Skip to main content
Log in

Microstructure Evolution and Property of Spray-Formed Cu-10 wt% Fe Alloy During Cold Rolling

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In order to obtain homogeneity and fine-scale microstructure of Cu–Fe alloy, a Cu-10 wt% Fe alloy slab was prepared by spray forming. The effects of cold rolling reduction on the alloy microstructure, mechanical properties, and electrical conductivity were studied. The results indicate that the Fe phase was fine and uniform with an average particle size of 4.16 μm, and the morphology of the particles was short rod or nearly spherical. The Cu matrix and Fe particles were gradually elongated, refined and finally formed into a distinct fiber structure along the rolling direction as the cold rolling reduction increased from 35 to 95%. The degree of deformation of the Cu matrix was more significant than that of the Fe phases at the same reduction, and more refined grains of the Cu matrix around the Fe phases. After cold rolling at 95% reduction, the Cu-10 wt% Fe exhibited an increase in tensile strength from 337 MPa in the initial state to 595 MPa, while the electrical conductivity decreased from 42.3% IACS to 20.2% IACS. The alloy deformation behavior and the strengthening mechanisms were illustrated. The combination of spray forming and cold rolling provides a novel approach to producing efficient, shortened process, environmentally friendly Cu–Fe alloy thin strips.

Graphical Abstract

A new process of preparing homogeneity and fine-scale microstructure Cu-10 wt% Fe alloy thin strip by spray forming and clod rolling is proposed. Fine and uniform Fe particles were obtained with an average size of 4.16 μm. Combined with the subsequent cold rolling, the effects of different reductions on the microstructure and mechanical properties after cold rolling were systematically studied. The specific abstract summary is as follows:

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. Sarkar, C. Srivastava, K. Chattopadhyay, Development of a new class of high strength copper alloy using immiscibility route in Cu–Fe–Si system: evolution of hierarchical multi-scale microstructure. Mater. Sci. Eng. A 723, 38–47 (2018). https://doi.org/10.1016/j.msea.2018.03.026

    Article  CAS  Google Scholar 

  2. H.R. Jo, J.T. Kim, S.H. Hong, Y.S. Kim, H.J. Park, W.J. Park, J.M. Park, K.B. Kim, Effect of silicon on microstructure and mechanical properties of Cu-Fe alloys. J. Alloys Compd. 707, 184–188 (2017). https://doi.org/10.1016/j.jallcom.2016.12.352

    Article  CAS  Google Scholar 

  3. C. Zhang, C. Chen, L. Huang, T. Lu, P. Li, W. Wang, F. Yang, A.A. Volinsky, Z. Guo, Microstructure and properties of Cu–Fe alloys fabricated via powder metallurgy and rolling. Powder Metall. 64, 308–320 (2021). https://doi.org/10.1080/00325899.2021.1890403

    Article  ADS  CAS  Google Scholar 

  4. T. Yamashita, N. Koga, T. Kawasaki, S. Morooka, S. Tomono, O. Umezawa, S. Harjo, Work hardening behavior of dual phase copper-iron alloy at low temperature. Mater. Sci. Eng. A 819, 141509 (2021). https://doi.org/10.1016/j.msea.2021.141509

    Article  CAS  Google Scholar 

  5. N. Koga, W. Zhang, S. Tomono, O. Umezawal, Microstructure and low temperature tensile properties in Cu-50 mass% Fe alloy. Mater. Trans. 62, 57–61 (2020). https://doi.org/10.2320/matertrans.MT-M2020260

    Article  Google Scholar 

  6. Z. Wu, Y. Chen, L. Meng, Z. Zhang, Effect of Fe content on the microstructure and mechanical and electrical properties of Cu–Fe in situ composites. J. Mater. Eng. Perform. 30, 5939–5946 (2021). https://doi.org/10.1007/s11665-021-05579-6

    Article  CAS  Google Scholar 

  7. J.T. Zhang, W.X. Hao, J.B. Lin, Y.H. Wang, H.Q. Chen, Effects of carbon element on the formed microstructure in undercooled Cu–Fe–C alloys. J. Alloys Compd. 827, 154285 (2020). https://doi.org/10.1016/j.jallcom.2020.154285

    Article  CAS  Google Scholar 

  8. G.C. Kang, S.H. Hong, H.J. Park, J.P. Lee, J.K. Lee, W.M. Wang, K.B. Kim, Influence of grain boundary modification on color transition behavior of Cu–Al–Zn–Sn alloys with low stacking fault energy. J. Alloys Compd. 960, 171033 (2023). https://doi.org/10.1016/j.jallcom.2023.171033

