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Abstract
As one of the most common female cancers, cervical cancer often develops years after a prolonged and reversible pre-
cancerous stage. Traditional classification algorithms used for detection of cervical cancer often require cell segmentation 
and feature extraction techniques, while convolutional neural network (CNN) models demand a large dataset to mitigate 
over-fitting and poor generalization problems. To this end, this study aims to develop deep learning models for automated 
cervical cancer detection that do not rely on segmentation methods or custom features. Due to limited data availability, 
transfer learning was employed with pre-trained CNN models to directly operate on Pap smear images for a seven-class 
classification task. Thorough evaluation and comparison of 13 pre-trained deep CNN models were performed using the 
publicly available Herlev dataset and the Keras package in Google Collaboratory. In terms of accuracy and performance, 
DenseNet-201 is the best-performing model. The pre-trained CNN models studied in this paper produced good experimental 
results and required little computing time.
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1  Introduction

Cervical cancer stands out among women’s cancers as the 
fourth most common cancer [1]. A healthy cell may take 
several years to transform from a prolonged and reversible 
pre-cancerous lesion stage into a malignant cervical cancer 
[2]. Since cervical cancer is treatable if discovered at an ini-
tial pre-cancerous phase and further cancer progression can 
be averted [3], thus, the timely identification of the disease 
is the key to lessening the overall burden of the disease on 
society.

The detection of cervical cancer can be aided by cytol-
ogy examinations, with the Pap smear test being the most 
widely recognized and easily accessible screening method. 
However, examining the Pap smear slides beneath the 
microscopes is still a challenging, laborious, and manual 
operation, even with expert cytopathologists due to the 
requirement of cytopathologists to review numerous micro-
images within a single slide for each patient screened and 

the irregularities were often remained undiscovered because 
of avoidable human errors [4]. Additionally, the cervical 
intraepithelial neoplasia is rather tiny, and clumps of cells 
are overlapped or masked by blood mucus, which compli-
cated the Pap smear images, thus making the procedure 
highly error-prone [5]. Emerging research suggests that 
computer-aided techniques can play a significant role in 
automating cancer diagnosis. Despite positive findings, there 
are still deficiencies with the current methods for cervical 
cancer diagnosis and classification that need to be resolved.

First, the authors in [5–8], and [9] have noted that the Pap 
smear test heavily relies on manual evaluation and analysis 
of microscope images. This manual examination process 
has proven to be laborious, expensive, incredibly time-
intensive, and highly susceptible to human errors as there 
are approximately three million cells with different orienta-
tions, sizes, and shapes, and many of the cells were overlap-
ping. Second, in contrast to manual assessment, a growing 
body of research has been dedicated to the advancement 
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of computer-aided diagnostic (CAD) tools that can auto-
matically classify abnormal cervical cells from cytology 
specimens. Segmentation of cell, feature extraction, and 
classification are parts of the traditional CAD tools [8]. The 
primary drawback of CAD systems is that the classifica-
tion quality is not guaranteed because the extracted features 
used for classification were often hand-crafted, in contrast to 
deep learning (DL) which uses medical image inputs directly 
without manual intervention and does not necessarily require 
careful design at all stages [10]. On the other hand, machine 
learning (ML) has recently attracted the interest of academ-
ics in studying if these approaches are suitable and robust 
enough to be employed as an alternative tool for addressing 
the difficulties in clinical diagnostic problems. Noticeably, 
convolutional neural network (CNN) in particular, have 
demonstrated prospects for enhancing the performance of 
cervical cancer detection and diagnosis [5] with its ability 
in identifying and learning high-level features and hidden 
patterns directly on input images.

From the literature review, there are three primary catego-
ries into which the current development of cervical cancer 
detection and classification approaches may be divided: (1) 
object detection-based approaches, (2) segmentation-based 
approaches, and (3) end-to-end classification of cervical 
cells without prior segmentation and feature extraction.

Cervical cancer cell classification using object detec-
tion-based approaches has grown popular recently [10], 
and CNN-based object detection frameworks have been 
employed in several studies to classify and locate cervical 
cells as seen in [9–14], and [15]. These studies attempted to 
automate the diagnosis process by analyzing the image data 
directly at the image level instead of at the pre-processed 
cellular level.

Conventional classification approaches typically involve 
segmentation of cells and cell feature extraction stages for 
subsequent classification stages [3, 16]. This makes the 
classification quality dependent on the effectiveness of cell 
segmentation. Classifiers often faced challenges in identify-
ing overlapping cells with vague cytoplasmic boundaries. 
Since the nucleus is a dependable source of information for 
cervical cancer screening, precise segmentation of nuclei 
and cytoplasm is essential. OTSU and DRLSE algorithms 
were adopted by Bao et al. [17] to segment the contours of 
cervical nuclei and William et al. [4] employed the Trainable 
Weka Segmentation (TWS) toolkit for cell segmentation. In 
[4], the authors also put in extra efforts to post-process the 
segmented images with a sequential elimination approach 
to remove debris that can affect the classification accuracy. 
Both pre-processing and post-processing of the images are 
essential steps in the segmentation-based approach.

Both object detection-based and segmentation-based 
approaches required manual intervention on the image 
datasets before the images were fed into a classifier. The 

location and segmentation tasks became difficult for com-
plex data patterns in raw medical images that are associ-
ated with overlapping cells and debris. These subsequently 
inspired the development of end-to-end classification meth-
ods that directly operate on raw images and do not neces-
sitate custom features. Additionally, methods based on deep 
learning approach made a significant advance in this area by 
providing encouraging accuracy. Many authors used CNNs 
algorithms such as DenseNet-121, DenseNet-169, AlexNet, 
VGG-16, VGG-19, ResNet-50, ResNet-101, GoogleNet, 
Inception-v3 and Xception with transfer learning to per-
form classification of cervical cells as presented in [6, 18, 
19], and [20]. Meanwhile, to utilize the benefits of multiple 
CNN models for the classification tasks parallelly, Hussai 
et al. [6] and Manna et al. [19] presented ensemble models 
to aggregate the top-performing models to develop a more 
generalized model for the classification.

Nonetheless, most works on the cervical cancer cells clas-
sification use the Herlev dataset [21] which is from a public 
database that consist of seven imbalanced classes of cells. 
Moreover, there exist private research datasets in addition 
to public datasets. Regrettably, most researchers are unable 
to access private databases and are forced to conduct their 
research using the small-sized public Herlev dataset. To 
overcome the challenge of limited data, most of the surveyed 
studies relied on transfer learning techniques, which involves 
leveraging pre-trained models from one task and adapting 
them to another task, effectively utilizing existing knowledge 
and models in the face of data scarcity [6, 18–20].

In this study, a comprehensive end-to-end classification 
of cervical cancers on the publicly available Herlev dataset 
without the need for separate feature extraction and segmen-
tation processes was conducted. To compensate for the lim-
ited data size and class imbalance problem in the underlying 
Herlev dataset, CNN models with transfer learning meth-
ods were used. A range of CNN networks, namely VGG-
16, VGG-19, DenseNet-121, DenseNet-169, DenseNet-201, 
ResNet-50, ResNet-101, ResNet-152, Inception, Xception, 
MobileNet, and MobileNet-v2 networks were evaluated on 
the Herlev dataset. The objectives of this study are: (1) to 
provide a thorough evaluation and comparison of pre-trained 
deep CNN models for detecting cervical cancer using pub-
licly available datasets and (2) to examine the effectiveness 
of CNN models with transfer learning in multi-class clas-
sification tasks on imbalanced image datasets.

