis indicates that the BCI–VR reha-
bilitation system has a significant effect on improving the 

Table 5  FMA and MBI score 
comparison of the two groups at 
two stages

Outcome measures Group Stage 0 Stage 5 Z P

FMA score Wrist BCI-VR 2.19 ± 2.14 8.44 ± 3.01 − 3.524 < 0.001
Soft rehabilitation glove 2.50 ± 2.03 5.69 ± 3.61 − 3.429 0.001
Z − 0.259 − 2.340
P 0.809 0.026

Finger BCI-VR 3.87 ± 2.28 9.37 ± 2.89 − 3.524 < 0.001
Soft rehabilitation glove 2.87 ± 2.50 6.37 ± 2.03 − 6.575 < 0.001
Z − 1.197 − 3.207
P 0.241 0.001

MBI score Eating BCI-VR 6.50 ± 1.89 8.94 ± 1.44 − 3.493 < 0.001
Soft rehabilitation glove 6.06 ± 2.77 7.00 ± 2.89 − 2.251 0.024
Z − 0.249 − 2.148
P 0.838 0.047

Dressing BCI-VR 3.94 ± 2.29 7.38 ± 2.06 − 3.621 < 0.001
Soft rehabilitation glove 3.25 ± 2.84 4.00 ± 2.66 − 2.070 0.038
Z − 0.813 − 3.262
P 0.445 0.001
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muscle spasm and muscle contraction ability of stroke 
patients, while passive rehabilitation, such as soft rehabili-
tation gloves, has a better effect on improving the spasm 
than improving the active muscle contraction ability of 
patients.

Table 5 is the statistical analysis of FMA and MBI 
scores of all participants. This paper only focuses on the 
improvement of patients' hand functions, so FMA scores 
only focus on the hand and wrist functions related to hand 
functions, while MBI scores only focus on eating and 
dressing. As can be seen from Table 5, both the BCI–VR 
group and the soft rehabilitation glove group showed sig-
nificant improvement in FMA and MBI scores before and 
after rehabilitation training, and the improvement degree 
of FMA was better than that of MBI. The reason is that 
FMA only scores patients' wrist and finger motor ability, 
and MBI requires patients to complete eating and dress-
ing, which are closely related to hands. Both eating and 
dressing are not only related to hand function, but are also 
closely related to patients' somatosensory, positional, and 
spatial senses, which require close cooperation between 
patients' hands, brain, and eyes, thus eating and dressing 
are more difficult than simple hand actions. Therefore, the 
improvement of these two items needs longer rehabilita-
tion training and targeted training to achieve better results.

In this paper, the BCI–VR-based hand soft rehabilita-
tion system combines BCI technology with the hand soft 
rehabilitation technology and constructs a brain–nerve 
–muscle information transmission pathway in vitro for 
stroke patients. At the same time, the addition of VR tech-
nology gives patients the real-time feedback with visual 
and motion, and feedback to the patients’ neural pathways’ 
results to the brain. Therefore, the closed-loop path of 
brain information transmission and control is constructed. 
This rehabilitation system transforms the traditional pas-
sive physical rehabilitation training into active rehabilita-
tion training, which not only helps users to complete the 
rehabilitation training of the hand function, but also ena-
bles patients' brains to actively participate in and control 
hand movements, improve patients' brain plasticity, and 
patients' motor function.

The feasibility and effectiveness of the proposed system 
were verified by a series of rehabilitation experiments for 
stroke patients in the Rehabilitation Department of Shan-
dong University of Traditional Chinese Medicine. However, 
the rehabilitation training of stroke patients is a complex 
process, and the hand muscles are also extremely rich. 
Therefore, there are still many problems to be solved for the 
rehabilitation of patients' hand motor function. Thoughts, 
upon completion of this paper, are as follows:

In this paper, the PSD-kNN algorithm is used as the EEG 
signal analysis algorithm. The PSD-kNN algorithm trans-
forms the EEG signals from the traditional Euclidian space 

into the Riemannian space and analyzes the EEG signals 
from the angle of Riemannian geometry so as to achieve a 
satisfactory classification effect.

Although the algorithm proposed in this paper completes 
the conversion of EEG signals from European space to Rie-
mannian space and the analysis of the geometric distribu-
tion of EEG signals in Riemannian space. However, the pro-
posed algorithm defines the sum of the distances between 
the curves described by two PSD matrices as the definition 
of dissimilarity between them. Since the distances are scalar, 
the algorithm does not consider the geometric distribution 
and shape of the PSD matrix in the Riemannian space in the 
calculation process. Although this paper has experimentally 
verified the feasibility and effectiveness of this definition 
of dissimilarity, can the dissimilarity of two PSD matrices 
in Riemannian space be constructed by fully considering 
the spatial geometric distribution characteristics of the PSD 
matrices?

