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provides insight into all of the studied subtypes, followed 
by the emergence of four leukaemia subtype biomarkers. In 
addition, the class enhanced DEG signature obtained on the 
basis of novel pipeline processing leads to significantly bet-
ter classification power of multi-class data classifiers. The 
developed methodology consisting of batch effect adjust-
ment, adaptive noise and feature filtration coupled with 
adequate statistical testing and biomarker definition proves 
to be an effective approach towards knowledge discovery in 
high-throughput molecular biology experiments.

Keywords Batch effect · Leukaemia · Biomarker 
identification · Gene expression · High-throughput

1 Introduction

Leukaemia as a common cancer type, nowadays still 
requires improvement in the domain of diagnostics and 
classification. Currently, modern molecular biology tech-
niques are being assessed for their adequacy toward the 
detection and distinction between leukaemia subtypes. 
This task has been undertaken in several attempts. Accord-
ing to  Andreeff et  al.  [1] in 1980 flow cytometric analy-
sis of DNA and RNA has been used to recognize acute 
lymphoblastic leukaemia subtypes. Along with the crea-
tion of microarray technologies new opportunities emerged 
and in 1999 Golub et  al.  [2] discriminated between acute 
lymphoblastic and myeloid leukaemia (ALL, AML) types 
using expression data. Furthermore, gene expression profil-
ing was used to classify paediatric ALL subtypes by Yeoh 
et  al.  [3]. Recently, apart from microarray technology for 
questions such as AML subtype determination  [4], inter-
est has been also turned towards searching for leukaemia 
biomarkers with miRNA [5–10] and lncRNA [11] analysis. 

Abstract Large collections of data in studies on cancer 
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extraction. In this work, a custom-fit pipeline is demon-
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Despite the existence of all those studies, there remains 
only one exceptional study which was conducted on a 
large scale to discriminate between all of the leukaemia 
subtypes [12].

This data set has been established with a great under-
standing of the importance of experimental design meth-
ods developed within the scientific community nowadays. 
The principles of control, replication and randomisation are 
commonly known and implemented throughout laborato-
ries and research institutions regardless of the study field. 
This enables planning of complex experiments, such as 
the Microarray Innovations in leukaemia (MILE)  [12]. It 
has been carried out with comprehensive state-of-the-art 
protocols and strict control procedures during the experi-
mental stage. This was expected to lead to higher power 
of statistical testing, and thus a better chance of obtain-
ing meaningful novel results. Still, the rich data set offers 
possibilities for further conclusions if deeper attention is 
directed towards the preprocessing and downstream analy-
sis pipelines.

On the basis of this study, devoted to biomarker discov-
ery, the presented work has the objective of demonstrating 
how considerate and custom data preprocessing is essential 
to the inference by reducing the chance of false discoveries. 
It has a substantial impact on the final conclusions, which 
proves how it should be commonly unthinkable to neglect 
this indispensable step in biomedical data mining.

2  Materials and Methods

2.1  Data Sets

The Microarray Innovations in Leukaemia (MILE) 
study  [12] was designed to assess the clinical accuracy 
of gene expression profiles, originating from microarray 
experiments, compared to standard leukaemia laboratory 
methods (gold standard) for 16 acute and chronic leu-
kaemia subclasses, myelodysplastic syndromes (MDSs) 
and control group that included non-malignant disor-
ders and normal bone marrow. The leukaemia subclasses 
may be divided into four main groups: acute and chronic 
myeloid leukaemia (AML, CML) and acute and chronic 
lymphoblastic leukaemia (ALL, CLL). The investiga-
tion was performed in 11 laboratories across three con-
tinents and included a total of 3,334 patients. The study 
was very carefully designed to eliminate main problems, 
which occur when many experiments are carried out in 
various laboratories in diverse conditions—so called 
batch effect  [13]. The experiments consisted of four 
phases: two main phases (Stage I and Stage II), each of 
them preceded by a pre-phase [14]. The goals of the pre-
phases were to assure intra laboratory reproducibility and 

inter laboratory comparability. Each laboratory operator 
was trained on an identical sample preparation protocol. 
Additionally, each laboratory was provided with the same 
laboratory equipment and also kits and reagents for sam-
ple preparation and microarray analysis were taken from 
the same source.