In contrast to previous studies and reviews that lack clear 
documentation of essential details like architecture, hyper-
parameters, and training methodologies of CNN models, this 
research offers a comprehensive evaluation of existing CNN 
models for cervical cancer classification, systematically 
compiling them for easy reference, and setting a benchmark 
for future research. By filling this gap, the study enables 
better comparison and benchmarking of different models, 



19Interdisciplinary Sciences: Computational Life Sciences (2024) 16:16–38	

1 3

promoting transparency and facilitating advancements in 
the field. The main contributions of the present study are 
as follows:

	 (i)	 This research presents an extensive evaluation of 
established CNN models using transfer learning 
approach, specifically tailored for classifying cervi-
cal cancer. It is worth noting that this level of com-
prehensive and detailed analysis has not been previ-
ously undertaken, thus making this study distinct and 
highly valuable.

	 (ii)	 In this study, a direct approach was adopted, where 
Pap smear images were directly processed for auto-
matic detection of cervical carcinomas from the pub-
lic Herlev dataset, eliminating the need of discrete 
design at each stage. The compilation of models and 
the corresponding results were obtained under simi-
lar experimental conditions, facilitating easy com-
parison and accessibility for the research community 
focusing on cervical cancer classification.

	 (iii)	 Unlike previous studies that primarily focused on 
binary classification, this study specifically addresses 
the classification of cervical cancer subtypes, provid-
ing valuable insights into the performance of various 
CNN models for handling classification into multiple 
classes, particularly with imbalanced datasets.

The following sections of this paper are structured in the 
subsequent manner: insight into prior studies concerning 
cervical cancer detection is presented in Sect. 2. Section 3 
outlines the dataset and research methodology employed. 
Section 4 presents the computational results, and the find-
ings are covered in Sect. 5. Section 6 provides final remarks, 
followed by acknowledgments and the reference list.

2 � Related Works

Deep learning (DL) already outperformed human special-
ists in the domain of modeling highly complicated connec-
tions between inputs and outputs, where the features are not 
human-understandable [22]. In [23], the authors concluded 
that there are currently no designated methods for defining 
the proper deep network parameters and proposed that the 
existing deep learning models, which were initially designed 
for other tasks and already achieved excellent performance, 
could be further enhanced by tuning or refining their model 
structures for medical images. Litjens et al. [24] highlighted 
that the utilization of DL techniques for medical image clas-
sification and related tasks is a rapidly expanding research 
field. In this area, CNN is a common deep architecture in this 
discipline and has demonstrated significant achievements 
in cell detection, segmentation, classification, localization 

of regions of interest, and state-of-the-art accuracy [25]. 
The model’s biggest drawback for building the model from 
scratch is that it needs a sizable amount of annotated data 
for training. Not to mention that it takes a lot of comput-
ing power and a lengthier training duration. Transfer learn-
ing, which applies the trained model that was trained from 
one task to a new task, offers a solution to all these issues. 
Furthermore, most of the existing DL studies on Pap smear 
images either focus primarily on two-class classification, 
also widely known as binary classification or taking single 
cell images rather than raw medical images [6]. This sec-
tion provides an overview of the importance of ML and DL 
techniques, along with their evolutionary progression in the 
domain of cervical cancer diagnosis.

2.1 � Detection of Cervical Cells Based on Object 
Detection Approaches

Contrary to classification, detection requires an added loca-
tion task. The detection network comprises a detection head 
to search the specified object region. The two most com-
mon forms of detection networks are (1) one-stage systems 
and (2) two-stage systems. One-stage detection networks 
directly perform location prediction in a single stage without 
establishing region proposals. Two-stage detection networks 
first establish region proposals as a pre-detection step, then 
calibrate the location and perform classification [12].

Elakkiya et al. [15] introduced the Faster Small-Object 
Detection Neural Networks (FSOD-GAN) for automated 
identification of cervical spots, achieving a classification 
accuracy of 99%. In [12], the authors formulated 3cDe-Net, 
based on a dilated convolution ResNet and multiscale fea-
ture fusion through feature pyramid network (FPN), which 
had achieved superior performance compared to existing 
approaches with a MAP of 50.4%. This network processes 
directly at the cervical image level as opposed to the cell 
level and can identify cells with a variety of sizes and scales.

A new detection network, the DGCA-RCNN model, was 
presented by Li et al. [5] for detecting abnormal cervical 
cells from pathology images was proven robust in identify-
ing subtle differences between types of cervical cells. Mean-
while, it was also noted that mAP decreased while IOU was 
increasing, suggesting that great details were needed for the 
classifier to learn the complex attributes, and that it is prefer-
able to obtain magnified image patches to enable accurate 
detection of malignant cells.

Nambu et al. [13] resolved the challenge of classify-
ing cell clusters that overlap by introducing a two-stage 
CNN algorithm to classify crowded and overlapping cell 
images. The authors first applied You Only Look Once 
v4 (YOLOv4) for cell detection then applied ResNeSt to 
perform the classification task. Moreover, Bai et al. [11] 
introduced an improved Faster RCNN (CLDNet) model to 



20	 Interdisciplinary Sciences: Computational Life Sciences (2024) 16:16–38

1 3

compensate the problem with manual colposcopy reading 
by enhancing the lesion attributes with Squeeze-Excitation 
CNN (SE-CNN) to capture the deep features. Alsalatie et al. 
[9] presented an ensemble DL model, which applied Faster 
and enhanced Region-CNN model to locate cervical regions, 
the CLS-net for feature extraction, followed by an ensemble 
of two CNN models, whereby the initial model trained and 
classified cells into normal or abnormal classes, while the 
second model further trained and classified the abnormal 
cases into the three classes. The accuracy of the proposed 
ensemble model demonstrated its superiority over the exist-
ing methods in literature where multi-class classification on 
whole slide images was conducted.

A CNN-based object detection approach was developed 
by Xiang et al. [10]. They utilized a YOLOv3 base model 
for detecting cervical cells within whole slide images and 
incorporated the InceptionV3 base model to enhance clas-
sification accuracy. The proposed approach demonstrated 
effective image-level classification without requiring cell 
segmentation with high accuracy and sensitivity rate of 
nearly 100%, but the low specificity at 67.8% and the authors 
associated these subpar results primarily with the severely 
unbalanced data distribution.

2.2 � Classification of Cervical Cells

Image acquisition, image pre-processing, image segmenta-
tion, feature extraction, and classification are typically the 
key phases in medical image analysis [26]. There have been 
several classification methods proposed in recent years, and 
a number of them involved segmentation or the extraction 
of texture features.

2.2.1 � Classification of Cervical Cells Based 
on Segmentation or Feature Extraction

Recently, Bao et al. [17] compared the performance of intel-
ligent cytology system and manual reading by an experi-
enced cytologist. They first segmented the contours of cer-
vical nuclei using OTSU and DRLSE algorithms and then 
performed classification through VGG-16 and the study 
achieved equivalent results in terms of sensitivity and speci-
ficity relative to manual reading.