    Article  CAS  Google Scholar 

  9. S.H. Hong, S.C. Mun, G.C. Kang, H.J. Park, Y.B. Jeong, G. Song, K.B. Kim, Recent development of coloring alloys. Prog. Mater. Sci. 123, 100811 (2022). https://doi.org/10.1016/j.pmatsci.2021.100811

    Article  CAS  Google Scholar 

  10. Y.B. Jeong, S.H. Hong, J.T. Kim, H.J. Park, Y.S. Kim, H.D. Lee, J.K. Lee, S.C. Mun, Y.J. Hwang, K. Heo, K.B. Kim, Investigation on the relationship between transition energy and the color change of Cu–M alloys. Met. Mater. Int. 25, 539–545 (2019). https://doi.org/10.1007/s12540-018-0205-5

    Article  CAS  Google Scholar 

  11. Y. Nakagawa, Liquid immiscibility in copper-iron and copper-cobalt systems in the supercooled state. Acta Mater. 6, 704–711 (1958). https://doi.org/10.1016/0001-6160(58)90061-0

    Article  CAS  Google Scholar 

  12. D.W. Yuan, H. Zeng, X.P. Xiao, H. Wang, B.J. Han, B.X. Liu, B. Yang, Effect of Mg addition on Fe phase morphology distribution and aging kinetics of Cu-6.5Fe alloy. Mater. Sci. Eng. A 812, 141064 (2021). https://doi.org/10.1016/j.msea.2021.141064

    Article  CAS  Google Scholar 

  13. S. Bysakh, K. Chattopadhyay, T. Maiwald, R. Galun, B.L. Mordike, Microstructure evolution in laser alloyed layer of Cu–Fe–Al–Si on Cu substrate. Mater. Sci. Eng. A 375–377, 661–665 (2004). https://doi.org/10.1016/j.msea.2003.10.263

    Article  CAS  Google Scholar 

  14. D.W. Yuan, X.P. Xiao, X. Luo, H. Wang, B.J. Han, B.X. Liu, B. Yang, Effect of multistage thermomechanical treatment on Fe phase evolution and properties of Cu- 6.5Fe-0.3Mg alloy. Mater. Charact. 185, 111707 (2022). https://doi.org/10.1016/j.matchar.2021.111707

    Article  CAS  Google Scholar 

  15. X. Luo, D.W. Yuan, H. Wang, H. Chen, X.P. Xiao, B.J. Han, H. Huang, B. Yang, Multi-stage thermomechanical treatment Cu-6.5Fe-xMg alloy: excellent physical and mechanical properties. J. Magn. Magn. Mater. 556, 169407 (2022). https://doi.org/10.1016/j.jmmm.2022.169407

    Article  CAS  Google Scholar 

  16. Y.B. Jeong, H.R. Jo, J.T. Kim, S.H. Hong, K.B. Kim, A study on the micro-evolution of mechanical property and microstructures in (Cu-30Fe)-2X alloys with the addition of minor alloying elements. J. Alloys Compd. 786, 341–345 (2019). https://doi.org/10.1016/j.jallcom.2019.01.169

    Article  CAS  Google Scholar 

  17. Y.J. Pang, G.H. Chao, T.Y. Luan, S. Gong, Y.R. Wang, Z.H. Jiang, X. Zhu, Y.B. Jiang, Z. Li, Microstructure and properties of high strength, high conductivity and magnetic Cu-10Fe-0.4Si alloy. Mater. Sci. Eng. A 826, 142012 (2021). https://doi.org/10.1016/j.msea.2021.142012

    Article  CAS  Google Scholar 

  18. P. Zhang, X.B. Yuan, Y.D. Li, Y.H. Zhou, R.L. Lai, Y.P. Li, Q. Lei, A. Chiba, Influence of minor Ag addition on the microstructure and properties of powder metallurgy Cu-10wt% Fe alloy. J. Alloys Compd. 904, 163983 (2022). https://doi.org/10.1016/j.jallcom.2022.163983

    Article  CAS  Google Scholar 

  19. D.W. Yuan, X.P. Xiao, J.S. Chen, B.J. Han, H. Huang, B. Yang, Influence of Ag addition on the microstructure and properties of Cu-6.5Fe-0.2Cr alloy prepared by upward continuous casting. J. Alloys Compd. 887, 161458 (2021). https://doi.org/10.1016/j.jallcom.2021.161458