The BCI–VR-based soft hand rehabilitation system 
proposed in this paper has a better activation degree and 
range of cerebral cortex in stroke patients than traditional 
passive hand rehabilitation. The reason is that the BCI–VR-
based rehabilitation system not only constitutes a closed 
control loop of the brain–nerve–muscle, but also involves 
the patients more thoroughly immersed in rehabilitation 
training, which gives the patient a greater effect of neural 
remodeling. However, it is worth noting that neurological 
remodeling after injury can be positive or negative. In order 
to restore central nervous system function, intervention 
measures that can cause remodeling are required to be tar-
geted and have no negative effects [2]. If BCI produces neg-
ative effects, abnormal synapses and negative remodeling 
can be formed through repeated wrong signal adjustment, 
which may cause patients to have unintentional actions, even 
compulsion, hallucination, and sensory distortion, etc. This 
will pose a severe ethical problem for the future applica-
tion of BCI [10]. Therefore, when using BCI technology for 
rehabilitation of limb motor function in stroke patients, it is 
necessary to investigate the positive and negative aspects of 
neural remodeling brought by this system to patients, which 
is also a problem that needs to be considered emphatically in 
the future using BCI technology for rehabilitation of motor 
function. That is, how to determine the positive and negative 
of patients' neural remodeling? How to use the BCI tech-
nique to produce positive neural remodeling?

The rehabilitation system proposed in this paper adopts 
the design of soft rehabilitation glove, avoiding the hidden 
danger caused by the traditional mechanical rehabilitation 
system of the hand. For rehabilitation action design, the 
rehabilitation gloves can help patients complete most of the 
major hand movements, such as grasping, clenching, and 
finger bending, which can help patients to complete daily 
life tasks, such as dressing, eating, and so on. However, the 
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hand muscles are rich, and the muscles related to finger 
motor ability also include the interosseous metacarpal mus-
cle, interosseous dorsal muscle, pollicis radalis, adductor 
pollicis, and vermiform muscle. These muscles belong to 
small muscle groups, and the rehabilitation of small muscle 
groups can enable patients to achieve the execution of fine 
and complicated movements. Due to the integrated design 
of the rehabilitation gloves in this system, it is impossible 
to carry out targeted training and rehabilitation for the mus-
cles in these small muscle groups. How to construct a more 
flexible and meticulous hand function rehabilitation system 
that can carry out rehabilitation training for small muscle 
groups of patients' hands and assist patients to complete fine 
movements is a problem that needs to be considered in the 
direction of subsequent hand function rehabilitation.

Due to the limitations of objective conditions, the dura-
tion of the experiment in this paper was 5 months for stroke 
patients, without long-term follow-up observation and regu-
lar rehabilitation evaluation after discharge. Half a year or 
even more than a year of follow-up observation and regular 
rehabilitation evaluation for the effectiveness and sustain-
ability of rehabilitation methods will provide better guiding 
significance.

5  Conclusions

This study constructed a soft rehabilitation system based 
on BCI–VR technology for stroke patients’ hand reha-
bilitation training. The proposed system combines BCI 
technology with rehabilitation soft gloves to realize an 
in vitro channel of brain–nerve–muscle information trans-
mission, transforming the traditional passive rehabilita-
tion into active rehabilitation in which the brain actively 
participates. At the same time, with the addition of VR 
technology, patients will have a higher degree of brain 
participation and investment in rehabilitation training, so 
as to achieve better rehabilitation effects. In order to verify 
the role and effect of the proposed system in hand function 
rehabilitation of stroke patients, comparative rehabilita-
tion experiments were conducted on 11 stroke patients in 
the Rehabilitation Department of The Affiliated Hospital 
of Shandong University of Traditional Chinese Medicine. 
The rehabilitation comparison experiments lasted for 
16 weeks; 11 stroke patients were randomly divided into 
a BCI–VR active rehabilitation group and a soft rehabili-
tation glove passive rehabilitation group. The two groups 
had the same rehabilitation time and frequency, and the 
rehabilitation equipment and content were different. This 
study systematically analyzed the EEG topographic map, 
muscle strength, muscle tensor recovery of hand muscles, 
and FMA and MBI scores of the two groups of patients. 

The results of the comparative rehabilitation experiment 
showed that the system proposed in this paper could effec-
tively improve the activation degree and activation range 
of cerebral lesions in stroke patients, enhance the muscle 
strength of patients' hands, improve the hand spasm, and 
effectively increase the FMA and MBI scores of patients. 
The proposed BCI–VR hand soft rehabilitation system 
could provide stroke patients with a scientific, effective, 
and highly targeted rehabilitation training method to 
effectively improve the rehabilitation training effect and 
enhance the functional exercise level.
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