Skip to main content
Log in

Microstructure and Mechanical Properties of Fe–4Cr–5Mo–V–6W Powders Hardfaced on AISI D2 Substrate Using Directed Energy Deposition

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

FeCrMoVW powder is a powder-metallurgy-based tool steel. In this study, we applied this powder to an AISI D2 substrate via additive manufacturing based on a directed energy deposition process and evaluated the mechanical and metallurgical properties of the FeCrMoVW deposited on the D2 substrate. To this end, microstructural observation and mechanical tests with respect to hardness, impact, compression, and wear were conducted. The properties of the hardfaced substrate were compared to those of AISI D2 (QT-D2), which is obtained through heat treatments such as quenching and tempering, typically used for high-strength cold work tool steel. In the microstructure of the deposited FeCrMoVW (as-built FeCrMoVW), high-hardness carbides were observed with fine cellular dendrites at grain boundaries owing to the melting and quenching of FeCrMoVW powders. The hardness of the deposits was approximately 20% higher than that of QT-D2 (56HRc) because of the presence of fine grains in the deposited zones. Furthermore, the wear resistance and compressive strength of as-built FeCrMoVW increased compared to those of QT-D2. This was attributed to the generation of martensite due to quenching after powder melting. The toughness of as-built FeCrMoVW and QT-D2 were similar (4 J). Furthermore, as-built FeCrMoVW exhibited high hardness, good wear resistance, and high compressive strength owing to the presence of various types and sizes of carbides and martensite. The results of the study confirm that the hardfacing process using FeCrMoVW powder can be applied in industries for increasing the performance of tools and molds used in harsh environments.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15.
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. W.-L. Pan, G.-P. Yu, J.-H. Huang, Surf. Coat. Tech. 110, 111 (1998)

    Article  CAS  Google Scholar 

  2. K.-R. Lee, K.Y. Eun, I. Kim, J. Kim, Thin Solid Films 377–378, 261 (2000)

    Google Scholar 

  3. S. Sen, I. Ozbek, U. Sen, C. Bindal, Surf. Coat. Tech. 135, 173 (2001)

    Article  CAS  Google Scholar 

  4. P. Koshy, R.C. Dewes, D.K. Aspinwall, J. Mater. Process. Tech. 127, 266 (2002)

    Article  CAS  Google Scholar 

  5. C. Mitterer, F. Holler, F. Üstel, D. Heim, Surf. Coat. Tech. 125, 233 (2000)

    Article  CAS  Google Scholar 

  6. O. Salas, K. Kearns, S. Carrera, J.J. Moore, Surf. Coat. Tech. 172, 117 (2003)

    Article  CAS  Google Scholar 

  7. H.F. Rad, A. Amadeh, H. Moradi, Mater. Design 32, 2635 (2011)

    Article  Google Scholar 

  8. S.-H. Wang, J.-Y. Chen, L. Xue, Surf. Coat. Tech. 200, 3446 (2006)

    Article  CAS  Google Scholar 

  9. H. Gedda, Laser Surface Cladding: a Literature Survey, Technical Report 2000:07 (Lulea Technical University, Lulea, 2000), pp. 15–17

