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Abstract
Multi-principal element alloys (MPEAs) occur at or nearby the centre of the multicomponent phase space, and they have the 
unique potential to be tailored with a blend of several desirable properties for the development of materials of future. The lack 
of universal phase diagrams for MPEAs has been a major challenge in the accelerated design of products with these materials. 
This study aims to solve this issue by employing data-driven approaches in phase prediction. A MPEA is first represented 
by numerical fingerprints (composition, atomic size difference , electronegativity , enthalpy of mixing , entropy of mixing 
, dimensionless Ω parameter, valence electron concentration and phase types ), and an artificial neural network (ANN) is 
developed upon the datasets of these numerical descriptors. A pyMPEALab GUI interface is developed on the top of this 
ANN model with a computational capability to associate composition features with remaining other input features. With the 
GUI interface, an user can predict the phase(s) of a MPEA by entering solely the information of composition. It is further 
explored on how the knowledge of phase(s) prediction in composition-varied Al

x
CrCoFeMnNi and CoCrNiNb

x
 can help in 

understanding the mechanical behavior of these MPEAs.
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1  Introduction

High entropy alloys (HEAs) are classically defined as the 
multi-principal element alloys (MPEAs) formed by mixing 
equal or near-equal amounts of five or more elements, and 
they have been ascribed to possess four major characteristics, 
namely, high-entropy effect, sluggish diffusion effect, severe 
lattice distortion effect and cocktail effect [1–4] . On the other 
hand, the alloys consisting of three or four principal (base) ele-
ments in equal or near-equal atomic compositions are defined 
as medium entropy alloys (MEAs) [5]. In order to incorporate 

a wide range of alloys with more than three base elements 
(each element existing in significantly large proportion, but not 
necessarily ensuring equiatomic composition), the term multi-
principal element alloy (MPEA) will be utilized in this study 
[2, 6]. HEA or MPEAs characterized by equiatomic composi-
tion of constitutent elements are located at the center of the 
multicomponent phase space [1, 7, 8], and this is illustrated in 
Fig.  1(a). It should be understood that MPEAs with principal 
elements not in the equiatomic proportion , will have a rea-
sonable offset from the geometrical centroid of the triangle of 
the figure. Thus, it has to be understood that the term MPEAs 
includes both HEAs and MEAs, having composition of base 
elements in relatively larger proportion. Recently, a broader 
term compositionally complex alloys (CCA) has been coined 
to represent MPEAs  [9].

The common motivation behind increasing the number of 
principal or base elements in MPEAs is in maximizing the 
configurational entropy of the mixture so that suppression of 
intermetallic (IM) phase and stabilization of the disordered 
solid solution (SS) phase is obtained [2, 10]. Another pur-
pose of utilizing HEAs is in the development of hierarchical 
nanostructures that can demonstrate stability and compat-
ibility while simultaneously possessing soft and hard phases, 
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or in general with two extremely opposite physico-chemi-
cal properties  [11]. In other words, HEAs or MPEAs are 
attributed with a wide range of properties or combination of 
physicochemical properties that are otherwise impossible to 
attain with alloys having a single major element  [12]. These 
multitude of characteristics associated with MPEAs enable 
them to be categorized in the list of materials for future.

The major challenge associated with the design and 
discovery of MPEA materials is the determination of the 
phase(s) stability in these alloys. The phase diagram of 
MPEAs are not yet well defined and their design is thus 
based on the use of empirical phase rules. The effect of 
additional elements on the structure of primary element is 
quite different in MPEAs from conventional multicompo-
nent alloys. As MPEAs have several principal elements, so 
the traditional alloy-design methods and rules can no longer 
be applied for the phase predictions [13]. A single empirical 
criterion is not sufficient for the generic design of MPEAs 
[14] and thus a combination of many such criteria again 
produces a multitude of variables regarding the phase pre-
diction. Data-driven approaches are the modern approaches 

that can address situations surrounding compositionally 
complex alloys  [15]. In this scenario, machine learning 
(ML) technique can be the most suitable tool for the phase 
stability prediction in a generic multiprincipal element alloy/
high entropy alloy/compositionally complex alloy. Besides 
this, there have been ongoing interests among researchers to 
apply the MPEA materials in broad interdisciplinary areas. 
Chances are high that a person without sufficient knowl-
edge of the thermodynamics and materials science of MPEA 
, can be working on applying these materials for several 
engineering applications. In this scenario, it is mandatory 
to make available some libraries or toolkits that can largely 
facilitate the phase design of MPEA without the requirement 
of advanced scientific knowledge in this field. This study 
is aimed at accelerating the materials design of MPEA by 
resolving the abovementioned issues.

An artificial neural network (ANN) is developed in this 
study to predict phase in a given MPEA. Then a python 
based Multi-principal Element Alloys Laboratory (pyM-
PEALab) software interface is built on top of this ANN 
model , so that a user without the prior knowledge of the 

Fig. 1   HEA (subset of MPEA) 
are located in the center of 
multicomponent phase space. 
A multi-principal element alloy 
(MPEA) is represented by the 
eight descriptors or finger-
pringts as elaborated in a. These 
fingerprints serve as the model 
features of neural network for 
prediction of phases. The com-
position descriptor (x) consists 
of the information about the 
atomic fraction of the 34 ele-
ments considered in this study . 
For the CoCuFeNi MPEA, the 
atomic fraction of the elements 
Co, Cu, Fe and Ni is 0.25 each 
whereas that of the remaining 
30 elements is 0. In order to 
show the data scatter of specific 
solid solution phases (BCC, 
FCC and BCC + FCC), some 
five descriptors are utilized in b 
to construct a pairplot
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detailed thermodynamic information of MPEA can predict 
its phase by solely entering the composition information of 
the alloy. Almost all of the numerical fingerprints of MPEAs 
considered at the input layer of the neural network model 
in this study are composition dependent, and this verrifies 
the rationale of creating an user interface accepting only 
the information of compostion. Finally, it is demonstrated 
how such phase predictions can be utilized to understand the 
change in mechanical behavior of the MPEAs on varying the 
composition of dopant elements.

