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Abstract 
Chest radiography is a widely used diagnostic imaging procedure in medical practice, which involves prompt reporting of 
future imaging tests and diagnosis of diseases in the images. In this study, a critical phase in the radiology workflow is auto‑
mated using the three convolutional neural network (CNN) models, viz. DenseNet121, ResNet50, and EfficientNetB1 for 
fast and accurate detection of 14 class labels of thoracic pathology diseases based on chest radiography. These models were 
evaluated on an AUC score for normal versus abnormal chest radiographs using 112120 chest X–ray14 datasets containing 
various class labels of thoracic pathology diseases to predict the probability of individual diseases and warn clinicians of 
potential suspicious findings. With DenseNet121, the AUROC scores for hernia and emphysema were predicted as 0.9450 
and 0.9120, respectively. Compared to the score values obtained for each class on the dataset, the DenseNet121 outperformed 
the other two models. This article also aims to develop an automated server to capture fourteen thoracic pathology disease 
results using a tensor processing unit (TPU). The results of this study demonstrate that our dataset can be used to train models 
with high diagnostic accuracy for predicting the likelihood of 14 different diseases in abnormal chest radiographs, enabling 
accurate and efficient discrimination between different types of chest radiographs. This has the potential to bring benefits to 
various stakeholders and improve patient care.
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Graphical Abstract
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General representation of a convolutional neural network Sample chest X-ray image for all classes in chest X-ray14

Keywords  Chest X-ray diagnosis · Chest X-ray14 · Deep ConvNet diagnosis · TPU training

1  Introduction

Convolutional Neural Networks, also known as CNNs or 
ConvNets, have become a widely used method in the field 
of computer vision. Following the success of AlexNet [1] 
in ILSVRC 2012, CNNs have been extensively applied to 
various Cardiovascular (CV) tasks using deep learning. 
As time has passed, the architecture of CNNs has become 
increasingly complex and deep, leading to the develop‑
ment of deep ConvNets. With improvements in network 
architecture and computer hardware, we have been able 
to train these deep ConvNets, which have shown sig‑
nificant performance improvements in object detection, 
recognition, and image segmentation tasks. A general 

representation of a convolutional neural network is pro‑
vided in Fig. 1. The availability of large datasets and the 
progress in deep learning have made it possible for models 
to achieve human-level performance in many fields. Medi‑
cal image analysis, such as the detection and segmentation 
of radiology images, has also yielded promising results 
using deep learning.

The detection of many diseases can be achieved through 
the use of chest radiology, which is the best and most com‑
monly used clinical imaging tool. Every year, more than two 
billion chest radiology imaging tests are conducted [2]. This 
imaging tool is crucial for identifying various thoracic dis‑
eases, which are the leading cause of mortality worldwide. It 
would be exponentially beneficial if computer systems could 
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interpret chest X-rays with the same efficiency as a prac‑
ticing radiologist [3, 4]. Over the last few years [5–9], the 
diagnosis of chest radiology images has received increased 
attention, and several algorithms have been developed for 
pulmonary tuberculosis classification [10–13] and pneumo‑
nia detection [3, 14, 15]. During the pandemic, deep learning 
has also found its usage in COVID-19 detection [16–21].

Our proposed study aims to identify multiple pathology 
diseases by re-implementing the CheXNet model and con‑
structing several additional models with nearly identical 
hyperparameters. These models will be compared side-by-
side. Additionally, we aim to train these models on a Ten‑
sor Processing Unit (TPU) to reduce training time. Deep 
learning has made significant advancements in the field of 
medicine due to the availability of vast datasets, enabling 
the development of models that surpass the performance of 
medical professionals. For instance, pneumonia detection [3, 
14, 15], skin cancer classification [22–24], and lung cancer 
screening [25–27] have all benefited from deep learning. 
CheXNet [3], an algorithm that can detect pneumonia from 
chest X-rays, performs better than practicing radiologists. 
CNN models, such as CheXNeXt [4], can identify various 
pathologies diseases with a performance similar to that of 
practicing board-certified radiologists using frontal-view 
chest X-rays.

In recent years, various life-threatening diseases have 
been detected and diagnosed using deep learning tech‑
niques by a number of researchers [28–32]. Baltruschat et al. 
[28] conducted a study comparing multiple deep-learning 
approaches to classify chest X-Ray images with multiple 
labels. They analyzed various methods for using CNNs to 
classify X-ray images from the Chest X-ray14 dataset and 
found that fine-tuned networks using the ImageNet dataset 
produced satisfactory results. However, the most effective 
model was specifically trained using only X-ray images and 
incorporated non-image data. A systematic survey of deep 
learning techniques for the analysis of COVID-19 and their 
usability for detecting Omicron has been provided by [32]. 
The COVID-19 pandemic has caused a shift towards uti‑
lizing deep learning methods for analyzing and identifying 
infected areas in radiology images. These techniques can 
be divided into classification, segmentation, and multi-stage 

approaches used for COVID-19 diagnosis at both the image 
and region levels. Khan et al. [33] introduced a new method 
called deep hybrid learning (DHL) and deep boosted hybrid 
learning (DBHL) for accurately detecting COVID-19 in 
chest X-ray images. The DBHL technique involves using 
data augmentation, transfer learning-based fine-tuning, 
deep features boosting, and hybrid learning to improve 
the performance of the COVID-RENets models (COVID-
RENets-1 and COVID-RENets-2). In their experiments, 
the DBHL framework outperformed other well-established 
CNN models.