    Article  CAS  Google Scholar 

  20. L. Ren, S.R. Zhang, J.Q. Shi, Z. Shen, P.J. Shi, T.X. Zheng, B. Ding, Y.F. Guo, Q.L. Xiao, Q. Li, Y.B. Zhong, Grain refinement and mechanical properties enhancement of Cu-10 wt% Fe alloys via Zr addition. Mater. Sci. Eng. A 846, 143309 (2022). https://doi.org/10.1016/j.msea.2022.143309

    Article  CAS  Google Scholar 

  21. H.J. Moon, T.M. Yeo, S.H. Lee, J.W. Cho, Effect of Zr addition on metastable liquid-liquid phase separation of Cu–Fe alloys. Scr. Mater. 205, 114218 (2021). https://doi.org/10.1016/j.scriptamat.2021.114218

    Article  CAS  Google Scholar 

  22. M. Wang, R. Zhang, Z. Xiao, S. Gong, Y.B. Jiang, Z. Li, Microstructure and properties of Cu-10 wt% Fe alloy produced by double melt mixed casting and multistage thermomechanical treatment. J. Alloys Compd. 820, 153323 (2020). https://doi.org/10.1016/j.jallcom.2019.153323

    Article  CAS  Google Scholar 

  23. M. Wang, Y.B. Jiang, Z. Li, Z. Xiao, S. Gong, W.T. Qiu, Q. Lei, Microstructure evolution and deformation behaviour of Cu-10 wt% Fe alloy during cold rolling. Mater. Sci. Eng. A 801, 140379 (2021). https://doi.org/10.1016/j.msea.2020.140379

    Article  CAS  Google Scholar 

  24. A. Chatterjee, E. Sprague, J. Mazumder, A. Misra, Hierarchical microstructures and deformation behavior of laser direct-metal-deposited Cu–Fe alloys. Mater. Sci. Eng. A 802, 140659 (2021). https://doi.org/10.1016/j.msea.2020.140659

    Article  CAS  Google Scholar 

  25. Y.D. Li, X.B. Yuan, B.B. Yang, X.J. Ye, P. Zhang, H.Y. Lang, Q. Lei, J.T. Liu, Y.P. Li, Hierarchical microstructure and strengthening mechanism of Cu-36.8Fe alloy manufactured by selective laser melting. J. Alloys Compd. 895, 162701 (2022). https://doi.org/10.1016/j.jallcom.2021.162701

    Article  CAS  Google Scholar 

  26. X.Q. Dai, M. Xie, S.F. Zhou, C.X. Wang, M.H. Gu, J.X. Yang, Z.Y. Li, Formation mechanism and improved properties of Cu95Fe5 homogeneous immiscible composite coating by the combination of mechanical alloying and laser cladding. J. Alloys Compd. 740, 194–202 (2018). https://doi.org/10.1016/j.jallcom.2018.01.007

    Article  CAS  Google Scholar 

  27. B.X. Song, T.B. Yu, X.Y. Jiang, W.C. Xi, X.L. Lin, Effect of W content on the microstructure and properties of Cu–Fe alloy. J. Mater. Res. Technol. 9, 6464–6474 (2020). https://doi.org/10.1016/j.jmrt.2020.04.031

    Article  CAS  Google Scholar 

  28. J.M. Guo, Q.Q. Shao, O. Renk, L. Li, Y.B. He, Z.L. Zhang, R. Pippan, Combined Fe and O effects on microstructural evolution and strengthening in Cu–Fe nanocrystalline alloys. Mater. Sci. Eng. A 772, 138800 (2020). https://doi.org/10.1016/j.msea.2019.138800

    Article  CAS  Google Scholar 

  29. N. Koga, S. Tomono, O. Umezawa, Low-temperature tensile properties of Cu-Fe laminated sheets with various number of layers. Mater. Sci. Eng. A 811, 141066 (2021). https://doi.org/10.1016/j.msea.2021.141066

    Article  CAS  Google Scholar 

  30. J. Eckert, J.C. Holzer, C.E. Krill, W.L. Johnson, Mechanically driven alloying and grain size changes in nanocrystalline Fe–Cu powders. J. Appl. Phys. 73, 2794–2802 (1993). https://doi.org/10.1063/1.353055

