Skip to main content
Log in

Dynamic Finite Element Analysis on Single Impact Plastic Deformation Behavior Induced by SMAT Process in 7075-T6 Aluminum Alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Surface mechanical attrition treatment (SMAT) is a method that enhances the mechanical properties of metallic materials by generating a thin nanostructured layer on the top surface. In this study, single-shot impact behavior was modeled for the 7075-T6 aluminum alloy to reach maximum values of equivalent stress, plastic strain, deformation depth, residual stress depth, and residual stress. Finite element simulations have been carried out to analyze the effect of selected parameters on stress and strains in the component. For simulating the SMAT process, a rigid sphere on a rectangular component is modeled using ANSYS/AUTODYN explicit dynamic solver. The plastic deformation process during SMAT was analyzed according to shot velocity and diameter with a dynamic explicit finite element method (FEM). The response surface methodology was used to evaluate the parametric results for the SMAT process. In addition, deformation behavior was evaluated after a single-shot impact according to the restitution coefficient.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig.14

Similar content being viewed by others

References

  1. T.O. Olugbade, J. Lu, Nano Mater. Sci. 2, 3 (2020)

    Article  Google Scholar 

  2. J. Azadmanjiri, C.C. Berndt, A. Kapoor, C. Wen, Crit. Rev. Solid State 40, 164 (2015)

    Article  CAS  Google Scholar 

  3. H.W. Zhang, Z.K. Hei, G. Liu, J. Lu, K. Lu, Acta Mater. 51, 1871 (2003)

    Article  CAS  Google Scholar 

  4. H.L. Chan, H.H. Ruan, A.Y. Chen, J. Lu, Acta Mater. 58, 5086 (2010)

    Article  CAS  Google Scholar 

  5. F. Yin, L. Hua, X. Wang, M. Rakita, Q. Han, Comp. Mater. Sci. 92, 28 (2014)

    Article  CAS  Google Scholar 

  6. V. Pandey, K. Chattopadhyay, N.C. Santhi Srinivas, V. Singh, Int. J. Fatigue 103, 426 (2017)

    Article  CAS  Google Scholar 

  7. W. Lei, Y. Yong, W. Yaming, J. Ying, Rare Metal Mat. Eng. 44, 1320 (2015)

    Article  Google Scholar 

  8. G. Chen, J. Gao, Y. Cui, H. Gao, X. Guo, S. Wu, J. Alloy. Compd. 735, 536 (2018)

    Article  CAS  Google Scholar 

  9. J. Peng, Z. Zhang, P. Guo, Z. Liu, Y. Li, W. Zhou, Y. Wu, Mater. Charact. 148, 26 (2019)

    Article  CAS  Google Scholar 

  10. S. Alikhani Chamgordani, R. Miresmaeili, M. Aliofkhazraei, Tribol. Int. 119, 744 (2018)

    Article  CAS  Google Scholar 

  11. D. Gallitelli, D. Retraint, E. Rouhaud, Adv. Mat. Res. 996, 964 (2014)

    Article  CAS  Google Scholar 

  12. A. Heydari Astaraee, R. Miresmaeili, S. Bagherifard, M. Guagliano, M. Aliofkhazraei, Mater. Design 116, 365 (2017)

    Article  Google Scholar 

  13. N.R. Tao, J. Lu, K. Lu, Mater. Sci. Forum. 579, 91 (2008)

    Article  CAS  Google Scholar 

  14. G.H. Majzoobi, R. Azizi, A. Alavi Nia, J. Mater. Process. Tech. 164165, 1226 (2005)

    Article  Google Scholar 

  15. Y. Liu, S.L. Lv, W. Zhang, IOP Conf. Ser. Mater. Sci. Eng. 322, 032003 (2018)

    Article  Google Scholar 

  16. H. Ullah, B. Ullah, A. Rauf, R. Muhammad, Sci. Iran. Trans. B 26, 1378 (2019)

    Article  Google Scholar 

  17. L. Xie, Z. Wang, C. Wang, Y. Wen, L. Wang, C. Jiang, W. Lu, L.-C. Zhang, L. Hua, in Finite Element Method, ed. by P. Razvan (IntechOpen, London, 2018), pp. 23-48

  18. L.J. Cao, S.J. Li, Z.C. Shangguan, Appl. Mech. Mater. 433, 1898 (2013)

    Article  Google Scholar 

  19. T. Hong, J.Y. Ooi, B. Shaw, Eng. Fail. Anal. 15, 1097 (2008)

    Article  CAS  Google Scholar 

  20. S. Manchoul, R. Seddik, R. Ben Sghaeir, R. Fathallah, Proc. Inst. Mech. Eng. L 233, 930 (2019)

  21. X. Xiao, X. Tong, Y. Liu, R. Zhao, G. Gao, Y. Li, Int. J. Mech. Sci. 137, 182 (2018)

    Article  Google Scholar 

  22. J. Sun, Y. Zhang, in Proceedings of the 2015 International Conference on Electromechanical Control Technology and Transportation, ed. by Y.-H. Shyu, Y. Zhang, vol. 41 (Atlantis Press, Paris, 2015), pp. 382–386

