Skip to main content
Log in

Sex Differences of Cerebellum and Cerebrum: Evidence from Graph Convolutional Network

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

This work aims to exploit a novel graph neural network to predict the sex of the brain topological network, and to find the sex differences in the cerebrum and cerebellum. A two-branch multi-scale graph convolutional network (TMGCN) is designed to analyze the sex differences of the brain. Two complementary templates are used to construct cerebrum and cerebellum networks, respectively, followed by a two-branch sub-network with multi-scale filters and a trainable weighted fusion strategy for the final prediction. Finally, a trainable graph topk-pooling layer is utilized in our model to visualize key brain regions relevant to the prediction. The proposed TMGCN achieves a prediction accuracy of 84.48%. In the cerebellum, the bilateral Crus I–II, lobule VI and VIIb, and the posterior vermis (VI–X) are discriminative for this task. As for the cerebrum, the discriminative brain regions consist of the bilateral inferior temporal gyrus, the bilateral fusiform gyrus, the bilateral parahippocampal gyrus, the bilateral cingulate gyrus, the bilateral medial ventral occipital cortex, the bilateral lateral occipital cortex, the bilateral amygdala, and the bilateral hippocampus. This study tackles the sex prediction problem from a more comprehensive view, and may provide the resting-state fMRI evidence for further study of sex differences in the cerebellum and cerebrum.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

We used the rs-fMRI of the Southwest University Longitudinal Imaging Multimodal (SLIM) dataset in the experiment. This dataset is provided by the International Data-sharing Initiative (INDI, http://fcon_1000.projects.nitrc.org/).

Code Availability

Our work was finished by the custom code.

References

  1. Ruigrok AN et al (2014) A meta-analysis of sex differences in human brain structure. Neurosci Biobehav Rev 39:34–50. https://doi.org/10.1016/j.neubiorev.2013.12.004

    Article  PubMed  PubMed Central  Google Scholar 

  2. Xin J, Zhang Y, Tang Y, Yang Y (2019) Brain differences between men and women: evidence from deep learning. Front Neurosci 13:185. https://doi.org/10.3389/fnins.2019.00185

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bluhm RL et al (2008) Default mode network connectivity: effects of age sex, and analytic approach. NeuroReport 19(8):887–891. https://doi.org/10.1097/WNR.0b013e328300ebbf (in English)

    Article  PubMed  Google Scholar 

  4. Allen EA et al (2011) A baseline for the multivariate comparison of resting-state networks. Front Syst Neurosci 5:2. https://doi.org/10.3389/fnsys.2011.00002

    Article  PubMed  PubMed Central  Google Scholar 

  5. Miller DI, Halpern DF (2014) The new science of cognitive sex differences. Trends Cogn Sci 18(1):37–45. https://doi.org/10.1016/j.tics.2013.10.011

    Article  PubMed  Google Scholar 

  6. Malpetti M et al (2017) Gender differences in healthy aging and Alzheimer’s Dementia: A (18) F-FDG-PET study of brain and cognitive reserve. Hum Brain Mapp 38(8):4212–4227. https://doi.org/10.1002/hbm.23659

    Article  PubMed  PubMed Central  Google Scholar 

  7. Alaerts K, Swinnen SP, Wenderoth N (2016) Sex differences in autism: a resting-state fMRI investigation of functional brain connectivity in males and females. Soc Cogn Affect Neurosci 11(6):1002–1016. https://doi.org/10.1093/scan/nsw027

    Article  PubMed  PubMed Central  Google Scholar 

  8. Orgo L, Bachmann M, Kalev K, Hinrikus H, Jarvelaid M (2016) Brain functional connectivity in depression: gender differences in EEG. In 2016 Ieee Embs Conference on Biomedical Engineering and Sciences (Iecbes), 2016, pp 270–273. https://doi.org/10.1109/IECBES.2016.7843456