    Article  ADS  CAS  Google Scholar 

  31. C.Z. Zhang, C.G. Chen, P. Li, M.J. Yan, Q. Qin, F. Yang, W.W. Wang, Z.M. Guo, A.A. Volinsky, Microstructure and properties evolution of rolled powder metallurgy Cu-30Fe alloy. J. Alloys Compd. 909, 164761 (2022). https://doi.org/10.1016/j.jallcom.2022.164761

    Article  CAS  Google Scholar 

  32. C.Z. Zhang, C.G. Chen, X.H. Liu, M.J. Yan, M. Qin, X.C. Li, Y. Li, H.F. Zhang, F. Yang, W.W. Wang, Z.M. Guo, High strength and high electrical conductivity in Cu–Fe alloys with nano and micro Fe particles. Mater. Sci. Eng. A 855, 143948 (2022). https://doi.org/10.1016/j.msea.2022.143948

    Article  CAS  Google Scholar 

  33. F.L. Wang, K. Wakoh, Y.P. Li, S. Ito, K. Yamanaka, Y. Koizumi, A. Chiba, Study of microstructure evolution and properties of Cu–Fe microcomposites produced by a pre-alloyed powder method. Mater. Des. 126, 64–72 (2017). https://doi.org/10.1016/j.matdes.2017.04.017

    Article  CAS  Google Scholar 

  34. L.L. Liu, Q.L. Pan, X.D. Wang, S.W. Xiong, The effects of aging treatments on mechanical property and corrosion behavior of spray formed 7055 aluminium alloy. J. Alloys Compd. 735, 261–276 (2018). https://doi.org/10.1016/j.jallcom.2017.11.070

    Article  CAS  Google Scholar 

  35. P.S. Grant, Spray forming. Prog. Mater. Sci. 39, 497–545 (1995). https://doi.org/10.1016/0079-6425(95)00004-6

    Article  CAS  Google Scholar 

  36. L.J. Wei, B.S. Han, F. Ye, A. Ditta, L. Li, Y.J. Xu, S.J. Wu, Influencing mechanisms of heat treatments on microstructure and comprehensive properties of Al–Zn–Mg–Cu alloy formed by spray forming. J. Mater. Res. Technol. 9, 6850–6858 (2020). https://doi.org/10.1016/j.jmrt.2020.03.121

    Article  CAS  Google Scholar 

  37. K. Guo, K. Meng, D. Miao, Q. Wang, C. Zhang, T. Wang, Effect of annealing on microstructure and tensile properties of skew hot rolled Ti-6Al-3Nb-2Zr-1Mo alloy tube. Mater. Sci. Eng. A 766, 138346 (2019). https://doi.org/10.1016/j.msea.2019.138346

    Article  CAS  Google Scholar 

  38. A. Ünal, Influence of gas flow on performance of confined atomization nozzles. Metall. Mater. Trans. B 20, 833–843 (1989). https://doi.org/10.1007/BF02670188

    Article  ADS  Google Scholar 

  39. S.F. Abbas, S.J. Seo, K.T. Park, B.S. Kim, T.S. Kim, Effect of grain size on the electrical conductivity of copper-iron alloys. J. Alloys Compd. 720, 8–16 (2017). https://doi.org/10.1016/j.jallcom.2017.05.244

    Article  CAS  Google Scholar 

  40. G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22–31 (1953). https://doi.org/10.1016/0001-6160(53)90006-6

    Article  CAS  Google Scholar 

  41. T. Ungar, S. Ott, P.G. Sanders, A. Borbely, J.R. Weertman, Dislocations, grain size and planar faults in nanostructured copper determined by high resolution X-ray diffraction and a new procedure of peak profile analysis. Acta Mater. 46, 3693–3699 (1998). https://doi.org/10.1016/S1359-6454(98)00001-9

    Article  ADS  CAS  Google Scholar 

  42. F. Hajyakbary, J. Sietsma, A.J. Bottger, M.J. Santofimia, An improved X-ray diffraction analysis method to characterize dislocation density in lath martensitic structures. Mater. Sci. Eng. A 639, 208–218 (2015). https://doi.org/10.1016/j.msea.2015.05.003

    Article  CAS  Google Scholar 

  43. W.A. Spitzig, A.R. Pelton, F.C. Laabs, Characterization of the strength and microstructure of heavily cold worked Cu–Nb composites. Acta Metall. 35, 2427–2442 (1987). https://doi.org/10.1016/0001-6160(87)90140-4

