Skip to main content
Log in

Computer-Aided Diagnosis of Complications After Liver Transplantation Based on Transfer Learning

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Liver transplantation is one of the most effective treatments for acute liver failure, cirrhosis, and even liver cancer. The prediction of postoperative complications is of great significance for liver transplantation. However, the existing prediction methods based on traditional machine learning are often unavailable or unreliable due to the insufficient amount of real liver transplantation data. Therefore, we propose a new framework to increase the accuracy of computer-aided diagnosis of complications after liver transplantation with transfer learning, which can handle small-scale but high-dimensional data problems. Furthermore, since data samples are often high dimensional in the real world, capturing key features that influence postoperative complications can help make the correct diagnosis for patients. So, we also introduce the SHapley Additive exPlanation (SHAP) method into our framework for exploring the key features of postoperative complications. We used data obtained from 425 patients with 456 features in our experiments. Experimental results show that our approach outperforms all compared baseline methods in predicting postoperative complications. In our work, the average precision, the mean recall, and the mean F1 score reach 91.22%, 91.70%, and 91.18%, respectively.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The source code is available at https://github.com/laugoon/Computer-Aided-Diagnosis-of-Complications-After-Liver-Transplantation-Based-on-Transfer-Learning.

References

  1. Deok-Bog Moon SGL (2009) Liver transplantation. Gut Liver 3(3):145–165. https://doi.org/10.5009/gnl.2009.3.3.145

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bertacco A, Barbieri S, Guastalla G et al (2019) Risk factors for early mortality in liver transplant patients. Transplant Proc 51(1):179–183. https://doi.org/10.1016/j.transproceed.2018.06.025

    Article  CAS  PubMed  Google Scholar 

  3. Salviano MEM, Lima AS, Tonelli IS et al (2019) Primary liver graft dysfunction and non-function: integrative literature review. Rev Col Bras Cir. https://doi.org/10.1590/0100-6991e-20192039

    Article  PubMed  Google Scholar 

  4. Uemura T, Randall HB, Sanchez EQ et al (2007) Liver retransplantation for primary nonfunction: analysis of a 20-year single-center experience. Liver Transpl 13(2):227–233. https://doi.org/10.1002/lt.20992

    Article  PubMed  Google Scholar 

  5. Sarhan MD, Osman AM, Mohamed MA et al (2017) Biliary complications in recipients of living-donor liver transplant: a single-center review of 120 patients. Exp Clin Transplant 15(6):648–57. https://doi.org/10.6002/ect.2016.0210

    Article  PubMed  Google Scholar 

  6. Craig EV, Heller MT (2021) Complications of liver transplant. Abdom Radiol 46(1):43–67. https://doi.org/10.1007/s00261-019-02340-5

    Article  Google Scholar 

  7. Liu CL, Soong RS, Lee WC et al (2020) Predicting short-term survival after liver transplantation using machine learning. Sci Rep 10(1):1–10. https://doi.org/10.1038/s41598-020-62387-z

    Article  ADS  CAS  Google Scholar 

  8. Kantidakis G, Putter H, Lancia C et al (2020) Survival prediction models since liver transplantation-comparisons between cox models and machine learning techniques. BMC Med Res Methodol 20(1):1–14. https://doi.org/10.1186/s12874-020-01153-1

    Article  Google Scholar 

  9. Ray S (2021) A survey on application of machine learning algorithms in cancer prediction and prognosis. In: Data Management, Analytics and Innovation: Proceedings of ICDMAI 2020, Volume 1, pp 349–361, https://doi.org/10.1007/978-981-15-5616-6_25

  10. Lundberg SM, Lee SI (2017) A unified approach to interpreting model predictions. Adv Neur in 30. https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf

  11. Asadi H, Kok HK, Looby S et al (2016) Outcomes and complications after endovascular treatment of brain arteriovenous malformations: a prognostication attempt using artificial intelligence. World Neurosurg 96:562–569. https://doi.org/10.1016/j.wneu.2016.09.086

    Article  PubMed  Google Scholar 

  12. Hope TM, Seghier ML, Leff AP et al (2013) Predicting outcome and recovery after stroke with lesions extracted from mri images. Neuroimage Clin 2:424–433. https://doi.org/10.1016/j.nicl.2013.03.005

    Article  PubMed  PubMed Central  Google Scholar 

  13. Li Y, Liu X, Jiang Y et al (2021) Low preoperative prealbumin predicts the prevalence of complications following liver transplantation. BMC Gastroenterol 21(1):1–9. https://doi.org/10.1186/s12876-021-01818-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Al-Stouhi S, Reddy CK (2016) Transfer learning for class imbalance problems with inadequate data. Knowl Inf Syst 48(1):201–228. https://doi.org/10.1007/s10115-015-0870-3

    Article  PubMed  Google Scholar 

  15. Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359. https://doi.org/10.1109/TKDE.2009.191

    Article  Google Scholar 

  16. Liu T, Yang Q, Tao D (2017) Understanding how feature structure transfers in transfer learning. In: IJCAI, pp 2365–2371, https://doi.org/10.24963/ijcai.2017/329

  17. Pan SJ, Tsang IW, Kwok JT et al (2010) Domain adaptation via transfer component analysis. IEEE Trans Neural Netw 22(2):199–210. https://doi.org/10.1109/tnn.2010.2091281