2 � Numerical Representation 
of Multi‑principal Element Alloys

In order to enable the machine learning of multi-principal 
element alloys (MPEAs) ,it is necessary to describe an 
MPEA numerically and this numerical representation can 
be accomplished by employing the fingerprinting method 
[16] . Figure 1a illustrates how the CoCuFeNi MPEA can be 
numerically reduced to eight numerical fingerprints or 
descriptors, namely, composition, atomic size difference ( � ) 
, electronegativity ( Δ�  ), enthalpy of mixing ( ΔHmix ), 
entropy of mixing ( ΔSmix ), dimensionless Ω parameter, 
valence electron concentration (VEC) and phase types (solid 
solution, intermetallics , and amorphous). The details about 
the mathematical and/or quantifying procedure associated 
with the numerical representation of this MPEA has been 
elaborated in Appendix  1. As many of these parameters are 
frequently encountered when discussing Hume-Rothery 
rules, it can be understood that the featurization of MPEA is 
performed in such a way that the model would produce ther-
modynamically consistent outcomes. MPEAs can turn out 
to be exceptions for Hume-Rothery rules , and in this context 
data-driven approaches tend to be the most appropriate way 
forward for studying the phases of MPEA. the This study is 
concerned with the phase prediction of MPEA, the phase of 
the alloy will be considered as the output of machine learn-
ing model. The � is related to the size effect of the compo-
nents of the MPEA, whereas Δ� i s associated with the 
chemical compatibility between the elements. Mixing 
enthalpy is also a measure of the chemical compatibility or 
probability of combination among the principal elements of 
the MPEA   [17, 18], and is an unavoidable feature for 
describing the MPEA  [19]. The mixing entropy ( ΔSmix ) for 
a N-element alloy tends to be maximum when the alloy is 
equi-atomic ratio and this justifies that HEA (subset of 
MPEA) in general are characterized by larger entropy of 
mixing than the traditional alloy. This distinction between 
traditional alloys and HEA serves as a qualifying factor for 
ΔSmix as a numerical representation of MPEA. It is difficult 
to compute free energy of mixing ( Gmix ) for different phases 
of the high entropy alloy or MPEA . The dimensionless Ω 

parameter is defined as Ω =
Tm ΔSmix

|ΔHmix| and as it consists of the 
same quantities Tm ΔSmix and ΔHmix , it is appropriate to uti-
lize this parameter as a numerical fingerprint alternative to 
Gmix  [20]. Although Ω is a descriptor derived from ΔHmix 
and ΔSmix , it contains an additional information about the 
melting point temperature ( Tm ) of the components of the 
alloys thereby allowing it to be eligible as a separate numeri-
cal fingerprint. While the numerical values of electronega-
tivity and mixing enthalpy are more specific to indicating 
the formation probability of solid solution against the com-
pounds, it is desirable to distinguish the particular solid solu-
tion phases (namely, FCC and BCC) . BCC phase is charac-
terized by a smaller magnitude of VEC whereas FCC phase 
demonstrates a large VEC value  [21].

With a rigorous search for the data related to MPEA from 
the pre-existing literatures [6, 13, 14, 20–30] , a dataset con-
sisting of the information about the abovementioned eight 
numerical representations (fingerprints) of total 1229 multi-
principal element alloys is prepared. During the dataset gen-
eration procedure, the cells which are characterized with 
missing values were filled in using data imputting technique. 
In order to get an insight of the dataset, it is necessary to 
visualized the data. Figure  1b shows the pairplot of the scat-
ter data of four numerical descriptors ( ΔHmix , ΔSmix , Ω and 
VEC), with the fifth descriptor (solid solution phase type) 
serving as the variable for hue parameter. In the figure, it is 
possible to visually separate out BCC phase data (blue color) 
from the FCC phase data (red color) when plotting VEC 
against either of the three variables ( ΔHmix , ΔSmix and Ω ). 
However, when any two features among ΔHmix , ΔSmix and 
Ω are plotted against each other, it is not so easy to catego-
rize the BCC phase with the FCC phase. This again justifies 
the previous explanation of the importance of using VEC 
for sorting out a specific phase (FCC, BCC or FCC+BCC) 
within a solid solution phase. When comparing a feature 
( ΔHmix , Ω or VEC) with ΔSmix , it can be observed that most 
of the data is concentrated at larger values of ΔSmix (i.e. at 10 
J/( mol K) or above). This implies that the single solid solu-
tion phases in MPEA ( e.g. BCC (blue colored data points) 
or FCC (red colored data points) ) are more favorably formed 
at high configurational entropy values. However , a very 
small amount data points of BCC or FCC phases are also 
observed at the range 2.5–7.0 J/( mol K). This observation 
suggests that larger magnitude of ΔSmix does not always 
guarantee the formation of single-phase solid solution phase 
in MPEA  [27]. Owing to  the fact that entropy may not 
always dominate the contribution in the system’s Gibbs free 
energy , it can be argued that the observation of the outliers 
(single-phase solid solution at low values of ΔSmix ) is also 
thermodynamically consistent. With the presence of such 
outliers, it is now clear that ΔSmix can not be utilized as the 
sole variable to predict the stability of single-phase solid 
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solution phase. This provides a justification or rationale for 
consideration of multiple numerical fingerprints for descrip-
tion of MPEA.