  9. Bassett DS, Sporns O (2017) Network neuroscience. Nat Neurosci 20(3):353–364. https://doi.org/10.1038/nn.4502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tang Y et al (2016) Aberrant functional brain connectome in people with antisocial personality disorder. Sci Rep 6(1):1–12. https://doi.org/10.1038/srep26209

    Article  CAS  Google Scholar 

  11. Tian L, Wang J, Yan C, He Y (2011) Hemisphere-and gender-related differences in small-world brain networks: a resting-state functional MRI study. Neuroimage 54(1):191–202. https://doi.org/10.1016/j.neuroimage.2010.07.066

    Article  PubMed  Google Scholar 

  12. Zhao Y et al (2017) Automatic recognition of fMRI-derived functional networks using 3-D convolutional neural networks. IEEE Trans Biomed Eng 65(9):1975–1984. https://doi.org/10.1109/TBME.2017.2715281

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ktena SI et al (2018) Metric learning with spectral graph convolutions on brain connectivity networks. Neuroimage 169:431–442. https://doi.org/10.1016/j.neuroimage.2017.12.052

    Article  PubMed  Google Scholar 

  14. Yang H et al (2019) Interpretable multimodality embedding of cerebral cortex using attention graph network for identifying bipolar disorder. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. https://doi.org/10.1007/978-3-030-32248-9_89

  15. Ma G et al. (2019) Deep graph similarity learning for brain data analysis. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management. https://doi.org/10.1145/3357384.3357815

  16. Liu J, Ma G, Jiang F, Lu C, Yu PS, Ragin AB (2019) Community-preserving graph convolutions for structural and functional joint embedding of brain networks. In 2019 IEEE International Conference on Big Data (Big Data), pp 1163–1168. https://doi.org/10.1109/BigData47090.2019.9005586

  17. Parisot S et al (2018) Disease prediction using graph convolutional networks: application to autism spectrum disorder and alzheimer’s disease. Med Image Anal 48:117–130. https://doi.org/10.1016/j.media.2018.06.001

    Article  PubMed  Google Scholar 

  18. Li X et al (2021) Braingnn: Interpretable brain graph neural network for fmri analysis. Med Image Anal 74:102233. https://doi.org/10.1016/j.media.2021.102233

    Article  PubMed  Google Scholar 

  19. Yao D et al (2021) A mutual multi-scale triplet graph convolutional network for classification of brain disorders using functional or structural connectivity. IEEE Trans Med Imaging 40(4):1279–1289. https://doi.org/10.1109/TMI.2021.3051604

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kim BH, Ye JC (2020) Understanding graph isomorphism network for rs-fMRI functional connectivity analysis. Front Neurosci 14:630. https://doi.org/10.3389/fnins.2020.00630

    Article  PubMed  PubMed Central  Google Scholar 

  21. Arslan S, Ktena SI, Glocker B, Rueckert D (2018) Graph saliency maps through spectral convolutional networks: application to sex classification with brain connectivity. In Biomedical Image Analysis and Integrating Medical Imaging and Non-Imaging Modalities https://doi.org/10.1007/978-3-030-00689-1_1

  22. Filippi M, Valsasina P, Misci P, Falini A, Comi G, Rocca MA (2013) The organization of intrinsic brain activity differs between genders: a resting-state fMRI study in a large cohort of young healthy subjects. Hum Brain Mapp 34(6):1330–1343. https://doi.org/10.1002/hbm.21514

    Article  PubMed  Google Scholar 

  23. Fan L et al (2010) Sexual dimorphism and asymmetry in human cerebellum: an MRI-based morphometric study. Brain Res 1353:60–73. https://doi.org/10.1016/j.brainres.2010.07.031

    Article  CAS  PubMed  Google Scholar 

  24. Andersen BB, Gundersen HJG, Pakkenberg B (2003) Aging of the human cerebellum: a stereological study. J Comp Neurol 466(3):356–365. https://doi.org/10.1002/cne.10884

