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Abstract
Chemogenomics, also known as proteochemometrics, covers various computational methods for predicting interactions 
between related drugs and targets on large-scale data. Chemogenomics is used in the early stages of drug discovery to predict 
the off-target effects of proteins against therapeutic candidates. This study aims to predict unknown ligand–target interactions 
using one-dimensional SMILES as inputs for ligands and binding site residues for proteins in a computationally efficient 
manner. We first formulate a Deep learning CNN model using one-dimensional SMILES for drugs and motif-rich binding 
pocket subsequences of proteins as inputs. We evaluate and compare the proposed deep learning model trained on expert-
based features against shallow feature-based machine learning methods. The proposed method achieved better or similar 
performance on the MSE and AUPR metrics than the shallow methods. Additionally, We show that our deep learning model, 
DeepPS is computationally more efficient than the deep learning model trained on full-length raw sequences of proteins. We 
conclude that a beneficial research approach would be to integrate structural information of proteins for modeling drug-target 
interaction prediction of large datasets for more interpretability, high throughput, and broad applicability.
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1 Introduction

Rapid quantitative prediction of drug-target interaction is 
essential to drug discovery and development. For decades, 
the interactions between compounds and proteins were 

identified by carrying out expensive and time-consuming 
wet-lab experiments. Drug target interaction prediction is 
an important task in the drug discovery process, As the 
chemical space is large, of the order of 1060 molecules, 
it is arduous and almost impossible to identify interac-
tions of all the compounds against different targets in 
the lab. On the other hand, computational screening of 
drug-target interaction aids in finding a smaller subset of 
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probable candidates which could be taken up for further 
screening. Computational modeling can help identify side 
effects of compounds, as a single compound could have 
effects on multiple targets. Further, the models could be 
used to identify novel compounds interacting with known 
targets as well as find an alternate use for existing com-
pounds based on novel interactions. Due to the emergence 
of high throughput screening, the amount of experimen-
tal data available in public databases has significantly 
increased. The availability of biological data relating to 
the protein sequence or structure in public databases has 
also grown tremendously. Chemogenomic models could 
utilize the available data to predict unknown interactions 
between proteins and compounds. These models predict 
the interactions between the ligands and targets by com-
bining information from similar drugs and targets [1]. 
The models are constructed on the basis of the similarity 
principle which states that drugs with similar properties 
interact with similar targets [2].

The Proteochemometric (PCM) or a Chemog-
enomic model has the advantage of being able to predict 
interactions between ligands and proteins, even when there 
is no 3D structure available or when there are a few or no 
known ligands for the protein [3]. Ligand-based chemog-
enomic approaches are being pursued in drug discovery as 
they are computationally less expensive compared to struc-
ture-based approaches and can be trained on a large number 
of available bioactivity data. Consequently, the prediction of 
interactions greatly enhances the discovery of novel interact-
ing targets and compounds that may find application in drug 
repurposing efforts [4–7].

Deep learning models such as CNN have shown 
excellent predictive capability in the field of computer 
vision. These methods have been used in bioinformatics 
in genomic studies as well as in models for drug discov-
ery [8, 9]. These models are capable of identifying and 
learning complex patterns from molecular data [10]. The 
advantage of a deep learning CNN model is that the raw 
data can be represented better using non-linear transfor-
mations to effectively learn the hidden patterns in the 
data.

Several authors have studied protein–ligand interac-
tion prediction using machine learning and deep learning 
techniques. Deep learning models using 3D structures of 
protein–ligand complexes were developed to predict inter-
actions [11–13]. However, these methods are confined 
to known protein–ligand complexes. 2D Similarity-based 
methods using similarities of ligands against similar tar-
gets have been employed in predicting interactions. In 
KronRLS, the authors constructed chemical structure 
similarity matrices and sequence similarity matrices to 
represent ligands and proteins. The prediction for each 