In [4], the authors minimized the likelihood of error 
by automating the procedure with the application of con-
trast local adaptive histogram equalization to enhance Pap 
smear image quality, Trainable Weka Segmentation (TWS) 
classifiers for segmentation of cells, sequential elimina-
tion technique for noise reduction, feature selection with 
simulated annealing with wrapper filter and fuzzy c-means 
(FCM) for the classification. The selected salient features 
significantly improved the performance of the FCM algo-
rithm, contributing to a low classification error rate. Apart 

from that, by combining feature vectors extracted from 
several CNN architectures to allow the model to cap-
ture more potential information and, hence, improve the 
class, a hybrid deep feature fusion technique was used by 
Rahaman et al. [7] to develop DeepCervix. The general 
accuracy of the individual DL models decreased with the 
expansion of the number of classes, except in the case 
of the suggested hybrid deep feature fusion technique. 
Moreover, Alquran et  al. [27] devised a novel feature 
extraction method using their newly introduced Cervical 
Net structure followed by feature fusion using the Shuffle 
Net structure and the extracted features were then passed 
to different ML classifiers. The fusion feature extraction 
method had varying effects on the performance of classifi-
ers. SVM and Naive Bayes showed improved performance, 
but RF, KNN, and ANN performed worse.

Park et al. [28] compared a range of ML and DL mod-
els for binary cervical cancer classification. They first 
extracted features by pyradiomics 3.0, then selected sig-
nificant features using the Lasso model, and fed them into 
the XGB, SVM, RF, and ResNet-50 models, respectively, 
to classify images into positive or negative instances. The 
results indicated that the ResNet-50 algorithm outper-
formed the non-DL models. In [14], the authors applied 
progressive resizing for morphological cell feature extrac-
tion and employed a pre-trained Conv Net to classify cer-
vical cells into multiple instances. The incorporation of 
progressive resizing significantly improved the multi-class 
classification outcomes, resulting in excellent sensitivity, 
specificity, and Kappa scores for the proposed methodolo-
gies. In contrast, Li et al. [29] presented a classifier based 
on multilayer hidden conditional random fields for assign-
ing labels to cervical cancer stages. Still, their approach 
required scale-invariant feature transform for extrac-
tion of features and feature selection based on Gaussian 
distribution.

In [30], the authors devised GLCM+Gabor model for fea-
ture extraction and used the LeNet-5 model for abstract fea-
ture extraction in parallel. The strong features and abstract 
features were fused and inputted into the SVM classifier. 
Compared to the CNN-SVM alone, the CNN-SVM with a 
strong feature showed slight improvement, suggesting that 
the inclusion of a strong feature could potentially enhance 
the models’ performance and reliability in detecting posi-
tive cells. In [31], the authors addressed the problem of lost 
domain knowledge and missing features in cervical cell clas-
sification by employing artificial feature extraction. These 
extracted features were combined with InceptionV3. The 
enhanced InceptionV3 algorithm with artificial features 
outperformed the classic InceptionV3 network in terms of 
accuracy. However, the authors emphasized the need for fur-
ther research and analysis to merge artificial and deep neural 
network-generated features.
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2.2.2 � End‑to‑End Classification of Cervical Cells Based 
on Deep Learning Approaches

To simplify and reduce computational complexity, research-
ers have utilized neural networks (NN) for fully automated 
classification, eliminating the need for separate image 
enhancement, detection, segmentation, and feature extrac-
tion steps.

In [32], the authors adopted transfer learning (TL) tech-
niques and formulated PsiNet-TAP model, which adopted 
an adaptive pruning method based on the product of l1-norm 
and output excitation means that can directly perform clas-
sification on unprocessed Pap smear images. The proposed 
pruning approach demonstrated an alternate optimization 
method that greatly reduced the network size and hence 
shortened the computational time and improved the perfor-
mance of classifiers. In both [18] and [20], TL techniques 
with ResNet-50, DenseNet-121, and DenseNet-169 were 
used for binary classification to overcome data limitations. 
In [20], an image processing technique based on an acetow-
hite mask image was proposed, allowing the model to con-
centrate on the pertinent region during training. In [18], pre-
trained DenseNet was employed to classify lesion levels in 
cervical images. DenseNet-169 outperformed DenseNet-121 
in accuracy and sensitivity, suggesting a positive correlation 
between network depth and sensitivity. The DenseNet-based 
classifiers outperformed SVM classifiers trained with cus-
tom features. Notably, the DenseNet models analyzed 600 
images in less than a minute.

Most studies focused on binary classification of cervical 
cancer. Only a few, such as [6, 19, 32], explored end-to-end 
multi-class classification using DL approaches without the 
need for cell segmentation and feature extraction. In [6], an 
innovative ensemble classifier was introduced for multi-class 
classification. The output of six classifiers (VGG-16, VGG-
19, Alexnet, ResNet-50, ResNet-101, and GoogleNet) were 
examined, and the top three models were combined using a 
voting strategy to create the ensemble classifier. Compared 
to other models, the proposed ensemble classifier demon-
strated significantly higher AUC values, outperforming 
Alexnet, VGGNet, ResNet, and GoogleNet. It demonstrated 
robustness by classifying Pap smear images without segmen-
tation techniques. The authors considered it the most gener-
alized model as it integrated three optimized CNN models. 
In [19], the authors presented an ensemble model with a 
novel fuzzy rank-based fusion technique to ensemble the 
top three CNN classifiers, leading to enhanced classification 
performance. However, they observed that some images with 
blur or overlapping cells could not be correctly identified, 
implying the need for pre-processing techniques.

Classification tasks typically require a large volume of 
quality images with annotation and balance distribution. 
Zhao et al. [33] innovatively resolved this challenge using a 

taming transformer (CCG-taming transformers) along with 
the introduction of new convolutional structures for data 
augmentation and presented Tokens-to-Token Vision Trans-
formers to perform multi-class classification. The CCG-tam-
ing transformers generated images that closely resembled 
actual cervical cells, serving as an effective training dataset 
leading to improved classification accuracy.

3 � Summary

The reviewed literature indicates a rising interest in the 
application of AI tools for cervical cancer screening. How-
ever, the studied algorithms suffer from the following limita-
tions and challenges:

	 (i)	 Limited Data Size: ML algorithms often require large 
datasets for satisfactory performance, but clinical 
data for cervical cancer diagnosis is often limited 
in size and quality. To compensate these limitations, 
studies applied various data pre-processing methods 
such as data augmentation [5, 7, 9, 10, 13, 14, 17, 
18], image enhancement [4, 9, 27, 30], and the inven-
tion of image generation tools [33] to address imbal-
anced class distribution and small datasets. However, 
a general strategy is still required to address this 
issue.

	 (ii)	 Class Imbalance Problem: Imbalanced class distribu-
tion is a common issue in medical datasets, with clas-
sification models often favoring the majority class. 
Existing approaches are effective for binary classes 
but face limitations in multi-class classification tasks 
[7, 19, 29, 30].