    Article  PubMed  Google Scholar 

  25. Tiemeier H, Lenroot RK, Greenstein DK, Tran L, Pierson R, Giedd JN (2010) Cerebellum development during childhood and adolescence: a longitudinal morphometric MRI study. Neuroimage 49(1):63–70. https://doi.org/10.1016/j.neuroimage.2009.08.016

    Article  PubMed  Google Scholar 

  26. Gur RC et al (1995) Sex differences in regional cerebral glucose metabolism during a resting state. Science 267(5197):528–531. https://doi.org/10.1126/science.7824953

    Article  CAS  PubMed  Google Scholar 

  27. Jiang T (2013) Brainnetome: a new -ome to understand the brain and its disorders. Neuroimage 80:263–272. https://doi.org/10.1016/j.neuroimage.2013.04.002

    Article  PubMed  Google Scholar 

  28. Fan L et al (2016) The human brainnetome atlas: a new brain atlas based on connectional architecture. Cereb Cortex 26(8):3508–3526. https://doi.org/10.1093/cercor/bhw157

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tzourio-Mazoyer N et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1):273–289. https://doi.org/10.1006/nimg.2001.0978

    Article  CAS  PubMed  Google Scholar 

  30. Li Y et al (2010) Cerebellum abnormalities in idiopathic generalized epilepsy with generalized tonic-clonic seizures revealed by diffusion tensor imaging. PLoS ONE 5(12):e15219. https://doi.org/10.1371/journal.pone.0015219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guo W et al (2013) Is there a cerebellar compensatory effort in first-episode, treatment-naive major depressive disorder at rest? Prog Neuro-Psychopharmacol Biol Psychiatry 46:13–18. https://doi.org/10.1016/j.pnpbp.2013.06.009

    Article  Google Scholar 

  32. Collin G, Hulshoff Pol HE, Haijma SV, Cahn W, Kahn RS, van den Heuvel MP (2011) Impaired cerebellar functional connectivity in schizophrenia patients and their healthy siblings. Front Psych 2:73. https://doi.org/10.3389/fpsyt.2011.00073

    Article  Google Scholar 

  33. Chung MK, Luo Z, Adluru N, Alexander AL, Davidson RJ, Goldsmith HH (2018) Heritability of nested hierarchical structural brain network. In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, pp 554–557 https://doi.org/10.1109/EMBC.2018.8512359

  34. Yu S, Yue G, Elazab A, Song X, Wang T, Lei B (2019) Multi-scale graph convolutional network for mild cognitive impairment detection. In Graph Learning in Medical Imaging https://doi.org/10.1007/978-3-030-35817-4_10

  35. Kazi A et al (2019) InceptionGCN: receptive field aware graph convolutional network for disease prediction. In Information Processing in Medical Imaging https://doi.org/10.1007/978-3-030-20351-1_6

  36. Liu W et al (2017) Longitudinal test-retest neuroimaging data from healthy young adults in southwest China. Scientific Data 4(1):1–9. https://doi.org/10.1038/sdata.2017.17

    Article  Google Scholar 

  37. Satterthwaite TD et al (2013) An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. Neuroimage 64:240–256. https://doi.org/10.1016/j.neuroimage.2012.08.052

    Article  PubMed  Google Scholar 

  38. Jenkinson M, Bannister P, Brady M, Smith S (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17(2):825–841. https://doi.org/10.1006/nimg.2002.1132

    Article  PubMed  Google Scholar 

  39. Wei D, Yang J, Li W, Wang K, Zhang Q, Qiu J (2014) Increased resting functional connectivity of the medial prefrontal cortex in creativity by means of cognitive stimulation. Cortex 51:92–102. https://doi.org/10.1016/j.cortex.2013.09.004

    Article  PubMed  Google Scholar 

  40. Tian X et al (2016) Assessment of trait anxiety and prediction of changes in state anxiety using functional brain imaging: a test-retest study. Neuroimage 133:408–416. https://doi.org/10.1016/j.neuroimage.2016.03.024