protein–ligand pair is based on the similarity score, which 
is defined as a Kronecker product of the two matrices 
[14]. As this method captures only the linear dependen-
cies in the data, a non-linear method, SimBoost, using 
gradient boosting machine [15] was introduced to predict 
binding affinity with a prediction interval [16]. In this 
method, a large number of features were calculated for 
each protein–ligand pair other than the ligand and the 
protein features using similarity matrices and constructed 
features. A deep belief network (DBN) was trained by 
stacking restricted boltzmann machines (RBM’s) to pre-
dict novel DTI’s between approved FDA drugs and tar-
gets using Extended-connectivity fingerprints (ECFP) and 
protein sequence composition (PSC) descriptors [17]. In 
another study, similar PSC descriptors were used to char-
acterize proteins, and compounds were represented using 
molecular graph convolution (MGC) to train a scalable 
neural network model which was compared to the base-
line machine learning models, SimBoost and KronRLS 
[18]. In MDeePred, the proteins were represented using 
physical, chemical and biological features using CNN to 
predict compound–protein interactions to achieve signifi-
cant improvement in prediction performance compared 
to the baseline methods [19]. A deep LSTM model was 
used to predict DTIs on four target classes using chemi-
cal fingerprints and evolutionary information of proteins 
[20]. In DeepDTA, the one-dimensional SMILES repre-
sentation of ligands and raw sequences of proteins were 
encoded into vector representations using CNN blocks. 
Further, the combined representations of ligands and pro-
teins were employed to predict interactions. However, 
the protein sequences were not effectively represented 
as the model was trained on lengthy sequences [21]. In 
DeepCDA, the model learned the compound and pro-
tein encodings using a combination of CNN and LSTM 
in the feature encoder layer, which feeds the output to 
the subsequent layers [22]. The RNN-based encoders, 
seq2seq were used to encode SMILES of compounds and 
protein sequences separately in Deepaffinity [23]. The 
CNN models appended to the RNNs were used to concat-
enate the outputs of compounds and proteins and fed into 
more connected layers to predict affinity. The above-dis-
cussed machine learning models calculated the similarity 
matrices of drugs and targets which is computationally 
expensive. On the other hand, the deep learning models 
computed a large number of drug and protein descriptors 
which makes the models less interpretable. The unequal 
and raw protein sequences were used to model drug-tar-
get interaction (DTI) prediction in all the above methods 
which significantly increased the training time.
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The hypothesis in this work is that an interpretable 
drug–target interaction prediction model could be devel-
oped using one-dimensional SMILES as drug descriptors, 
and protein-binding site subsequences. The prediction could 
be achieved by incorporating the combined features using 
a Deep CNN, which has outperformed state-of-the-art 
machine learning models due to its ability to learn useful 
patterns from raw data using a hierarchical structure of the 
deep neural network. The extracted protein subsequences 
contain useful binding information for representing the 
contact residues and residues involved in medium-range 
interactions.

In this paper, we have modeled the compound–protein 
interaction prediction using a one-dimensional representa-
tion of proteins and ligands by training a deep CNN model 
using the extracted features of proteins as subsequences. 
The protein subsequences incorporating the binding pocket 
information of proteins were used as input instead of the raw 
sequences. The method uses the one-dimensional features 
of drugs and proteins and does not require the 3D structures 
as inputs to the model. It is possible to develop predictive 
models by using the amino acid residues of the binding site 
where structural information of proteins is available [24]. 
As many structures of proteins are available, the structural 
information of the binding domain of proteins was utilized 
to obtain motif-rich binding site residues lining the binding 
pocket. If the protein 3D structure is unavailable, ligand-
binding sites could be predicted using different sequence-
based tools. Unlike the above-discussed models, our mod-
els are trained on shorter protein sequences using a hybrid 
approach by incorporating structural information of protein 
binding sites.

The main contributions of the paper are as follows:-

• Proposing a better representation of proteins by consider-
ing residues of the binding pocket.

• Improving the training time of the prediction model due 
to shorter protein sequences.

• Compared our proposed model with the state-of-the-art 
deep learning model using training epochs as an addi-
tional metric.

