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Abstract The importance of the construction of gene–gene

interaction (GGI) network to better understand breast

cancer has previously been highlighted. In this study, we

propose a novel GGI network construction method called

linear and probabilistic relations prediction (LPRP) and

used it for gaining system level insight into breast cancer

mechanisms. We construct separate genome-wide GGI

networks for tumor and normal breast samples, respec-

tively, by applying LPRP on their gene expression datasets

profiled by The Cancer Genome Atlas. According to our

analysis, a large loss of gene interactions in the tumor GGI

network was observed (7436; 88.7 % reduction), which

also contained fewer functional genes (4757; 32 % reduc-

tion) than the normal network. Tumor GGI network was

characterized by a bigger network diameter and a longer

characteristic path length but a smaller clustering coeffi-

cient and much sparse network connections. In addition,

many known cancer pathways, especially immune response

pathways, are enriched by genes in the tumor GGI network.

Furthermore, potential cancer genes are filtered in this

study, which may act as drugs targeting genes. These

findings will allow for a better understanding of breast

cancer mechanisms.

Keywords Gene–gene interaction � Network construction �
Breast cancer � TCGA dataset

1 Introduction

Breast cancer and many other malignancies result from

stepwise genetic alterations of cells [1, 2]. Over the last

decade, although the knowledge of specific genes and vari-

ous biological pathways of breast cancer has been revealed,

the understanding of breast cancer biology remains limited

[3, 4]. In fact, single genes or protein alterations are not

sufficient to induce cancer, but their interactions with other

genes or their surroundings play key roles [5–7]. Performing

network analysis using large-scale gene expression datasets

is an effective way to uncover new biological knowledge.

Network analysis has revolutionized our understanding of

biological processes and made significant contributions to

the discovery of disease biomarkers. Hence, to better

understand cancer pathogenesis, research from network

perspective is urgently needed [8–13].

Detecting pairwise interactions among genes plays basic

roles in the construction of GGI network. Many GGI pre-

diction methods have been proposed, including experimental

methods such as affinity purification [14] and yeast two-

hybrid assays [15], but such methods are generally in low

efficiency and high cost. Recently, calculation-based gene

correlation prediction methods incorporating gene expres-

sion datasets have been preferred [16, 17], such as Pearson’s,

Spearman’s and Kendall’s correlations, distance correlation,
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Hoeffding’s D measure, Heller–Heller–Gorfine measure,

mutual information (MI) [18] and maximal information

coefficient (MIC) [19]. Pearson’s correlation is the most

commonly used method for detecting linear relationships

among genes. For nonlinear or non-functional relationship,

rank correlation-based methods or information theory-based

measures are more applicable. MIC is based on the idea that

if a relationship exists between two random variables, then a

grid can be drawn on the scatter plot of the two variables [20].

However, gene expression data contain various types of

relationships, many of the methods only capture one type of

interaction (promotion or suppression). In this study, we

proposed a new GGI network construction approach termed

linear and probabilistic relations prediction (LPRP). LPRP

constructs GGI network in three steps: raw network con-

struction, expansion and revision. During each step, only

high-confidence gene interactions are considered, and a

backbone network is utilized. The complete human protein

interaction network from Pathway Commons [21] was used

as the backbone network topological structure, and only

interactions in the backbone network are kept to construct the

raw GGI network. Such methodological approach has been

proven fruitful in a variety of tumor genetic research fields

[10, 22–27]. LPRP detects both linear and probabilistic

relations among genes. In [28], the authors used a similar

method but did not consider reverse regulation. In addition,

we used a totally different gene interaction measure strategy.

In this study, we validate the effectiveness of LPRP

using both simulated and real gene expression and applied

LPRP on breast cancer data analysis. We construct separate

genome-wide GGI networks for tumor and normal breast

samples by applying LPRP on their gene expression data-

sets profiled by The Cancer Genome Atlas (TCGA). The

identification of global gene interaction perturbations that

actively participate in the initiation and maintenance of the

tumor state is a major challenge in cancer biology [29].

