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Abstract
This study aims to conduct abnormality detection by applying machine learning algorithms when drilling a carbon fiber 
reinforced plastic laminate. In-process signals including current, thrust force, and vibration were captured during the dry 
drilling experiments using a 6 mm physical vapor deposit diamond-coated drill at the consistent spindle speed of 6500 
RPM and 0.05 mm/rev. Across measurements from out-of-process variables, including hole diameter, roundness, surface 
roughness, entry/exit delamination, and entry/exit uncut fiber area, in-process measurements were most able to find outliers 
with respect to diameter. Both Principal Component Analysis, an unsupervised dimensionality reduction technique, and 
Linear Discriminant Analysis, a supervised dimensionality reduction technique, could separate oversize or undersize holes 
from average-sized holes when using fast Fourier transformation data of in-process vibration. Predictive performance with 
k-Nearest Neighbors shows that our machine learning pipeline can predict oversized vs. non-oversized holes with over 85% 
accuracy in this dataset. Peak prediction performance is obtained when in-process measurement data is viewed from the 
frequency domain, and predictions are weighted based on the relative distances of the nearest neighbors.

Keywords CFRP drilling · Machine learning · Unsupervised learning · Supervised learning · Abnormality detection · Hole 
quality

1 Introduction

Industrial artificial intelligence (AI) and machine learning 
can impact nearly every aspect of a manufacturing busi-
ness, from design to production to maintenance. Among the 

entire spectrum of product manufacturing, machine learn-
ing models have been applied to real-time process monitor-
ing [1–5]. Real-time validation of process performance is a 
critical factor in improving a traditional manufacturing unit 
that can not only meet the manufacturing requirements of 
products but also improve the smart factory efficiency in a 
self-organized way.

Despite laudable advances in AI programs of many manu-
facturing industries [6, 7], implementation of such technolo-
gies has been limited within aircraft manufacturing due to 
the far lower product volumes involved, high complexity, 
and the frequent need for very high levels of precision [8]. 
This slow implementation of automation/robotics technolo-
gies to aerospace composite manufacturing is also appar-
ently true [9]. Molded fiber reinforced plastic (FRP) com-
posite constituents need to be bolted together; therefore, the 
generation of fastening holes is one of the most frequent 
processes in FRP manufacturing [10–13]. Drilling of FRPs 
is a complex process, which is far different from that of 
monolithic aerospace metals such as aluminum or stainless 
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steel. Chip formation of FRPs during the conventional drill-
ing processes relates to a greater number of variables such 
as fiber type, matrix type, fiber orientation at the point of 
contact, composite part thickness, matrix hardness and heat 
sensitivity, cutting tool geometry, lubrication conditions, etc. 
[14–17]. A number of studies have been conducted to cor-
relate the FRP machining input parameters such as cutting 
speed, feed, tool geometry, and lubrication condition and the 
output quality of machined composite holes such as surface 
roughness, hole size, and delamination [13, 18–21]. Efforts 
have also been made to model drilling forces and their rela-
tions to the hole quality outputs; however, many of these 
studies did not use in-process data, which are required for 
real-time monitoring and validation.

Applying machine learning techniques to manufacturing 
processes of metallic materials has been more extensively 
studied than in FRPs. A self-organizing map or self-organ-
izing feature map is a type of artificial neural network that 
applies competitive learning and uses unsupervised learning. 
These maps use multidimensional scaling to provide a low 
dimensional representation of high dimensional data [22, 
23]. Random forest algorithms use trained data to evalu-
ate features and predict accordingly [4]. Bayesian Networks 
have been used by Bustillo and Correa [24] to predict surface 
roughness in drilled steel components. The random forest 
algorithms are used to monitor variables and used to predict 
manufacturing defects of the welded tube [25]. These algo-
rithms were also used to predict the quality of drilled and 
reamed bores in cast iron [26]. Extreme Learning machines 
have feed-forward neural networks to pass the input nodes 
through hidden nodes until proper outputs are produced. 
Then they can be used to accurately predict future results. 
Mustafa [27] used this method to predict the quality of the 
laser-drilled holes in Ti-6Al-4 V.

Within FRP composite manufacturing, there has been 
some exploration of using AI methods to predict salient 
out-of-process measurements. Fuzzy logic has been used to 
look at the relationship of spindle speed, feed rate, and drill 
diameter to surface roughness. Fuzzy logic was applied to 
parameters with labels of severity, low, medium, or high. 
Comparing the parameters to the surface roughness not only 
individually but in combination revealed both spindle speed 
and drill diameter that have the most significant impact on 
surface roughness [28]. Kim and Ramulu used autoregres-
sive coefficients to discriminate the cutting signals of auto-
claved and induction heat-processed graphite/PIXA-M com-
posites during the drilling process [29].

