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feature extraction are relevant strategies to adopt. As usu-
ally occurs with real-world data, information is scattered, 
and exhibits multiple characteristics with distinct levels 
of relevance. Therefore, it is important to explore reliable 
algorithms for highlighting the main details, and to take 
advantage of modern computational resources to visualize 
the relations embedded within the data.

Herein, we adopt the multidimensional scaling (MDS) 
technique to compare the relationships among several 
viruses responsible for human diseases. New schemes for 
improving the visualization of the MDS charts are pro-
posed. In what concerns selection of the “objects” under 
study, most are based on their impact on people and visibil-
ity in communication media (e.g., subtype H5N1 of Influ-
enza A virus, Ebola, Chikungunya and Zika), others due to 
historical reasons (e.g., Rabies, Poliomyelitis, and Small-
pox), and some because of their incidence and prevalence 
in humans (e.g., Influenza, Rhinovirus, and Norovirus). 
The viruses are compared by means of their characteristics 
and the symptoms of the diseases that they may cause in 
humans.

The MDS can lead to a new perspective in the study of 
human pathologies. MDS is a statistical technique for ana-
lyzing similarities in information that generates geometric 
representations for complex objects [2]. MDS appeared in 
the context of behavioral sciences, for understanding judg-
ments of individuals about features in a set of objects [3, 
4]. Presently, the MDS is used in real-world data, such as 
biological taxonomy [5], finance [6], marketing [7], soci-
ology [8], physics [9], geophysics [10–12], communication 
networks [13], biology and biomedicine [14], among others 
[15].

The paper is organized as follows. Section 2 introduces 
the MDS technique. Section  3 studies and compares data 
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1 Introduction

Presently, reliable and assertive data about many real-world 
phenomena are available for computer processing. One 
example consists of clinical information about viral dis-
eases. Viruses infections are an important cause of mortal-
ity and morbidity. More than 2000 viruses were identified 
and many can infect humans, or animals [1]. In general, 
viral diseases have very diverse characteristics and com-
plexity, and computational methods for data mining and 
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characterizing the clinical effects of 21 viruses. Finally, 
Sect. 4 draws the conclusions.

2  Multidimensional Scaling

We consider s objects defined in a m-dim space, , and 
a proximity measure, �ij, between objects i and j. The first 
step consists of calculating � = [�ij] (dim (�) = s × s), of 
item-to-item dissimilarities. The MDS produces a configu-
ration � (dim (�) = s × q), where the dimension q < m is 
chosen by the user. Thus, � attempts to replicate in a low-
dimensional space, , the proximities between the s ele-
ments in . In general, the MDS unveils the embedded 
data patterns, being different from other techniques [16, 
17], not only because it requires no a priori assumptions for 
each dimension, but also due to its good convergence [18, 
19].

To arrive to configuration �, MDS evaluates different 
alternative values to minimize some fitness function, such 
as [20] the raw stress, �2:

where zij > 0 is a weight and dij measures the dissimilarities 
among the items i and j in the embedding space . There-
fore, a distance measure is often adopted for implementing 
dij [21].

Besides (1), there are several stress measures [22], 
namely, the normalized raw stress, the Kruskal’s stress-1 
and stress-2, and the S stress.

To assess the quality of the MDS solutions, it is used 
the Shepard diagram that represents the pairs (dij, �ij). The 
Shepard diagram displays the outliers and residuals result-
ing from the MDS. A narrow scatter following the 45◦ line 
corresponds to a good fit between dij and �ij.

Another test to the MDS quality is the stress plot 
that represents �2 versus q. The curve �2(q) is mono-
tonic decreasing and the user chooses q as a compromise 
between reducing �2 and having small values of q.

The MDS interpretation focuses on the emerging clus-
ters and considers the distances between points in the pro-
duced chart. Therefore, the user can rotate, shift, or zoom 
the chart, while the distances remain invariant. Usually, 
q = 2, or q = 3, is adopted, since they allow a direct graphi-
cal representation.