Figure 2a is the visualization of the data and is aimed 
at utilizing the descriptors to outline the regions at which 
only IMC compound are formed in the MPEA. The red 
colored spots , representing IMC-only containing MPEA 
alloys are predominantly concentrated at the centre of the 
graphs when the mixing enthalpy is plotted against either 
electronegativity or atomic-size difference. This corresponds 
to −5.0kJ∕mol ≥ ΔHmix ≥ −40.0kJ∕mol , thus verifying that 
intermetallic compounds are predominantly formed when 
the mixing enthalpy has a larger negative value. The green 
colored spots , at the positive values of mixing enthalpy 

are predominantly solid solution phases. The blue colored 
regions characterized by negative ΔHmix values (features of 
IM phase) but lower electronegativity difference (feature for 
SS phase) characterize the MPEAs that are mixtures of both 
IM and SS phases. In the plot of � and ΔHmix , the sparseley 
scattered green colored points with large � values ( � ≥ 15%) 
are not the SS phase but the amorphous phases (e.g. bulk 
metallic glasses). As shown in Fig. 2b, principal component 
analysis (PCA) is utilized to visualize the scatter plot of the 
three generic phases - SS (red color), IM (green color) and 
AM (blue color). Having achieved the dimensionality reduc-
tion [31] from many features to only two principal compo-
nents (principal component 1 and principal component 2) 

Fig. 2   The (IM), (IM+SS) and 
Δ(SS or AM) are represented 
as the pair plots of 4 aspects 
-ΔHmix , number of compo-
nents, Δχ  and δ in (a).  PCA 
based data exploration  tech-
nique shown in (b) does the task 
of dimensionality reduction of 
dataset with 40 input features 
by representing them as two 
orthogonal principal compo-
nents (principal component 1 
and principal component 2)
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through PCA, the three phases are clearly distinguishable 
in the figure. 

Much of the core dataset has been prepared with refer-
ence to the room temperature ( Troom ). However, owing to the 
variations in experimental techniques utilized to determine 
phases, the temperature (T) correpsonding to phase feature 
of MPEA is of a value defined as Troom ≤ T ≤ 0.9Tm . Thus 
the uppper limit of the temperature value for phase data is 
a value lower than the melting point ( Tm ) of the MPEA. 
Unlike temperature dependent mechanical properties , phase 
has a fixed value for a range of temperature , and the phase 
information at elevated temperatures are validated with the 
results presented corresponding to lower temperatures.

3 � Data‑driven Model with GUI Interface 
for Phase Prediction

The seven numerical descriptors (atomic size difference, 
electronegativity, VEC, Entropy of mixing, Enthalpy of 
mixing, Ω and composition) constitute the 40 input features 
or the variables for the neural network based machine learn-
ing model schematically shown in Fig.  3a. Each numerical 
fingerprint at the input except compostion are represented by 
a single feature, whereas the descriptor composition is rep-
resented by 34 features corresponding to the total number of 
elements that can be considered in the design of the MPEA. 
The elements that are designated as variables or features in 
the present study are Ag, Al, Au, B, Be, Ca, Ce, Co, Cr, Cu, 
Fe, Gd, Hf, La, Li, Mg, Mn, Mo, Nb, Nd, Ni, Pd, Sc, Si, Sn, 
Sr, Ta, Ti, V, W, Y, Yb, Zn and Zr . The numerical descrip-
tors represent different physical quantities , and so the data 
is charaterized by the non-uniformity with respect to the 
range of feature values. As presented in Table  1, the fea-
ture Ω ranges between 0.32 (minimum value) and 1423.28 
(maximum value), and has the largest difference between 
the extreme values. On the other hand, the atomic-size dif-
ference (minimum value = 0.0027; maximum value=0.21) 
has the lowest range of values. If the input features are sup-
plied to the neural network without scaling, then it is certain 
that the Ω parameter will largely dominate the result of the 
machine learning model; whereas the change in parametric 
values of � will have no influence on the phase prediction. 
In the similar manner, the parameters ΔHmix , ΔSmix and VEC 
would have notable impact on the result whereas Δ� and 
features for atomic fraction of the alloying element would 
have least influence. In order to enable the machine learning 
model be insular of relative range of scattering of different 
input features in the datasets  [32] , scaling and normaliza-
tion are employed in this work . For the 34 elemental com-
positions of MPEAs, scaler standardization was done with 
mean set to 0 and standard deviation to 1. Where as for the 
6 alloy properties, due to presence of few outliers in the 

dataset which dragged the whole model to extremities dur-
ing the calculation of mole and biases, robust standardiza-
tion was implemented where the normalization was done 
on the basis of median and quartile deviation of the dataset 
reducing any effects of extreme numerical values of the alloy 
properties. With this mathematical transformation, all the 
features of the dataset are now numerically within the range 
0–1. The standardization and normalization procedures thus 
enable the atomic-size difference and Ω to now be relatively 
in a comparable level in terms of their influence or domi-
nance over the result of the neural network analysis.

The neural network of Fig.  3a consists of an input layer, 
3 hidden layers (n = 3) and an output layer. The input layer 
has 40 neurons (blue colored circles) corresponding to each 
input feature. All of the three hidden layers are identical 
to each other in terms of their neuron size (green colored 
points). Each hidden layer (HL) in this study has 10 neurons. 
The output layer has 7 neurons (yellow colored circles) and 
each of these output neuron corresponds to the numerical 
encoding of a phase name.

The train-validation-test proportion was maintained as 
8:1:1. 80% of the dataset was allocated as training dataset 
whereas the reamining 20% was divided equally to valida-
tion and test datasets. A small batch size of 5 was selected 
for model run as increasing the batch size resulted in reduced 
accuracy of model. Reducing the batch size to a smaller 
value increased the computation time with no any significant 
increase in accuracy.