Over the last decade, specific cancer genetic alterations

have been well described and annotated [30], but network-

level research has rarely been conducted. In this study, we

performed a multi-level study (firstly, we compared the

difference between normal and tumor GGI network from

the gene-level, i.e., compare the difference between the

gene interactions. Secondly, we compared the modularity

difference between the constructed tumor and normal GGI

network, i.e., cluster-level. Finally, we compared the net-

work topology difference, i.e., network-level comparison).

It is known that functionally related genes tend to cluster

together in the biological network [31, 32]. Many network

clustering algorithms [33–35] are available in this area. In

this study, MINE [35] was used for cluster detection, as in

many previous studies [36], which can be easily done using

Cytoscape [37]. KEGG pathway enrichment analysis was

performed using the SIGORA R package under the default

parameter settings [38]. Furthermore, node degrees of

many known tumor genes were compared, and by mapping

known breast cancer genes to the tumor GGI network,

some potential cancer genes were filtered, which may act

as drugs targeting genes. Our findings allow for a better

understanding of breast cancer mechanisms and may have

potential implications for identifying novel drug targets.

2 Methods and Materials

2.1 Materials

UNC IlluminaHiSeq_RNASeqV2 level 3 (Refer to https://

tcga-data.nci.nih.gov/tcgafiles/ftp_auth/distro_ftpusers/ano

nymous/tumor/read/cgcc/unc.edu/illuminahiseq_rnaseqv2/

rnaseqv2/unc.edu_READ.IlluminaHiSeq_RNASeqV2.mag

e-tab.1.6.0/DESCRIPTION.txt for details of the RNA-

SeqV2 pipeline and the algorithms) gene expression data-

sets of 20,502 genes, including 120 breast cancer samples

and 106 normal samples, were downloaded from the

TCGA project webpage. Raw count values were normal-

ized using the TCGA-Assembler [40]. To further reduce

the error, genes with values of 0 across all samples were

deleted, leaving only 16,441 and 16,999 genes in the nor-

mal and tumor expression matrixes, respectively. The

complete human protein–protein interaction network was

downloaded from Pathway Commons (http://www.

pathwaycommons.org/), which was generated by bringing

together protein interactions from the following sources:

the Human Protein Reference Database (HPRD) [41], the

National Cancer Institute Nature Pathway Interaction

Database (NCI-PID) [42], the Interactome (Intact) [43] and

the Molecular Interaction Database (MINT) [44]. We

focused on non-redundant interactions, only including

proteins with an Entrez gene ID annotation, and isolated

nodes or edges were deleted. As a result, we obtained a

connected network with 15,589 nodes (unique Entrez IDs)

and 1896,352 documented interactions. Hereafter, we refer

to this network as the ‘‘KP’’. For comparison, two random

datasets were generated, and 237 known breast cancer-re-

lated genes were downloaded from SNP4Disease (http://

snp4disease.mpi-bn.mpg.de/result.php). After deleting

non-expressed genes, only 166 genes left. The gene

expression dataset and its benchmark networks of the

Dream5 challenge4 network inference challenge [45],

downloaded from (http://wiki.c2b2.columbia.edu/dream/

index.php?title=D5c4), were also used for comparison. To

do systematic evaluation, two datasets are used. One is a

real gene expression dataset contained in R package minet

[46]. The other is a simulated dataset simulated by SynT-

ReN (synthetic transcriptional regulatory network) [47]

which has 100 genes and 100 samples.
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2.2 Methods

LPRP takes the discretized matrix D (constructed later) and

KP as inputs and outputs the corresponding GGI network.

LPRP works in the following steps: First, the gene

expression matrix is discretized; second, gene interactions

are detected and statistically validated; and third, the GGI

network is constructed.

2.2.1 Discretization of Gene Expression Matrix

We denote the gene expression data matrix as M. For each

row of M, its average and standard deviation are calculated

as in [28]. We denote the average and deviation of the ith

row as avgi and sdi, respectively. D is defined by Eq. (1):

Dij ¼
�1 if Mij\avgi � c� sdi

0 if avgi � c� sdi � if Mij � avgi þ c� sdi

1 if Mij [ avgi þ c� sdi

8
<

:
ð1Þ

where c is the threshold value between 0 and 1.