    Article  CAS  Google Scholar 

  44. W.A. Spitzig, S.B. Biner, Comparison of strengthening in wire-drawn or rolled Cu-20% Nb with a dislocation accumulation model. J. Mater. Sci. 28, 4623–4629 (1993). https://doi.org/10.1007/BF00414250

    Article  ADS  CAS  Google Scholar 

  45. P.H.F. Oliveira, D.C.C. Magalhães, M.T. Izumi, O.M. Cintho, A.M. Kliauga, V.L. Sordi, Evolution of dislocation and stacking-fault densities for a Cu-0.7Cr-0.07Zr alloy during cryogenic tensile test: an in-situ synchrotron X-ray diffraction analysis. Mater. Sci. Eng. A 813, 141154 (2021). https://doi.org/10.1016/j.msea.2021.141154

    Article  CAS  Google Scholar 

  46. Y.P. Li, Z. Xiao, Z. Li, Z.Y. Zhou, Z.Q. Yang, Q. Lei, Microstructure and properties of a novel Cu–Mg–Ca alloy with high strength and high electrical conductivity. J. Alloys Compd. 723, 1162–1170 (2017). https://doi.org/10.1016/j.jallcom.2017.06.155

    Article  CAS  Google Scholar 

  47. K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, J.M. Schoenung, Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater. 62, 141–155 (2014). https://doi.org/10.1016/j.actamat.2013.09.042

    Article  ADS  CAS  Google Scholar 

  48. M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, T.G. Langdon, Structural evolution and validity of Hall-Petch relationship in an Al-3% Mg alloy with submicron grain size. Mater. Sci. Forum 204–206, 431–436 (1996). https://doi.org/10.4028/www.scientific.net/MSF.204-206.431

    Article  Google Scholar 

  49. A. Mohammadi, N.A. Enikeev, M.Y. Murashkin, M. Arita, K. Edalati, Examination of inverse Hall-Petch relation in nanostructured aluminum alloys by ultra-severe plastic deformation. J. Mater. Sci. Technol. 91, 78–89 (2021). https://doi.org/10.1016/j.jmst.2021.01.096

    Article  CAS  Google Scholar 

  50. Q. Lei, Z. Xiao, W.P. Hu, B. Derby, Z. Li, Phase transformation behaviors and properties of a high strength Cu–Ni–Si alloy. Mater. Sci. Eng. A 697, 37–47 (2017). https://doi.org/10.1016/j.msea.2017.05.001

    Article  CAS  Google Scholar 

  51. J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta Mater. 102, 187–196 (2016). https://doi.org/10.1016/j.actamat.2015.08.076

    Article  ADS  CAS  Google Scholar 

  52. R.G. Li, S.R. Zhang, C.L. Zou, H.J. Kang, T.M. Wang, The roles of Hf element in optimizing strength, ductility and electrical conductivity of copper alloys. Mater. Sci. Eng. A 758, 130–138 (2019). https://doi.org/10.1016/j.msea.2019.04.110

    Article  CAS  Google Scholar 

  53. Z. Shen, Z.Z. Lin, P.J. Shi, J.L. Zhu, T.X. Zheng, B. Ding, Y.F. Guo, Y.B. Zhong, Enhanced electrical, mechanical and tribological properties of Cu–Cr–Zr alloys by continuous extrusion forming and subsequent ageing treatment. J. Mater. Sci. Technol. 110, 187–197 (2021). https://doi.org/10.1016/j.jmst.2021.10.012

    Article  CAS  Google Scholar 

  54. Y. Wu, Y. Li, J.Y. Lu, S. Tan, F. Jiang, J. Sun, Correlations between microstructures and properties of Cu–Ni–Si–Cr alloy. Mater. Sci. Eng. A 731, 403–412 (2018). https://doi.org/10.1016/j.msea.2018.06.075

    Article  CAS  Google Scholar 

  55. D. Li, M.B. Robinson, T.J. Rathz, G. Williams, Liquidus temperatures and solidification behavior in the copper-niobium system. Acta Mater. 46(11), 3849–3855 (1998). https://doi.org/10.1016/S1359-6454(98)00063-9

    Article  ADS  CAS  Google Scholar 

  56. H.W. Fu, Y.W. Yin, Y. Zhang, M.Y. Zhang, X.B. Yun, Enhancing the comprehensive properties of as-cast Cu–Ni–Si alloys by continuous extrusion combined with subsequent thermomechanical treatment. Mater. Des. 222, 111033 (2022). https://doi.org/10.1016/j.matdes.2022.111033