The fact that two or more phases can co-exist in a multi-
principal element alloys (MPEAs) makes it unsuitable to 
be designed as a multi-class classification problem. The 
possiblity of the co-existence of multiple phases in a 
MPEA requires the problem to be defined as a multi-label 
classification problem. In context of multi-label classifica-
tion, an alloy can belong to more than one class or output 
feature. A mathematical condition wherein the outputs are 
not mutually exclusive, can be best represented by assign-
ing sigmoid function as an activation function of the out-
put layer. The sigmoid function squashes the pre-activated 
output values in the range (0,1) but it treats them indepen-
dently such that there can be high probabilities in all, some 
or none of the classes. The sum of the probabilities of the 
activated output classes does not have to be necessarily 
1. For a multi-label classification problem using sigmoid 
function at the output, binary cross entropy (BCE) func-
tion is selected as the cost function for the neural network. 
By running 40 different models each with a different set 
of HL activation function, learning rate and optimizers 
were compiled and run using tensorflow software  [33] . 
Inorder to avoid any over-fitting of the model during the 
training process, a built-in Keras function called Call-
backs  [34] was used to early stop the training of the model 
if validation loss starts to increase during the model fitting 



274	 Metals and Materials International (2022) 28:269–281

1 3

process which was checked at every epoch. Among these 
40 models, the model defined with Stochastic Gradient 
Descent(SGD) optimizer, designated a learning rate of 
2.0E–03 and using Leaky ReLU activation functions at 
the 3 hidden layers showed the most preferrable accuracy 
metric for both training and validation data, and the plot 
of accuracy curves for this model are presented in Fig. 3b. 
At the end of 292 epochs, the model attains the accura-
cies of 91.97% and 93.05% for training and validation data 
respectively. This model is henceforth selected for per-
forming the prediction task.

Most of the earlier works on machine learning based 
phase predictions of HEA/MPEA   [19, 35, 36] do not 

consider the composition vector of alloy as a fingerprint in 
the model. Neither do these models associate the composi-
tion vector with other fingerprints. In such a scenario, the 
user has to know in advance the numerical information of 
all the fingerprints of a MPEA to be supplied as input. This 
limits the ease of use and flexibility associated with the pre-
diction task. The prediction model of the current study is 
housed with a graphical user interface (GUI), named as 
python based Multi-principal Elements Alloy Laboratory 
(pyMPEALab) toolkit, which is capable of mapping the 
composition vector with the remaining 6 numerical finger-
prints. Thus all of the input features of the neural network 
model in this work are computed automatically by the toolkit 

Fig. 3   The neural network of a has 40 input features : 6 features cor-
responding to � , ΔH

mix
 , ΔS

mix
 , � , Ω,and VEC ; and 34 features cor-

responding to the labels of 34 elements (compositions). The model 
of a is designed as a multi-label classification problem to output the 
occurrence of a phase or phases. While the model uses the generic 
labels for IM and AM phases, it uses two different way to recognize 

SS phase at the output. The phases identified as BCC and FCC in the 
training dataset are retained at the output with the same specific label 
names whereas HCP phase and unspecified solid solution phase are 
assigned the general label of solid solution (SS) phase. The image in 
b shows the plot of model accuracy against epochs. The workflow of 
the pyMPEALab GUI is schematically illustrated in c 
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upon the entry of sole information of the composition of the 
MPEA. Databases of the 34 elements having the complete 
information on atomic radius ( ri ), electronegativity ( �i ), 
VECi , melting point ( Tm,i ) of the individual elements and 
mixing enthalpy of binary alloys of constituent elements i 
and j(ΔHmix

ij
 ), are constructed and the GUI accesses these 

databases during the computation of other input features 
from the composition vectors . The working principal of this 
GUI toolkit is schematically illustrated in Fig. 3c. The ability 
of the the pyMPEALab toolkit to generate the complete 
information of the input features of the prediction model by 
demanding only the information of atomic fraction of the 
alloy component, facilitates the dissemination of this study 
to a broader community. Users having no prior information 
of the physical, chemical or thermodynamic properties of a 
MPEA can correctly predict the phase of the alloy just by 
typing the information of the atomic fraction of the compo-
nent. Even it is possible to supply the composition of all of 
the components with the numbers that are common multiple 
of their corresponding mole fractions. As shown in the fig-
ure, the atomic fractions of Cu, Ni, Co, Cr, Al and Fe in 
Cu0.5NiCoCrAl0.5Fe3.5 alloy are 0.067, 0.133, 0.133, 
0.133, 0.067 and 0.467. However, it is possible to enter 0.5, 
1 , 1, 1, 0.5 and 3.5 as the input values in the boxes repre-
senting composition for Cu, Ni, Co, Cr, Al and Fe respec-
tively; and the pyMPEALab toolkit automatically converts 
these values to the corresponding atomic fraction values. 
Then it also generates the values for other input features, and 
predicts the phase (FCC) for the supplied information of the 
alloy.

As pyMPEALab is built on top of Tensorflow and 
Keras, and uses the python packages such as tkinter, pan-
das, numpy , scikit-learn and pickle, the script for this 
software toolkit is characterized by lucidity and possesses 
the flexibility for including additional capabilities.

4 � Application‑oriented Materials Design 
Assisted by pyMPEALab Toolkit

In silico design of engineering materials using data-driven 
approaches is considered as one of the major pillars that 
can help in realization of the goals of Industry 4.0. The neu-
ral network model described in Sect.  3 is the backbone of 
pyMPEALab toolkit. Considering the in-built ability of the 
GUI interface to map the data of alloy compositions with 
the properties of the alloy, the phase prediction procedure in 
the toolkit has been made possible without having the user 
to know the physico-chemical properties of the alloys. The 
rendering of simplicity of the toolkit without the compro-
mise in accuracy, can be considered as the major impetus for 
guaranteering the accelerated design of high entropy alloys. 
Developing a robust phase diagram for a given MPEA sys-
tem has always been a challenge for materials scientists and 
engineering. Further improvements and adaptations of the 
software features of pyMPEALab can surely help in reduc-
ing some of the challenges. This topic is the scope of future 
study.