We vary c from 0 to 1 in steps of 0.1. For each case, the

frequency distribution of the genes with respect to the counts

of 1, 0, -1 s in their profiles is shown in Fig. 1. As shown in

Fig. 1, when c takes a value between 0.4 and 0.5, the dis-

tribution that is most similar to the distribution of the ran-

domly generated discretized matrix and also has similar

distribution with those generated from currently commonly

used methods in ‘‘sdnet’’ R package (randomly generated of

0, 1 and -1) shown in Fig. 1. Hence, in this work, we used

c = 0.45 for the discretization of the gene expression matrix.

2.2.2 Gene Interaction Detection

Based on the discretized gene expression matrix D, for each

pair of genes in D under the same sample, only nine possible

value combinations exist. We represent one gene as gi and

another gene as gj; such combinations are shown in Eq. (2):

Cðgi; gjÞ ¼

ð�1;�1Þ where gi ¼ �1 and gj ¼ �1

ð�1; 0Þ where gi ¼ �1 and gj ¼ 0

ð�1; 1Þ where gi ¼ �1 and gj ¼ 1

ð0;�1Þ where gi ¼ 0 and gj ¼ �1

ð0; 0Þ where gi ¼ 0 and gj ¼ 0

ð0; 1Þ where gi ¼ 0 and gj ¼ 1

ð1;�1Þ where gi ¼ 1 and gj ¼ �1

ð1; 0Þ where gi ¼ 1 and gj ¼ 0

ð1; 1Þ where gi ¼ 1 and gj ¼ 1

8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

ð2Þ

For each form of combination in Eq. (2), its probability

value across all samples is calculated from Eq. (3):

Pðvi; vjÞ ¼

PN

h¼1

Dgi;h ¼ vi ^ Dgj;h ¼ vj

N
ð3Þ

where N is the sample number in matrix D, gi and gj are the

two genes as in Eq. (2), vi and vj take values from -1, 0, 1.

For simplicity, only three forms of interactions between

gi and gj are considered. That is, gi and gj are forward-

regulated, reverse-regulated or have no interaction. Fur-

thermore, we hypothesize that if gi and gj have a forward-

regulated relationship then their reverse-regulated power is

small or has no reverse regulation relationship between

them and vice versa. Furthermore, considering the per-

spective of entire network, only one form of regulation

dominates between the two genes, even though the other

form of regulation may sometimes exist. As a result, the

combinations in Eq. (2) can be classified accordingly.

Cð�1;�1Þ and Cð1; 1Þ are classified as the forward regu-

lation relationship (denoted as conðgi; gjÞ) but should fulfill

the restraints in Eq. (4), Cð1;�1Þ and Cð�1; 1Þ are clas-

sified as the reverse regulation relationship (denoted as

reðgi; gjÞ) but should fulfill the restraints in Eq. (5), and

other combinations such as Cð�1; 0Þ;Cð1; 0Þ;Cð0; 0Þ;
Cð0;�1Þ;Cð0; 1Þ are classified as no interaction relation-

ships or considered noise signals.

if conðgi; gjÞ then

� ððPð�1;�1Þ þ Pð1; 1Þ þ Pð0; 0ÞÞ � ðPð�1; 1Þ
þPð1;�1Þ þ Pð0; 0ÞÞÞ[ 0

� ððPð�1;�1Þ þ Pð1; 1Þ þ Pð0; 0ÞÞ � ðPð�1; 0Þ
þPð0;�1Þ þ Pð1; 0Þþ
Pð0; 1Þ þ Pð0; 0ÞÞÞ[ h

8
>>>>>><

>>>>>>:

ð4Þ

if reðgi; gjÞ then

� ððPð�1; 1Þ þ Pð1;�1Þ þ Pð0; 0ÞÞ � ðPð�1;�1Þ
þPð1; 1Þ þ Pð0; 0ÞÞÞ[ 0

� ððPð�1; 1Þ þ Pð1;�1Þ þ Pð0; 0ÞÞ � ðPð�1; 0Þ
þPð0;�1Þ þ Pð1; 0Þþ
Pð0; 1Þ þ Pð0; 0ÞÞÞ[ h

8
>>>>>><

>>>>>>:

ð5Þ

where in Eqs. (4) and (5), h is a threshold value between 0

and 1.