Stirenko et al. [11] conducted a study on the use of deep 
learning-based computer-aided diagnosis (CADx) to predict 
the presence of tuberculosis by statistically analyzing 2D 
chest X-ray images. They demonstrated the effectiveness of 
deep CNN for CADx of tuberculosis, particularly through 
techniques like lung segmentation and data augmentation, 
both lossless and lossy, on a small and unbalanced dataset. 
Rahman et al. [14] presented a study that aimed to develop 
an automated method for identifying bacterial and viral 
pneumonia by analyzing digital X-ray images. They gave 
a comprehensive overview of current approaches to detect‑
ing pneumonia and described the specific techniques used 
in their research. Alakus and Turkoglu [17] created clinical 
predictive models using deep learning and laboratory data 
to forecast which patients were likely to contract COVID-
19. They evaluated the models’ effectiveness using various 
performance metrics like precision, F1-score, recall, AUC, 
and accuracy with data from 600 patients and 18 labora‑
tory findings and validated them through ten-fold cross-
validation and train-test split methods. The results showed 
that the predictive models accurately identified patients with 
COVID-19. Dey et al. [15] designed a Deep-Learning Sys‑
tem (DLS) for diagnosing lung abnormalities by using chest 
X-ray images. They tested the system with conventional and 
filtered chest radiographs and conducted an initial evaluation 
using a SoftMax classifier. The outcomes indicated that the 
VGG19 method provided higher classification accuracy than 
other methods.

Khan et al. [34] have proposed a new diagnostic system 
that employs deep CNNs to detect and analyze COVID-19 
infections by identifying minor irregularities. This system 

Fig. 1   General representation of 
a convolutional neural network
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comprises two phases. In the first phase, a new CNN named 
SB-STM-BRNet is utilized to identify COVID-19 infections 
in lung CT images. This is achieved using a Squeezed and 
Boosted (SB) channel and a Split-Transform-Merge (STM) 
block with dilated convolutions. In the second phase, the 
COVID-CB-RESeg CNN is employed to detect and analyze 
COVID-19-infected areas in the images. This CNN incor‑
porates region-homogeneity and heterogeneity operations 
in each encoder-decoder block and auxiliary channels in 
the boosted-decoder to learn about low illumination and the 
boundaries of the infected regions. The proposed diagnostic 
system has shown promising results in identifying COVID-
19 infections. Additionally, Khan et al. [35] have introduced 
a new CNN architecture called STM-RENet, which utilizes 
a split-transform-merge approach to analyze X-ray images 
and identify radiographic patterns associated with COVID-
19 infection. This block-based CNN includes a new con‑
volutional block named STM, which separately and jointly 
performs region and edge-based operations. By combining 
these operations with convolutional techniques, STM-RENet 
can analyze the homogeneity of regions, intensity inhomoge‑
neity, and features that define boundaries. The authors have 
also presented an improved version of STM-RENet called 
CB-STM-RENet, which utilizes channel boosting and learns 
textural variations to enhance its performance. When evalu‑
ated on three datasets, CB-STM-RENet demonstrated sig‑
nificantly superior results than conventional CNNs.

A major limitation of previous research in the field of deep 
CNNs for chest X-ray diagnosis is that many studies have 
only examined their ability to perform binary classification 
tasks. These tasks involve detecting the presence or absence 
of a specific disease. There is a need for more research on 
the ability of these models to simultaneously detect and 
classify multiple diseases or conditions in a single image. 
Moreover, there are two additional issues in previous studies. 

First, many studies have used small and potentially biased 
datasets, which negatively impacts the generalizability and 
accuracy of these models. Therefore, the need for more 
extensive and diverse datasets is essential. Second, there 
has been a lack of research on the ability of deep learning 
models to diagnose rare or less common diseases in chest 
X-rays accurately. Finally, previous studies have relied on 
simple accuracy metrics, which is inadequate for evaluating 
the performance of these models. More robust evaluation 
methods, such as sensitivity, specificity, and area under the 
curve, are required to understand these models’ performance 
better.

2 � Materials and Methods

2.1 � Dataset

A significant amount of research has been done using the 
Chest X-ray14 dataset [3, 7–9, 36–38]. The dataset has been 
collected and made openly available by the National Institute 
of Health. It consists of 112120 frontal view chest X-ray 
images of 30805 unique patients. When loaded, these images 
are single-channel gray-scale images and need to be con‑
verted to 3-channel images to allow our pre-trained model 
to process them. Each image in the dataset is annotated with 
up to 14 different thoracic pathology labels. Figure 2 shows 
a sample for each of these diseases from the dataset itself. 
Table 1 lists all the diseases in chest X-ray14.