	 (iii)	 Reliant on Pre-processing Interventions: Feature 
extraction is a crucial stage in conventional clas-
sification methods, with conventional feature 
extraction methods and pre-trained CNNs being 
commonly used in the literature. Hybrid feature 
learning approaches that combine deep learning and 
other machine learning algorithms have also been 
explored. However, limited research has been con-
ducted on feature extraction for overlapping cells in 
raw medical images that may contain debris [4, 7, 
14, 27, 29, 30]. Furthermore, while recent studies 
have achieved excellent detection and classification 
results, there is still a requirement for a computation-
ally efficient cell segmentation method to be placed 
in the pipeline to accurately locate the region of 
interest and improve cancer detection accuracy [4, 
9, 13, 17].

	 (iv)	 Generalizability of Models: The majority of the 
research has centered around classification and detec-
tion models evaluated on a single dataset [4, 5, 9–11, 
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13, 17, 18, 20, 27, 28, 30, 31]. The models must be 
validated over a variety of datasets and benchmark 
models to increase their generalizability.

4 � Methodology

This study evaluated and compared 13 CNN models with 
transfer learning on the public Herlev dataset for seven-class 
classification of cervical cancer cells. This section presents 
the dataset and methodology implemented in this study.

4.1 � Datasets

This study used the Herlev [21] database, which is openly 
accessible and contains 917 pap smear images that are 
unevenly distributed over seven different classes of cervical 
cells. The Herlev dataset can be retrieved from: https://​mde-​
lab.​aegean.​gr/​downl​oads.

Figure 1 gives an example of the Herlev dataset in seven 
classes. Among these seven classes, the superficial squa-
mous epithelia, intermediate squamous epithelia, and colum-
nar epithelia belong to normal cells, whereas the others cor-
respond to malignant cells. The cell types are sorted from 
normal to abnormal cell levels, with carcinoma in situ being 
the highest-grade lesion in the Herlev dataset. Figure 2 gives 
the distribution of the Herlev dataset.

4.2 � Data Pre‑processing

As input to the CNNs, the Herlev database is loaded and 
transformed into an array that describes the shape of the 
input data. On top of that, a high degree of data variability is 

not ideal for model convergence. We normalized the inputs 
by scaling them into values between 0 and 1 to help the 
models generalize more rapidly and produce better results. 
To prevent over-fitting problem, the data are partitioned into 
a training set (80%), validation set (20%), and testing set 
(10%). Testing data are used to validate the models after they 
have been validated using training data.

4.3 � Methods

For classifying the cervical classes in this study, a transfer 
learning technique is employed. Transfer learning is referred 
to as the ability to apply knowledge and ability acquired 
from past work to new tasks. Customizing new CNN mod-
els from scratch requires enormous amounts of data for 
training as it is required to learn from millions of weights. 
However, it is a popular approach to automatically extract 
features from a new dataset using a pre-trained model. Each 
pre-trained model’s fully connected layers were replaced by 
modified fully connected layers with seven output nodes rep-
resenting the seven cervical classes. Figure 3 gives an over-
all workflow for cervical cancer classification in this study.

After extensive research and review of the existing litera-
ture in the study of cervical cancer, CNN models were found 
to be the most widely utilized supervised ML techniques. 
CNN is typically used to handle data with grid pattern, like 
images. In [25], the authors concluded that CNN does not 
demand meticulous extraction of fine features and manual 
segmenting tumors or organs, but CNN demands graphi-
cal processing units (GPUs) for the model training phase 
because it is more computationally expensive and requires 
large volumes of data.

Healthy
cells

superficial squamous

epithelia

intermediate

squamous epithelia
columnar epithelia

Class 1 Class 2 Class 3

Abnormal
cells

mild squamous non-

keratinizing dysplasia
moderate dysplasia severe dysplasia carcinoma in situ

Class 4 Class 5 Class 6 Class 7

Fig. 1   Samples of Herlev dataset in seven categories

https://mde-lab.aegean.gr/downloads
https://mde-lab.aegean.gr/downloads
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It has now become simpler to train DL for image classifi-
cation tasks thanks to the growing amount of image datasets 
and computing power. In the area of cervical cancer diagno-
sis, the authors in [3–5], and [8] showed how deep learning 
may be applied and its implication for analyzing cervical 
images that are complex in nature and to tackle observer 
biases. These recent works of literature had motivated us 
to investigate the potent potential of the widely used CNN 
architectures for image processing—VGG-16, VGG-19, 
DenseNet-121, DenseNet-169, DenseNet-201, ResNet-50, 
ResNet-101, ResNet-152, Inception, Xception, MobileNet, 
and MobileNet-v2. These models were chosen for their 
robust performance in a range of classification tasks.

These subsequent models are either built upon or 
enhanced versions of the initial vanilla CNN. Figure 4 illus-
trates the common fundamental components shared by these 
CNN models. These components are represented mathemati-
cally and discussed in Table 1.

DenseNet is a variant of CNN composed of Dense Blocks 
forming dense connections to directly connect all layers. 
To ensure a feed-forward configuration and transfer col-
lective knowledge to subsequent layers, each layer within 
the network receives inputs from all earlier layers while 
simultaneously imparting its own feature maps to those lay-
ers. Thus, this architecture offers improved computational 
efficiency and memory efficiency. This study experimented 
with DenseNet-121, DenseNet-169, and DenseNet-201 
which comprises of four dense blocks. DenseNet-121 has 
(6, 12, 24, 16) layers, DenseNet-169 has (6, 12, 32, 32) lay-
ers whereas DenseNet-201 has (6, 12, 48, 32) layers in the 
four dense blocks.

ResNet is a variant of CNN that is made up of residual 
blocks. The core of residual blocks is the skip or shortcut 
connection which can overcome the vanishing gradient 

drawbacks by allowing this alternate path for the informa-
tion to flow from one layer to the next layer after the imme-
diate next [6]. This study experimented with ResNet-101, 
ResNet-152, and ResNet-50 with 101, 152, and 50 layers, 
respectively.

Inception is a CNN design that was created to address 
the issue induced by complicated and deep networks. The 
Inception architecture employs parallel layers, leading to a 
broader network architecture instead of a deeper one. Xcep-
tion is a CNN architecture that is based on Inception and 
relies on modified depthwise separable convolution layers 
in which a 1 × 1 convolution is performed prior to any n × n 
spatial convolutions.

MobileNet uses depthwise separable convolutions and it 
is designed to be used in mobile applications. Compared to 
networks using conventional convolutions of the same depth, 
MobileNet has significantly fewer parameters and lower 
latency. It is recognized as one of the most compact CNN 
architectures. This study experimented with MobileNet and 
MobileNet-v2. MobileNet-v2 is an improved version of the 
MobileNet that integrates linear bottlenecks between the lay-
ers and has introduced a shortcut path to the bottlenecks to 
speed up training and improve accuracy.

Table 2 provides a concise overview of the essential char-
acteristics and fundamental operations of each model. In 
the table, Hi represents the feature maps generated at layer 
i , Xi denotes the input to layer i , � refers to the activation 
function, and Wi and bi represent the weights and biases, 
respectively.