In this analysis microarray data from Stage I of the 
MILE study were investigated, where 2096 bone mar-
row samples of acute and chronic leukaemia patients were 
hybridized to Affymetrix HG-U133 Plus 2.0 GeneChips. 
Summary of the MILE datasets Stage I is presented in 
Table 1.

Three comparison studies were accomplished following 
the same signal analysis pipeline. Two of three analyses 
were performed on main classes of leukaemia and, there-
fore, merging samples from the appropriate subclasses 
was needed. The summary of merged data is presented in 
Table 2.

2.2  Analysis Pipeline

Taking into account the specific nature of the data set, the 
pipeline of analysis was designed as presented in Fig 1. It 
includes the use of state of the art methods for preprocess-
ing, a technique for removing variability caused by external 
influence (unrelated to the analysed case), adaptive filter-
ing for noise and uninformative features removal, statistical 
analysis with the aim of biomarker selection.

The three comparative analyses performed gradually 
take into account more and more details about the leu-
kaemia. The first one is carried out on the main types of 
leukaemia, and in terms of statistical analysis a commonly 
used approach is chosen, which compares the mean gene 
expression level in each main type of leukaemia with the 
mean expression level among healthy donors from control 
group (here: non-leukaemia and healthy bone marrow). 
This is an example of case-control approach widely used in 
observational studies.

In the second analysis, an extension is performed relying 
on the cross-comparison of transcriptomic profiles of main 
leukaemia types between themselves. From this analysis a 
biomarker identification step is added as it is possible to set 
an appropriate condition. In this case only such features are 
taken into account and labelled as biomarkers, which dif-
ferentiate one and only one main class from the rest.

The last analysis was performed on all of the leukae-
mia subgroups. It allows for the most profound analysis of 
leukaemia diseases. As mentioned earlier, this is a unique 
study, which was conducted on a large scale to discrimi-
nate between all of the leukaemia subtypes and in this final 
study information for all subclasses of leukaemia is taken 
under analysis.
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2.3  Data Preprocessing

The intensity data from microarray experiments has been 
subjected to fRMA normalisation  [15] with background 
correction, quantile normalisation and median polish sum-
marisation. This method has been chosen to merge the 

advantages of classic RMA normalisation with the ability 
to include additional samples if need in the future. Probe 
reannotation was accomplished with custom CDF files 
available through the BrainArray repository [16].

The next step was to ensure data coherence, i.e. verify if 
the unification procedures applied in the study successfully 

Table 1  Summary of the MILE 
datasets (STAGE I)

Types of leukaemia defined by gold standard methods in the experimental protocol

Class Diagnosis No of samples

B-ALLt(8;14) Mature B-ALL with t(8;14) 13
Pro-B-ALLt(11q23) Pro-B-ALL with t(11q23)/MLL 70
Pre-B-ALLt(9;22)+ c-ALL/pre-B-ALL with t(9;22) 122
T-ALL T-ALL 174
ALLt(12;21) ALL with t(12;21) 58
ALLt(1;19) ALL with t(1;19) 36
ALLhk ALL with hyperdiploid karyotype 40
Pre-B-ALLt(9;22)− c-ALL/pre-B-ALL without t(9;22) 237
AMLt(8;21) AML with t(8;21) 40
AMLt(15;17) AML with t(15;17) 37
AMLt(16;16) AML with inv(16)/t(16;16) 28
AMLt(11q23) AML with t(11q23)/MLL 38
AMLnk AML with normal karyotype + other abnormalities 351
AMLcak AML complex aberrant karyotype 48
CLL CLL 448
CML CML 76
MDS MDS 206
CTR Non-leukaemia and healthy bone marrow 74
Total 2096

Table 2  Samples in main 
classes of leukaemia after 
subclass merging using the 
MILE datasets in STAGE I

Diagnosis Main classes No of samples Diagnosis Main classes No of samples

B-ALLt(8;14) ALL 750 AMLt(8;21) AML 542
Pro-B-ALLt(11q23) AMLt(15;17)
Pre-B-ALLt(9;22)+ AMLt(16;16)
T-ALL AMLt(11q23)
ALLt(12;21) AMLnk
ALLt(1;19) AMLcak
ALLhk CLL CLL 448
Pre-B-ALLt(9;22)− CML CML 76
MDS MDS 206 CTR CTR 74
Total 2096

Fig. 1  Summary of pipeline analysis, which includes preprocessing data, batch effect adjustment, adaptive filtering for noise and uninformative 
feature filtration, statistical analysis and biomarker selection
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dealt with the issue of bias introduced by batch effect. In 
this case Principal Component Analysis was performed 
and the outcome suggests that nonetheless a batch effect 
due to sample preparation in different laboratories may be 
observed (Fig. 2).