2  Materials and Methods

2.1  Dataset

The composition of ligands, proteins, and interactions of the 
benchmark datasets, Davis and KIBA, is shown in Fig. 1. 
The bioactivity values of Davis and KIBA datasets were 
converted to Pkd and PIC

50
 , as described in the previous 

literature (Table 1). For a fair comparison with the earlier 
methods, we divided the datasets into six equal parts. One 
part was taken as an independent test set. The remaining 
five parts were used for tuning the hyper-parameters through 
five-fold cross-validation.

Fig. 1  Composition of DAVIS and KIBA Datasets

Table 1  Dataset statistics Davis KIBA

Datapoints 30,056 1,18,254
Sequences 442 2111
Ligands 68 229
Bioactivity Pk

d
PIC

50

Fig. 2  Transformer encoder–decoder network using SMILES. The 
generated ST Fingerprint was used as input to the molecule encoder 
of the DeepPS (FP) model



309Interdisciplinary Sciences: Computational Life Sciences (2023) 15:306–315 

1 3

2.2  Representation of Drugs

The molecules, represented as a one-dimensional SMILES 
notation [25] were encoded using CNN. The integer encod-
ings were used to represent characters of SMILES compris-
ing 64 labels. The integer encoded SMILES strings were 
given as input to the molecule encoder in the DeepPS model. 
However, in the DeepPS (FP) model, the one-dimensional 
SMILES strings of the molecules were used to generate fin-
gerprints using the SMILES transformer, as shown in Fig. 2. 
The SMILES transformer comprised the encoder–decoder 
network with four transformer blocks each. Each block has 
four-head attentions with 256 embedding dimensions, and 
two linear layers [26]. The pre-trained SMILES transformer 
[27], trained on unlabelled SMILES, was used to generate 
ST Fingerprints. The symbol-level representations from each 
of the four transformer blocks were pooled together to obtain 
ST fingerprints. The fingerprints generated were 1024 bits 
for each molecule. The ST Fingerprints were used as input 
to the molecule encoder in the DeepPS (FP) model.

2.3  Feature Selection of Proteins

The Davis [28], and KIBA [29] datasets of kinases consists 
of the bio-activity data of typical and atypical kinases. A 
structure-based approach can understand the similarity and 
dissimilarity of both types of kinases’ conserved regions. 
The conservation and variation of residues of the ATP 
binding pocket and the region in the vicinity of this pocket 
were studied using active-conformation structures [30]. The 
structure-based binding site alignment of conserved regions 
of highly similar kinases reveals the presence of common 

structural elements such as secondary structures and func-
tional motifs such as “DFG” and “HRD” [31]. Most of the 
conserved regions are aligned. The unaligned blocks contain 
specific insertions of varying lengths in between in some 
kinases. Besides, some kinases have shifted secondary struc-
tures. Various types of inhibitors bind to the proteins at dif-
ferent binding sites. In typical kinases, the binding site con-
sists of secondary structural elements and functional motifs 
present in the protein kinase domain. The key regions which 
are associated with the binding of inhibitors are the HRD 
motif, DFG motif, G-rich loop, alphaC-helix, catalytic and 
activation loops [32–34] To identify the binding domain, 
the protein sequences of the kinases in the datasets were 
extracted from Uniprot [35].

The binding sites of protein kinases contain specific 
motifs which are rich in information attributing to kinase 
specificity. Identifying the conserved regions that contrib-
ute to the specificity of kinases and representing them to 
be amenable for modeling can provide better predictive 
capability and interpretation. The varying amino acids in 
the conserved regions contribute to the specificity as the 
binding region is highly conserved in kinases. The binding 
site residues obtained from the catalytic cleft of kinases 
enable the comparison of the interaction pattern of kinase 
inhibitors. The binding pocket residues of all protein 
kinases present in the datasets were extracted using the 
binding site positions from the sequences after performing 
sequence alignment of the structural elements implicated 
in the binding process [36]. All the protein subsequences 
of the binding pocket comprised the G-rich loop, alphaC-
helix, catalytic loop, and motifs such as VAIK/VAVK 
motif, HRD motif, and the DFG motif and seem to be 
aligned to the respective motif positions, except for some 
atypical kinases which had missing or differing secondary 
structure elements. The fixed length of 85 binding pocket 
residues was obtained for each of the proteins (Fig. 3). 
The protein subsequences containing the binding pocket 
residues were used as input to the protein encoder in the 
DeepPS and DeepPS (FP) models.