    Article  PubMed  Google Scholar 

  41. Yan C-G et al (2013) A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. Neuroimage 76:183–201. https://doi.org/10.1016/j.neuroimage.2013.03.004

    Article  PubMed  Google Scholar 

  42. Wu Z, Pan S, Chen F, Long G, Zhang C, Yu PS (2021) A comprehensive survey on graph neural networks. IEEE Trans Neural Netw Learn Syst 32(1):4–24. https://doi.org/10.1109/TNNLS.2020.2978386

    Article  PubMed  Google Scholar 

  43. Xie Y, Yao C, Gong M, Chen C, Qin AK (2020) Graph convolutional networks with multi-level coarsening for graph classification. Knowledge-Based Syst 194:105578. https://doi.org/10.1016/j.knosys.2020.105578

    Article  Google Scholar 

  44. Guo F, Li Z, Xin Z, Zhu X, Wang L, Zhang J (2021) Dual Graph U-Nets for Hyperspectral Image Classification. IEEE J Sel Top Appl Earth Observations Remote Sensing 14:8160–8170. https://doi.org/10.1109/JSTARS.2021.3103744

    Article  Google Scholar 

  45. Li X et al (2020) Pooling regularized graph neural network for fMRI biomarker analysis. In Med Image Comput Comput Assist Interv https://doi.org/10.1007/978-3-030-59728-3_61

  46. Xia M, Wang J, He Y (2013) BrainNet Viewer: a network visualization tool for human brain connectomics. PLoS ONE 8(7):e68910. https://doi.org/10.1371/journal.pone.0068910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shine JM, Aburn MJ, Breakspear M, Poldrack RA (2018) The modulation of neural gain facilitates a transition between functional segregation and integration in the brain. Elife 7:e31130. https://doi.org/10.7554/eLife.31130.001

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sanz-Arigita EJ et al (2010) Loss of ‘small-world’ networks in Alzheimer’s disease: graph analysis of FMRI resting-state functional connectivity. PLoS ONE 5(11):e13788. https://doi.org/10.1371/journal.pone.0013788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Stoodley CJ, Schmahmann JD (2009) Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage 44(2):489–501. https://doi.org/10.1016/j.neuroimage.2008.08.039

    Article  PubMed  Google Scholar 

  50. Bernard JA et al (2012) Resting state cortico-cerebellar functional connectivity networks: a comparison of anatomical and self-organizing map approaches. Front Neuroanatomy 6:31. https://doi.org/10.3389/fnana.2012.00031

    Article  Google Scholar 

  51. Steele CJ, Chakravarty MM (2018) Gray-matter structural variability in the human cerebellum: lobule-specific differences across sex and hemisphere. Neuroimage 170:164–173. https://doi.org/10.1016/j.neuroimage.2017.04.066

    Article  PubMed  Google Scholar 

  52. Womer FY et al (2016) Sexual dimorphism of the cerebellar vermis in schizophrenia. Schizophrenia Res 176(2–3):164–170. https://doi.org/10.1016/j.schres.2016.06.028

    Article  Google Scholar 

  53. Lee K-H et al (2007) Increased cerebellar vermis white-matter volume in men with schizophrenia. J Psychiatric Res 41(8):645–651. https://doi.org/10.1016/j.jpsychires.2006.03.001

    Article  Google Scholar 

  54. Rossi A, Stratta P, Fabrizio M, de Cataldo S, Casacchia M (1993) Cerebellar vermal size in schizophrenia: a male effect. Biol Psychiatry 33(5):354–357. https://doi.org/10.1016/0006-3223(93)90324-7

    Article  CAS  PubMed  Google Scholar 

  55. Okugawa G, Sedvall GC, Agartz I (2003) Smaller cerebellar vermis but not hemisphere volumes in patients with chronic schizophrenia. Am J Psychiatry 160(9):1614–1617. https://doi.org/10.1176/appi.ajp.160.9.1614