The correct prediction of phase at different composition 
of MPEA is very useful in designing materials for engineer-
ing applications. In this section, we employ pyMPEALab 
toolkit to predict phases at different composition of two 
MPEAs - (I) Al-doped Cantor alloys, and (II) Nb-doped 
CoCrNi alloys, and subsequently play the vital role assist-
ing or accelerating their design for engineering applications.

4.1 � Application I: Facilitating the Phase Design 
of Al‑doped Cantor Alloy

The FCC single phase alloy CrCoFeMnNi (having the five 
elements in equiatomic proportion) is known as Cantor 
alloy  [7, 37]. Recently, there have been ongoing interests in 
studying about the effects of doping of Al on the mechani-
cal properties of Cantor alloy . It is well known that the size 
of Al is 12% larger than the elements of the Cantor alloy, 
and the addition of Al into the Cantor alloy at small propor-
tion (atomic fraction in the range 0.0025-0.005) leads to the 
notable lattice distortion in the resulting material  [38]. The 
large distortion volume of Al atoms subsequently prevents 
the dislocation motion , and thus ensures the solid solution 
strengthening mechanism in the FCC structure.

However, when Al is doped at a larger atomic fraction, the 
crystal stucture of the resulting alloy may change. The phase 
structure of AlxCrCoFeMnNi alloy may exist as either single 
FCC or dual FCC + BCC, or single BCC state depending 
upon the value of atomic ratio (x) . Since the mechanical 
behavior of the alloy can be correlated with phase struc-
ture, it is very important to outline the phase boundaries 
of this alloy. pyMPEALab GUI interface is utilized in this 

Table 1   The originally prepared dataset with 1229 observations is 
characterized by the non-uniformity in the range of values for the 
numerical fingerprints designated as the input features

Among the input descriptors, the difference between the mini-
mum and the maximum values is the largest in context of Ω feature 
whereas it is the smallest for � variable

Fingerprint Min. value Max. value Unit

Atomic fraction 0 1 –
� 0.0027 0.21 –
ΔH

mix
-48.64 6.44 kJ/mol

ΔS
mix

2.51 16.18 J/(mol K)
Ω 0.32 1423.28 –
Δ� 0.03 0.38 –
VEC 2.8 10.0 –
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study to predict the phase structure of AlxCrCoFeMnNi at 
the different values of x (relative atomic ratio of Al), and 
the results are presented in Fig. 4. The red colored square 
points are the prediction values of the pyMPEALab soft-
ware. Pure Cantor alloy, CrCoFeMnNi (x = 0) is predicted 
as single phase FCC structure. At x in the range 0–0.3, the 
data-driven model predicts the AlxCrCoFeMnNi alloy to 
exist in single phase FCC crystal structure. When x is var-
ied within the range 0.31–0.73, the Al-doped Cantor alloy is 
predicted to exist as duplex FCC and BCC phase structures. 
And, when x is increased beyond 0.74, the predicted crystal 
structure is single BCC phase. The predicted phase bound-
ary between single FCC phase and dual FCC + BCC phase 
in AlxCrCoFeMnNi is x=0.3 and the boundary between 
dual phase and single BCC crystal structure is x=0.74. The 
corresponding phase boundaries between the single FCC 
phase and the dual phase reported in He et al  [39] , and 
Sun et al  [40] are x=0.435 and x=0.488 respectively. The 
reported phase boundaries between single BCC phase and 
dual FCC+BCC phase are x=0.952  [39] and x=1.658  [40]. 
The phase design criteria of pyMPEALab is more stricter 
than the references  [39, 40] when it comes to the prediction 
of single FCC phase and duplex FCC+BCC phase bound-
ary. However, in the determination of BCC/(FCC+BCC) 
phase boundaries, Sun et al [40] reports that single BCC 
phase is possible only at x=1.658 or larger, and presents the 
strictest criteria. The prediction result of the neural network 
model are in reasonable agreement with regard to the val-
ues of VEC (one of the input features) . At VEC of equal 
to or less than 7.36 , the pyMPEALab interface predicts the 
phase as single BCC phase , whereas the alloy AlxCrCoF-
eMnNi is predicted to exist as FCC phase for an input VEC 

eaual to or more than 7.72 . The reference VEC values for 
FCC/duplex and BCC/duplex phase boundaries reported 
in He et al  [39] are 7.60 and 7.20 respectively. The BCC/
duplex phase boundary mentioned at Sun et al occurs at 
VEC value of 6.75 , whereas the VEC value associated with 
FCC/duplex phase boundary is 7.56. In general, FCC crystal 
structure is associated with a larger VEC as compared to 
BCC phase structure; and it confirms the thermodynamic 
consistency of our neural network model with respect to the 
phase prediction

In single FCC solid solution region, AlxCrCoFeMnNi 
alloy is characterized by low strength and high ductility; 
it behaves like a composite (high strength, low ductility) 
in the mixed two phase FCC+BCC region, and the alloy 
is extremely brittle in single BCC region  [39]. With these 
extremities in the mechanical behavior of the alloy charac-
terized by the phase structures , and again as these crystal 
structures are stable for a given range of atomic fraction of 
dopant Al element, it is therefore essential to have a data-
driven toolkit in hand that can instantaneously predict the 
phase for a given point value of x. The merit of using pyM-
PEALab for designing alloys (including Al-doped) Cantor 
alloy is that it can express the crystal phase structure(s) of 
alloy as a piecewise continuous function of the composition 
variable. Though the predicted data points are shown only 
for discrete values in Fig.  4, it is possible to use the pyM-
PEALab software to construct a piecewise continuous line 
y(x) connecting these points, such that y(x) represents single 
FCC phase for 0 ≤ x ≤ 0.3, FCC + BCC duplex phase for 0.3 
< x < 0.74 , and single BCC phase for x ≥ 0.74 . With this 
capability, the phase prediction of AlxCrCoFeMnNi alloy 
can be done for all practical values of x.