Figure 5 gives a detailed description of the flow of the 
experiment. In step 3 of the figure, the superscripts indicate 
the specific layer within the model architecture. For instance, 
the CNN model's initial layer is indicated by “0” while the 
fifth layer is denoted by “5”. The pseudocode of the CNN 

Fig. 2   Distribution of the Herlev dataset
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Fig. 3   The workflow for cervical cancer classification using CNN with transfer learning

Fig. 4   The shared fundamental network structure of the CNN models employed in this study
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models with transfer learning is presented in Algorithm 1. 
The model takes the public Herlev dataset as input and pro-
duces class labels as output. Subsequently, the predicted 
class labels are evaluated against the ground truth (actual 
labels), and metrics including accuracy, specificity, sensitiv-
ity, recall, and F1-score are determined.

4.4 � Experimental Settings

VGG-16, VGG-19, DenseNet-121, DenseNet-169, 
DenseNet-201, ResNet-50, ResNet-101, ResNet-152, 
Inception, Xception, MobileNet, and MobileNet-v2 were 
employed as training models for the Pap images from 
the publicly available Herlev dataset. These models were 
selected because of their exceptional performance on several 
detection and classification tasks demonstrated in the sur-
veyed literature. The seven cervical classes were therefore 
classified using a transfer learning method.

Table 3 outlines the hyperparameters used to train the 
CNN models and these were determined after a thorough 
review of the literature. The last layers were altered to 
a customized fully connected layer made up of seven 
neurons compatible with the seven classes because this 
is a seven-class classification task. At the output layer, 
Softmax activation functions are specified. This function 
normalizes the outputs, transforming them from weighted 
sum values into the probability of membership for each 
class. The Softmax activation function can be represented 
by Eq. (1).

where exp
(

xi
)

 represents the exponential function applied to 
the input vector, exp

(

xj
)

 represents the exponential function 
applied to the output vector, and K refers to the number of 
classes.

(1)pi =
exp

�

xi
�

∑K

j=1
exp

�

xj
�
,

Table 1   Common core components of a CNN model

VGG based on AlexNet was proposed to address the depth of CNNs. VGG employs 1 × 1 convolutional layers to increase the decision function's 
non-linearity without compromising the receptive fields. VGG can have a lot of weight layers because of the 3 × 3 small convolution filters and 
having more layers will result in better performance. In the VGG network architecture, the number of filters along with each stack of the convo-
lutional layers make it a large network and this requires more time to train its parameters. This study experimented with the VGG-16 and VGG-
19 models that comprise of 16 and 19 convolutional layers, respectively

Core component Mathematical expression Details

Convolutional layer Convi = σi

(

Wi ∗ Xi + bi
)

where
Xi represent the input to the i-th convolutional layer,
Wi represent a set of filters for the i-th convolutional layer,
bi represent the bias term for each filter,
∗Represent the convolution operation, and
Convi represent the output feature maps from the i-th convo-

lutional layer

Function: Extract features
Input: 3D tensor (height, width, and channels of the data)
Output: Feature maps

Pooling layer Pooli
[

j, k, l
]

= max
(

Convi
[

Sij:
(

Sij + Ki
)

, Sik:
(

Sik + Ki
)

, l
])

,
where
Convi represent the input feature maps to the i-th pooling 

layer,
max() represent the pooling operation,
Ki represent the pooling size for the i-th pooling layer,
Si represent the stride for pooling, and
Pooli represent the output feature maps after pooling from the 
i-th pooling layer

Function: Downsample the feature maps
Input: Feature maps from the i-th convolutional layer
Output: Downsized feature maps

Fully connected layer FCi = �FCi

(

WFCi
∗ Fi + bFCi

)

,

where
Fi represent the flattened input vector to the i-th fully con-

nected layer,
WFCi

 represent the weight connecting the previous layer to the 
i-th fully connected layer,

bFCi
 represent the bias term for the i-th fully connected layer,

�FCi
 represent the activation function, and

FCi represent the output of the i-th fully connected layer

Function: Establishing connections between each neuron 
in the previous layer and the neurons in the current layer

Input: Flattened vector
Output: A vector representing the final prediction of the 

model
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A loss function, an optimizer, and selected  evalu-
ation measures are then used to evaluate the models. 
Loss is computed using sparse categorical cross-entropy. 
Improved training and test results are indicated by a 
decreased loss function value. Equation (2) shows the loss 
function employed in this study:

where qi denotes the true label, and pi denotes the prob-
ability associated with the i-th class. Then, Adam optimizer 
is applied to optimize the input weights by comparing the 
prediction.

The weights of the remaining layers have already been 
fine-tuned since the CNN models were previously trained 
using the publicly accessible ImageNet dataset, leaving just 
the customized output layers that require training. Accord-
ingly, a batch size of 32 and a total of 30 epochs were set 
for the training to ensure convergence. Additionally, the 

(2)Loss = −

K
∑

i=1

qi log pi,

selection of the number of epochs is also in reference to [6] 
and [10].

4.5 � Experimental Environments

The Keras library based on TensorFlow 2.8.2, an open-source 
Python deep learning library, has been used to implement the 
CNN architectures. The training of the network was imple-
mented in Google Collaboratory which supports free access 
to NVIDIA Tesla T4 GPU, a graphic driver with version 
460.32.03, and a CUDA 11.2 version.

4.6 � Evaluation Metrics

The output of the publicly available deep CNN models 
namely, VGG-16, VGG-19, DenseNet-121, DenseNet-169, 
DenseNet-201, ResNet-50, ResNet-101, ResNet-152, Xcep-
tion, MobileNet, and MobileNet-v2 were examined. An 
unknown set of testing data is provided to a classifier after 

Table 2   Overview and fundamental operations of the selected CNN models

Model Main features Mathematical expression of the fundamental opera-
tions

VGG-16, VGG-19 Deep architecture
Made up of convolutional layers with small 

filter size

Convolutional layer
Pooling layer
Fully connected layer

DenseNet-121, DenseNet-169, 
DenseNet-201

Introduced dense blocks that allow feed-for-
ward connectivity to every other layer

Allows feature reuse as the feature map size 
remains unchanged inside the dense block

A solution to vanishing gradient problem as 
the gradients pass directly through dense 
connections

Dense block:
Hi = �i

([

Hi−1, ...,H0

])

Transition layer:
Hi = �

(

Wi ∗ Hi−1 + bi
)

ResNet-50, ResNet-101, ResNet-152 Introduced residual learning based on skip 
connections

Deep architecture
Minimize model dimension and maximization 

of representational power via bottleneck

Residual block:
Hi = Hi−1 + �

(

Wi ∗ �

(

Wi−1 ∗ Hi−1 + bi−1
)

+ bi
)

Inception Introduced inception block which allows 
multiple filter sizes and pooling operations 
in parallel

Operates in lower depths

Inception module:
Hi = [1 × 1Conv, 3 × 3Conv, 5 × 5Conv,Pool] ∗ Xi,

where 1 × 1Conv, 3 × 3Conv, and 5 × 5Conv refers 
to a 1 × 1 , 3 × 3 and 5 × 5 convolution operation 
applied to the input feature maps, respectively

Xception Reduced computational complexity through 
depthwise convolution followed by a point-
wise convolution

Using blocks of depthwise separable convolu-
tion in parallel

Depthwise separable convolution:
Hi = �

(

DWi ∗
(

PWi ∗ Xi

))

,

where D and P denotes depthwise convolution and 
pointwise operations, respectively

MobileNet, MobileNet-v2 Shallow network architectures
Use of depthwise separable convolution
Suitable for low-powered devices

Depthwise separable convolution:
Hi = �

(

DWi ∗
(

PWi ∗ Xi

))

,

where D and P denotes depthwise convolution and 
pointwise operations, respectively
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training it with training data to check if it can accurately 
classify the samples. This study used accuracy, specificity, 
recall, sensitivity, and F1-score as the evaluation measures 
as these are among the most frequently used evaluation 
metrics to examine multi-class classification efficiency. The 
mathematical expression for the selected metrics is outlined 
in Table 4.