Wang et al. [39] used NLP to text-mine disease classi‑
fications from the related radiological reports to label the 
images. The labels are expected to have an accuracy greater 
than 90% [40]. The dataset also consists of images labeled 
as No Finding, which simply indicates that the NLP system 

Atelectasis Cardiomegaly Consolidation Edema Effusion Emphysema Fibrosis

Hernia Infiltration Mass Nodule Pleural Thickening Pneumonia Pneumothorax

Fig. 2   Sample chest X-ray image for all classes in the chest X-ray14
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was unable to find any diseases for that particular image. It 
does not necessarily imply a healthy chest X-ray image. To 
be able to train on a TPU, the entire dataset was converted 
to tfrecord and made publicly available at NIH Chest X-ray 
TFRecords.1

2.2 � Dataset Distribution

Table 1 provides a breakdown of the total positive labels for 
each of the 14 pathology diseases. To train and evaluate the 
models, the entire dataset was divided into three sets: a train‑
ing set, a validation set, and a test set, in accordance with the 
recommendations of [41–44]. It is important to note that the 
dataset was not simply split into three parts. This is because 
the dataset contains follow-up images for each patient, and a 
direct split could result in data leaks, leading to misleading 
results. Instead, the dataset was first grouped by patient IDs, 
treating each patient as a separate entity, then split into the 
following three sets.

•	 Training dataset: 85% of the total groups.
•	 Validation dataset: 10% of the total groups.
•	 Test dataset: 5% of the total group.

Hence, the distribution of the dataset used is given as 
follows.

•	 Training dataset: 95466 examples.
•	 Validation dataset: 11265 examples.
•	 Test dataset: 5389 examples.

2.3 � Dataset Preprocessing

The dataset needs to be preprocessed before building and 
training the model. The X-ray images in the dataset were 
preprocessed. For the training set, each image was standard‑
ized by subtracting the mean and standard deviation of that 
image from each pixel of that image.

Here, i refers to the ith image in the training set, j refers to the 
jth pixel in the ith image, and X̂ represents the standardized 
image. Similarly, X̄ represents the mean of an image, and � 
represents the standard deviation of an image.

For standardization of validation and test set, the mean 
and standard deviation for each channel were calculated 
using a single batch of the training set, which was hypoth‑
esized to represent the mean and standard deviation of the 
entire training set. Then the individual images in the vali‑
dation and test were standardized (feature-wise) using the 
above-stated formula. After standardizing, the images in the 
dataset were re-scaled to 224 × 224 ; this was done to remain 
consistent with the pre-trained models. The models used 
were pre-trained on the ImageNet dataset with an input size 
of 224 × 224 per image. After re-scaling, the images were 
batched, with each batch containing 16 × 8 (for DenseNet 
and ResNet50 models) and 8 × 8 (for EfficientNetB1 model) 
examples. The batch size was kept large to utilize TPU effi‑
ciently. Figure 3 shows the generalized workflow taken while 
developing models for this paper.

3 � Model Development

3.1 � Transfer Learning

Transfer learning refers to the idea of taking a model trained 
on a different task and using this pre-trained model for a 
downstream task. Figure 4 briefly describes the idea behind 
transfer learning. This paper uses a handful of models 
trained on the ImageNet [45] dataset, trains, or fine-tunes 
them for the task of chest X-ray diagnosis using transfer 
learning. All model variants are trained on a TPU, and their 
AUROC scores are recorded on the held-out test set.

3.2 � DenseNet121

The first model used as the backbone for this task was 
the DenseNet121 [46]. Densely Connected Convolutional 

X̂
[i]

j
=

X
[i]

j
− X̄[i]

𝜎[i]

Table 1   List of all diseases in chest X-ray14

Pathology Total positives

Atelectasis 11559
Cardiomegaly 2776
Effusion 13317
Infiltration 19894
Mass 5782
Nodule 6331
Pneumonia 1431
Pneumothorax 5302
Consolidation 4667
Edema 2303
Emphysema 2516
Fibrosis 1686
Pleural Thickening 3385
Hernia 227

1  https://​www.​kaggle.​com/​harsh​soni/​nih-​chest-​xray-​tfrec​ords

https://www.kaggle.com/harshsoni/nih-chest-xray-tfrecords


379Interdisciplinary Sciences: Computational Life Sciences (2023) 15:374–392	

1 3

Networks, or simply DenseNet, is another way to keep 
increasing the depth of a deep convolutional network. The 
problem in deep convnets arises when they become so deep 
that the gradients vanish on their way back. Huang et al. [46] 
designed an architecture to ensure maximum gradient flow 
during back-propagation to resolve this problem. DenseNet 
exploits the potential of the network through feature reuse. 
The architecture for DenseNets is exhibited in Fig. 6(a). This 
paper uses a DenseNet121, a 121-layered convolutional neu‑
ral network model. This model derives inspiration from the 

CheXNet model and is a re-implementation of the same. To 
use transfer learning on the DenseNet121, the final dense 
layer of the pre-trained model was replaced by a Dense layer 
with 14 units, and a sigmoid activation was applied to it. The 
resultant model architecture is shown in Fig. 5. In addition, 
the training parameters for the DenseNet121 backbone are 
given in Table 2.