Fig. 3  Examples of the binding pocket residues with highlighted 
motifs selected as protein features

Fig. 4  CNN-based Chemog-
enomic model with SMILES 
and binding pocket residues as 
inputs for drugs and proteins 
(DeepPS). The inputs for 
drugs in DeepPS (FP) are ST 
Fingerprints and binding pocket 
residues for proteins )
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2.4  Proposed Chemogenomic Model

The proposed CNN-based chemogenomic models with 
deep learning contain four main building blocks. The first 
block is the molecule encoder that encodes the SMILES 
strings of ligands in the DeepPS model and ST Finger-
prints in the DeepPS (FP) model. The SMILES strings 
were represented using integer encodings to represent 
unique letters. The Transformer–encoder–decoder net-
work was utilized to generate SMILES transformer fin-
gerprints (ST fingerprints)in DeepPS (FP) model. Second, 
the protein encoder embeds the features from the pocket 
residues given as input using label encodings to represent 
26 categories. The pocket residues are used as inputs for 
proteins in both DeepPS and DeepPS (FP) models. The 
SMILES and proteins were of different lengths for both 
datasets. The fixed length of 85 and 100 were chosen for 
SMILES of Davis and KIBA datasets, respectively, while 
the length of the protein subsequences was fixed at 85 
for both datasets for effective representation. The outputs 
from the molecule encoder and the protein encoders were 
concatenated and given as input to three fully connected 
layers of the CNN with dropout layers in between them. 
The dropout layers are used to reduce the overfitting of 
the data. The final CNN output layer predicts the outputs. 
The architecture, along with the building blocks, is shown 
in Fig. 4.

3  Results

The baselines evaluated in our experiments are the KronRLS, 
SimBoost, and DeepDTA. The DeepPS model was trained on 
the SMILES and binding pocket residues. The second model, 
DeepPS (FP) was trained on Smiles transformer fingerprints 
and binding pocket residues.

We evaluated the performance of our method on benchmark 
datasets Davis and KIBA. The same settings for the train and 

test folds were used as given in the literature [21] for a fair 
comparison. The entire dataset was divided into six folds, out 
of which one fold was used as an independent test set. The 
remaining folds were used for training using nested cross-
validation to obtain tuned hyper-parameters. The parameter 
settings used for the CNN model are as given in Table 2. The 
maximum sequence length of the proteins for the models was 
set to 85 for both datasets as only 85 residues are involved 
in binding. An early stopping strategy using validation mean 
squared error (MSE) as a performance measure was adopted 
to avoid overfitting of the model during training.

3.1  Evaluation Metrics

In this study, we used four evaluation metrics, MSE, CI, 
r2
m

 , and Area under precision-recall (AUPR). The evalu-
ation metrics other than AUPR were used to evaluate 
continuous regression outputs. AUPR was obtained by 
binarising the regression outputs based on the threshold 
value. A threshold value of 7 was chosen for the Davis 
dataset and 12.1 for the KIBA dataset according to the 
previous work [37].

Concordance index (CI) was utilized to measure the effec-
tiveness of the model with continuous outputs [38]. It meas-
ures the probability of the similarity between the actual values 
and the predicted values of two random protein–ligand pairs.

where mi is the prediction value for the greater affinity �i , 
mj is the predicted value for the smaller affinity �j , Z is 
the normalization constant that equals the number of data 
pairs with different label values and h(x) is the step func-
tion defined as

Mean squared error is defined as

The external predictive power of the model is given by r2
m
 

metric, which is defined as follows.

where r2
o
 is the squared correlation coefficient without 

intercept, r2 is the squared correlation coefficient with 
intercept.