  23. S. Žagar, J. Grum, Mater. Sci. Forum. 768769, 519 (2014)

    Article  CAS  Google Scholar 

  24. X.F. Sheng, Q.X. Xia, X.Q. Cheng, L.S. Lin, T. Nonferr. Metal. Soc. 22, 261 (2012)

    Article  CAS  Google Scholar 

  25. D. Cecchin, C.L. Azanza Ricardo, M. D’Incau, M. Bandini, P. Scardi, Mater. Sci. Forum. 768, 66 (2014)

    Article  Google Scholar 

  26. P. Blau, ASM Handbook Volume 18 : Friction, Lubrication, and Wear Technology (ASM International, Materials Park, 1992), pp. 70–75

  27. X. Kang, T. Wang, J. Platts, P. I. Mech. Eng. B 224, 689 (2010)

    Article  Google Scholar 

  28. G.R. Johnson, W.H. Cook, A constitutive model and data from metals subjected to large strains, high strain rates and high temperatures, in Proceedings of 7th International Symposium on Ballistics, the Hague, April 19-21, 1983 (ADPA, Arlington, 1983), pp. 541-547

  29. D.N. Zhang, Q.Q. Shangguan, C.J. Xie, F. Liu, J. Alloy. Compd. 619, 186 (2015)

    Article  CAS  Google Scholar 

  30. S.V. Senkova, O.N. Senkov, D.B. Miracle, Metall. Mater. Trans. A 37, 3569 (2006)

    Article  Google Scholar 

  31. C.L. Rao, V. Narayanamurthy, K.R.Y. Simha, Applied Impact Mechanics  (Wiley, Hoboken, 2016)

    Article  Google Scholar 

  32. Q.-H. Lin, B.-M. Li, Def. Technol. 16, 348 (2020)

    Article  Google Scholar 

  33. O. Unal, Surf. Coat. Tech. 305, 99 (2016)

    Article  CAS  Google Scholar 

  34. Y.S. Nam, Y.I. Jeong, B.C. Shin, J.H. Byun, Mater. Design 83, 566 (2015)

    Article  CAS  Google Scholar 

  35. A. Rida, E. Rouhaud, M. Micoulaut, A. Makke, D. Retraint, Molecular dynamics investigations for surface mechanical attrition treatment, in Proceedings of 13th International conference on Shot Peening (ICSP-13), Montreal, September 18–21, 2017 (Electronics Inc., Mishawaka, 2017), pp. 335–339

  36. Y. Samih, B. Beausir, B. Bolle, T. Grosdidier, Mater. Charact. 83, 129 (2013)

    Article  CAS  Google Scholar 

  37. X. Meng, B. Liu, L. Luo, Y. Ding, X.X. Rao, B. Hu, Y. Liu, J. Lu, J. Mater. Sci. Technol. 34, 2307 (2018)

    Article  Google Scholar 

  38. M. Guagliano, J. Mater. Process. Tech. 110, 277 (2001)

    Article  Google Scholar 

  39. S.A. Meguid, G. Shagal, J.C. Stranart, J. Daly, Finite Elem. Anal. Des. 31, 179 (1999)

    Article  Google Scholar 

  40. R. Seifried, H. Minamoto, P. Eberhard, J. Appl. Mech. 77, 041008 (2010)

    Article  CAS  Google Scholar 

  41. M. Azimian, H.-J. Bart, Open J. Fluid Dyn. 7, 310 (2017)

    Article  CAS  Google Scholar 

  42. D.A. Gorham, A.H. Kharaz, Powder Technol. 112, 193 (2000)

    Article  CAS  Google Scholar 

  43. R.L. Jackson, I. Green, D.B. Marghitu, Nonlinear Dynam. 60, 217 (2010)

    Article  Google Scholar 

  44. W.S. Lee, W.C. Sue, C.F. Lin, C.J. Wu, J. Mater. Process. Tech. 100, 116 (2000)

    Article  Google Scholar 

  45. S. Gopalakannan, T. Senthilvelan, K. Kalaichelvan, Adv. Mater. Res. 488489, 856–860 (2012)

    Article  CAS  Google Scholar 

  46. E. Kilickap, Int. J. Adv. Manuf. Tech. 49, 911 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Scientific Research Coordination Foundation (BAP Unit, Project No FDK-2020-2218) of Kocaeli University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eser Yarar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 6, 7, 8, 9, 10.

Table 6 Analysis of variance for equivalent stress (MPa)
Table 7 Analysis of variance max. plastic strain
Table 8 Analysis of variance max. deformation depth (y)
Table 9 Analysis of variance max. residual stress depth
Table 10 Analysis of variance max. residual stress (MPa)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yarar, E., Erturk, A.T. & Karabay, S. Dynamic Finite Element Analysis on Single Impact Plastic Deformation Behavior Induced by SMAT Process in 7075-T6 Aluminum Alloy. Met. Mater. Int. 27, 2600–2613 (2021). https://doi.org/10.1007/s12540-020-00951-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00951-y

Keywords

Navigation