3  Data Analysis and Visualization

We analyze data for s = 21 viruses responsible for 
infectious diseases. These are {Bird Flu, Chicken Pox, 

(1)�
2 =

s∑
i=2

i−1∑
j=1

zij
(
�ij − dij

)2
,

Chikungunya, Dengue Fever, Ebola, Hepatitis B, HIV, 
Marburg disease, Measles, MERS, Mumps, Norovirus, 
Polio, Rabies, Rhinovirus, Rotavirus, Rubella, SARS, Sea-
sonal Flu, Smallpox, and Zika virus infection}, with acro-
nyms {BFlu, CPox, Chi, Den, Ebo, HepB, HIV, Mar, Mea, 
MERS, Mum, Nor, Pol, Rab, Rhi, Rot, Rub, SARS, SFlu, 
Sma, and ZIKV}.

For the ith virus, i = 1,… , s, we associate m = 5 quanti-
tative attributes, namely, (i) the fatality rate, (ii) the average 
basic reproductive number, (iii) the average serial interval, 
(iv) the incubation period, and (v) the virus survival time 
outside a host. Table  1 lists the data, where the numeri-
cal values correspond to the matrix �̃� = [ũik], i = 1,… , s, 
k = 1,… , m.

For constructing Table 1, data were obtained from sev-
eral distinct sources: Influenza A virus, subtype H5N1 (or 
“Bird Flu”) [23–25]; Chicken Pox (varicella-zoster infec-
tion) [26–28]; Chikungunya [29–31]; Dengue Fever [32, 
33]; Ebola [34–36]; Hepatitis B [37–39]; Human Immu-
nodeficiency Virus (HIV) [40–42]; Marburg hemorrhagic 
fever [36, 43]; Measles [44–47]; Middle East Respiratory 
Syndrome (MERS) [48–50]; Mumps [51, 52]; Norovirus 
[53, 54]; Poliomyelitis [55–57]; Rabies [58–60]; Rhinovi-
rus [61–63]; Rotavirus [64–67]; Rubella [46, 68]; Severe 
Acute Respiratory Syndrome (SARS) [49, 69]; Seasonal flu 
[25, 70, 71]; Smallpox [72, 73]; Zika virus disease [74, 75].

3.1  MDS Analysis using the Arc‑cosine Distance

Previous to applying MDS, the data are “normalized” to 
avoid saturation effects of the numerical values. Therefore, 
the elements of each column of matrix �̃� are converted to 
the interval [0, 1], producing the data matrix �. The vectors 
of features for item-to-item comparison correspond to the 
lines of � and will be denoted by �i.

Various distance measures were tested for constructing 
the matrix �. Here, we present results for the arc-cosine 
distance, �ij, since it leads to charts that are easy to inter-
pret. Other distances are possible and have also been used 
in distinct applications [6, 12], but several numerical tests 
confirmed that the arc-cosine leads to reliable results. 
Therefore, for items i and j (i, j = 1,… , s), we have

where 𝛼k > 0, k = 1,… , m, represent weights specified by 
the user. Given expression (2), the matrix � = [�ij] can be 
computed for feeding the MDS.
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Figure  1 represents the 2D and 3D charts (q = 2 
and q = 3) resulting from the MDS using the weights 
�k = {5, 2, 1, 1, 1}, where the points represent viruses. 
The relationships between the items are inferred from the 
coordinates of the points. Objects that are similar (dis-
similar) appear closer (farther) to each other in space.

With alternative distances, we capture different charac-
teristics of the phenomena that yield distinct plots, but in 
general lead to identical conclusions. A “good” distance 
is the one that produces a MDS reflecting the real-world 
phenomenon in a direct and clear visualization.

Figure 2 depicts the Shepard diagram for q = 1,… , 5 
and the stress plot. The Shepard diagram depicts a good 
scatter of points around the 45◦ line for q ≥ 3, demon-
strating a good fit between the distances and the dissimi-
larities. The curvature of the stress plot is often adopted 
for deciding the value of q. In this case, we observe that 
q = 2 is insufficient, q = 3 seems to be a good choice, 
and q > 3 leads to limited improvements. However, if we 
adopt q = 3 the question remains of visualizing efficiently 
the MDS information, since for 3D representations, we 
often have to zoom, shift, and rotate the MDS graph to 

perceive assertively the real location of the objects in 
space. This question will further discussed in Sect. 3.3.2.