5 � Experimental Results

5.1 � Results of the Pre‑trained Classifier Models

In this work, the results of a baseline CNN model versus that 
of twelve other CNN models employing transfer learning were 
assessed and compared. Table 5 displays the performance 
comparison of all the models. To provide a clear reference to 
the top-performing CNN models, the best results were visually 
distinguished by bold formatting.

5.2 � Results of the Multi‑class Classification Task

The metrics for each model are averaged with respect to the 
cell classes in Fig. 6 to assess the overall robustness of pre-
trained CNN models for multi-class classification. This will 
help us understand the correlation between cell type, class 
distribution, and classification performance. To evaluate each 
model’s functionality, the accuracy of the models relative to 
the classes in Fig. 7 is provided.

6 � Analysis and Discussion

6.1 � Evaluation of the Pre‑trained CNN Models

The evaluation metrics and the computation time for the 13 
CNN models used in this study were analyzed and examined 
in this section. Next, the imbalance class problem on clas-
sification tasks is validated. Lastly, a comparison study is 

Fig. 5   Description of the experimental working flow
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Procedure
1. Pre-processing

Set the label from a categorical to a numerical value.

Set images size into 256 × 256.

Scale all input to a value between 0 to 1.

Train test split with sklearn.model_selection.

2. Build CNN models
Import modules and set the input layer
Import CNN models from tensorflow.keras.applications

Set input_shape = (width, height, 3), weights = ‘imagenet’, include_top = False)

Fixed the weights of the pre-trained models
For layer in Model.layers :

    layer.trainable = False

End for

Flatten the last layer
x = Flatten()(Model.output)

prediction = Dense(num_classes, activation = ‘softmax’)(x)

Compile operation
Model.compile(optimizer = ‘adam’, 

loss = ‘sparse_categorical_ crossentropy’, 

metrics = [‘accuracy’])

Print model summary
Model.summary()

3. Fitting a model
Model(X_train, y_train, epochs = 30, 

validation_data = (X_val, y_val), 

callbacks = [tensorboard_callback])

4. Model evaluation
model.predict(X_test) 

5. Create a confusion matrix
confusion_matrix(y_test, y_predict.argmax(axis = 1))

6. Calculate the evaluation metrics
For each y_predict do

Calculate: accuracy, specificity, sensitivity, recall, F1-score

End for

End Procedure

Algorithm 1   Pseudocode for cervical cancer cells classification using CNN models with transfer learning.
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conducted to study the differences in the performance of all 
the models that were studied.

6.1.1 � Performance of the Pre‑trained CNN Models

It should be noted that this study, like others in the same 
field, faces a common challenge, which is the lack of 

specified performance thresholds for detecting cervical 
cancer. The existing literature does not yet provide a target 
accuracy for classifying images related to cervical cancer 
screening. In [34], the authors concluded that guidelines 
from screening programs and professional organizations 
lack cited evidence supporting the performance metrics for 
cervical cancer tests. For example, the United Kingdom’s 
Office for Health Improvement & Disparities [35] set a per-
formance threshold of a sensitivity greater than 90% for all 
abnormalities and a sensitivity greater than 95% for high-
grade abnormalities, based on the accuracy of the initial 
cytology examination as determined by rapid review. On the 
other hand, the Canadian Partnership Against Cancer [36] 
set a performance threshold of at least 65% for percentage 
of positive Pap tests that are confirmed to have pre-cancer-
ous lesions or invasive cancer within a span of 12 months. 
However, these thresholds are inconsistent and lack cited 
evidence. Nevertheless, according to Foody [37], a widely 
accepted target for image classification accuracy is consid-
ered to be at least 85%. Hence, the results obtained in this 
study, which surpass 85%, can be considered broadly accept-
able. However, it is important to emphasize that accurate 
cancer detection is crucial and a matter of life and death, and 
therefore further improvement is indeed necessary. However, 
this current work does not delve into enhancing or improving 
the performance of the models as that is beyond the scope 
of this study.

Pre-trained networks were used in this study to get 
around the need for a massive number of datasets for train-
ing of CNN models. Results presented in Table 5 show that 
DenseNet-201 attained a superior accuracy of 87.02% and 
outperformed the ResNet-50, ResNet-101, ResNet-152, 
VGG-16, MobileNet-v2, Baseline CNN, VGG-19, 
DenseNet-121, Inception, DenseNet-169, MobileNet, and 

Table 3   Hyperparameters settings used for the pre-trained models

Hyperparameter Parameter setting

Input size 256 × 256 × 3

Batch size 32

Epoch 30

Activation function Softmax
Optimizer Adam
Learning rate 0.001

Loss function Sparse cat-
egorical cross-
entropy

Table 4   Mathematical expression of the selected metrics

TP true positive, TN true negative, FP false positive, FN false nega-
tive

Metrics Formula

Precision TP

TP+FP

Recall/Sensitivity TP

TP+FN

F1-score 2×Precision×Recall

Precision+Recall

Specificity TN

TN+FP

Accuracy TP+TN

TP+TN+FP+FN

Table 5   Performance metrics 
for the respective models

Model Training 
duration 
(mins)

Accuracy Precision Recall Specificity F1-score Sensitivity

Baseline CNN 00:48.3 0.8382 0.5415 0.5244 0.9021 0.5054 0.5244
VGG-16 03:16.9 0.8229 0.5016 0.4634 0.9063 0.4205 0.4634
VGG-19 04:23.4 0.8382 0.5415 0.5244 0.9021 0.5054 0.5244
DenseNet-121 01:58.5 0.8473 0.5346 0.5488 0.9051 0.5374 0.5488
DenseNet-169 02:30.1 0.8526 0.5755 0.5854 0.9077 0.5783 0.5854
DenseNet-201 02:49.6 0.8702 0.6226 0.6341 0.9151 0.6165 0.6341
ResNet-101 03:31.5 0.7445 0.0396 0.1341 0.8808 0.0434 0.1341
ResNet-152 05:30.2 0.7496 0.1134 0.1585 0.8839 0.0801 0.1585
ResNet-50 02:26.2 0.7145 0.1463 0.2317 0.7839 0.1015 0.2317
Inception 02:26.2 0.8486 0.5709 0.5732 0.9049 0.5705 0.5732
Xception 02:38.2 0.8672 0.6320 0.6220 0.9168 0.6214 0.6220
MobileNet 01:24.7 0.8611 0.6072 0.5976 0.9133 0.5961 0.5976
MobileNet-v2 00:57.5 0.8345 0.5061 0.5122 0.9036 0.5020 0.5122
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Xception models in terms of accuracy. All models except 
ResNet-50, ResNet-101, and ResNet-152 achieved accu-
racies of over 80%. Out of the models experimented, only 
four achieved accuracy levels above 85%. These models 
are DenseNet-169 with an accuracy of 85.26%, MobileNet 
with an accuracy of 86.11%, Xception with an accuracy of 
86.72%, and DenseNet-201 with the highest accuracy of 
87.02%.