We varied h from 0 to 0.6 (according to our calculations,

no interactions exist when h[ 0.6) sin steps of 0.05, and

the corresponding numbers of gene interaction pairs, genes

(the number of gene of the random sample is not pre-

sented), Con regulations (forward regulation) and Re
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regulations (reverse regulation) detected from the tumor,

normal and random samples are presented in Fig. 2. h
varies from 0.1 to 0.6. Most interactions exist between 0

and 0.1, and when h[ 0.1, almost no interactions exist in

the random dataset. Therefore, we set h = 0.1 in this study

such that as many real gene interactions as possible can be

filtered.

We previously hypothesized that if genes gi and gj are

Con regulated then their Re regulation power under same

conditions should be small, as denoted in Eqs. (4) and (5).

Fig. 1 Frequency distribution

of -1, 0, 1 s in the discretized

matrix D and in the two random

matrices
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In fact, in real organisms, forward regulations are the most

common type of regulation, which is consistent with our

results, as shown in Fig. 2. As shown in Fig. 2, the number

of Con and Re interactions is almost equal in the random

samples, which again verified the validity of our method.

To further validate the effectiveness of our gene inter-

action detection strategy, gene expression datasets from the

DREAM 5 network inference challenge 4 were down-

loaded. After careful revision, we kept 104 samples con-

taining 5950 genes. The golden standard network of this

expression dataset was also downloaded, which contained

1994 genes and 3994 edges. The performance of the LPRP

was compared with the performances of Spearman, MI,

Kendall and MIC, and the results are shown in Fig. 3.

As shown in Fig. 3, the LPRP detected more known

edges compared to other methods, especially in the real

gene expression datasets. However, even with the LPRP of

the 3994 given edges in the Dream 5 network4, only 258

edges were detected out and of the 1,896,352 edges in KP,

and only 28,768 edges were detected out of the top

1,000,000 filtered edges. Therefore, gene interaction pairs

should not be used directly as the final edges for the net-

work construction; instead statistical validation and a net-

work construction strategy should be introduced to reduce

the false discovery rate.

2.2.3 Statistical Validation

To validate statistical significance of the GGIs identified by

the LPRP, for each gene in matrix D, the order of its value

(-1, 0, 1 s) across all samples was randomly shuffled. This

process was repeated 1000 times, this will allow matrix D

follows the same distribution as the original matrix. The

LPRP was applied on all of the 1000 randomized matrices

D, and each time only the interactions with interaction

values larger than 0.1 were filtered. First, we compared the

filtered GGIs number obtained from the real datasets and

the 1000 random datasets. Second, the proportion of GGIs

contained in KP was calculated. Higher proportions cor-

respond to increased LPRP effectiveness (as shown in the

results section, nearly four times more GGIs contained in

Fig. 2 Con and Re regulations,

gene number and interaction

number under different h values.

BRCA-T, BRCA-N and

Random represent the tumor,

normal and random samples,

respectively. Gene number is

the number of genes contained

in the filtered interactions,

interactions are sum of the Con
and Re interactions, Con
signifies the interactions that are

forward-regulated, and Re
denotes interactions that are

reverse-regulated

Fig. 3 Performance comparison of the LPRP and other methods

using both simulated and real datasets. ACCURACY is defined as the

number of known GGIs in the top 10,000, 100,000, 500,000 and

1,000,000 interactions. The top 10,000 is the number (10,000) of

GGIs filtered in each method under the given thresholds. a The result

based on the Dream5 network 4 datasets. b The result based on the

normal BRCA gene expression datasets. MIC is not included due to

its long running time
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KP were detected by the LPRP in the real dataset compared

to the random datasets). Third, because many more GGIs

are filtered with h[ 0.1 in the real datasets, how large the

possibility is if interactions satisfying h[ 0.1 while not

annotated by KP are novel activated interactions rather

than occurred by chance? To do this, the appearance times

of each such interaction are counted across all GGIs gen-

erated from 1000 randomized datasets. The p value is

defined as the proportion of appearance times to 1000

(Eq. (6)). Very few interactions had a p value [0.01.

Smaller p values correspond to lower probability of the

interaction occurring by chance. In this study, only GGIs

with a p value B0.01 were considered.

P� value ¼ Tappear þ 1

1000
ð6Þ

where Tappear is the appearance time of one GGI in the

GGIs filtered from 1000 random datasets.