Before continuing, two numerical aspects need to 
be clarified: the weights �k used and the missing data 
in Table  1. The weights were tuned for highlighting the 
importance of the features recognized as being more 
harmful from the medical point of view: first, the fatality 
rate and, second, the average basic reproductive number. 
However, the question remains on how to choose �k. In 
this perspective, we performed several experiments vary-
ing the weights. Figure 3 depicts the results obtained with 
four distinct sets of values, namely, �k = {1, 1, 1, 1, 1},

�k = {2.5, 1.5, 1, 1, 1}, �k = {5, 2, 1, 1, 1} and 
�k = {7.5, 2.5, 1, 1, 1}. For each set �k, we generate one 
MDS chart, and afterwards, the charts are combined using 
Procrustes analysis [76]. Procrustes involves the operations 
of translation, reflection, orthogonal rotation, and scaling, 
to best conform the points in a given matrix under modifi-
cation in relation with the points of a reference matrix.

In our case, we (i) choose the first chart for initial ref-
erence, (ii) use Procrustes to superimpose the next MDS 
chart into the current reference, (iii) make the current set of 

Table 1  Attributes of the viruses

i Virus Acronym k

Fatality rate (%) Average basic repro-
ductive number

Average serial 
interval (days)

Incubation 
period (days)

Survival 
outside host 
(days)

1 2 3 4 5

1 Bird Flu BFlu 59.00 2.00 3.00 3.0 30.0
2 Chicken Pox CPox 0.00 7.50 14.00 14.0 2.0
3 Chikungunya Chi 0.40 4.00 23.00 2.5 –
4 Dengue Fever Den 5.00 3.00 16.00 7.0 63.0
5 Ebola Ebo 75.00 2.50 15.30 11.4 50.0
6 Hepatitis B HepB 0.75 6.00 25.00 75.0 28.0
7 HIV HIV 2.10 3.50 – 60.0 42.0
8 Marburg virus disease Mar 25.00 1.60 9.00 6.0 21.0
9 Measles Mea 0.20 15.00 11.70 11.0 0.1
10 MERS MERS 27.00 0.50 7.60 5.0 3.0
11 Mumps Mum 0.01 5.50 18.00 17.0 0.3
12 Norovirus Nor 0.08 3.70 1.86 1.5 24.0
13 Polio Pol 22.00 6.00 – 13.0 160.0
14 Rabies Rab 0.00 1.60 – 40.0 6.0
15 Rhinovirus Rhi 0.00 3.70 7.50 3.0 1.0
16 Rotavirus Rot 0.00 3.50 7.00 1.5 60.0
17 Rubella Rub 0.00 6.50 18.30 17.7 0.9
18 SARS SARS 11.00 3.50 10.00 8.0 9.0
19 Seasonal Flu SFlu 0.01 1.30 3.30 2.0 2.0
20 Smallpox Sma 15.00 6.00 17.70 14.0 1.5
21 Zika virus disease ZIKV 0.3 0.5 13.0 6.0 180.0
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superimposed charts the new reference, and (iv) continue 
to step (ii) until all charts have been conformed. The results 
obtained reveal identical patterns, meaning that the method 
is robust to distinct values of �k.

In Fig. 1, the unknown data, denoted by ‘-’ in Table 1, 
are considered zero. Therefore, these values do not con-
tribute to the distance used for comparing items. Moreo-
ver, as the missing data occur only in four values of the 
less weighted features, their influence is not as significant 
as for the rest of the information. In addition, as will be 
shown in Sect.  3.2, the results reveal small sensitivity to 

possible noise in the data, which includes the uncertainty 
in the unknown values that were set to zero. Nonetheless, 
a different criterion for dealing with that problem could be 
adopted. Experiments with the missing data replaced not 
only by zero, but also by the minimum, average, and maxi-
mum values in the third and fifth columns of Table 1 led to 
results qualitatively similar, as depicted in Fig. 4, revealing 
the effectiveness of the criterion adopted.