Fig. 3   Generalized workflow for 
the process

Data Pre-processing

Standardization

Training Set

(95,466 images)

Validation Set

(11,265 images)

Test Set

(5,389 images)

Rescale Images

(224 × 224)

Batch Images

⁄8 × 8 16 × 80

Model Development
DenseNet121

ResNet50

EfficientNetB1

Model Training
Hardware: TPU

Epochs: 100

Early Stopping

Evaluation
Metric: AUROC

Result

Fig. 4   Transfer learning process

input_18: InputLayer
input: ? , 224, 224, 3

output: ? , 224, 224, 3

densenet121: Functional
input: ? , 224, 224, 3

output: ? , 7, 7, 1024

global_average_pooling2d_8: GlobalAveragePooling2D
input: ? , 7, 7, 1024

output: ? , 1024

dense_20: Dense
input: ? , 1024

output: ? , 14

Sigmoid_1: Activation
input: ? , 14

output: ? , 14

Fig. 5   Model architecture using DenseNet121 as a backbone
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Fig. 6   Model architecture on ImageNet for a DenseNet [46]; b ResNet [47]; and c EfficientNet-B0 baseline network [48]
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3.3 � ResNet50

The second model used as the backbone for the diagnosis 
task was the ResNet50 [47]. ResNets are an exciting class 
of models and have served as the state-of-the-art model for 
various tasks. A deep neural network architecture tends to 
give a more significant error as compared to a comparatively 
shallow neural network. He et al. [47] overcame this problem 
by introducing a deep residual learning framework and skip 
or residual connections. Figure 6(b) exposes the architec‑
tures of different ResNets.

In this work, ResNet50V2 uses 50 layered deep convo‑
lutional neural networks with multiple residual connec‑
tions. The pre-trained model was modified to apply trans‑
fer learning for this diagnosis task. For this task, the final 
fully connected layers of the pre-trained ResNet50V2 model 
were replaced by an average pooling, followed by a series 
of dense, relu, and dropout layers. A final dense layer with 
14 units followed by a sigmoid was utilized for the output. 
The resultant model architecture is shown in Fig. 7. Also, 
the training parameters for the ResNet50V2 backbone are 
depicted in Table 3.

3.4 � EfficientNetB1

The third and last model used as the backbone for this task 
was EfficientNetB1 [48]. EfficientNets are a class of effi‑
ciently designed models to optimize the model’s perfor‑
mance while having a considerably low amount of train‑
able parameters. Tan and Le [48] came up with a better way 
of scaling the network, which they call compound scaling, 
in which they selected an efficient scaling for all − width, 
depth, and image resolution. The baseline network architec‑
ture of EfficientNetB0 is shown in Fig. 6(c).

To use transfer learning on the EfficientNetB1, the final 
Dense layer of the pre-trained model was replaced by a 
Dense layer with 14 units, and a sigmoid activation was 
applied to it. The resultant model architecture is shown in 
Fig. 8. Also, the training parameters for the EfficientNetB1 
backbone are presented in Table 4.

input_16: InputLayer
input: ? , 224, 224, 3

output: ? , 224, 224, 3

resnet50V2: Functional
input: ? , 224, 224, 3

output: ? , 7, 7, 2048

global_average_pooling2d_7: GlobalAveragePooling2D
input: ? , 7, 7, 2048

output: ? , 2048

dense_16: Dense
input: ? , 2048

output: ? , 1024

ReLU_1: Activation
input: ? , 1024

output: ? , 1024

dropout_12: Dropout
input: ? , 1024

output: ? , 1024

dense_17: Dense
input: ? , 1024

output: ? , 512

ReLU_2: Activation
input: ? , 512

output: ? , 512

dropout_13: Dropout
input: ? , 512

output: ? , 512

dense_18: Dense
input: ? , 512

output: ? , 256

ReLU_3: Activation
input: ? , 256

output: ? , 256

dropout_14: Dropout
input: ? , 256

output: ? , 256

dense_19: Dense
input: ? , 256

output: ? , 14

Sigmoid_1: Activation
input: ? , 14

output: ? , 14

Fig. 7   Model architecture using ResNet50V2 as the backbone

Table 2   Training parameters for DenseNet121 backbone

Training parameter Value

Input shape (224, 224)
Output shape (14,  )
Batch size 16 × 8 (16 batches per TPU core)
Callbacks Model checkpoint

Reduce LR on plateau
Early stopping

Table 3   Training parameters for ResNet50V2 backbone

Training parameter Value

Input shape (224, 224)
Output shape (14,  )
Batch size 16 × 8 (16 batches per TPU core)
Callbacks Model checkpoint

Reduce LR on plateau
Early stopping
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4 � Model Training

The models were individually trained on a TPU using vari‑
ous batch sizes while maintaining the same hyper-param‑
eters. The models were initialized with parameters from 
a network that was pre-trained on ImageNet [25] before 
commencing training. The last layers were replaced with 
a dense layer having 14 units followed by a sigmoid layer 
for obtaining the predicted probabilities of all 14 pathology 
diseases, as discussed in the previous sections. The images 
were resized to 224 × 224 pixels before inputting them. Prior 
to feeding the network with the image, each image in the 
training set was subject to random horizontal flips and ran‑
dom rotations up to 10 degrees.