Therefore, the data were adjusted for batch effects with 
the use of ComBat algorithm  [17], available through the 
SVA R package  [18]. The results of Kruskall-Wallis test 
for differentially expressed genes among research cen-
tre batches proved a significant removal of batch effect 
(Table 3).

The final step consisted of gene filtration to remove 
features with signal close to background level. There are 
various techniques available for this purpose such as the 
commonly used method of removing 50% of the genes 
with lowest expression value or variance. However, in the 
studied case of 18 subtypes of disease this approach seems 
excessively strict and implies the search of an adaptive 
threshold rather than fixed. For this reason, the adaptive fil-
tering based on Gaussian mixture decomposition has been 
selected [19]. The filtration was conducted in two steps: in 
the first step the signal was decomposed in terms of sig-
nal intensity amplitude, and the three components with the 
highest signal amplitude remained. Second, the data were 

considered variance-wise and the component with low-
est variance was rejected (Fig.  3). A total of 9941 genes 
remained for further statistical analysis.

2.4  Statistical Analysis and Biomarker Selection

To search for class enhanced differentially expressed 
genes (CE-DEGs) across types or subtypes of leukaemia, 
a set of statistical tests was carried out, independently for 
each comparative analysis. The CE-DEGs in this case are 
genes which differentiate a considered group from all the 
other groups in the manner of pairwise comparisons. At the 
beginning the conditions on normality and homogeneity of 
variances were verified and, accordingly, the appropriate 
parametric or non-parametric test was chosen.

During the first analysis, initially, Analysis of Variance 
(ANOVA) was conducted to filter out the genes, which do 
not differentiate among groups at all. Next, the mean gene 
expression level of each main type of leukemia was com-
pared with the mean expression within reference group, 
therefore, Dunnetts test was used in post hoc comparisons 
to control the experimental event rate (EER).

For the remaining two analyses the same set of statis-
tical tests was performed. It included non-parametric 
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Fig. 2  Principal component graphs demonstrating the existence of batch effect in the data with regard to sample preparation research centre

Table 3  Results of two-
way ANOVA for gene 
differentiation among research 
centres participating in sample 
preparation and leukaemia 
subgroups (� = 0.05)

Total No of genes

Research centres Leukaemia subtype Interaction

18,988

No batch effect correction 13,698 14,860 12,738
After batch effect correction 8 11,312 10,753
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Kruskal-Wallis analysis of variance test, because of the vio-
lation of the assumptions for parametric ANOVA in several 
experimental groups. After this step features, which differ-
entiate at least one leukaemia type from the rest types of 
diseases, were selected. Furthermore, as means of conduct-
ing post-hoc pairwise comparison tests, the Games-Howell 
method was chosen. Restrictive feature selection was then 
used to filter out the genes which differentiate solely one 
group from all of the other types or subtypes of leukaemia. 
The combination of the data preprocessing steps and statis-
tically supported biomarker selection method form an inno-
vative pipeline for comprehensive expression data analysis.

2.5  Cross Validation

With respect to the works presented in  [12] a similar cross 
validation scheme was executed for data processed in the 
original study and data from the proposed preprocessing 
and statistical testing analysis pipeline. Namely, 30-fold 
cross validation with three repetitions was carried out on 
the leukaemia subgroups using a Support Vector Machine 
(SVM) classifier. As a common practice to account for 
regularisation, the minimum error rate criterion was used 
in the differentiating feature selection process. Moreover, 
separability was measured using SVM on the entire data 
set for original data and processed with the proposed pipe-
line. The former feature set consisted of the union of top 

100 differentially expressed genes from t test pairwise com-
parisons, whereas in the latter case the total number of CE-
DEGs identified in the Games-Howell post-hoc test. The 
feature selection step was completed with the condition that 
genes which are incorporated into the model cannot be cor-
related in the sense of a large effect size value.