    Article  PubMed  Google Scholar 

  18. Ghosn J, Bengio Y (2003) Bias learning, knowledge sharing. IEEE Trans Neural Netw 14(4):748–765. https://doi.org/10.1109/tnn.2003.810608

    Article  CAS  PubMed  Google Scholar 

  19. Ozawa S, Roy A, Roussinov D (2009) A multitask learning model for online pattern recognition. IEEE Trans Neural Netw 20(3):430–445. https://doi.org/10.1109/tnn.2008.2007961

    Article  PubMed  Google Scholar 

  20. Zhuang FZ, Luo P, He Q et al (2015) Survey on transfer learning research. J Softw 26(1):26–39. https://doi.org/10.13328/j.cnki.jos.004631

    Article  MathSciNet  Google Scholar 

  21. Long MS (2014) Transfer learning: problems and methods. PhD thesis, Department of Computer Science and Technology, Tsinghua University, http://ise.thss.tsinghua.edu.cn/%7Emlong/doc/phd-thesis-mingsheng-long.pdf

  22. Day O, Khoshgoftaar TM (2017) A survey on heterogeneous transfer learning. J Big Data 4:1–42. https://doi.org/10.1186/s40537-017-0089-0

    Article  Google Scholar 

  23. Pan SJ, Kwok JT, Yang Q, et al (2008) Transfer learning via dimensionality reduction. In: AAAI, pp 677–682, https://www.cse.ust.hk/~qyang/Docs/2008/AAAIsinnoA.pdf

  24. Suykens JA (2008) Data visualization and dimensionality reduction using kernel maps with a reference point. IEEE Trans Neural Netw 19(9):1501–1517. https://doi.org/10.1109/tnn.2008.2000807

    Article  PubMed  Google Scholar 

  25. Li J, Lu K, Huang Z et al (2018) Heterogeneous domain adaptation through progressive alignment. IEEE Trans Neural Netw Learn Syst 30(5):1381–1391. https://doi.org/10.1109/tnnls.2018.2868854

    Article  MathSciNet  PubMed  Google Scholar 

  26. Hearst MA, Dumais ST, Osuna E et al (1998) Support vector machines. IEEE Intell Syst App 13(4):18–28. https://doi.org/10.1109/5254.708428

    Article  Google Scholar 

  27. Huang S, Cai N, Pacheco PP et al (2018) Applications of support vector machine (svm) learning in cancer genomics. Cancer Genom Proteom 15(1):41–51. https://doi.org/10.21873/cgp.20063

    Article  CAS  Google Scholar 

  28. Ribeiro MT, Singh S, Guestrin C (2016) "why should i trust you?" explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp 1135–1144, https://doi.org/10.1145/2939672.2939778

  29. Lin Y, Cai Z, Jiang Y et al (2010) Perioperative risk factors for pulmonary complications after liver transplantation. J Int Med Res 38(5):1845–1855. https://doi.org/10.1177/147323001003800532

    Article  CAS  PubMed  Google Scholar 

  30. Kim J, Nguyen TT, Li Y et al (2020) Contrasting effects of stored allogeneic red blood cells and their supernatants on permeability and inflammatory responses in human pulmonary endothelial cells. Am J Physiol-Lung C 318(3):L533–L548. https://doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a5582

    Article  Google Scholar 

  31. Tan L, Wei X, Yue J et al (2021) Impact of perioperative massive transfusion on long term outcomes of liver transplantation: a retrospective cohort study. Int J Med Sci 18(16):3780. https://doi.org/10.7150/ijms.61697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Benson AB, Burton JR Jr, Austin GL et al (2011) Differential effects of plasma and red blood cell transfusions on acute lung injury and infection risk following liver transplantation. Liver Transpl 17(2):149–158. https://doi.org/10.1002/lt.22212

    Article  PubMed  PubMed Central  Google Scholar 

  33. Feltracco P, Carollo C, Barbieri S et al (2013) Early respiratory complications after liver transplantation. World J Gastroenterol 19(48):9271. https://doi.org/10.3748/wjg.v19.i48.9271

    Article  PubMed  PubMed Central  Google Scholar 

  34. Pippard B, Bhatnagar M, McNeill L et al (2022) Hepatic hydrothorax: a narrative review. Pulm Ther 8(3):241–254. https://doi.org/10.1007/s41030-022-00195-8

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hiroi K, Matsusaki T, Kaku R et al (2019) Postoperative course of serum albumin levels and organ dysfunction after liver transplantation. Transpl Proc 51(8):2750–2754. https://doi.org/10.1016/j.transproceed.2019.01.199

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is jointly supported by the National Natural Science Foundation of China (No.52078212), the Key Medical Professional Development Plan of Beijing Municipal Hospital Administration (No.ZYLX201822), and the State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research under Grant IWHR-SKL-202003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Appendix A Instance Example

Appendix A Instance Example

figure b

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Shangguan, C., Zhang, X. et al. Computer-Aided Diagnosis of Complications After Liver Transplantation Based on Transfer Learning. Interdiscip Sci Comput Life Sci 16, 123–140 (2024). https://doi.org/10.1007/s12539-023-00588-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-023-00588-6

Keywords

Navigation