(1)CI =
1

Z

∑
𝛿i>𝛿j

h(mi − mj)

h (x) =

⎧
⎪⎨⎪⎩

1 if x > 0

0.5 if x = 0

0 if x < 0

(2)MSE =

∞∑
i=1

h(yi − yj)
2

(3)rm
2 = r2 × (1 −

√
r2 − r2

o
)

Table 2  Parameter settings for CNN

Parameters Range

No. of filters 32*1; 32*2; 32*3
Length of filter (compounds) [4, 6, 8]
Length of filter (proteins) [4, 8, 12]
Hidden neurons 1024; 1024; 512
Batch size 256
Dropout 0.1
Optimizer Adam
Learning rate 0.001
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The area under the precision-recall (AUPR) curve 
assesses a binary model by taking the average of the pre-
cision values across all recall values. The AUPR method 
is suitable for estimating the accuracy of datasets having 
imbalanced classes with skewed distribution [39]. The 
thresholds for binarising the outputs were chosen as pro-
posed by He et al. [16].

In addition to these metrics, our models were evaluated 
on training time as an additional metric to gain insights on 
the model training in order to avoid overfitting of the model.

3.2  Comparison of Shallow and Deep Learning 
Models

The results of our chemogenomic models were compared 
with the baseline machine learning shallow methods, 

KronRLS and SimBoost, and the deep learning method, 
DeepDTA. The models were compared against shallow 
methods as these methods were trained on computed fea-
tures. The results obtained by applying our method on Davis 
and KIBA datasets were evaluated on average mean squared 
error (MSE) and average Concordance index (CI) over the 
independent test set. The results on Davis and KIBA datasets 
are presented in Tables 3 and 4. The results obtained by the 
shallow methods have been taken from the literature. The 
code for the deep learning method DeepDTA was down-
loaded and run in our setting for comparison.

In the Davis dataset, our models have achieved compa-
rable performances on the MSE and CI values against the 
other methods. Even though SimBoost has slightly better 
performance than DeepPS, our model is scalable and per-
forms better than SimBoost on time and space complexity 
metrics as SimBoost requires computationally expensive 
matrix factorization as it relies on similarity matrices. 
The DeepPS model has achieved better performance than 
DeepPS (FP) as some information could have been lost in 
the generation of fingerprints.

On the KIBA dataset, the performance of the DeepPS 
model is better than all the models on the CI and MSE 
metrics. The KIBA dataset consists of more proteins and 
interaction data as compared to the Davis dataset resulting 
in better generalization.

The external predictivity of the model on an independ-
ent test set was analyzed using the r2

m
 metric [40]. The val-

ues obtained for our models were greater than 0.5 for both 
Davis and KIBA datasets indicating that the models were 
acceptable. The standard deviations are given in parenthe-
sis. The AUPR values were calculated by binarising the 
outputs. A threshold ( Pkd ≥ 7 ) was set for the Davis data-
set to classify as binding. For the KIBA dataset, the value 
was set to 12.1. The results of the r2

m
 and AUPR metrics for 

both datasets are summarized in Tables 5 and 6.
The excellent correlation of the predictions obtained 

by different input representations and methods employed 
removes the chance correlation and emphasizes the predic-
tive power of the models developed. The predicted versus 

Table 3  The average Concordance Index and Mean squared error 
scores of the test set of Davis dataset for the compared methods

For every metric, the value for the best performing method has been 
highlighted in bold font

Proteins Compounds CI MSE

KronRLS S-W Pubchem Sim 0.871 (0.0008) 0.379
SimBoost S-W Pubchem Sim 0.872 (0.002) 0.282
DeepDTA CNN CNN 0.851 (0.004) 0.379
DeepPS (FP) CNN Tran-CNN 0.861(0.007) 0.375
DeepPS CNN CNN 0.854(0.007) 0.353