3  Results

3.1  Case–Control Approach: Leukaemia Versus 
Healthy Controls

The first analysis consisted of a common approach of 
examining differentiation between gene expression profile 
in samples collected from patients diagnosed with one of 
the main leukaemia groups and the control group. In this 
case the control samples are treated somewhat as a base-
line and the insight is being driven towards up and down 
regulated genes. The summary of these findings is pre-
sented in Figs. 4 and  5. The Venn diagrams (http://bioin-
formatics.psb.ugent.be/webtools/Venn) present similarity 
among the four main leukaemia groups in terms of the sets 
of differentiating genes in total and taking into account 
the division of up and down regulated. The total number 
of genes differentially expressed between leukaemia and 
controls per each leukaemia type is presented in Table  4. 
As expected, the lowest number of CE-DEGs is observed 
for MDS cases, while ALLs, AMLs and CLLs present the 
similar number of CE-DEGs. There are no significant dif-
ferences in the number of up and down regulated genes for 
ALL, AML, and CLL leukaemia type (50.27, 50.76, and 
50.13% of up regulated genes), while for CML type down 
regulated genes overdominate the system response (60.20%

Fig. 3  Decomposition into Gaussian components as a method of fil-
tration of genes with signal intensity close to background values and 
low variance

Fig. 4  Venn diagram for differentially expressed genes in the main 
leukaemia subgroups with regard to their control

http://bioinformatics.psb.ugent.be/webtools/Venn
http://bioinformatics.psb.ugent.be/webtools/Venn
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). A similar trend is observed for MDS samples. The com-
plete list of differentially expressed genes with regard to the 
healthy controls is given in Supplementary File 1 .

The CE-DEGs have been verified through literature 
research for the presence of key genes present in molecular 
mechanisms of the studied leukaemia types. In all of the 
investigated diseases these principal features appeared to be 
significantly altered in terms of gene expression. Hence, the 
lists of CE-DEGs included:

•	 ALL: EBF1, LMO2, CDKN2A, PTEN, RB1, BTLA, 
CD200, TOX, NR3C1, TBL1XR1, ETV6, ERG genes 
reported to be linked with acute lymphoblastic leukae-
mia [20, 21]

•	 AML: FLT3, IDH1, DNMT3A, CEBPA, KIT, NRAS, 
NPM1 genes connected with acute myeloid leukae-
mia [22]

•	 CLL: ATM, GPI, BSG, LGALS1, PARVB, VIM, 
NOTCH1, BIRC3, MYD88, CD38 associated with 
chronic lymphoblastic leukaemia as in [23, 24]

•	 CML: has been confirmed to have, among others, a 
significantly differentially expressed BCR-ABL gene, 

which is the leading oncoprotein involved in chronic 
myeloid leukemia [25, 26]

The similarity has been further determined by means of 
the Dice coefficient  [27] (DSC) with its 95% confidence 
intervals [28] (Table 5). These statistics show that the most 
substantial resemblance is within the genes differentially 
expressed in ALL and CLL, although a powerful similar-
ity is also present between the AML and ALL groups. The 
least important closeness may be seen in the case of each 
main leukaemia group when compared to MDS. Detailed 
analysis of DSC values between MDS and leukaemia types 
reveals that MDS is the most similar to AML in systemic 
response to disease, having significantly the highest value 
of Dice similarity coefficients (0.259; 95% CI from 0.245 
to 0.272), which is in compliance with the findings of other 
authors [29].

3.2  Comparison Among Leukaemia Main Types

In the second analysis, the main leukaemia types have been 
investigated using pairwise comparison testing to identify 
possible biomarkers among main groups of leukaemia. In 
this case, apart from being differentially expressed, the 
gene had to be uniquely statistically significant for only the 
one leukaemia type in order to be recognized as a potential 
biomarker (in contrast to CE-DEGs, which could differen-
tiate several groups from each other). It cannot be differ-
entially expressed among remaining leukaemia types. The 
findings have been summarised in Table 6 and on Fig.  6, 

Fig. 5  Venn diagrams for up and down regulated genes in the main leukaemia subgroups with regard to their control

Table 4  The number of statistically significant differentiating genes 
for each of the main groups of leukaemia with regard to the control 
sample group

Leukaemia type ALL AML CLL CML MDS

No of differentiating genes 6186 5628 6577 3791 1317
No of up regulated genes 3110 2857 3297 1509 500
No of down regulated genes 3076 2771 3280 2282 817
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while the complete lists of genes are available in Supple-
mentary File 2.