On the other hand, it was found that the three ResNet 
models in this study had accuracy values in the range of 
71.45% and 74.96%, which were lower than the other mod-
els. The experimental results depicted in Fig. 8 show that 
ResNet-152 performs just slightly better than ResNet-50 and 

ResNet-101, despite taking a significantly longer training 
period. This implies that some of the layers may be unneces-
sary. This result is in line with the findings in [33] that one 
of the drawbacks of ResNet is that it preserves information 
from layers but many of these layers may provide little to 
no information.

As mentioned earlier, the highest accuracy was obtained 
by DenseNet-201. The network merges the features of 
the prior levels rather than adding them. To that end, 
DenseNet can eliminate the difficulties with vanishing gra-
dient, improve feature propagation, allow feature reuse, and 
require significantly fewer parameters. Additionally, the 
top three performing models of MobileNet, Xception, and 

Fig. 6   Comparison of average metrics obtained for each class
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Fig. 7   Comparison of class accuracy obtained for each model
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DenseNet-201 have exhibited great specificity and sensitiv-
ity. These models outperformed the ResNet models while 
having a less complex network architecture. This implies 
that a deep-layer network would not always be the best 
approach and might potentially cause the performance to 
deteriorate.

6.1.2 � Time Complexity Comparison

The comparison of model sizes and how this varies with the 
time required for training is shown in Fig. 9. It was discov-
ered that ResNet-152 which is the largest model and the one 
with the greatest number of parameters overall, required the 
greatest time to train (5.50 min). On the other hand, the base-
line CNN was observed to have the shortest training time 
due to its small and shallow model architecture. Moreover, 
the training times for MobileNet and MobileNet-v2 were just 
1.4 min and 0.95 min, respectively. The idea that inspired 
the development of the MobileNet and MobileNet-v2 mod-
els was to efficiently maximize accuracy on the constrained 
resources available for an embedded or on-device appli-
cation. Therefore, MobileNet and MobileNet-v2 are both 
shallow deep neural networks that can train very quickly 
due to the absence of several training parameters. To our 
knowledge, this is the first examination on the suitability and 
performance of MobileNet and MobileNet-v2 for cervical 
cancer screening.

6.1.3 � Limited Dataset and Imbalance Class Problems

Due to the limited dataset employed in this study, which 
contains only 917 images in total, the model accuracies were 

Fig. 8   Comparison of accuracy and training time of the ResNet mod-
els

Fig. 9   Comparison of number 
of total parameters, number of 
trainable parameters and train-
ing time (minutes) taken for 
each model
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encouraging but not particularly impressive and can still be 
further improved. The distribution of the seven classes was 
found to be unevenly distributed, indicating that the data 
is unbalanced. Only 26.39% of the images were classified 
as normal cells. This is a prevalent problem in the domain 
of medical imaging analysis since biological datasets are 
typically imbalanced and there are usually far more negative 
samples than positive ones [38].

In this experiment, the precision, recall, and sensitiv-
ity metrics were used to assess the problem of imbalanced 
data. Precision is sensitive to class imbalance since it takes 
into account the number of negative samples that have been 
incorrectly classified as positive. Table 5 shows that the top 
three performing models have a precision of between 0.62 
and 0.64. These figures suggest that although the accuracy 
is encouraging, the precision is not favorable because it is 
impacted by data imbalance. Nevertheless, the recall val-
ues of these three top-performing models were found to 
be between 0.59 and 0.64. The exclusion of the number of 
negative cases misclassified as positive caused such impact 
on recall.

It is important to highlight that the pre-trained models 
utilized in this study were originally trained on the ImageNet 
dataset, which is built on real-world natural images, and 
that the characteristics of natural images differ significantly 
from those of unprocessed Pap smear images. Therefore, the 
performance of the models may not have shown substantial 
improvement or outperformed a custom CNN model. The 
experimental results and performance comparison obtained 
from this study lay the groundwork for future investigations 
in this field.

6.1.4 � Comparative Studies

This study employed the Adam optimizer for 30 epochs with 
reference to the parameter settings in both [6] and [10]. The 
reason for these parameter selections is to be in line with 
the current trend in the existing literature and to compare 
the results with the existing studies presented in Table 6. It 
is worth noting that these may not be the ideal parameters 
to utilize, and additional tuning will certainly be necessary 
to achieve sophisticated performance, but they are sufficient 
to be used as preliminary results to lay the foundation for 
advanced research in this area. However, DenseNet-201 was 
not evaluated in both [6] and [10], hence we were unable to 
compare the model performance for this model. Addition-
ally, the performance of the VGG-16, VGG-19, Inception, 
Xception, and MobileNet models in this study was found 
to have surpassed the performance obtained in [10]. The 
authors in [10] used their own dataset rather than the Herlev 
dataset and different model settings, which may have con-
tributed to the differences in the results and findings.

In [33], the authors also evaluated the performance of 
DenseNet-201 and ResNet-50 along with its proposed model 
with 100 epochs on the public Herlev dataset. These promis-
ing results could be primarily due to the contribution of the 
CCG-taming transformers-based cervical image-generating 
tool, which addressed the issue of uneven distribution of 
classes and data limitations. This finding proved that larger 
datasets with balance class distribution can significantly 
improve the results of the pre-trained models.

Overall, the pre-trained models are highly convincing 
and inspiring, thereby demonstrating the practicality of our 
proposal for automated cervical cancer diagnosis without 
relying on segmentation methods or hand-crafted features.

6.2 � Evaluation of the Multi‑class Classification Task

This section focuses on evaluating the results of classifiers 
in multi-class classification. The performance metrics for 
each class are analyzed to identify any patterns of strong or 
weak performance across different classes. Subsequently, 
the performance of each model is assessed in relation to 
individual classes.

6.2.1 � Class‑by‑Class Performance Comparison

As shown in Fig. 6, Class 5 obtained the highest average 
accuracy, average recall, average specificity, and average 
sensitivity of all the classes, except for the average F1-score 
and average precision. This suggests that every pre-trained 
model evaluated in this study is competent at correctly clas-
sifying Class 5. Next to Class 5, the average accuracy, recall, 
specificity, and sensitivity of Class 2 were second-best 

Table 6   Comparison of accuracy with the results reported in [6, 10], 
and [33]

Models Accuracy 
[this study]

Accuracy 
[6]

Accuracy 
[10]

Accuracy 
[33]

Baseline CNN 0.8382 – – –
VGG-16 0.8229 0.8337 0.6670 –
VGG-19 0.8382 0.8455 – –
DenseNet-121 0.8473 – – –
DenseNet-169 0.8526 – – –
DenseNet-201 0.8702 – – 0.9687
ResNet-101 0.7445 0.9045 – –
ResNet-152 0.7496 – – –
ResNet-50 0.7145 0.8937 – 0.9554
Inception 0.8486 – 0.701 –
Xception 0.8672 – 0.731 –
MobileNet 0.8611 – 0.691 –
MobileNet-v2 0.8345 – – –
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overall. In addition, the average F1-score and average preci-
sion for Class 2 were shown to be greater than those of Class 
5 as seen in Fig. 6.