4.1 � Loss Function

The data in the dataset were imbalanced. To account for this 
imbalance, instead of simply using a binary cross-entropy 
loss function, a weighted binary cross-entropy loss is mini‑
mized, as suggested in [3].

Here, c refers to one of the classes of labels, i refers to the ith 
example in the training set, y refers to true label, and ŷ refers 
to the predicted label or probability. Similarly, wpc

 and wnc
 

are defined as follows.

The model was trained on a TPU V3.8 on Kaggle for 100 
epochs. The above-mentioned custom loss, binary accu‑
racy, and AUROC score were monitored during training. 
[49] optimizer was used for training. The learning rate was 
reduced by a factor of 10 if no improvements in validation 
loss were seen for two continuous epochs. Early stopping 
was used with the patience of 10 to prevent over-fitting of 
the model and prevent wastage of computing time. The end-
to-end open-source deep learning framework Tensor Flow2 
was used to train and evaluate the models.

5 � Results and Performance

The overall workflow for disease prediction in sample X-rays 
is graphically produced, as shown in Fig. 9.

In this study, the metric used for comparing the models 
is the AUROC score and curve. In this section, the results 
of the models are discussed and compared. Additionally, 
all the models are compared to the CheXNet model [3]. 
AUROC (Area Under the Receiver Operator Curve) is a 
performance metric that evaluates classification models for 
various threshold values. ROC is a probability curve, and 
AUC represents the degree of separability. The higher the 
AUC value, the better a model can differentiate between the 
positive and negative classes. An AUROC curve plots the 
true positive rate against the false-positive rate.

The true positive rate, also referred to as sensitivity, 
measures the proportion of positive examples in the data‑
set that the model accurately identified as positive. In other 
words, it represents the fraction of total positive examples 
correctly predicted as positive by the model, i.e.,

J =

14
∑

c=1

L(yc, ŷc)

L(yc, ŷc) =
1

N

N
∑

i=1

[−wpc
× yci × log(ŷci ) − wnc

× (1 − yci )

× log(1 − ŷci )]

wpc
=
Total negative examples in class c

Total examples

wnc
=
Total positive examples in class c

Total examples

input_20: InputLayer
input: ? , 224, 224, 3

output: ? , 224, 224, 3

efficientnetb1: Functional
input: ? , 224, 224, 3

output: ? , 7, 7, 1280

global_average_pooling2d_9: GlobalAveragePooling2D
input: ? , 7, 7, 1280

output: ? , 1280

dense_21: Dense
input: ? , 1280

output: ? , 14

Sigmoid_1: Activation
input: ? , 14

output: ? , 14

Fig. 8   Model architecture using EfficientNetB1 as a backbone

Table 4   Training parameters for EfficientNetB1 backbone

Training parameter Value

Input shape (224, 224)
Output shape (14,  )
Batch size 8 × 8 (8 batches per TPU core)
Callbacks Model checkpoint

Reduce LR on plateau
Early stopping

2  http://​tenso​rflow.​org.

http://tensorflow.org
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The false positive rate, also given as 1-sensitivity, is the 
fraction of total negative examples in the dataset the model 
incorrectly predicted as positive, i.e.,

The AUROC scores for different classes for all three model 
variants have been listed in Table 5, and the ROC curves 
have been illustrated in Fig. 10. The experimental results 
demonstrated that the model constructed using DenseNet121 
outperformed the other two models. Therefore, our experi‑
mental investigations are in line with several studies [50–52] 
previously published in the literature. Some possible reasons 
for this superior performance could be:

TPR =
True positive

True positives false negatives

FPR =
False positive

True positives false negatives

Fig. 9   Proposed CXD server, where a Front view of the CXD where 
boxes are given for sequences and blue button representing submis‑
sion option; b Uploading Sample Chest X-ray; c Predicted results of 

given sample using Deep Learning approaches; and d Depict previ‑
ous history along with confidence scores generated from embedded 
Deep learning approaches