However, there are currently far fewer research papers 
applying machine learning, as opposed to more general AI 
methods, to the manufacturing of FRP composite materials. 
Caggiano et al. [29] applied artificial neural networks when 
drilling into FRP materials to evaluate tool wear. The inputs 
were thrust force and torque that were being monitored 

through sensor signals. It was found that by applying fractal 
analysis to machine learning, a more accurate diagnosis of 
tool life was obtained as opposed to conventional statistical 
methods [30]. Teti et al. [31] also applied an artificial neural 
network based machine-learning paradigm to monitor tool 
wear when drilling CFRP/CFRP laminate stack. They used 
multiple signal processing techniques to extract diverse fea-
tures, including time domain, frequency domain, and frac-
tal analysis signal features, from the in-process thrust and 
torque signals. Through artificial neural network (ANN) 
training with 60 input–output vectors, the fractal analysis 
and the time domain feature pattern vectors provided the best 
ANN performance in the classification of tool wear level.

In this study, well-established machine learning algo-
rithms are applied to the drilling process of quasi-isotropic 
carbon fiber reinforced plastics (CFRP). Our work brings 
together unsupervised and supervised machine learning 
techniques and applies them to high fidelity data captured 
from a computer numerical control (CNC) machine tool, 
resembling aircraft production. This study aims to: (1) 
explore how dimensionality reduction and unsupervised 
learning techniques may allow in-process measurements to 
map onto critical hole quality measurements usually made 
in post-production; and (2) explore how supervised learn-
ing methods can predict unusually low hole quality from 
in-process data. The underlying assumption in our method 
is: artifacts (e.g., local material variation, unusual machine 
vibration, or tool defect) that give rise to abnormal or low-
quality holes will also produce some visible signature in 
the data collected via in-process measurements. If true, this 
hypothesis suggests that once we identify “normal” operat-
ing signatures for a particular drilling setup, we can identify 
anomalous holes from the outliers. The primary contribution 
of this study is to demonstrate that well-established machine 
learning techniques can make useful predictions about 
out-of-process measurements in the CFRP manufacturing 
domain using only in-process data easily obtained during 
manufacturing. The secondary contributions of this paper 
are jointly to compare the performance of multiple machine 
learning methods and demonstrate how prediction perfor-
mance changes when data is viewed in the time domain or, 
conversely, in the frequency domain. Thus, this study will 
contribute to developing applied machine learning systems 
to monitor, validate, and predict the conventional machining 
processes of CFRP in the aircraft product/structure manu-
facturing environment.

The paper is organized as follows. Section 2 describes 
the experimental setup for the drilling process and how raw 
data is processed to prepare for machine learning. Section 3 
describes the machine learning methods and the workflow 
we employ, specifically Principal Component Analysis 
(PCA), Linear Discriminant Analysis (LDA), and k-Nearest 
Neighbors (kNN). Section 4 describes the out-of-process 
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hole quality measurements and assessment results. In 
Sect. 5, we examine unsupervised dimensionality reduction 
using PCA on the in-process data. Our goal is to determine 
if data tends to form naturally distinct clusters and whether 
these clusters correspond to out-of-process variables of 
interest (e.g., diameter, roundness, or delamination length), 
addressing the first aim of our work described above. We 
examine the data in both the time and frequency domains 
and highlight differences. Critically, with the unsupervised 
methods in Sect. 5, all knowledge of the out-of-process vari-
ables are withheld from the learning algorithms themselves 
and are only used post-hoc to validate whether relationships 
that have been uncovered during learning relate to variables 
of interest. In Sect. 6, we bridge the gap between unsuper-
vised machine learning methods, which simply explore the 
relationship of individual datapoints to each other and super-
vised machine learning methods that use out-of-process 
measurements during learning. Here, we employ LDA using 
measurements on our out-of-process variables. The aim is 
to determine if this additional knowledge provides qualita-
tively better clustering than PCA. In Sect. 7, we employ the 
relationships learned from the data to predict out-of-process 
measurements. We find that PCA of frequency-domain fea-
tures, obtained using the fast Fourier transform (FFT), in 
cooperation with kNN performs best for prediction. Finally, 
in Sect. 8, we summarize our conclusions.

2  Experimental Setup and Feature 
Engineering

2.1  Drilling Setup

The workpiece used for this study is a 3 mm cross-ply CFRP 
laminate (Mitsubishi, Japan) consisting of T300/3 K carbon 
fibers (Toray, Japan) and epoxy resin with a fiber volume 
content of 56%.

As shown in Fig. 1a, a 3-axis CNC mill (M643, CSCAM, 
South Korea) implemented with a hall sensor (LA-25P, 
LEM, South Korea) for the current measurement was used 
for the drilling experiments. A dynamometer (9272, Kistler, 
Switzerland) was fixed to the CNC mill and mechanically 
fastened in a jig with a mid-column to support a CFRP cou-
pon. The CFRP coupon is fastened to the jig at each of the 
corners. Three of the 3-axis accelerometers (356A32, PCB 
Piezotronics, Germany) adhered to three locations, including 
the dynamometer, the jig, and the CFRP coupon in Fig. 1b.