    Article  PubMed  Google Scholar 

  56. Haznedar MM, Buchsbaum MS, Hazlett EA, Shihabuddin L, New A, Siever LJ (2004) Cingulate gyrus volume and metabolism in the schizophrenia spectrum. Schizophrenia Res 71(2–3):249–262. https://doi.org/10.1016/j.schres.2004.02.025

    Article  Google Scholar 

  57. Brun CC et al (2009) Sex differences in brain structure in auditory and cingulate regions. NeuroReport 20(10):930. https://doi.org/10.1097/wnr.0b013e32832c5e65

    Article  PubMed  PubMed Central  Google Scholar 

  58. Chen X, Sachdev PS, Wen W, Anstey KJ (2007) Sex differences in regional gray matter in healthy individuals aged 44–48 years: a voxel-based morphometric study. Neuroimage 36(3):691–699. https://doi.org/10.1016/j.neuroimage.2007.03.063

    Article  PubMed  Google Scholar 

  59. van Eijk L et al (2020) Region-specific sex differences in the hippocampus. Neuroimage 215:116781. https://doi.org/10.1016/j.neuroimage.2020.116781

    Article  PubMed  Google Scholar 

  60. Sneider JT, Rogowska J, Sava S, Yurgelun-Todd DA (2011) A preliminary study of sex differences in brain activation during a spatial navigation task in healthy adults. Perceptual Motor Skills 113(2):461–480. https://doi.org/10.2466/04.22.24.27

    Article  PubMed  Google Scholar 

  61. Marwha D, Halari M, Eliot L (2017) Meta-analysis reveals a lack of sexual dimorphism in human amygdala volume. Neuroimage 147:282–294. https://doi.org/10.1016/j.neuroimage.2016.12.021

    Article  PubMed  Google Scholar 

  62. Mather M, Lighthall NR, Nga L, Gorlick MA (2010) Sex differences in how stress affects brain activity during face viewing. NeuroReport 21(14):933. https://doi.org/10.1097/WNR.0b013e32833ddd92

    Article  PubMed  PubMed Central  Google Scholar 

  63. Bear D, Schiff D, Saver J, Greenberg M, Freeman R (1986) Quantitative analysis of cerebral asymmetries: fronto-occipital correlation, sexual dimorphism and association with handedness. Arch Neurol 43(6):598–603. https://doi.org/10.1001/archneur.1986.00520060060019

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the High Performance Computing Center of Central South University. The author would like to thank the 2020 Key Project of Research on Postgraduate Education and Teaching Reform of Central South University [grant numbers 2020JGA011], the 2020 Hunan Province Degree and Postgraduate Education Reform Research Project [grant number 2020JGZD014] and the Research Fund of the Guangxi Key Lab of Multi-source Information Mining and Security [grant number MIMS20-08] for their supports.

Funding

This work was supported by the 2020 Key Project of Research on Postgraduate Education and Teaching Reform of Central South University [grant numbers 2020JGA011], the 2020 Hunan Province Degree and Postgraduate Education Reform Research Project [grant number 2020JGZD014] and the Research Fund of the Guangxi Key Lab of Multi-source Information Mining and Security [grant number MIMS20-08].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Tang or Hao Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This study was approved by the Research Ethics Committee of Central South University and The University of Oklahoma.

Consent to Participate

The authors have agreed to participate in this work.

Consent for Publication

The publication of this work was approved by Central South University and The University of Oklahoma.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 145 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Tang, Y., Zhang, H. et al. Sex Differences of Cerebellum and Cerebrum: Evidence from Graph Convolutional Network. Interdiscip Sci Comput Life Sci 14, 532–544 (2022). https://doi.org/10.1007/s12539-021-00498-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-021-00498-5

Keywords

Navigation