Table 5   AUROC scores for different model variants

Pathology CheXNet DenseNet121 ResNet50 EfficientNetB1

Atelectasis 0.8094 0.8200 0.7630 0.7750
Cardiomegaly 0.9248 0.9120 0.7410 0.8840
Effusion 0.8638 0.8830 0.8600 0.8460
Infiltration 0.7345 0.7290 0.6660 0.6450
Mass 0.8676 0.8210 0.7480 0.7610
Nodule 0.7802 0.7200 0.5720 0.6240
Pneumonia 0.7680 0.7430 0.6940 0.7130
Pneumothorax 0.8887 0.8670 0.7790 0.8100
Consolidation 0.7901 0.8240 0.8030 0.7960
Edema 0.8878 0.8900 0.8710 0.8380
Emphysema 0.9371 0.9120 0.7600 0.8410
Fibrosis 0.8047 0.8080 0.6870 0.7310
Pleural Thick‑

ening
0.8062 0.7470 0.7150 0.7120

Hernia 0.9164 0.9450 0.6970 0.8490
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•	 The network architecture of DenseNet121 is more com‑
plex, enabling the model to extract more features from 
the data and potentially improve its performance.

•	 The DenseNet121 model utilizes a more closely 
connected pattern between its layers, which can aid in 
decreasing the number of parameters within the model 
and avoiding overfitting.

•	 DenseNet121 incorporates batch normalization and skip 
connections to enhance convergence and performance.

Further, we employed a pre-trained DenseNet121 
model and modified its fully connected layers as previ‑
ously described. Subsequently, we assessed the model’s 

Fig. 10   a AUROC curve for DenseNet121 backbone; b AUROC curve for ResNet50 backbone; and c AUROC curve for EfficientNetB1 back‑
bone
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performance without any further training and found that 
the ROC values were approximately 0.5, indicating that 
its predictions were akin to random guessing. Figure 11(a) 
illustrates the results graphically. Similarly, we froze the 
DenseNet121 model and only trained the global aver‑
age pooling (GAP) and final softmax layers, using the 
DenseNet121 model as the backbone, without modifying 
its parameters. The outcomes of this method are demon‑
strated in Fig. 11(b). Essentially, we maintained the original 
DenseNet121 model and only updated the final layers that 
were added to it.

Furthermore, DenseNet121 was utilized as an unalter‑
able feature extractor, and a more intricate fully connected 
layer was trained on it. Only the fully connected layers were 
modified during the training process, and the rest of the 
DenseNet121 architecture remained unchanged. Figure 12 
illustrates the new layers appended to the fully connected 
network. The ROC curve achieved from this approach is 
displayed in Fig. 13.

We have computed the lower and upper confidence 
intervals for ResNet50, EfficientNetB1, and DenseNet121 
to further analyze these models. A confidence interval is 
a range of values that are likely to include the true value 
of a population parameter. The lower and upper confidence 
intervals for these models indicate the potential range of 
performance when applied to a specific task or dataset. 
For instance, if the lower confidence interval for a model’s 
accuracy is 95% , there is a 95% chance that the true accuracy 

of the model will be at least that value. These intervals 
help to understand the uncertainty surrounding a model’s 
performance and to compare the performance of different 
models. Based on the assumption of a normal distribution, 
we have provided tables below that show the minimum and 
maximum estimated prevalence of Atelectasis disease with 
a 95% confidence level for ResNet50, EfficientNetB1, and 
DenseNet121 models. These tables, labeled as Tables 6, 7, 
8, 9, 10,11, indicate the minimum estimated prevalence of 
Atelectasis disease with a 95% confidence level based on 
the assumption of a normal distribution for the respective 
models. In these tables, TPR represents the true positive 
rate, and FPR represents the false positive rate.

Next, we have thoroughly analyzed the lower and upper 
bounds of the precision-recall (PR) curves for the three 
models being considered. Nevertheless, it is important to 
note that the ROC curve is also a suitable alternative for 
evaluating a classifier’s performance, particularly for data‑
sets that have imbalanced classes. This is because, unlike 
the PR curve, which only considers the true positive rate, 
the ROC curve considers both the true positive rate and 
the false positive rate. Therefore, we have included both 
the PR and ROC curves to provide a more comprehensive 
evaluation of these models, which are depicted in Figs. 14, 
15, and 16.

The aforementioned tables, given as Tables  6, 7, 
8, 9, 10,11, also display the F1 score, also known as 
the F-measure or F-score. It is a metric that combines 

Fig. 11   a ROC curve for DenseNet121 without training model; and b ROC curve for DenseNet121 model after training only the GAP and final 
softmax layers
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precision and recall into a single score, commonly used 
in classification tasks. The score is calculated as the 
harmonic mean of precision and recall. Precision is the 
number of true positive predictions divided by the total 
number of positive predictions, and recall is the number 
of true positive predictions divided by the total number 
of actual positive samples. The F1 score is valuable for 
evaluating the performance of classification models 
because it provides a balance between precision and recall 
and allows for the comparison of models with different 
precision and recall values.

6 � Conclusions and Future Scopes

Pneumonia is a major cause of human fatalities worldwide. 
According to the Centers for Disease Control and Preven‑
tion,3 over one million adults in the US are hospitalized due 
to pneumonia, and around 50, 000 die from the disease each 

year. India has over 10 million cases of pneumonia each 
year. Although chest X-rays are the most effective means of 
diagnosing pneumonia [53], medical imaging has constraints 
in terms of access to expertise in some areas [54]. Addition‑
ally, chest radiographs may also be utilized to diagnose other 
illnesses.