2.2.4 GGI Network Construction

After statistical validation, all interactions with h[ 0.1 but

p value [0.01 were discarded. Only interactions with

h[ 0.1 and a p value \0.01 were used for the GGI net-

work construction. The LPRP constructs the GGI network

in three steps: raw GGI network construction, expansion

and revision. The raw GGI network is constructed by using

interactions that satisfy the threshold value and also con-

tained in KP [21]. In this way, we can easily obtain a rough

topology of the final GGI network without introducing

much false positive gene interactions [39]. The gene

interactions in KP have no direction; therefore, gene gi
interacts with gj is equivalent to gj interacts with gi. If

either one exists in KP, we selected the edge from the

filtered GGIs (all the GGIs satisfy h[ 0.1 and p value

\0.01). With these raw GGIs, the expansion and revision

processes are executed alternatively until no edges remain

in all of the candidate GGIs. The purpose of expansion is

trying to add as much of edges left after raw construction as

possible to the raw network, while revision is preventing

expansion from introducing noise edges. In expansion, all

of the endpoint genes of the currently not added edges are

considered, and only genes that have direct interactions

with genes contained in the current GGI network are

attached to the current GGI network. Revision is performed

only between the newly added genes after the current

expansion stage. GGIs that satisfy the statistical validation

but that are not attached to the current GGI network can be

classified into the following three categories. (a) GGIs with

both endpoint genes already contained in the current raw

GGI network but not included in KP. We use Eq. (7) to

judge whether such GGIs should attach to the current GGI

network. In Eq. (7), Comnegðgi; gjÞ represents the common

neighbors of genes gi and gj. If their common neighbor

number is larger than the threshold value x, then we add an

edge between them; otherwise, they are left unconnected.

(b) GGIs with both endpoint genes not contained in the

current raw GGI network. For these GGIs, because it is

hard to determine whether they should be attached, we left

them as undetermined in the current cycle period. (c) GGIs

with only one endpoint gene included in the raw GGI

network. For these GGIs, we simply attached them to the

current GGI network. GGIs in (a) and (b) may correspond

to novel interactions or simply interactions that occurred

due to their common interacting neighbors. In revision

stage, we weigh whether those GGIs should be added or

discarded. As shown in Eq. (7), if their common neighbor

number is bigger than the threshold value, they are attached

to the current raw network. Otherwise, they are discarded.,

Comnegðgi; gjÞ[x ð7Þ

where Comnegðgi; gjÞ is the number of common neighbors

of genes gi and gj, and x is the threshold value. We set

x = 1 in this study (after the raw construction stage, all the

known GGIs have already been added to the network. The

main purpose of the expansion and revision is to add as

many edges as possible, because although these edges are

not contained in the know edge interaction datasets, they

all pass our statistic validation and are more likely to be

real existed interactions rather than occur by chance.

Hence, setting x at a smaller value is preferable.).

3 Results

Before applying LPRP on breast cancer datasets analysis,

effectiveness of LPRP is evaluated using both real gene

expression dataset and on simulated gene expression

dataset. Results are shown in Figs. 4 and 5.

As shown in Figs. 4 and 5, LPRP performs well on both

real and simulated gene expression datasets. Next, we

apply LPRP on breast cancer datasets analysis and con-

struct GGI networks of normal and tumor samples,

respectively. According to our analysis, we found that the

GGI network constructed from normal samples is a typical

complex network. Its node degree follows the power law

distribution, and its characteristic path length and network

diameter are 4 and 13, respectively, these values are 8.6

and 24 for the tumor GGI network, respectively. The tumor

GGI network contains fewer genes and gene interactions,

and its path length is longer. In fact, its path length follows

a normal distribution. Because a random mutation/alter-

ation in cancer is more likely to inactivate rather than

activate a gene, there is a large reduction in the number of

genes. Recent reports have also suggested that most genetic

mutations inactivate and affect tumor suppressor genes
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[45]. The node overlap between the two GGI networks is

large (56 % of the tumor nodes are found in the normal

GGI network), but only 18.4 % of the interactions present

in the tumor network are found in the normal network.

According to [46], cancer may be a pathway to cell sur-

vival, as in the tumor GGI network, new paths occurred

and new genes were activated, and these paths and genes

may play key roles in tumor initiation and development.