Thereafter, the biomarkers were subjected to functional 
analysis for gaining knowledge of biological processes, 
in which they may be involved. Therefore, they have been 
checked for links to biological process terms in the Gene 
Ontology database [30]. The biomarker lists were submit-
ted for Gene Ontology overrepresentation assessment using 
Fishers exact test. Nearly complete dissimilarity of the dis-
covered overrepresented GO terms points to an apparent 

specificity of biological processes triggered by genes dif-
ferentially expressed in the forenamed leukaemia types. 
The complete lists of ontology terms are gathered in Sup-
plementary File 3.

Moreover, the biomarker genes have been juxtaposed 
with regard to their gene family for a more complete infor-
mation set on the connection between their function and 
potential leukaemia-related processes.  INGENUITYTM 
Pathway Analysis software by QIAGEN was used for this 
purpose. The summary of the outcome is presented in 
Table  7. The findings point to a few notable indications, 
i.e. the presence of growth factors only in acute leukaemia 
and phosphatases in myeloid leukaemia. Furthermore, the 
occurrence of the G-protein coupled receptor family is spe-
cific for ALL, peptidase for AML, transmembrane recep-
tors for CLL and microRNA for CML.

3.3  Searching for Leukaemia Subtype Biomarkers

Having the required measurements for gaining insight into 
the individual leukaemia subgroups, the data were investi-
gated in a deeper manner and the analysis pipeline (Fig. 1) 
was repeated for all of the eighteen leukemia subtypes. 
Differentiation testing results demonstrate that an over-
whelming majority of the genes remaining for analysis pre-
sent statistical significance between the studied subgroups 

Table 5  Dice coefficients 
(DSC) with confidence intervals 
for main groups of leukaemia 
comparison

The rows present similarity measures for the total number of CE-DEGs, as the lower CI bound, Dice coef-
ficient (in bold) and upper CI bound for and with the distinction between up and down regulated genes

ALL ALL ALL ALL AML AML AML CLL CLL CML
& & & & & & & & &

AML CLL CML MDS CLL CML MDS CML MDS MDS

CE-DEGs
 −95%CI 0.693 0.734 0.471 0.228 0.645 0.476 0.245 0.487 0.216 0.229
 DSC 0.703 0.743 0.483 0.240 0.655 0.489 0.259 0.499 0.228 0.245
 +95%CI 0.712 0.751 0.495 0.253 0.665 0.501 0.272 0.511 0.240 0.261

Down regulated CE-DEGs
 −95%CI 0.677 0.746 0.319 0.258 0.589 0.382 0.296 0.276 0.182 0.150
 DSC 0.691 0.758 0.336 0.276 0.603 0.399 0.316 0.292 0.198 0.168
 −95%CI 0.704 0.769 0.352 0.295 0.618 0.416 0.335 0.307 0.215 0.186

Up regulated CE-DEGs
 −95%CI 0.607 0.644 0.180 0.126 0.451 0.202 0.136 0.127 0.079 0.044
 DSC 0.622 0.657 0.195 0.141 0.467 0.219 0.153 0.140 0.092 0.057
 −95%CI 0.636 0.671 0.211 0.157 0.482 0.235 0.169 0.154 0.105 0.072

Table 6  Results of Games-
Howell post-hoc pairwise 
comparisons

The type biomarkers are genes which differentiate only a particular type of disease from all other classes

Leukaemia type ALL AML CLL CML MDS CTR

No of CE differentiating genes 2190 2056 3253 1916 509 357
Leukaemia type biomarkers 42 55 68 58 2 3

Fig. 6  Overlap of class enhanced differentially expressed genes 
among main leukaemia groups
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of leukemia (Table  3). After adequate gene filtration it is 
highly probable that at least one type will vary from the 
others significantly. Thus, pairwise comparisons were 
carried out between the subgroups and the final results 
(Table  8) pointed out to merely four genes differentiat-
ing a subgroup from all the others. The genes mentioned 
are (Fig.  7): (1) ASIC2 acid sensing ion channel 2, (2) 
GABRE—gamma-aminobutyric acid A receptor, epsilon, 
(3) LINC00525—long intergenic non-protein coding RNA 
525, (4) CTNNA3—catenin alpha 3. The CTNNA3 gene 
has been shown to be linked to the Shwachman-Diamond 
syndrome which is characterized by a high risk of leu-
kaemia [31]. In terms of relation to the bone marrow pro-
cesses the GABRE gene which is a gammaaminobutyric 
acid receptor has proved to play a role during bone mar-
row stromal cell transplantation in the injured spinal cord 
in mice [32].