Table 4  The average Concordance index and Mean squared error 
scores of the test set of KIBA dataset for the compared methods

For every metric, the value for the best performing method has been 
highlighted in bold font

Proteins Compounds CI MSE

KronRLS S-W Pubchem Sim 0.782 (0.0009) 0.411
SimBoost S-W Pubchem Sim 0.836 (0.001) 0.222
DeepDTA CNN CNN 0.765(0.002) 0.375
DeepPS (FP) CNN Tran-CNN 0.782(0.003) 0.310
DeepPS CNN CNN 0.844(0.003) 0.218

Table 5  The average r2
m
 and AUPR scores of the test set for the Davis 

dataset

For every metric, the value for the best performing method has been 
highlighted in bold font

Proteins Compounds r
2

m
(std) AUPR(std)

KronRLS S-W Pubchem Sim 0.407 (0.005) 0.661 (0.010)
SimBoost S-W Pubchem Sim 0.644 (0.006) 0.709 (0.008)
DeepDTA CNN CNN 0.526 (0.017) 0.567 (0.010)
DeepPS (FP) CNN Tran-CNN 0.573(0.005) 0.681(0.005)
DeepPS CNN CNN 0.546(0.003) 0.710(0.003)

Table 6  The average r2
m
 and AUPR scores of the test set for the KIBA 

dataset

For every metric, the value for the best performing method has been 
highlighted in bold font

Proteins Compounds r
2

m
 (std) AUPR (std)

KronRLS S-W Pubchem Sim 0.342 (0.001) 0.635 (0.004)
SimBoost S-W Pubchem Sim 0.629 (0.007) 0.760 (0.003)
DeepDTA CNN CNN 0.458 (0.009) 0.582 (0.004)
DeepPS (FP) CNN Tran-CNN 0.517(0.005) 0.691(0.002)
DeepPS CNN CNN 0.604(0.003) 0.762(0.004)
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actual plots obtained from the DeepPS model on Davis and 
KIBA datasets are shown in Fig. 5. The Davis dataset has 
less diverse ligands compared to the KIBA dataset. The data 
points are aggregated around the regression line in KIBA 
dataset compared to the Davis dataset.

Based on the obtained results, it could be inferred that 
the binding between proteins and ligands depends not only 
on the binding pocket residues but also on residues outside 
the binding pocket that can have long-range effects. The 
flexibility of the protein and conformational adjustment 
during the binding process also contributes to the binding 
as adjacent pockets may also be involved in binding [41]. 
Our model based on the binding pocket residues achieved 
better or comparable results than shallow methods on MSE 
and CI metrics on both datasets suggesting that the motif-
rich features representing the binding pocket were able to 
capture the physicochemical properties of the pocket. The 
motif-rich subsequences are part of the secondary structural 
elements of the proteins interacting with the ligands that 
contain the necessary binding features. Predicting novel 
interactions between ligands and proteins in drug discovery 
is more important than missing them out. In other words, 
false negatives should be minimized as false positives do 
get checked during wet-lab experiments. To achieve this, our 
model is computationally efficient but slightly less accurate 
for large-scale binding affinity prediction compared to other 

deep models trained only on raw sequences and SMILES 
strings.

3.3  Performance Evaluation of the Deep Learning 
Models on Davis and KIBA Datasets

For evaluating our model’s performance, various metrics 
such as specificity, sensitivity, and accuracy were also com-
puted by taking the thresholds from the generated regression 
outputs. The DeepPS model achieved slightly better per-
formance compared to DeepDTA on the KIBA dataset and 
slightly lower values on the Davis dataset (Table 7). The low 
values could be attributed to the protein features included in 
the model. As the Davis dataset consists of a lesser number 
of proteins and interactions compared to the KIBA dataset, 
the model may not have been able to completely capture the 
patterns in the data. Also, as the binding affinity between 
drugs and targets depends on the local and non-local interac-
tions, including distant amino acid residues contributing to 
the non-local interactions may improve model performance 
[42].