To explore the physical and visual characteristics of Class 
5 and Class 2, random samples were chosen from each class 
and presented in Fig. 10. We discovered that the attributes 
of these two classes are remarkably similar. They both were 
round in shape and have a large and dark nuclei. This may 
be the cause of the relative success of our models for these 
two classes in particular. These classes were probably easier 
to recognize than the other classes because of their visual 
attributes.

Moreover, it is worth noting that Class 5 is superior to the 
other classes in terms of sensitivity (0.7692) and specific-
ity (0.9091). The findings imply that the pre-trained models 
showed significant performance in accurately classifying 
Class 5 while simultaneously excluding the negative sam-
ples. Additionally, Class 2 revealed similar findings.

Contrastingly, it was discovered that all the abnormal cell 
classes, except for Class 5, obtained unsatisfactory classifi-
cation metrics values with accuracy lower than 0.80 and are 
significantly inferior to the normal classes. This suggests 
that the pre-trained models did not consistently give accurate 
classification results or perform well for the abnormal class. 
As such, this result supports the results and arguments pre-
sented in [7, 19, 29, 30] that classification models frequently 
favor the class with the highest weight.

In addition, we found that across all the classes, the 
average specificity is substantially higher than the average 
sensitivity. This revealed that while the models were good 
at accurately excluding the out-of-class samples from the 
relevant class, they struggled to correctly classify cells into 
the classes to which they belonged.

6.2.2 � Evaluation of Models in Terms of the Class‑by‑Class 
Performance

This section assessed the accuracy of multi-class classifica-
tion in regard to the pre-trained CNN models’ performance. 
Figure 11 showed that no single model worked well for 
all classes simultaneously. For each class, the models per-
formed differently. The following were observed:

•	 For the classification of Class 1, VGG-16 works best.
•	 For the classification of Class 2, Dense-Net-169, 

DenseNet-201, and Inception work best.
•	 For the classification of Class 3, Xception works best.
•	 For the classification of Class 4, DenseNet-201 work 

best.
•	 For the classification of Class 5, Dense-Net-169, 

DenseNet-201, and Inception work best.
•	 For the classification of Class 6, VGG-19 works best.
•	 For the classification of Class 7, MobileNet works best.

The findings mentioned above can imply that some mod-
els excel for particular cell attributes while others do not. 
The size of the samples for each class was also important. 
Additionally, the DenseNet-169, DenseNet-201, and Incep-
tion each obtained significant test accuracy with 1.0 for 
Class 2 and Class 5. Images from these two classes with a 
high degree of similarity are correctly classified by these 
models.

Additionally, all models, aside from the ResNets, per-
form best for a certain class. ResNets were not shown to be 
superior at classifying any particular classes. This suggests 
that the ResNets may preserve information from layers that 
provide little to no information or no information at all to the 
classification tasks, and instead, it appeared that the stored 

Fig. 10   Samples of Class 2 and Class 5
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Fig. 11   Class accuracy obtained by each model group
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information made the models to perform worse as the count 
of layers increased.

In addition, the results for each type of CNN structure are 
analyzed and compared in this part. For all classes except 
Class 1, Class 2, and Class 4, VGG-19 outperformed VGG-
16. Figure 11a shows that VGG-16 does not generally per-
form well for classes in the Normal class. It is concluded 
that deeper VGG networks perform better in abnormal cases 
whereas simpler VGG networks perform well in normal 
cases.

Xception is a variant of Inception that extends the intui-
tion of Inception to its extreme. For all classes other than 
Class 2 and Class 5, Xception was found to be slightly supe-
rior to Inception as seen in Fig. 11b. This suggests that the 
notion of Xception, which employed various filter sizes and 
depthwise spatial correlation, is promising.

In Fig. 11c, for all classes except Class 7, classification 
accuracy improves as the DenseNets networks get deeper. 
However, its accuracy for Class 7 is variable. DenseNet-121 
had the best accuracy, with DenseNet-201 and DenseNet-169 
close behind. Notably, all three DenseNets had the same set 
of accuracy values for Class 2 and Class 5. As previously 
highlighted, Class 2 and Class 5 have very similar appear-
ances. This could be one of the contributing factors to the 
observation and the fact that DenseNet dominates in these 
kinds of features.

In Fig. 11d, the performance of the smallest ResNet, 
RestNet-50, is the best of the three ResNets across all 
the classes, except for Class 4. Additionally, ResNet-50 
performed remarkably well for Class 6 compared to the 
other classes, but ResNet-101 and ResNet-152 performed 
poorly. Moreover, as the network gets deeper, there was no 
improvement shown for Classes 1, 3, and 7. The observed 
results lead us to conclude that the ResNet structures fail to 
efficiently accomplish the multi-class classification prob-
lem in our case and that deeper ResNet networks were 
found to waste computational resources but do nothing to 
improve performance.

In Fig. 11e, the MobileNet was reported to be superior 
to the MobileNet-v2, but the performance for Class 5 was 
found to be on par for both models with an accuracy of 
0.9878. Based on this finding, we presumed that MobileNet-
v2 is inferior to MobileNet for multi-class classification on 
cervical cell images.

Overall, DenseNets were found to be superior to other 
pre-trained models for seven-class classification directly on 
the Herlev dataset without any pre-processing. As stated ear-
lier, the DenseNets improved along with the increment of 
network layers, and the DenseNets-201 which is the deepest 
structure was found to be the best-performing model among 
the three DenseNets studied in this paper.

7 � Conclusion and Future Work

This study examined various pre-trained CNN models for 
detecting cervical cancer using publicly available datasets 
and built the groundwork for future agenda on automating 
cervical cancer detection and explored the effectiveness of 
DL models in multi-class classification problems. The key 
findings that addressed the various challenges in the litera-
ture are summarized below.

	 (i)	 Limited Data Size: In this study, all the pre-trained 
CNN models, except for ResNets, achieved accuracy 
levels higher than 80%. Additionally, all 13 CNN 
models were trained in less than 6 min. In the case 
of the small public Herlev dataset, transfer learning 
was shown to be a practical and relevant method for 
addressing time constraints and the scarcity of high-
quality medical data.

	 (ii)	 Class Imbalance Problem: The models appeared to 
be particularly adept at classifying Class 2 and Class 
5, and this was most likely because these two classes 
shared commonalities in appearance. Additionally, 
although some models were found to be superior at 
classifying a particular class of cells, none of the 
models were able to do it for all seven classes at 
once. Future studies should perform in-depth reviews 
of the strategies for addressing class imbalance in 
machine learning.

	 (iii)	 Reliant on Pre-processing Intervention: The deep 
CNN model that skipped the pre-segmentation and 
feature extraction stages with the best performance 
was found to be DenseNet-201, which trained in 
2 min and 49  s and had the highest accuracy of 
0.8702. Despite acquiring encouraging results with 
the models, it is possible to further improve their per-
formance through hyperparameter tuning, additional 
testing, and ensemble techniques.

	 (iv)	 Generalizability of Models: To the best of our knowl-
edge, this study is the first in comparing 13 CNN 
models and extensively assesses each model’s per-
formance in cervical cancer classification on a class-
by-class basis.
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