Though the software shows a correct trend in the phase 
prediction for Al-doped Cantor alloy, it needs improvement 
regarding the precise determination of phase boundaries. 
The phase boundaries predicted by the current model devi-
ates from the experimental phase boundaries, and thus 
requires further improvement in future. Future work in the 
design of Al-doped Cantor alloy will be centered on finding 
out the temperature effects on the shift of phase boundaries. 
The current model for pyMPEALab is based upon a single 
temperature value (room temperature) of the input features 
, and ignores the temperature effects.

4.2 � Application II: On the Elastic Behavior 
of Nb‑doped CoCrNi Alloy

The ternary equiatomic CoCrNi medium entropy alloy 
(MEA) is stronger and tougher than the quinary equiatomic 
CrCoFeMnNi HEA  [41]. There have been ongoing studies 
involving mechanical properties enhancement of this MEA 
via addition of dopant characterized with lattice, atomic 
radius and elastic modulus mismatch with Co, Cr and 

Fig. 4   Al-doped Cantor alloys exist as either FCC phase or BCC 
phase depending upon the atomic ratio (x) of Al in Al

x
CrCoFeMnNi 

alloys. At x in the range 0.1–0.3 , pyMPEALab predicts the alloy to 
exist in FCC structure wheres at values of x ≥ 0.74, single BCC phase 
is predicted as the stable structure. The data-driven prediction model 
predicts the alloy to exist as duplex fcc and bcc structures at x in the 
range 0.3–0.73. The phase boundaries of the single phase crystal 
structures of this work is compared with the two reference works (He 
et al, 2014 and Sun et al, 2017)
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Ni  [42–45]. Of particular interest is the association of the 
change in elastic behavior with the relevant crystal structure 
in D xCoCrNi alloy , with D being the dopant element with 
atomic composition of x. We employ pyMPEALab software 
to predict the phase in Nb-doped CoCrNi (i.e. CoCrNiNbx ) 
alloy, and then study the elastic response (strain) of this 
doped alloy as compared to the CoCrNi alloy. The ternary 
equiatomic CoCrNi MPEA has a single FCC crystal struc-
ture  [41] and our machine learning based model does the 
truthful prediction as illustrated in Fig.  5 (a). In the same 
figure it is shown that when the atomic fraction of Nb ele-
ment in CoCrNiNbx is 0.1428 (corresponding to x = 0.5 ) , 
the software predicts the alloy to exist as intermetallic (IM) 
phase. The experimental finding by Lu et al  [46] confirms 
that CoCrNiNb

0.5
 is found to posses Laves phase structure. 

When there are no existing phase diagrams that apply uni-
versally to predict the phases of MPEAs, these predictions 
from our model can serve as a reliable tool for thermody-
namic phase design of MEAs and HEAs.

In order to understand the elastic behavior of CoCrNi 
(FCC phase) and CoCrNiNb

0.5
 (IM phase) under constant 

external load, finite element analysis is considered as an 
appropriate method. The geometry / mesh of a tensile test 

specimen as shown in Fig. 5(b) is identical for both materi-
als (CoCrNi and CoCrNiNb

0.5
 ). A constant load of 200 N 

is applied at the bottom boundary of the model, and the 
top boundary is designated as fixed boundary (with zero 
displacement). The loading and boundary condition are 
identical with both models. The partial differential equation 
describing the deformation behavior of the tensile test speci-
men under linear elasticity is solved for the two materials 
using finite element method  [47] . The poisson ratio is set as 
0.3 for both the materials. The Young’s modulus of elasticity 
(E) of CoCrNi alloy is assigned a value of 228.64 GPa  [48]. 
The relationship between yield strength ( �Y ), hardness (HV) 
and E provided in  [49], is utilized to compute the value of 
E. For CoCrNiNb

0.5
 , the experimental data of �Y and HV 

are obtained from Lu et al  [46], and the computed value 
of E is 627.43 GPa. The results of the numerical simula-
tion are provided in Fig. 5c. From the figure, the principal 
strain values along the X direction (axial length of the speci-
men) is very negligible in the model with material proper-
ties of CoCrNiNb

0.5
 alloy, whereas these values are large for 

CoCrNi alloy. Since the Nb-doped alloy is an intermetallic 
phase, it is brittle and is characterized by very less ductility; 

Fig. 5   Predicted phases for 
CoCrNiNb

x
 alloy at (i) x =0, 

and (ii) x = 0.5 are illustrated 
with a portion of the dashboard 
of pyMPEALab GUI in a. The 
unit of length for geometry of 
tensile test specimen shown 
in b is in m. The cross-section 
of the specimen is 0.004 m × 
0.002 m at the mid-length of the 
specimen whereras it is 0.01 m 
× 0.002 m at the end. The image 
c shows the results of finite 
element analysis for principal 
strain in (i) CoCrNi, and (ii) 
CoCrNiNb

0.5
 alloys
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and thus the phase prediction by pyMPEALab software 
helps in easy understanding of these phenomena.

5 � Conclusion

Data-driven approaches as the fourth paradigm of materials 
design can largely enable the study of the multi-dimensional 
characteristics associated with compositionally complex 
alloys. The scope of the present study is to design a machine 
learning based toolkit for prediction of phases in MPEAs 
based upon the information of composition and properties 
of the constituent elements. The following conclusions was 
derived from the present work: 

1	 Multi-principal element alloys (MPEA) occuring at and 
near the center of multicomponent phase space are rep-
resented by numerical fingerprints , namely, composi-
tion, atomic size difference ( � ) , electronegativity ( Δ� ), 
enthalpy of mixing ( ΔHmix ), entropy of mixing ( ΔSmix ), 
dimensionless Ω parameter, valence electron concentra-
tion (VEC) and phase types. A dataset is prepared for 
1229 observations of MPEA databy featurizing these 
numerical descriptors.