A fresh physical vapor deposit (PVD) diamond-coated 
tungsten carbide drill bit (CoroDrill 854, Sandvik, US) with 
6 mm diameter was used for each jig setup. During the drill-
ing experiments, three types of data sets are recorded in the 
data acquisition system (CDAQ-9174, National Instruments, 
USA). They include the current data from the hall sensor 

in the CNC machine, the z-axis thrust force data from the 
dynamometer, and the vibration signal data from the 3-axis 
accelerometers, as shown in Fig. 1f. The drilling condition 
was the dry condition (no coolant or lubrication) at the con-
sistent spindle speed of 6500 RPM and 0.05 mm/rev. The 
drilling condition chosen for the study is within the range 
of CFRP drilling conditions published in past studies [21, 
32, 33] and similar to CFRP aircraft final assembly practices 
[12, 34]. Figure 1e shows the coupon with eighty holes after 
the drilling experiment. Eighty holes were made on the cou-
pon without any interruptions. Table 1 shows a summary of 
the signals collected, location, and hardware.

2.2  Feature Engineering

The drilling experiments produced a series of collated raw 
digital signals that are directly measurable by the sensors 
integrated into the drilling setup shown in Fig. 1. Although 
all the measurement instruments in Fig. 1 were validated via 
calibrations, the random error or the unpredictable variations 
in the measured raw signals were not artificially filtered after 
the experiments. We aimed to exclude signal post-processing 
in the methods to test the usability of the developed anomaly 
detection method in the production environment with as lit-
tle manipulation of the raw signal as possible.

During the experiments, we obtained the raw digital 
signals or collated in-process data, summarized in Table 1, 
continuously recorded when drilling eighty holes; therefore, 
the in-process data contain the signals between the drilling 
processes as well as during the drilling process (See Fig. 2a). 
We conducted feature engineering to extract features from 
the raw data to improve the performance of machine learn-
ing algorithms. Our process of feature engineering begins by 
examining in-process data (i.e., current, force, and vibration) 
to determine when the drill cutting lips are fully engaged in 
the CFRP coupon (the highlighted region in Fig. 2b). From 
this region of data, we extracted “high-level features.” In 
this study, the high-level features include twenty-two values 
from each hole: average and minimum current; average and 
maximum force; and average and maximum vibration for 
each axis (x, y, and z) from three locations. In addition to the 
high-level features, we obtained the frequency-domain sen-
sor data for each hole by computing a fast Fourier transform 
(FFT) of the data from each vibration sensor during the full 
engagement of the drill cutting lips. As a result, we had a 
total of approximately 1,800 FFT features from each of the 
nine sensor-axes or less than 16,000 FFT features in total.

2.3  Out‑of‑Process Hole Quality Measurement

After the drilling experiments, all the CFRP holes were inves-
tigated to obtain quality parameters, including hole diameter, 
roundness, surface roughness parameters (average surface 
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roughness or Ra), and maximum delamination length and 
uncut fiber area of hole entry and exit. Table 2 introduces the 

instruments used for CFRP hole quality measurement and the 
measurement result examples.

(a) the drilling experimental system (b) Sensors applied to a CFRP coupon

(c) the jig used for the study (d) an image of the drill bit used (e) the CFRP coupon after the 
experiment

(f) Data acquisition systems during the drilling experiment

3 axis CNC mill

Data acquisi�on and 
monitoring system

Dynamometer

Jig

CFRP coupon
Accelerometers Drill bit

Fig. 1  Drilling experimental setup
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Table 1  Summary of the raw signals recorded from the sensors

Type of data Sensor/instrument Location Raw data signals recorded

Current the hall sensor in the CNC 
machine

CNC machine spindle Electrical current (A)

Thrust force Dynamometer Support of the CFRP coupon z-axis force (N)
Vibration 3-axis accelerometers Dynamometer x-axis vibration in the dynamometer  (m2/s)

y-axis vibration in the dynamometer  (m2/s)
z-axis vibration in the dynamometer  (m2/s)

Jig x-axis vibration in the jig  (m2/s)
y-axis vibration in the jig  (m2/s)
z-axis vibration in the jig  (m2/s)

CFRP coupon x-axis vibration in the coupon  (m2/s)
y-axis vibration in the coupon  (m2/s)
z-axis vibration in the coupon  (m2/s)

(a) z-axis thrust force raw signals of first ten holes
(b) a high-level feature extraction example (force 
data from hole 3) 

(c) a FFT feature extraction example (x-axis vibration data from the dynamometer in hole 3)

In-process data 

Fig. 2  Feature engineering process to obtain both time-domain and frequency-domain data
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3  Machine Learning Methods

3.1  Machine Learning Pipeline

The machine learning pipeline begins with features col-
lected directly during the drilling process. Initially, this 
means raw data collected from the machining setup and 
subsequently segmented into data for individual holes 
for which we calculate high-level aggregate values such 
as mean and maximum force as well as vibration FFT 
as described in Sect. 2. At this stage, represented by the 
left two boxes in Fig. 3 below, we are left with data from 
eighty individual holes drilled in the 3 mm material. The 
first two holes exhibit significant deviations across many 
signals as compared to the remaining seventy-eight holes. 
This can be due to the settlement of experimental setups, 
such as the coupon settling in the jig. Because the scale 
of these deviations is immense compared to differences 

between the remaining seventy-eight holes, we drop holes 
1 and 2 from the dataset at this stage, and all results from 
subsequent stages are reported using the data from holes 
3–80.