In addition, even expert radiologists are limited by vari‑
ous human factors [38, 55–58]. Therefore, the creation of 
detection systems could greatly benefit humanity. As a result 
of the difficulty in training these three models on a CPU, 
this study considers using a TPU. The CXD server has an 
improved interface that is more efficient and has been devel‑
oped using a large chest X-ray dataset up until January 2021. 
This extensive and accurate data is being constantly utilized 
to enhance our proposed CXD server, ensuring the quality 
of our work.

The objective of this study was to automate an essen‑
tial stage of the radiology process by utilizing three con‑
volutional neural networks (CNNs), namely DenseNet121, 
ResNet50, and EfficientNetB1, to precisely detect 14 types 
of thoracic pathology diseases from chest radiography 
images. A total of 112, 120 chest X-ray datasets containing 

Fig. 12   The architecture 
of extra added layers to the 
fully connected network of 
DenseNet121

3  https://​www.​cdc.​gov/​featu​res/​pneum​onia/​index.​html.

https://www.cdc.gov/features/pneumonia/index.html
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various thoracic pathology diseases were utilized to evalu‑
ate the performance of these models based on their abil‑
ity to predict the likelihood of individual diseases and alert 

clinicians to potentially abnormal findings. The results indi‑
cated that the DenseNet121 model outperformed the other 
two models in terms of the score values achieved for each 

Fig. 13   ROC curve for extra 
added layers to the fully con‑
nected network of DenseNet121

Table 6   The minimum 
estimated prevalence of 
Atelectasis disease with a 95% 
confidence level based on 
the assumption of a normal 
distribution for ResNet50

Threshold TPR FPR Accuracy Precision Recall F1 score

0.1 0.805903354 0.015975 0.895843 0.972882 0.805903 0.88118
0.2 0.841285476 0.029508 0.895843 0.966523 0.841285 0.899306
0.3 0.865006785 0.047695 0.895843 0.959846 0.865007 0.909793
0.4 0.882387525 0.068971 0.895843 0.954492 0.882388 0.916916
0.5 0.899576808 0.101926 0.895843 0.949523 0.899577 0.923817
0.6 0.918142515 0.163129 0.895843 0.942756 0.918143 0.93027
0.7 0.943963684 0.3045 0.895843 0.928266 0.943964 0.936041
0.8 0.972310777 0.600504 0.895843 0.912073 0.972311 0.941086
0.9 0.999218124 0.990938 0.895843 0.896111 0.999218 0.943991
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Table 7   The maximum 
estimated prevalence of 
Atelectasis disease with a 95% 
confidence level based on 
the assumption of a normal 
distribution for ResNet50

Threshold TPR FPR Accuracy Precision Recall F1 score

0.1 0.82011924 0.020878 0.906718 0.978497 0.820119 0.892725
0.2 0.854381302 0.035998 0.906718 0.972778 0.854381 0.910013
0.3 0.877223562 0.05577 0.906718 0.966704 0.877224 0.919967
0.4 0.893879821 0.078499 0.906718 0.961793 0.89388 0.926705
0.5 0.91027128 0.113223 0.906718 0.95721 0.910271 0.933211
0.6 0.927862328 0.176824 0.906718 0.950935 0.927862 0.939273
0.7 0.952058015 0.321407 0.906718 0.937392 0.952058 0.944676
0.8 0.97798659 0.618292 0.906718 0.922126 0.977987 0.949381
0.9 0.999957983 0.994081 0.906718 0.906973 0.999958 0.952083

Table 8   The minimum 
estimated prevalence of 
Atelectasis disease with a 95% 
confidence level based on 
the assumption of a normal 
distribution for EfficientNetB1

Threshold TPR FPR Accuracy Precision Recall F1 score

0.1 0.69087922 0.00361946 0.89584263 0.98295658 0.69087922 0.81089795
0.2 0.82653939 0.02196173 0.89584263 0.97044309 0.82653939 0.89240883
0.3 0.88065577 0.06462379 0.89584263 0.95866499 0.88065577 0.91787436
0.4 0.91498338 0.14903047 0.89584263 0.94340845 0.91498338 0.92895791
0.5 0.93846433 0.27433506 0.89584263 0.93229964 0.93846433 0.9353707
0.6 0.95526986 0.44986595 0.89584263 0.92421408 0.95526986 0.93945243
0.7 0.97303584 0.65328083 0.89584263 0.91259259 0.97303584 0.94169824
0.8 0.98557233 0.84551181 0.89584263 0.90482787 0.98557233 0.94315702
0.9 0.99518978 0.97055598 0.89584263 0.89868163 0.99518978 0.94388506

Table 9   The maximum 
estimated prevalence of 
Atelectasis disease with a 95% 
confidence level based on 
the assumption of a normal 
distribution for EfficientNetB1