    Article  CAS  Google Scholar 

  57. H.Y. Gao, J. Wang, S. Da, B.D. Sun, Effect of Ag on the microstructure and properties of Cu–Fe in situ composites. Scr. Mater. 53, 1105–1109 (2005). https://doi.org/10.1016/j.scriptamat.2005.07.028

    Article  CAS  Google Scholar 

  58. J.D. Verhoeven, H.L. Downing, L.S. Chumbley, E.D. Gibson, The resistivity and microstructure of heavily drawn Cu–Nb alloys. J. Appl. Phys. 65, 1293 (1989). https://doi.org/10.1063/1.343024

    Article  ADS  CAS  Google Scholar 

  59. C. Bisellp, D.G. Morris, Microstructure and strength of Cu–Fe in situ composites obtained from prealloyed Cu–Fe powders. Acta Metall. Mater. 42, 163–176 (1994). https://doi.org/10.1016/0956-7151(94)90059-0

    Article  Google Scholar 

  60. L. Qu, E.G. Wang, K. Han, X.W. Zuo, L. Zhang, P. Jia, J.C. He, Studies of electrical resistivity of an annealed Cu–Fe composite. J. Appl. Phys. 113, 73708 (2013). https://doi.org/10.1063/1.4803716

    Article  ADS  CAS  Google Scholar 

  61. Y.Z. Tian, Y. Yang, S.Y. Peng, X.Y. Pang, S. Li, M. Jiang, H.X. Li, J.W. Wang, G.W. Qin, Managing mechanical and electrical properties of nanostructured Cu–Fe composite by aging treatment. Mater. Charact. 196, 112600 (2023). https://doi.org/10.1016/j.matchar.2022.112600

    Article  CAS  Google Scholar 

  62. P. Zhang, Q. Lei, X.B. Yuan, X.F. Sheng, D. Jiang, Y.P. Lia, Z. Li, Microstructure and mechanical properties of a Cu–Fe–Nb alloy with a high product of the strength times the elongation. Mater. Today Commun. 25, 101353 (2020). https://doi.org/10.1016/j.mtcomm.2020.101353

    Article  CAS  Google Scholar 

  63. N.D. Stepanov, A.V. Kuznetsov, G.A. Salishchev, N.E. Khlebova, V.I. Pantsyrny, Evolution of microstructure and mechanical properties in Cu-14%Fe alloy during severe cold rolling. Mater. Sci. Eng. A 564, 264–272 (2013). https://doi.org/10.1016/j.msea.2012.11.121

    Article  CAS  Google Scholar 

  64. K. Yang, M.X. Guo, H. Wang, X.G. Dong, L. Yi, H.F. Lou, Coordinated deformation behavior of Cu-10wt%FeC alloys through controlling structure morphology and distribution of Fe-C phases. J. Mater. Res. Technol. 22, 1610–1624 (2023). https://doi.org/10.1016/j.jmrt.2022.12.020

    Article  CAS  Google Scholar 

  65. Y.J. Ding, Z. Xiao, M. Fang, S. Gong, J. Dai, Microstructure and mechanical properties of multi-scale α-Fe reinforced Cu–Fe composite produced by vacuum suction casting. Mater. Sci. Eng. A 864, 144603 (2023). https://doi.org/10.1016/j.msea.2023.144603

    Article  CAS  Google Scholar 

  66. M. Wang, Q.R. Yang, Y.B. Jiang, Z. Li, Z. Xiao, S. Gong, Y.R. Wang, C.L. Guo, H.G. Wei, Effects of Fe content on microstructure and properties of Cu–Fe alloy. Trans. Nonferrous Met. Soc. China 31, 3039–3049 (2021). https://doi.org/10.1016/S1003-6326(21)65713-8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is financially supported by the Open Fund Project of State Key Laboratory for Comprehensive Utilization of Vanadium and Titanium Resources (No. 2021P4FZG12A), the National Natural Science Foundation of China (No. 51274063) and the National Key R&D Program of China (No. 2017YFB0304100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-ping Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Niu, Wy., Wang, Gq. et al. Microstructure Evolution and Property of Spray-Formed Cu-10 wt% Fe Alloy During Cold Rolling. Met. Mater. Int. (2024). https://doi.org/10.1007/s12540-024-01626-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12540-024-01626-8

Keywords

Navigation