The workflow then proceeds toward two experiments. For 
the first set of experiments (Fig. 3, right-most top box), we 
seek qualitative validation in which we manually examine: (a) 
whether the data easily separates into inliers and outliers; and 
(b) whether inliers/outliers identified with in-process meas-
urements correlate with inliers/outliers with respect to out-of-
process variables of interest. These experiments are described 
in Sects. 5 and 6. The second set of experiments, described in 
Sect. 7 and illustrated in Fig. 3 (right-most bottom box), aims 
to use the same basic processing pipeline and the k-Nearest 
Neighbors (kNN) algorithm to predict the values of out-of-
process variables, which showed reasonable qualitative valida-
tion in the prior experiments.

Between feature engineering and the experiments, we per-
form an optional, but typically useful, step of dimensionality 

Table 2  Summary of hole quality measurement methods, instruments, and examples

Hole quality parameters Measurement methods and instruments Measurement result examples

Hole diameter and roundness The hole diameter and roundness were determined by measuring 3 locations, 
including approximately 20%, 50%, and 80% down from the hole entry using a 
coordinate measuring machine (Gage 2000, Brown & Sharpe, USA)

Surface roughness Two measurements were taken at two different locations of each hole using a sur-
face profilometer (SJ-210, Mitutoyo, Japan) with the cutoff length of 0.25 mm 
and the travel length of 5 mm

Entry/exit delamination The maximum delamination length of each hole entry/exit was obtained from an 
optical microscope (Nikon, Japan)

Max. 
delamination 

length

Entry/exit uncut fiber area The area of any uncut fibers of hole entry and exit was measured using an optical 
microscope (Nikon, Japan)

Uncut fiber area

500 µm

Fig. 3  Processing stages for 
machine learning

In-process
raw data

collection

Feature
Engineering

Qualitative
Validation

Prediction
(kNN)

Dimensionality 
Reduction

(PCA, or LDA)
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reduction. Coming out of the feature engineering stage, we 
are left with twenty-two high-level aggregate features (means, 
maximums, etc.) and thousands of FFT features from the three 
vibration sensors. Given our experimental endpoints described 
above, working with thousands of features can be compu-
tationally intensive and can also give rise to unsatisfactory 
results [35]. Thus, we employ two versions of dimensionality 
reductio n to bring the number of features down from hundreds 
per drilled hole to ten or fewer features per drilled hole. We 
examine the use of both Principal Component Analysis (PCA) 
and Latent Discrimination Analysis (LDA) in this context.

In the following subsections, we describe the background 
for each of the machine learning techniques applied in our 
workflow: PCA and LDA for dimensionality reduction; and 
kNN for predicting out-of-process measurements using only 
in-process measurements from newly drilled holes.

3.2  Principal Component Analysis or PCA 
(Unsupervised Dimensionality Reduction)

Principal component analysis (PCA) seeks to find a reduced 
dimensionality space in which to represent the original data-
set while retaining the most information in the data [36]. 
This method has been widely used in machine learning and 
has shown value in transforming high-level features simi-
lar to those described in Sect. 2.2 into machine learning 
inputs to predict tool wear in CRFP drilling [37]. PCA is 
unsupervised in that it only uses in-process data to perform 
its function. It has no knowledge of the out-of-process vari-
ables (e.g., diameter, roughness, roundness) that we may be 
interested in predicting. Thus, PCA attempts to retain infor-
mation in the data by maximizing variance in the reduced 
dimensionality space.

Generally, PCA is used for dimensionality reduction, and 
so only the first few principal components are used to repre-
sent the space. This means that in most non-trivial settings 
such as this one, the reduced dimensional space provides an 
approximation of the original coordinate. In Sect. 5, we use 
PCA to reduce the dimensionality of the data for visualiza-
tion and for prediction. Prior to performing dimensionality 
reduction, in-process training data is normalized to ensure 
all signals have similar ranges. This helps guarantee that dif-
ferences between units of measurement do not substantively 
influence the choice of the lower dimensional space.