3.4  Classification Study

The cross validation results in detail are presented in 
Tables  9 and  10. The prediction for all of the leukaemia 
subclasses is given along with classification sensitivity. 
Furthermore, overall weighted average sensitivity with 95% 
confidence intervals is presented in Table 11. It is visible 
that features selected through the proposed analysis pipe-
line have higher average specificity than those chosen with 
the top 100 DEG original approach.

In terms of separability, there were 39 genes in the 
model for data processed with the original approach and 41 
in the novel pipeline approach. Two of these features were 
common and the remaining were correlated with effect size 
at least at a medium level. the results are on a similar level. 
The identified novel pipeline signature is driven by leukae-
mia known MEIS1, CBFB, FOXO1, SETBP1 genes with 
the support, among the others, of KIAA0101, GPX1, INSR 
HCCS and THOC5 genes. The complete list of genes in the 
signature is available in Supplementary File 4. The major-
ity of them has been previously reported to be linked to leu-
kaemia related processes. Using the novel pipeline 0.998 
accuracy was reached with the minimum error rule, versus 
0.972 for the original MILE approach. However, less itera-
tions for the procedure were required in case of the novel 
pipeline, as the considered feature space was smaller (2316 
CE-DEGs) than in the original approach (3555 genes).

4  Discussion

The analysed data originate from one of the main phases 
of MILE study and contain 2096 samples prepared by 11 
research centres from around the world. This may be the 
cause of impairment of the quality of data by the impact of 
technical factors related to each research centre. However, 

Table 7  List of gene family characteristics for main leukaemia type 
candidate biomarkers

Gene family ALL AML CLL CML

Enzyme 8 10 13 11
G-Protein coupled receptor 1 0 0 0
Growth factor 2 1 0 0
Transcription regulator 6 3 0 1
Cytokine 1 0 0 1
Ion channel 2 1 1 1
Transporter 2 6 6 0
Kinase 0 4 5 2
Peptidase 0 1 0 0
Phosphatase 0 1 0 3
Transmembrane receptor 0 0 2 0
MicroRNA 0 0 0 1
Other 20 28 41 38

Table 8  Results of Games-Howell post-hoc pairwise comparisons

The subtype biomarkers are genes which differentiate only a particular subtype of disease from all the other subclasses

Leukaemia subtype B-ALL Pro-B-ALL Pre-B-ALL T-ALL ALL ALL
t(8;14) t(11q23) t(9;22)+ t(12;21) t(1;19)

No of CE-DEG 11 46 18 111 136 90
Subtype biomarkers 0 0 0 0 0 1

 Leukaemia subtype ALLhk Pre-B-ALL AML AML AML AML
t(9;22) t(8;21)- t(15;17) t(16;16) t(11q23)

No of CE-DEG 105 2 27 141 36 19
Subtype biomarkers 0 0 0 1 0 0

 Leukaemia subtype AMLnk AMLcak CLL CML MDS CTR

No of CE-DEG 4 3 18 90 1 2
Subtype biomarkers 0 0 1 1 0 0
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the whole experiment was very well designed, which 
means every laboratory was provided with the same equip-
ment, kits, reagents coming from a common manufacturer 
or source. Likewise, the technicians were prepared in terms 
of using identical sample preparation protocol. As a result, 
the data should not have been greatly affected by bias.

The analysis adapted to the specific nature of the ana-
lysed data revealed that despite a well designed experi-
ment, variability exists in the data associated with sam-
ple preparation by particular research institutes. This 
prompted batch effect adjustment of which the effects are 
presented both in the illustration of PCA components and 
also by analysis of variance using two-way ANOVA for 
research institutions, before and after batch effect cor-
rection. The presented study indicates that batch effect 
correction should be an indispensable element of the 

microarray analysis protocol, as often it is impossible to 
exclude the impact of all external factors.

The three comparative immersing analyses provide 
advancing knowledge on the potential mechanisms of par-
ticular leukaemia types and subtypes. The first one sup-
ports findings such as an important similarity of changes 
in gene expression between the same tissue type (ALL 
and CLL). Moreover, the acute leukaemia types (AML 
and ALL) also appear to have multiple shared molecu-
lar responses given their number of common CE differ-
entially expressed genes. Additionally, the MDS studied 
subtype seems to have the least similar gene expression 
set with regard to the main leukaemia subtypes, of which 
AML was the mostly targeted by the same genes. This, 
together with a relatively small number of CE-DEGs in 
total, may point toward the suggestion that MDS is in its 
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Fig. 7  Boxplots illustrating the biomarker gene expression value distributions for subclasses of leukaemia
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mechanisms more related to a healthy response than to 
any of the leukaemia types.