2	 With composition (described by 34 features), � , Δ� , 
ΔHmix , ΔSmix , Ω and VEC as input variables and phase 
types (SS, IM or AM) as output feature, an artificial 
neural network is built upon the dataset. The problem 
is defined as a multi-label classification problem, and 
the model is able to classify the alloys as a single phase 
or possible combinations of more than one phase. In 
context of SS phase, the model can further distinguish 
the BCC and FCC crystal structures from uncategorized 
SS phase.

3	 In order to accelerate the phase design criteria in MPEA, 
an user-friendly pyMPEALab GUI interface is used on 
top of the neural network model. The GUI toolkit takes 
in the information on the composition of the alloy , auto-
matically maps the composition features with reamining 
other descriptors; and utilizes these all fingerprints to 

classify the crystal structure or phase structure of the 
MPEA. Requiring only the input information of atomic 
composition of a MPEA from the user for the phase 
prediction, this software interface largely eases the 
implementation of the machine learning model. A user 
with no prior knowledge of thermodynamics of MPEAs 
can easily predict the phase structure by using the pyM-
PEALab GUI interface.

4	 The machine learning model housed in the GUI interface 
tool, is employed to predict phase(s) in Al-doped Can-
tor alloy, and Nb-doped CoCrNI alloy. Then through 
engineering applications, it is explained how the phase 
prediction task can actually help in understanding the 
mechanical behaviors of these MPEAs.

Appendix 1 : Mathematical Details 
for Reduction of CoCuFeNi MPEA into its 
Numerical Fingerprints

CoCuFeNi multi-principal element alloy is constituted by 
Co, Cu, Fe and Ni elements in equimolar proportion, and the 
basic physical and chemical properties of the atoms of these 
individual elements is provided in Table  2. The molar frac-
tion ( xm,i ) of each element in the alloy is also provided in 
the same table. The table shows that the index i has been set 
as 1,2,3 and 4 respectively for Co, Cu , Fe and Ni elements . 
Thus, xm,Co = xm,1 , xm,Cu = xm,2 , xm,Fe = xm,3 and xm,Ni = xm,4.

(i)	 Composition

 For CoCuFeNi, it can be observed from the table that that 
xm,1 = xm,2 = xm,3 = xm,4 = 0.25 . In order to make this alloy 
adaptible to the standard data format of the machine learning 
model, the composition descriptor of CoCuFeNi is defined as 
a vector of 34 elements (corresponding to the 34 elements of 
periodic table present in the total dataset). While each of the 4 
elements of the vector (corresponding to Co, Cu, Fe, Ni ) has a 
value of 0.25, each of the remaining 30 elements of the vector 

Table 2   The mole fraction 
( x

m,i
 of a constituent element in 

CoCuFeNi MPEA is presented 
in the third column of the table

The values of atomic radius ( r
i
 ), electronegativity ( �

i
 ) and valence electron concentration ( VEC

i
 ) of the 

individual elements are obtained from Guo et  al.  [14]. The information about the melting temperature 
( T

m,i
 ) of each of the consituent elements is provided in the final column of the table

S.N. (i) Element x
m,i

r
i

�
i

VEC
i

T
m,i

( Å) (K)

1 Co 0.25 1.251 1.88 09 1768.0
2 Cu 0.25 1.278 1.90 11 1357.6
3 Fe 0.25 1.241 1.83 08 1808.8
4 Ni 0.25 1.256 1.91 10 1726.0
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(corresponding to the elements not present in the alloy) has a 
value of 0. Numerically, the composition vector for CoCuFeNi 
MPEA can be expressed as : ( xm,Ag , ..., xm,Co , ..., xm,Cu , xm,Fe , 
...,xm,Ni , ...,xm,Zr ) = (0,..., 0.25, ..., 0.25, 0.25, ..., 0.25, ..., 0).

	 (ii)	 Atomic size difference

 The statistical measure of the atomic size difference among 
the constituent elements of CoCuFeNi MPEA can be approxi-
mated by the following formula:

where, r̄ =
∑4

i=1
(x

m,iri) = x
m,1r1 + x

m,2r2 + x
m,3r3 + x

m,4r4

= 0.25 × 1.251 + 0.25 × 1.278 + 0.25 × 1.241 + 0.25 × 1.246

= 1.254Å

Substituting the numerical values of r̄ , elemental molar 
composition ( xm,i ) and elemental atomic radius ( ri ) in Eq. 1 
, the fingerprint � of CoCuFeNi alloy can thus be deduced as:

	 (iii)	 Electronegativity Difference

 With the information of �i values of individual constituent 
elements along with the composition already known, the 
corresponding numerical descriptor of the alloy known 
as electronegativity difference(Δ� ) of CoCuFeNi can be 
statistically expressed as following:

(1)𝛿 =

√√√√
4∑

i=1

xm,i

(
1 −

ri

r̄

)2

𝛿 =

√
xm,1

(
1 −

r
1

r̄

)2

+ xm,2

(
1 −

r
2

r̄

)2

+ xm,i

(
1 −

r
3

r̄

)2

+ xm,i

(
1 −

r
4

r̄

)2

=

√
0.25

(
1 −

1.251

1.254

)2

+ 0.25

(
1 −

1.278

1.254

)2

+ 0.25

(
1 −

1.241

1.254

)2

+ 0.25

(
1 −

1.246

1.254

)2

=0.114

(2)Δ𝜒 =

√√√√
4∑

i=1

xm,i

(
𝜒i − 𝜒̄

)2

The weighted mean electronegativity 𝜒̄ in Eq.  2 utilizes 
composition as weight , and is defined as 𝜒̄ =

∑4

i=1
(xm,i𝜒i) . 