3.3  Latent Discriminant Analysis or LDA 
(Supervised Dimensionality Reduction)

Similar to PCA, latent discriminant analysis (LDA) also 
seeks to reduce the dimensionality of the data. In con-
trast to PCA, LDA is a supervised method meaning that 
it requires knowledge of the out-of-process target variable. 
Further, LDA expects the target variable to be categorical, 

as opposed to numeric. LDA then finds the projection, which 
maximizes discrimination between clusters of data from 
each category. Here, the target class refers to one of three 
subsets discretized into ‘oversized’ ‘average,’ and ‘under-
sized’ categories in each out-of-process measurement. For 
example, from our measurements, we found the average 
hole diameter to be 6.0168 mm with a standard deviation of 
0.0028 mm from the eighty holes. We separated these holes 
into three subsets: oversized holes with a diameter greater 
than or equal to 6.019 mm, average holes with diameters 
6.015–6.019 mm (approximately 70%), and undersized holes 
with a diameter less than or equal to 6.015 mm. Given these 
three classifications, entitled undersized, average, and over-
sized, LDA models the distribution of the data given the 
class as a multivariate Gaussian and finds the two basis vec-
tors that maximize the discrimination between the classes. 
This is in contrast to PCA, which has no knowledge of the 
class k when dimensionality reduction takes place, and so, 
can only seek to find projections that maximize variance in 
the data, which are irrespective of actual class boundaries.

3.4  K‑Nearest Neighbors or kNN (Supervised 
learning)

Sections 3.2 and 3.3 describe two methods for performing 
dimensionality reduction on the data to help with visualiza-
tion and reduce the feature space from hundreds of FFT fea-
tures into tens of features. These methods can help us deter-
mine, qualitatively, whether the in-process measurements 
easily help separate data in a manner that corresponds to an 
out-of-process measurement we are interested in. For exam-
ple, in Sects. 5 and 6, we will show figures indicating how 
our in-process measurements map onto different out-of-pro-
cess variables. Looking at the figures, we can qualitatively 
judge whether the in-process measurements easily separate 
the out-of-process measurements into cohesive groups or 
clusters. To take the analysis further, we determine “quan-
titatively” how the in-process measurements can be used to 
predict out-of-process measurements. In this paper, we do 
this using cross validation in conjunction with the k-nearest 
neighbors algorithm to predict out-of-process measurements 
and analyze the accuracy of the results.

The k-Nearest Neighbors algorithm aims to predict 
unseen data by using similar entries in a catalog of known 
example cases. In this paper, we use data from the k-neigh-
bors in two ways: if the out-of-process measurement is cat-
egorical, the k-neighbors vote; if the out-of-process meas-
urement is numeric, the k-neighbors each provide input into 
a weighted average. Further details and experimental results 
are described in Sect. 7.

We employ cross validation in our experiments to fully 
leverage our available data. Cross validation begins by parti-
tioning the dataset into “folds,” where each fold will contain 
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data to train the model and validation data to evaluate the 
model’s predictions. Our experiments use leave-one-out 
cross validation (LOOCV), which takes all n holes from 
the training data (in our experiments n = 78) and create two 
groupings. In the first group, the training set, there are n-1 
holes that are used to train the model. The remaining 1 hole 
is considered the testing set (or testing instance). The model 
trained on the n-1 holes is then used to predict the out-of-
process measurement for the 1 hole that was left out of the 
training set. This process is repeated n times so that each 

hole is used for prediction one time. Performance results 
from the n predictions are then reported.

4  CFRP Hole Quality Assessment Results

Recall that our primary aim is to predict out-of-process 
measurements. Figure 4 presents the out-of-process hole 
quality measurement data for the machined CFRP holes. 
As mentioned in Sect. 3.1, we excluded the first two holes’ 

Fig. 4  Out-of-process hole 
quality measurements vs. hole 
number
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features due to their significant deviations from the remain-
ing seventy-eight holes. However, the hole quality param-
eters of holes 1 and 2 are not overly outliers when compared 
to those of holes 3 to 80. Hole diameter ranges from 6.009 
to 6.021 mm with an average of 6.017 mm. 74% of the holes 
possessed the hole diameter from 6.015 to 6.019 mm. Only 
six holes (holes 13, 20, 23, 25, 26, and 35) were identified 
as relatively oversized holes with a diameter of 6.020 mm or 
higher. A set of four holes (holes 31, 32, 34, and 36) was rel-
atively undersized with a diameter of less than 0.6010 mm. 
The same set of four holes have relatively large roundness 
values, which exceed 0.025 mm. Approximately 92% out 
of eighty holes have average Ra values lower than 0.5 µm. 
Figures 5 present the machined CFRP hole surface profiles 
from holes 4, 29, and 79, representing the seventy-four hole 
group with an average Ra of less than 0.5 µm. In this group 
of holes, there is no sign of noticeable fiber pullouts, which 
occur when the carbon fiber bundles of 135º from the cut-
ting direction are pulled away due to fiber bending, fiber-
matrix debonding, and matrix stripping [14]. This indicates 
that the PVD diamond-coated drill could cut carbon fibers 
effectively, not causing deep fiber pullouts on the machined 
surface. Out of eighty holes, six holes’ average Ra values 
exceed 0.6 µm, but less than 1.0 µm, and they are holes 28, 
37, 44, 56, 58, and 66. Figure 5c presents hole 44’s surface 
profile to contain significant fiber pullouts in the depth of 
approximately 6 µm and protruded fibers on the machined 
hole surface, which increased the average Ra value. Such 
noticeable fiber pullouts were observed in the group of six 
holes 26, 36, 44, 56, 58, and 66, and the occurrence of deep 
fiber pullouts appears to be random during the eighty-hole 
drilling process.