The second main leukaemia type comparative analy-
sis supplies further evidence toward the similarity of ALL 
vs. CLL and AML vs. ALL gene expression wise. The 

abundance of differentiating features lead to the formu-
lation of a biomarker definition such that only genes sig-
nificant for a unique type are considered candidates. This 
implied a reduction in number of examined genes and 
investigating corresponding overrepresented gene ontology 

Table 9  Prediction table with cross validation results for the original MILE analysis pipeline data for leukaemia subgroups

Class C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 Total Sensitivity

MILE cross validation
 C1 – – – 1.0 – – – – – – – – 8.0 – 2.0 – 2.0 – 13 0.000
 C2 – 54.3 12.0 – – – – – – – – – 3.7 – – – – – 70 0.776
 C3 – 1.0 203.3 3.0 4.3 – 2.3 13.0 – – – – 5.3 – 1.3 – 2.0 1.3 237 0.858
 C4 – – 1.0 151.3 – – – – – – – – 18.0 – 1.0 – 1.7 1.0 174 0.870
 C5 – – 26.7 – 30.3 – – – – – – – – – – – – 1.0 58 0.523
 C6 – 1.0 26.7 – – 7.7 – – – – – – 0.7 – – – – – 36 0.213
 C7 – – 29.0 – 1.0 – 8.7 0.3 – – – – 1.0 – – – – – 40 0.217
 C8 – – 58.7 1.0 – – 1.0 51.0 – – – – 8.7 – 1.0 – 0.3 0.3 122 0.418
 C9 – – – – – – – – 17.7 – – – 18.7 – – 3.0 0.7 – 40 0.442
 C10 – – – – – – – – – 24.7 – – 11.0 – – – 1.3 – 37 0.667
 C11 – – – – – – – – – – 6.7 – 21.3 – – – – – 28 0.238
 C12 – – – 0.3 – – – – – – – – 36.7 – – 1.0 – – 38 0.000
 C13 – – 4.0 5.3 – – – 1.0 – – 0.7 – 312.3 – 2.0 4.0 21.7 – 351 0.890
 C14 – – – – – – – – – – – – 39.0 – 1.0 – 8.0 – 48 0.000
 C15 – – – 1.0 – – – – – – – – 8.3 – 438.7 – – – 448 0.979
 C16 – – 1.0 – – – – – – – – – 7.3 – – 57.0 10.7 – 76 0.750
 C17 – – – – – – – – – – – – 26.0 – 2.3 1.0 173.3 3.3 206 0.841
 C18 – – – – – – – – – – – – 3.0 – 1.0 1.0 56.7 12.3 74 0.167

Table 10  Prediction table with cross validation results for the novel proposed analysis pipeline data for leukaemia subgroups

Class C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 Total Sensitivity

Novel approach cross validation
 C1 3.0 – 1.0 – – – – – – – – – 2.0 – 4.0 – 2.0 1.0 13 0.231
 C2 – 68.0 1.0 – – – – – – – – – – – 1.0 – – – 70 0.971
 C3 – 2.0 189.0 2.0 –1.0 – 15.0 5.0 – – – – 2.3 0.3 3.7 – 7.0 0.7 237 0.797
 C4 – – – 155.7 – – – – – – – – 10.3 – 5.0 1.0 2.0 – 174 0.895
 C5 – – 2.3 – 53.7 – – – – – – – – – 1.0 – – 1.0 58 0.926
 C6 – 2.0 1.7 – – 31.0 – – – – – – – – 1.3 – – – 36 0.861
 C7 – – 9.7 – – – 30.3 – – – – – – – – – – – 40 0.758
 C8 – – 12.3 – – – 1.0 101.3 – – – – 4.0 – 2.0 1.0 – 0.3 122 0.830
 C9 – – – – – – – – 37.3 – – – 1.7 – 1.0 – – – 40 0.933
 C10 – – – – – – – – – 32.0 – – 4.0 – – – 1.0 – 37 0.865
 C11 – – – – – – – – – – 28.0 – – – – – – – 28 1.000
 C12 – – – 1.0 – – – – – – – −2.0 15.0 – 1.0 1.0 – – 38 0.526
 C13 1.0 – 1.0 3.0 – – – – – 1.0 – 1.0 315.7 – 7.3 1.0 −2.0 – 351 0.899
 C14 – – – – – – – – – – – – −3.0 9.0 5.0 – 4.0 – 48 0.188
 C15 – – – – – – – – – – – – 2.3 – 445.0 – 0.7 – 448 0.993
 C16 – – 1.0 – – – – – – – – – 1.0 – 2.3 67.3 4.3 – 76 0.886
 C17 – – – – – – – – – – – – 19.7 – 1.7 1.0 178.3 5.3 206 0.866
 C18 – – – – – – – – – – – – – – 2.0 1.0 31.3 39.7 74 0.536
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terms guides more towards a conclusion that a majority of 
the biological processes involved in leukaemia are specific 
to the aforementioned main types. Furthermore, the inves-
tigation of gene families presents some guidance toward 
inferring that while there are gene types specific for each 
of the main leukaemia groups, growth factors seem to be 
a linking factor for acute leukaemia, whereas phosphatases 
for myeloid leukaemia.