  10. N. Kang, Y.G. Yoo, J. Weld. Join. 25, 7 (2007)

    Article  Google Scholar 

  11. G. Telasang, J.D. Majumdar, G. Padmanabham, I. Manna, Mater. Sci. Eng. A 599, 255 (2014)

    Article  CAS  Google Scholar 

  12. Z. Zhang, P. Lin, D. Cong, S. Kong, H. Zhou, L. Ren, Opt. Laser Technol. 64, 227 (2014)

    Article  CAS  Google Scholar 

  13. W.H. Kim, B.H. Jung, I.D. Park, M.H. Oh, S.W. Choi, D.M. Kang, Trans. Mater. Process. 24, 272 (2015)

    Article  Google Scholar 

  14. J. Zeisig, N. Schädlich, L. Giebeler, J. Sander, J. Eckert, U. Kühn, J. Hufenbach, Wear 382–383, 107 (2017)

    Article  Google Scholar 

  15. L. Shepeleva, B. Medres, W.D. Kaplan, M. Bamberger, A. Weisheit, Surf. Coat. Tech. 125, 45 (2000)

    Article  CAS  Google Scholar 

  16. J. Xu, W. Liu, Y. Kan, M. Zhong, Mater. Design 27, 405 (2006)

    Article  CAS  Google Scholar 

  17. H. Zhang, Y. Zou, Z. Zou, D. Wu, Opt. Laser Technol. 65, 119 (2015)

    Article  CAS  Google Scholar 

  18. J. Li, X. Luo, G.J. Li, Wear 310, 72 (2014)

    Article  CAS  Google Scholar 

  19. F. Gao, H.M. Wang, Intermetallics 16, 202 (2008)

    Article  CAS  Google Scholar 

  20. Z.H. Liu, D.Q. Zhang, C.K. Chua, K.F. Leong, Mater. Charact. 84, 72 (2013)

    Article  CAS  Google Scholar 

  21. S. Kac, J. Kusinski, Mater. Chem. Phys. 81, 510 (2003)

    Article  CAS  Google Scholar 

  22. R. Colaco, E. Gordo, E.M. Ruiz-Navas, M. Otasevic, R. Vilar, Wear 260, 949 (2006)

    Article  CAS  Google Scholar 

  23. D.S. Shim, G.Y. Baek, S.B. Lee, J.H. Yu, Y.S. Choi, S.H. Park, Surf. Coat. Tech. 328, 219 (2017)

    Article  CAS  Google Scholar 

  24. G.Y. Baek, G.Y. Shin, K.Y. Lee, D.S. Shim, Metals 9, 282 (2019)

    Article  CAS  Google Scholar 

  25. H.J. Niu, I.T.H. Chang, Metall. Mater. Trans. A 31, 2615 (2000)

    Article  CAS  Google Scholar 

  26. N.J. Xu, C.S. Liu, Z.B. Wang, T. Sun, The microstructure evolution and wear resistance of laser cladding M2 high speed steel on nodular cast iron, in Proceedings of the International Workshop on Materials, Chemistry and Engineering g (IWMCE 2018), Xiamen, 24-26 March 2018, pp. 584–590

  27. J.E. Kim, The effect of heat treatment on the microstructure and carbide precipitation of AISI D2 steel, Dissertation, Graduate School of Chosun University (2014)

    Google Scholar 

  28. K. Singh, R.K. Khatirkar, S.G. Sapate, Wear 328–329, 206 (2015)

    Article  Google Scholar 

  29. K. Wakasa, C.M. Wayman, Metallography 14, 49 (1981)

    Article  CAS  Google Scholar 

  30. A. Shibata, S. Morito, T. Furuhara, T. Maki, Morphology and Crystallography of Martensite in Ferrous Alloys, Kyoto University (2003)

    Google Scholar 

  31. S. Kahrobaee, M. Kashefi, J. Magn. Magn. Mater. 382, 359 (2015)

    Article  CAS  Google Scholar 

  32. K.-J. Hong, J.-H. Song, I.-S. Chung, J. Korean Soc. Heat Treat. 24, 262 (2011)

    Google Scholar 

  33. G.Y. Baek, K.Y. Lee, S.H. Park, D.S. Shim, Met. Mater. Int. 23, 1204 (2017)

    Article  CAS  Google Scholar 

  34. J. Briki, S.B. Slima, J. Mater. Eng. Perform. 17, 264 (2008)

    Article  Google Scholar 

  35. H. Torkamani, S. Raygan, J. Rassizadehghani, Mater. Design 54, 1049 (2014)

  36. G.A. Roberts, G. Krauss, R. Kennedy, Tool Steels, 5th edn. (ASM International, Almere, 1998), pp. 1–6

    Book  Google Scholar 

  37. D. Das, A.K. Dutta, K.K. Ray, Wear 267, 1371 (2009)

    Article  CAS  Google Scholar 

  38. K. Fukaura, Y. Yokoyama, D. Yokoi, N. Tsujii, K. Ono, Metall. Mater. Trans. A 35, 1289 (2004)

    Article  Google Scholar 

  39. Y.M. Rhyim, S.H. Han, Y.S. Na, J.H. Lee, Solid State Phenomen. 118, 9 (2006)

    Article  CAS  Google Scholar 

  40. E.R. Baek, G.J. Yoo, J.Y. Jung, S.H. An, Effect of dissolved alloy element (V, Mo, Mn) on hardness of the M7C3 type chromium carbide, in Materials Research (Institute of Materials Technology Yeungnam University, Gyeongsan, 2000), pp. 27-35

    Google Scholar 

  41. J.X. Zou, T. Grosdidier, K.M. Zhang, B. Gao, S.Z. Hao, C. Dong, J. Alloys Compd. 434–435, 707 (2007)

    Article  Google Scholar 

  42. M. Durand-Charre, Microstructure of steels and cast irons (2004), 125–127

  43. J. Laurila, A. Milanti, J. Nurminen, M. Kallio, P. Vuoristo, Wear 307, 142 (2013)

    Article  CAS  Google Scholar 

  44. L. Bourithis, G.D. Papadimitriou, Mater. Sci. Eng. A 361, 165 (2003)

    Article  Google Scholar 

  45. J.-S. Kim, H.-J. Yoon, H.-S. Lee, K.-H. Choi, Compos. Res. 22, 32 (2009)

    Google Scholar 

  46. J.M. Lee, J.E. Lee, J.H. Kim, S.W. Kim, Korean J. Met. Mater. 58, 227 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Evaluation Institute of Industrial Technology (KEIT) (Grant Number K-G012000875302) and the National Research Foundation of Korea (NRF) under Grant Number 2021R1A2C101197311 from the Ministry of Science and ICT. Additional support from the Korea Institute for Advancement of Technology (KIAT) Grant funded by the Korea Government (MOTIE) (P0008763, The Competency Development Program for Industry Specialist) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Do-Sik Shim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, YE., Shim, DS. Microstructure and Mechanical Properties of Fe–4Cr–5Mo–V–6W Powders Hardfaced on AISI D2 Substrate Using Directed Energy Deposition. Met. Mater. Int. 28, 2621–2636 (2022). https://doi.org/10.1007/s12540-021-01156-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-01156-7

Keywords

Navigation