Maximum delamination lengths of both hole entry and 
exit were measured. It is noted that the distance between 
two holes was 4 mm; therefore, the largest possible max-
imum delamination length was 4 mm when the first or 
last ply of CFRP laminates of one hole peered off to the 
next hole. The mean maximum entry delamination length 
is 913 µm with a standard deviation of 552 µm. Twelve 
holes (holes 22, 24, 30, 31, 34, 36, 41, 43, 49, 64, 79, and 
80) exceed 2 mm in maximum entry delamination length, 
and they are randomly distributed across the eighty holes 
drilled. Both the mean and the standard deviation of max-
imum exit delamination length are lower than those of 
entry delamination at 426 µm and 488 µm, respectively. 
Only five holes (holes 17, 27, 36, 45, and 64) resulted in 
the maximum exit delamination exceeding 2 mm. There 
were holes with the incomplete removal of first and last 
plies on holes, although no uncut fibers were observed 
in 44 holes in the entry and 54 holes in the exit. Holes 
2, 11, 20, 31, 42 had larger than 0.5  mm2 of uncut fib-
ers in the hole entry, while holes 39 and 64 had the hole 
exit uncut fiber area exceeding 0.5  mm2. Conclusively, we 
failed to define a set of abnormal holes possessing rela-
tively poor quality across all out-of-process measurements. 
Most holes possessed minimal defects due to the better 
machinability of the PVD diamond-coated carbide drill 
when machining only up to eighty CFRP holes. This also 
confirms the complex nature of the CFRP drilling process, 
which is generally viewed to randomly produce holes with 
defects in a wide range and variation.

Fig. 5  Surface roughness pro-
files of four holes

(a) Ra = 0.16 μm (hole 4) (b) Ra = 0.24 μm (hole 29)

(c) Ra = 1.12 μm (hole 44) (d) Ra = 0.14 μm (hole 79)
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5  Anomaly Detection Results via PCA (An 
Unsupervised Method)

PCA, as described in Sect. 3.2, is an unsupervised method in 
that no out-of-process data is used for training. That is, PCA 
has no knowledge that we are interested in differentiating 
with respect to hole diameter, delamination, or roughness. 
PCA is simply trying to explain variance in the data overall.

Figure 6 shows PCA applied to the twenty-two high-
level features and the approximately 1,800-FFT features. 
Figure 6a shows the data projected onto two dimensions 
(the first two principal components). Here, there are no 
apparent outliers. Points are generally well distributed 
across the space plotted, although the region to the lower 
right may contain four outlying points (approximate coor-
dinates (−0.5,−4.5), (4,−3.5), (5.2, −2), (6.5, −1)), and one 
point in the upper center (approximate coordinates (1.5,6)). 
However, variance amongst the data points does not help to 
clearly distinguish any of these points as outliers. Figure 3b, 
in contrast, shows more distinct clustering. The primary 
group of points lies roughly on the bottom half of the figure 
sweeping down and to the right from approximately (−25, 
8) down and to the right to (30, −12). A secondary group 
lies in the upper right quadrant of the graph.

The next step, is to examine how out-of-process measure-
ments map onto data projections created by PCA. Figure 7 
shows how PCA applied to the twenty-two high-level fea-
tures (the data from Fig. 3a) maps onto each of the seven out-
of-process variables of interest (diameter, roundness, surface 
roughness, entry/exit delamination and entry/exit uncut fiber 
area). None of these plots contain a simple boundary to dis-
tinguish between relatively above average or below average 
outliers. Indeed, orange points (high value measurements) 
are distributed across the range in most of the plots. Dis-
crimination is further hampered due to the extremely high 

level of consistency during machining—there is very little 
variance in the out-of-process variables to scrutinize. The 
sole exception to this is the plot of diameter (Fig. 7a), where 
we can see some grouping of orange points toward the center 
of the graph. While there is no clear boundary to distinguish 
oversized holes from others, there does seem to be some cor-
relation between the high level features and hole diameter.

Figures 8 show how PCA of vibration FFT measurements 
(data from Fig. 3b) maps onto the same out-of-process vari-
ables. We can clearly observe that the best fit occurs with the 
hole diameter data (Fig. 8a) and that, generally, holes with 
larger diameter (orange in the figure) occur in the cluster 
toward the upper right of the plot, while medium and smaller 
diameter holes tend to occur in the primary cluster (in the 
lower half of the plot sweeping down and to the right). Other 
out-of-process variables show little relationship between the 
out-of-process measured value and the clusters formed by 
PCA.