3.2  Sensitivity Analysis

The 21 viruses were compared in the perspective of 
quantitative features. However, the data diverge slightly, 
depending on factors such as the time of the study or the 
operational conditions, namely, environmental condi-
tions, geographic region, development level, or medical 

Fig. 1  MDS charts resulting from the arc-cosine distance �ij, q = 2 
and q = 3

Fig. 2  Quality of the MDS solution for the arc-cosine distance �ij 
assessed by the Shepard diagram for q = 1,… , 5 and the stress plot
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assistance. Therefore, we analyze here the sensitivity results 
with respect to the input data.

We start by adding random noise to the quantitative fea-
tures, k = 1,… , 5, with amplitude ±10% of the values in 
Table 1. Moreover, any negative values are avoided by lim-
iting numbers to zero. A sample of 50 experiments, each 
yielding one MDS chart, is performed and the charts are 
combined using the Procrustes scheme.

Figure  5 illustrates the MDS chart for q = 2 produced 
by the Procrustes algorithm. We verify that the method has 

low sensitivity to variations in the quantitative features, 
since the location of the points reveals minor variations.

3.3  Data Clustering and Visualization

The MDS interpretation focuses on the distances between 
points in the produced charts. For identifying clusters, we 
can adopt some kind of ad hoc strategy based on the direct 
visualization of the MDS plots, or we can implement an 
algorithm for obtaining an automatic clustering. In addi-
tion, the configuration, �, produced by the MDS tries to 
replicate, in the low-dimensional space, , the original 
proximities between pairwise elements. For q = 2, this 
leads to a direct visualization, but neglects the information 
described in the higher dimensional components of �. In 
this line of thought, in the next subsections, we introduce 
the non-hierarchical clustering algorithm K-means for auto-
matic cluster identification and we propose a technique for 
an improved visualization of MDS information in the 2D 
space by embedding information of the extra dimensions.

3.3.1  The K‑Means Clustering

Clustering is a technique that groups objects similar to each 
other in some sense. The K-means is a non-hierarchical 
clustering algorithm [77] that starts with a set of s objects, 
where each one is represented by a point in a q-dim space, 
and a certain number of clusters, K, specified in advance. 
The K-means groups the s objects into K ≤ s clusters, to 
minimize the sum of distances between the points and the 
centers of their clusters. The K-means produces a solution 

Fig. 3  MDS global chart for q = 2 and the arc-cosine distance �ij, 
obtained by Procrustes with four different sets of weights �k

Fig. 4  MDS global chart for q = 2 and arc-cosine distance �ij, 
obtained by Procrustes with missing data replaced by zero, minimum, 
average, and maximum values of the third and fifth features

Fig. 5  MDS global chart for q = 2 and arc-cosine distance, �ij, gener-
ated by Procrustes with random variations added to the values of the 
five features
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where objects in a cluster are close to each other and far 
from objects in other clusters.

An important issue in K-means is to specify K, since the 
notion of “good clustering” is subjective. Nevertheless, we 
can adopt different measures for assessing the quality of the 
solution, such as the Calinski-Harabasz, Davies-Bouldin, 
and silhouette [78].

Here, we consider the silhouette, S, to assess if an 
object lies “adequately” within its cluster. The silhouette 
varies in the interval S ∈ [− 1, 1], so that values close to 
{−1, 0, 1} correspond to {incorrect, neutral, correct} object 
assignments.

Knowing the coordinates of the s = 21 objects produced 
by the MDS in the q = 3 dim space, we assess the quality 
of the clusters in the interval K ∈ [2, 6]. Figure  6 depicts 
the corresponding silhouettes and the mean value for each 
cluster (blue marks). The optimum value is obtained K = 4, 
corresponding to the maximum silhouette mean value 
SM = 0.77.

For K = 4, the clusters are  = {CPox, Mea, Mum, Nor, 
Rhi, Rot, Rub, SFlu},  = {HepB, HIV, Rab},  = {BFlu, 
Ebo, Mar, MERS, Pol, SARS, Sma} and  = {Chi, Den, 
ZIKV}. These clusters are further discussed in the next 
subsection.