The training time of a model is proportional to the size of 
the inputs. Our best performing model, DeepPS, was evalu-
ated on training time with the DeepDTA method taken as a 
baseline for comparison. The DeepDTA method was chosen 
as a baseline deep learning model as our models employed 
CNN blocks for encoding drug and protein features simi-
lar to DeepDTA. The plots of average CI and MSE metrics 
on the training sets for the Davis and KIBA datasets of the 
DeepPS are displayed in Fig. 6. The DeepPS model shows 
considerable improvement in training time, as seen by the 
fewer epochs. The learning of DeepPS was completed in 25 
epochs and 35 epochs for Davis and KIBA datasets, respec-
tively. The concordance index curves and the loss curves for 
the training and validation set indicate that the model is not 

Fig. 5  Binding affinity prediction of DeepPS model. a experimental values versus predicted values for Davis dataset. b experimental values ver-
sus predicted values for KIBA dataset

Table 7  Comparison of metrics with baseline Deep learning model

Dataset Method Specificity Sensitivity AUROC

Davis DeepDTA 0.98 0.36 0.67
DeepPS 0.99 0.24 0.62

KIBA DeepDTA 0.93 0.64 0.78
DeepPS 0.93 0.65 0.79
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overfitting. The curves show a good fit as the validation gap 
is reduced to the point of stability (epochs) and has a small 
gap with the training curves. The training of the DeepDTA 
model was completed in 100 epochs for both datasets, which 
is longer. The improvement in training time of DeepPS could 
be attributed to the shorter sequence length of the proteins.

Further, we compared the execution time taken by our 
method against DeepDTA on the Davis and KIBA datasets. 
The results are summarized in Table 8.

The DeepPS and DeepDTA were executed on Google 
Colab cloud platform on a GPU machine. The starting and 
completion times were recorded. On comparing the training 
times, we can see that DeepPS is able to complete the job 
faster compared to DeepDTA mainly because of the pre-
processing step. Further optimization could be achieved if 

the pre-processing step is incorporated in the DeepPS algo-
rithm instead of a executing it as a separate script. The pre-
processing involved aligning the protein structures to obtain 
the binding amino acids. The pre-processing step was car-
ried out on a standalone machine.

4  Conclusion

An understanding of the important features contributing to 
the predictive performance of the model is important for 
model optimization. However, as deep learning models are 
considered black boxes as it is not easy to understand the 
contributing features, we tried to optimize the neural net-
work model by extracting the relevant protein features and 
combining them with the drug features. The proposed deep 
learning-based method predicts drug-target interactions 
using only one-dimensional SMILES strings of drugs and 
protein subsequences obtained from binding pocket infor-
mation thereby proving our hypothesis. The CNN blocks 
were used for encoding one-dimensional descriptors of 
drugs and proteins. Further, our model trained on the bind-
ing site residues achieved comparable performance to the 

Fig. 6  Training results of DeepPS model. a CI plot for validation 
set and training sets of Davis dataset. b CI plot for validation set and 
training sets of KIBA dataset. c Plot of MSE for validation set and 

training sets of Davis dataset. d Plot of MSE for validation set and 
training sets of KIBA dataset

Table 8  The approximate training time (in hours) of Davis and KIBA 
datasets

Method Dataset Pre-processing Training time

DeepPS Davis 2 4
KIBA 3 7

DeepDTA Davis NIL 10
KIBA NIL 15
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baseline shallow methods and is computationally efficient 
than the baseline machine learning models as it does not 
require the construction of similarity matrices. This study 
also offers additional confidence to the previous works on 
these datasets to generalize using a hybrid chemogenomic 
approach for computationally efficient drug-target interac-
tion prediction compared to other approaches while offering 
comparable performance values. Our findings could be used 
to model drug-target interactions to find side effects that 
could be used in drug repurposing efforts. Finally, this work 
provides a faster, rational, and straightforward predictive 
model that may be employed to guide future experiments 
in drug discovery.
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