The results from PCA indicate that amongst the out-of-
process variables examined, PCA is most likely to be useful 
in distinguishing oversize holes from average or undersize 
holes. Further, we have learned that while the relationship 
may be visible using high-level features alone, PCA of the 
vibration FFT signal appears to separate oversized holes 
more clearly and with a greater margin.

6  Supervised Dimensionality Reduction 
via LDA (A Supervised Method)

In Sect. 5, we showed qualitatively that by processing vibra-
tion FFT-data with PCA, the first two principal components 
reveal two clusters within our dataset: one mapping to holes 
with small to average diameter, the other mapping to holes 
with a large diameter. This section examines if the data 

(a) PCA results using the high-level features (b) PCA results using the FFT features

Fig. 6  Unsupervised dimensionality reduction results
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(a) Diameter (b) Roundness

(c) Surface roughness

(d) Maximum delamination length of hole entry  (e) Maximum delamination length of hole exit

(f) Uncut fiber area of hole entry (g) Uncut fiber area of hole exit
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(μ
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Fig. 7  PCA of twenty-two high-level features and relation to out-of-process measurements
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(d) Maximum delamination length of hole entry (e) Maximum delamination length of hole exit

(f) Uncut fiber area of hole entry (g) Uncut fiber area of hole exit

Fig. 8  PCA of vibration FFT features and relation to out-of-process measurements
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supports distinguishing three clusters instead of the two 
found by PCA. For this task, we employ LDA for dimen-
sionality reduction. Recall from Sect. 3, that LDA is a super-
vised method, in that it takes as input both the in-process 
data (here, FFT features) and the out-of-process data we 
are interested in (here, diameter classified as either “under-
sized,” “average,” or “oversized”) and then seeks the lower 
dimensional space that produces the best separation between 
the classes. Figure 9 shows the FFT data with dimensionality 
reduced by LDA. Both figures show the same set of points. 
Figure 9a colors these points by hole diameter. LDA, how-
ever, does not use the hole diameter measurements directly 
and instead relies on class membership shown in Fig. 9b. 
Similar to PCA, we can see that “large” diameter holes sepa-
rate out reasonably well (they form a reasonable cluster of 
orange points). However, blue and gray points (represent-
ing “undersize” and “average” sized holes, respectively) are 
distributed in a fashion that makes it difficult to see a clear 
margin between those classes. Thus, analysis with both PCA 
and LDA suggest that: (a) it is possible to separate out large 
diameter holes from small and average diameter holes using 
FFT of vibration data; and (b) within this dataset, these 
methods do not provide a clear justification for further dis-
tinguishing “undersize” holes from “average” holes using 
the FFT of vibration data.

7  Predictive Performance for Hole Diameter 
via kNN (A Supervised Method)

We now aim to quantitatively validate the predictive perfor-
mance of the clusters obtained via previous dimensionality 
reduction. Previously we looked qualitatively at the shape 
of the data clusters and observed that they provided some 
margin for distinguishing large diameter holes from small 

or average diameter holes. Here, we employ kNN to predict 
a hole’s class and its diameter using data from its neighbors. 
Specifically, we separate data into groups of training and 
testing data as per leave-one-out cross validation (LOOCV) 
discussed in Sect. 3.4. For each group of training data, we 
perform PCA or LDA to reduce the dimensionality of the 
in-process data. Next, we store the location of each training 
example along with an out-of-process measurement of its 
diameter. Then, for each hole in our testing data, we perform 
the same dimensionality reduction as applied to the training 
data and then use this to determine its five nearest neighbors 
from the training set. Finally, we predict the class of each 
datapoint in the test set. Figure 10 below illustrates results 
from two folds of the cross-validation.

In Fig. 10, data has been separated into a training set (rep-
resented by circular and diamond markers), and a testing set 
(represented by a single square marker in each plot). Each 
fold thus uses all the data except for one hole for training, 
and the hole that is left out of the training set is tested. PCA 
is calculated using the training data (circular points). Testing 
data (square points) are projected onto the axes calculated 
from PCA and then labeled by searching for the k = 5 near-
est neighbors (diamond markers) from the training data and 
finding the majority class from these points. Class label is 
denoted with orange vs. blue coloring. Class is provided for 
training instances and predicted for testing instances. The 
figure represents two folds or two iterations of the leave-
one-out cross-validation process. In all, seventy-eight folds 
are performed such that all points eventually take one turn 
as test data. In Fig. 8a, five neighbors (diamond markers) are 
used to predict the class of the testing data (square marker). 
Two neighbors have the class label ‘not-oversized’ (blue 
diamonds), and three neighbors voters have the class label 
‘oversized diameter’ (orange diamonds). The class of the test 
instance is given by the majority class of its neighbors. Thus, 

(a) Data points colored by hole diameter   (b) Data points colored by class membership as

undersized, average, and oversized. 