3.3.2  Improved Visualization in 2D Space

The geometrical shape of the chart produced by MDS var-
ies significantly with the distance measure adopted for 
quantifying the distances between items. However, this 
characteristic does not precludes that we use the MDS chart 
taking full advantage of all its properties. Consequently, we 
may interpret the collection of points as “samples” of an 

abstract locus corresponding to the projection of the m ini-
tial dimensions into a lower dimensional (abstract) space.

We adopt a scheme that allows for a direct visualiza-
tion of the MDS, while including information up to q = 3. 
Therefore, we approximate the dimension x3 of � with a 
contour generated by means of a linear radial basis function 
interpolation [79]. Moreover, we improve the identification 
of patterns by superimposing a tree in the MDS chart. The 
nodes of the tree are the s = 21 points representing items 
(viruses). In a first phase, we connect the group of points 
that are closer in the MDS chart producing the sets, , of 
interconnected points (nodes). In a second phase, the sets, 
, are compared through the distances between their con-
stitutive nodes. The distance can be calculated taking into 
account any number p < m of � components. A connec-
tion is established in the q-dim chart, only between the two 
closest nodes (i.e., i and j). This calculation generates a 
second level of interconnection, and the scheme is repeated 
iteratively until there is a continuous route between all 
points. Therefore, the interpretation of the MDS chart is 
based not only in the relative position of the points, but also 
in the structure interconnecting them.

Figure 7 depicts a projection of the MDS chart for q = 2, 
the contour that approximates the dimension x3, and the 
superimposed interconnections generated by calculating 
the distances between objects with p = 5. We observe eas-
ily the four clusters identified in the previous subsection. 
Moreover, we verify that the proposed methodology leads 
to a clear visualization and produces a richer chart of the 
objects.

In synthesis, besides the observation based on the rela-
tive distances in 2D space, we now verify that the ZIKV 

Fig. 6  Silhouettes assessing the quality of the clustering for 
K ∈ [2, 6], the arc-cosine distance �ij, and q = 3. The blue marks 
depict the mean silhouette value for each cluster

Fig. 7  MDS chart for q = 2 and the arc-cosine distance �ij. The con-
tour represents the dimension x3 and the superimposed tree allows for 
an easier identification of patterns
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has a relevant position along the x3 dimension, somehow 
strengthening the characteristics revealed by the Chikungu-
nya and Dengue.

3.3.3  Discussion of the Results

The clusters {, , , } do not follow an epidemiologi-
cal line of thought, but may be of medical value, since they 
reflect characteristics measured by health care practice. In 
cluster,  are included viruses of Risk Group 2 that in gen-
eral do not cause serious illness nor life threatening.

In cluster , we find the Lentivirus that is responsible for 
HIV and acquired immunodeficiency syndrome (AIDS), a 
Risk Group 3 agent. We find also the Hepatitis B and the 
Rabies virus, a Lyssavirus genus and Rhabdoviridae family 
virus, of Risk Group 2.

In cluster , we can consider two subclusters. The first 
subcluster includes the Ebola and Marburg viruses that 
belong to the Risk Group 4. In addition, in this subcluster, 
the agents responsible for MERS and Bird flu are classified 
as Risk Group 3. The second subcluster includes viruses 
of different Risk Groups, namely, the Polio virus and the 
SARS–associated coronavirus, belonging to Risk Groups 2 
and 3, respectively. Smallpox is also present [80].

Cluster  includes Chikungunya, considered a Risk 
Group 3 pathogen. Also included in  are the Dengue fever 
virus, a Risk Group 2 arbovirus pathogenan, and ZIKV, 
recognized as being similar to Chikungunya and Dengue 
viruses.

In conclusion, we verified that the MDS provides a pow-
erful computational visualization technique of viruses data 
and the obtained charts may be of medical interest in the 
scope of present and future viral outbreaks.

4  Conclusions

This paper discussed the computational analysis of real-
world data describing viruses main quantitative characteris-
tics. By encompassing complex scattered data, researchers 
have to choose between comparing all aspects and detecting 
the main properties. This problem represents a challenge 
since some information (or its absence) may lead to incom-
plete or eventually to incorrect conclusions. Therefore, 
complex information calls for computational and visualiza-
tion tools capable of revealing the most relevant issues. The 
MDS technique was adopted, leading to substantive results 
that follow present-day scientific knowledge.
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