Threshold TPR FPR Accuracy Precision Recall F1 score

0.1 0.70759942 0.00616315 0.90671814 0.98736494 0.70759942 0.8249679
0.2 0.84012727 0.02763145 0.90671814 0.97631232 0.84012727 0.90344688
0.3 0.8922237 0.07388037 0.90671814 0.96562332 0.8922237 0.92760923
0.4 0.92487865 0.16224773 0.90671814 0.95154207 0.92487865 0.93804209
0.5 0.94693812 0.29075071 0.90671814 0.94117529 0.94693812 0.94404906
0.6 0.96250887 0.46803446 0.90671814 0.93358409 0.96250887 0.94785958
0.7 0.97863467 0.67052869 0.90671814 0.92261785 0.97863467 0.94995146
0.8 0.98960864 0.85845931 0.90671814 0.9152598 0.98960864 0.95130836
0.9 0.99740433 0.97641372 0.90671814 0.90941992 0.99740433 0.95198497

Table 10   The minimum 
estimated prevalence of 
Atelectasis disease with a 95% 
confidence level based on 
the assumption of a normal 
distribution for DenseNet121

Threshold TPR FPR Accuracy Precision Recall F1 score

0.1 0.84306717 0.03027407 0.89584263 0.96648739 0.84306717 0.90031113
0.2 0.87086545 0.05159917 0.89584263 0.96172846 0.87086545 0.91387505
0.3 0.88815469 0.07713721 0.89584263 0.95646389 0.88815469 0.92093865
0.4 0.90111604 0.10671467 0.89584263 0.95189192 0.90111604 0.92574521
0.5 0.91569139 0.15556943 0.89584263 0.94509502 0.91569139 0.93013811
0.6 0.9282404 0.21364821 0.89584263 0.93823539 0.9282404 0.93320833
0.7 0.93842546 0.28161416 0.89584263 0.93317418 0.93842546 0.93579162
0.8 0.94847708 0.37734796 0.89584263 0.92822659 0.94847708 0.93822927
0.9 0.96335002 0.56196969 0.89584263 0.9196265 0.96335002 0.94091021



389Interdisciplinary Sciences: Computational Life Sciences (2023) 15:374–392	

1 3

Table 11   The maximum 
estimated prevalence of 
Atelectasis disease with a 95% 
confidence level based on 
the assumption of a normal 
distribution for DenseNet121

Threshold TPR FPR Accuracy Precision Recall F1 score

0.1 0.85610088 0.03684002 0.90671814 0.97274542 0.85610088 0.91096946
0.2 0.88284634 0.05996685 0.90671814 0.96842214 0.88284634 0.92383087
0.3 0.89938912 0.08714851 0.90671814 0.96360561 0.89938912 0.93049949
0.4 0.91173454 0.11823421 0.90671814 0.95939841 0.91173454 0.93502422
0.5 0.92554771 0.16901291 0.90671814 0.95310858 0.92554771 0.93914936
0.6 0.93736856 0.22878152 0.90671814 0.94672453 0.93736856 0.94202619
0.7 0.94690186 0.29815644 0.90671814 0.94199421 0.94690186 0.94444251
0.8 0.9562432 0.39509976 0.90671814 0.9373556 0.9562432 0.94671882
0.9 0.96989882 0.58001505 0.90671814 0.92926239 0.96989882 0.94921784
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Fig. 14   PR curve for a lower bound, and b upper bound at 95% confidence interval for ResNet50 model
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Fig. 15   PR curve for a lower bound, and b upper bound at 95% confidence interval for EfficientNetB1 model
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Fig. 16   PR curve for a lower bound, and b upper bound at 95% confidence interval for DenseNet121 model
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class on the dataset. Furthermore, the performance of these 
models was compared to that of the ChexNet model.

Our future plans involve expanding our CNN training by 
incorporating extra data and assessing different architectures 
for diagnosing other thoracic pathology diseases. We are 
convinced that a computer-aided diagnostic tool of this kind 
could enhance the effectiveness and precision of diagnosing 
thoracic pathology diseases, including pandemics like 
COVID-19 and Swine Flu, significantly. This tool could prove 
to be especially useful during a pandemic when the demand 
for prevention and treatment often surpasses the available 
resources.

Appendix

The proposed server “CXD” is accessible at: https://​drive.​
google.​com/​file/d/​1gKJN​FfJc2​FQoDo​4lGz1​0wdTe​nbcAh​
C73/​view?​usp=​shari​ng.

NIH dataset (tfrecords) can be accessible at: https://​
www.​kaggle.​com/​harsh​soni/​nih-​chest-​xray-​tfrec​ords.

Kaggle TPU documentations can be accessible at: 
https://​www.​kaggle.​com/​docs/​tpu.

The source code and sample data can be accessible at: 
https://​github.​com/​harsh​020/​cxd.

Supplementary Information  The online version contains supplemen‑
tary material available at https://​doi.​org/​10.​1007/​s12539-​023-​00562-2.
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