The numerical value of 𝜒̄  for the alloy is deduced as 
following:

Finally, the electronegativity difference of the CoCuFeNi 
alloy is computed as following:

	 (iv)	 Enthalpy of Mixing

 For an MPEA with 4 constituent elements, the enthalpy 
of mixing is given by the following formula:

In addition to the information on the molar composition , the 
deduction of the numerical value of ΔHmix will require 
knowledge about the quantity wij . Mathematically, this quan-
tity is four times the enthalpy of mixing of binary liquid 

alloy constituted by element i and j, i.e. wij = 4ΔHmix
ij

 . The 
values of mixing enthalpy of binary alloys formed by the 
constituent elements of CoCuFeNi are calculated with the 
theoretical guidance provided in  [22–25], and the estimated 
values of ΔHmix

ij
 corresponding to the alloy are presented in 

Table  3. Now, the corresponding numerical value of mixing 
enthalpy of the MPEA can be derived as following:

𝜒̄ = x
m,1𝜒1 + x

m,2𝜒2 + x
m,3𝜒3 + x

m,4𝜒4

= 0.25 × 1.88 + 0.25 × 1.90 + 0.25 × 1.83 + 0.25 × 1.91

= 1.88

𝜒 =

√
xm,1

(
𝜒
1
− 𝜒̄

)2
+ xm,2

(
𝜒
2
− 𝜒̄

)2
+ xm,3

(
𝜒
3
− 𝜒̄

)2
+ xm,4

(
𝜒
4
− 𝜒̄

)2

=

√
0.25(1.88 − 1.88)

2
+ 0.25(1.90 − 1.88)

2
+ 0.25(1.83 − 1.88)

2
+ 0.25(1.91 − 1.88)

2
= 0.0308

(3)ΔHmix =

4∑

i=1,i≠j

�ijxm,ixm,j

Table 3   Estimated values of 
ΔH

mix

ij
 and �

ij
 for several binary 

alloys formed by constituent 
elements of CoCuFeNi MPEA

CoCu CoFe CoNi CuFe CuNi FeNi

ΔH
mix

ij
 (kJ/mol) 6.373 −0.561 −0.2018 12.882 3.495 −1.542

�
ij
 (kJ/mol) 25.492 −2.244 −0.872 51.528 13.98 −6.168
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(v)	 Entropy of Mixing

 The mathematical expression for ΔSmix of CoCuFeNi alloy 
is provided as given below:

where, R = 8.314 J/(mol K).
The right hand side of Eq. 4 shows that the information 

on the composition of the alloy is sufficient to compute the 
mixing enthalpy. CoCuFeNi MPEA has 4 elements in equia-
tomic proportion and Eq. 4 can be simplified as following:

T h u s  ,  t h e  n u m e r i c a l  va l u e  o f  m i x i n g 
enthalpy for this alloy can be determinted as 
ΔSmix = 8.314 × ln(4) = 11.526J∕(molK).

	 (vi)	 Ω Parameter

 This parameter not only compares the relative magnitudes 
of mixing entropy to mixing enthapy but also incorporates 
the equivalent melting temperature ( Tm ) of CoCuFeNi alloy. 
The definition of dimensionless Ω parameter is given by the 
following equation:

With the values of melting temperature of individual ele-
ments obtained fro m Table  2, the (composition-weighted) 
equivalent melting temperature of the MPEA becomes:

0.25 × 1726 = 1664.9 K  For the alloy, ΔSmix = 11.526 J/
(mol K) and ||ΔHmix

|| = 5.093 × 10
3 J/mol. Finally, the value 

of Ω is obtained as 1664.9×11.526
5.093×103

= 3.767.

	(vii)	 Valence Electron Concentration

ΔH
mix

= �12xm,1xm,2 + �13xm,1xm,3 + �14xm,1xm,4

+ �23xm,2xm,3 + �24xm,2xm,4 + �34xm,3xm,4

= 25.492 × 0.25 × 0.25 + (−2.244) × 0.25

× 0.25 + (−0.872) × 0.25 × 0.25 + 51.528

× 0.25 × 0.25 + 13.98 × 0.25 × 0.25

+ (−6.168) × 0.25 × 0.25

= 5.093
kJ

mol

(4)ΔSmix = −R

4∑

i=1

xm,iln(xm,i)

(5)ΔSmix = R × ln(4)

(6)Ω =
TmΔSmix
||ΔHmix

||

Tm = xm,1Tm,1 + xm,2Tm,2 + xm,3Tm,3 + xm,4Tm,4 = 0.25 × 1768 + 0.25 × 1357.6 + 0.25 × 1808+

 Mathematically, the equivalent VEC of quaternary MPEA 
is computed statistically as the composition weighted sum 
of the VECi of the individual elements.

In context of CoCuFeNi, the numerical value of VEC 
becomes:

0.25 × 10 = 9.5

	(viii)	 Phase Information

 The stable phase for CoCuFeNi MPEA has been estab-
lished as FCC  [30]. It is essential to encode the the phase 
name FCC into a numerical value that is operatable by 
the machine learning model. In order to account for the 
multi-label classification problem, phase or a mixture of 
phases have been mathematically defined as a vector with 
7 elements. Numerically, each element of the vector can be 
either 1 (presence of a particular phase) or 0 (absence of the 
phase). The first 3 elements of the phase vector correspond 
to amorphous , intermetallic and (undefined) solid solution 
phase in sequence. The 4 th and 6 th elements of this vec-
tor are allocated for BCC phase (BCC1 and BCC2 respec-
tively). Finally, the 5 th and 7 th elements of the phase vector 
correspond to FCC phase (FCC1 and FCC2 respectively). 
As CoCuFeNi MPEA exists as FCC phase (FCC1 phase 
specifically), the numerical fingerprint describing this alloy 
corresponding to the phase information is (0000100).
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