The final study involving deep data analysis of all of the 
subtypes of leukaemia allowed the extraction of important 
information. Four genes were discovered (ASIC2, GABRE, 
LINC00525, CTNNA3) as candidate biomarkers for four 
subtypes of leukaemia (ALL with t(1;19), AML with 
t(15;17), CML, CLL). Two of them are already described 
in the literature. Information, which has been found in the 
course of literature research, coincides to some extent with 
information about CTNNA3 and GABRE gene involve-
ment in branches of diseases associated with leukaemia. 
However, the discovered ASIC2 and LINC00525 biomark-
ers are not mentioned in the literature in this context and 
would require experimental confirmation to contribute final 
proof for the utility of these biomarkers.

Cross validation comparison of the original approach 
versus tailored preprocessing and statistical testing reveal 
that adequate gene set selection yields supreme results in 
terms of classification sensitivity. Additionally, compara-
tive separability assessment demonstrates that with a simi-
lar level of separability is possible to obtain with a smaller 
gene set, which, apart from reducing the chance of find-
ing false positives, diminishes the number of iterations 
that need to be performed in a classification scheme. This 
may be considered as significant in terms of computational 
resources necessary for performing analyses.

5  Conclusions

The presented research confirms the significance of care-
ful data preprocessing including batch effect adjustment 
and adaptive filtration for inference in a well designed large 
study of gene expression data in leukaemia patients. The 
above has been confirmed through statistical and functional 
analysis supported by bioinformatics repository informa-
tion and literature survey of the biological conclusions. 
The obtained outcome produced four candidate biomarkers 

which imply further investigation through data mining pro-
cedures. The unique candidate biomarkers that have not 
been previously described in literature require experimental 
assessment to ultimately validate their suitability as auxil-
iary indicators of disease subtypes in leukaemia.

The contribution of the study is the original design of 
the data analysis pipeline tailored to large, multiclass, bio-
informatic data. Compared to standard techniques the pro-
posed design includes two-fold modifications. The first 
modification is in the preprocessing stage, more careful 
and elaborate, which allows for better reducing of measure-
ment artifacts in the data while keeping the useful informa-
tion. The second modification is the procedure for choice 
of the differentially expressed genes. We point out that in 
the multiclass experiments the concept of DEGs becomes 
more complex than in the two-class case. We introduce 
the definition of the class enhanced DEG and biomarkers. 
CE-DEG is a feature, which shows differential expression 
between the given class and all remaining classes grouped 
together. A biomarker is a CE-DEG, which additionally 
has a property that it does not show differential expression 
between any pair of the remaining classes. We apply the 
proposed data analysis pipeline to the MILE dataset and we 
demonstrate that the list of the obtained CE-DEGs, while 
comparable in size, is different than the list of DEGs com-
puted in the MILE study. We also prove that our CE-DEG 
signature leads to significantly better classification power 
of the multi-class data classifiers.

In conclusion, the provided deep data analysis pipeline 
(Fig.  8) proves to be an advantageous tool for screening 
high-throughput molecular biology data sets.
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Table 11  Weighted average cross validation sensitivity with 95% CI 
for the original MILE data and the novel processing pipeline

Specificity 95% Confidence interval

Original MILE approach 0.739 (0.737;0.741)
Novel analysis pipeline 0.861 (0.860;0.862)
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