Undersized
Average
Oversized

Fig. 9  LDA of vibration FFT features and relation to hole diameter
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the test instance (square marker) is correctly predicted to 
belong to the class ‘oversized’ (orange). In Fig. 8b, the same 
process is carried out. Here, all five neighbors belong to the 
class ‘not-oversized’ (blue diamonds). The test instance is 
thus also correctly predicted to be ‘not-oversized.’

Figure 10 shows the results of predicting the class of two 
data points using PCA on the FFT of vibration data. Table 3 
shows the aggregate prediction results on all the data using 
leave-one-out cross validation. Our main concern in this 
experiment is to find oversized holes, and prior results from 
Sects. 5 and 6 have not provided a solid foundation for sepa-
rating “average” and “undersized” holes. Thus, we focus on 
discriminating oversized holes from all others. We calculate 
accuracy in Table 3 as

where Ci,j represents the number of elements that were pre-
dicted to belong to class i while actually belonging to class 
j. Thus, we divide the number of correct predictions by the 
total number of predictions made.

Table 3 shows the accuracy of five prediction methods. 
The first three rows show accuracy for methods where in-
process data, which are high-level (time domain) features in 

∑

i Ci,i
∑

i,j Ci,j

row 1, or FFT (frequency domain) features in rows 2 and 3, 
are processed with PCA or LDA and then used with kNN to 
predict the hole diameter as “oversized” or “not oversized.” 
These results are obtained as discussed in Fig. 10, and differ 
only by lower dimensional projections of the data points. 
The fourth row of Table 3 differs slightly in that PCA is first 
run on the FFT features, and then the five nearest neighbors 
are identified just as was done for Fig. 10 or row 2 (PCA of 
FFT features). However, instead of simply using the most 
common class amongst these five neighbors as the predic-
tion, we use the average of the five neighbor’s hole diam-
eters, weighted by their relative distance from the data point 
we want to predict. In this fashion, nearer neighbors con-
tribute more to the prediction, and the prediction takes into 
account details on those neighbors’ specific diameters. It is 
notable that all of the methods that use frequency-domain 
features out-perform PCA on the high-level time-domain 
features. Further, it’s also notable that PCA of FFT features 
with weighted averaging (last row of Table 3) performs best. 
This method takes the most advantage of the spatial informa-
tion provided by PCA when making a prediction about an 
unseen data sample. Although frequency domain features are 
more computationally expensive to calculate than high-level 
features, this work is still easily performed in real-time, and 
is well justified by the 5% performance improvement.

8  Conclusion

This study applied both unsupervised learning and super-
vised learning algorithms to sort abnormal holes from aver-
age holes when drilling CFRP. Using the data captured 
directly during the machining process, we examined how 
the machine learning pipeline of feature engineering, dimen-
sionality reduction, and finally prediction with k-Nearest 
Neighbors could be applied to discriminate oversize holes 

(a) Predicting the class of an oversized hole (b) Predicting the class of an average-sized hole

Fig. 10  Two folds of validation: circles, squares, and diamonds represent training data, test instance, and nearest neighbors to the test instance, 
respectively; color represents oversized hole diameter (orange) and non-oversized hole diameter (blue). (Color figure online)

Table 3  Accuracy of each machine learning technique in hole diam-
eter prediction

Machine learning technique Accuracy (%)

PCA of high-level features 80.8
PCA of FFT features 84.6
LDA of FFT features 82.1
PCA of FFT features with weighted average of 5 

nearest neighbors
85.4
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from undersize or average diameter holes. The following 
conclusions were drawn from the experimental results pre-
sented here.

1. The PVD diamond-coated carbide drill produced mini-
mal defects when machining eighty CFRP holes. A set 
of abnormal holes possessing relatively poor quality 
across all out-of-process measurements did not exist; 
however, randomly ordered holes possessed defects in a 
wide range and variation.

2. Across measurements from seven out-of-process vari-
ables (diameter, roundness, surface roughness, entry/exit 
delamination, and entry/exit uncut fiber area), within 
our dataset, in-process measurements were most able 
to find outliers with respect to diameter. However, the 
low variance of this particular dataset may have hidden 
some relations between the in-process measurements 
and other out-of-process variables.

3. The ability to distinguish oversize holes from undersize 
or average holes could be qualitatively demonstrated 
using PCA of high-level features, PCA of vibration 
FFT, and LDA of vibration FFT. PCA of vibration FFT 
produced a better margin for separating oversize holes 
from average or undersize holes than PCA of the twenty-
two high-level features engineered from the in-process 
data. LDA did not provide productive justification for 
attempting to distinguish between undersize and average 
diameter holes.

4. Predictive performance shows that our machine learn-
ing pipeline can predict oversized /non-oversized holes 
with over 85% accuracy in this dataset. Although hole 
diameter remains a somewhat random process, predic-
tion performance improves when data is viewed from the 
frequency domain (FFT) as opposed to the time domain 
(high-level signals) and when prediction incorporates 
information about the relative distance of the k nearest 
neighbors.
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