According to James West [10], cancers are characterized

globally by an increased network entropy, and the larger

the network entropy corresponds to the lower system sta-

bility. Increased network diameter and a decreased clus-

tering coefficient in the tumor network together foster such

instability.

Multi-level comparisons were performed between the

normal and tumor GGI networks. First, we compared the

networks from the entire network perspective, including

the differences in their network topology characteristics

and their common and particular genes and edges. Second,

clusters within the two networks were detected using

MINE, and their functions were annotated using the

SIGORA R [38] package and DAVID [47]. Third, the

characteristics of special genes (including genes particu-

larly expressed in tumor network, common network genes

that were differentially expressed, known breast cancer

genes) were compared.

3.1 Network-Level Comparison

By applying the LPRP on the tumor and normal BRCA

datasets with c = 0.45 and h = 0.1, 110,186 and 3,045,539

raw GGIs were filtered, respectively. After statistical val-

idation using a p value\0.01, only 102,688 and 2,893,901

GGIs remained for the subsequent GGI network construc-

tion, which contained 10,114 and 15,714 genes, respec-

tively. First, raw networks for both the normal and tumor

GGI networks were constructed, and then the expansion

and revision steps were alternately executed until no edges

could be added. Detailed information is provided in Figs. 6

and 7, and the supplemental file S1. All of the network

analyses were performed using Cytoscape [37, 48, 49].

3.2 Cluster-Level Comparison

Functionally related genes rarely work in isolation; rather,

they tend to form clusters and collaboratively perform

complex cellular functions. By detecting clusters in both

the normal and tumor final GGI networks, specific tumor

functional modules can be revealed. Many cluster detection

algorithms have been proposed, such as SPICi [50],

GECluster [51], MCODE [33] and MINE [35]. MINE

outperforms MCODE, SPICi and many other methods in

identifying non-exclusive, high modularity clusters and can

be easily run on Cytoscape software. MINE was run under

the default parameter settings. Seventeen clusters with their

node numbers greater than 5 of the tumor GGI network are

listed in Table 1. The cluster functions and their enriched

biological pathways were annotated using DAVID [47, 52]

and the R package of SIGORA. Pathways such as the P53

Fig. 4 Performance comparison of the LPRP and other methods

using syn.data real gene expression dataset (syn.data contained in

minet R package, syn.data includes gene expression dataset and

reference network). Panda [40, 41], Mrnet [42], CLR [43], ARACNE

[16] and mrnetb are GGI network inference methods, all can be found

in minet [44] R package

Fig. 5 Performance comparison of the LPRP and other methods

using simulated gene expression dataset (with 100 genes and 100

samples simulated by SynTren. SynTren can not only simulate gene

expression but also give reference network)

Interdiscip Sci Comput Life Sci (2018) 10:131–142 137

123



signaling pathway, the cell cycle and the Jak-STAT sig-

naling pathway are well-known cancer pathways.

3.3 Gene-Level Comparison

The final tumor GGI network contained 4757 genes, 56 %

(2668) of which were also contained in the final normal

GGI network. The other 44 % genes may play important

roles in tumor progression. The enriched KEGG pathways

of the genes were analyzed using the R package of

SIGORA [38]. The top 25 pathways with a p value

\0.0008 are listed in Table 2. As shown in Table 2,

many pathways are well-known tumor pathways. Because

few genes and interactions are contained in the tumor

GGI network, most genes in the tumor GGI network have

less interacting edges compared to normal networks.

Through comparative analysis node degree of those

common genes, we found that most of them have same

neighbor numbers in both tumor and normal GGI

network; however, some genes have significant change in

their degree. In gene-level comparison, we filtered such

significantly changed genes and results were shown in

Fig. 6.

3.4 Potential Breast Tumor Gene Prediction

Next, we mapped the 166 (all genes are downloaded and

compiled from SNP4Disease website) known breast dis-

ease-related genes to the final tumor GGI network. These

genes and their neighbor genes were filtered out, and the

result is shown in Fig. 7. As shown in Fig. 7, breast genes

and their neighbor genes fall into three clusters. Because

genes within the same cluster tend to have similar func-

tions, we first annotated the three clusters using DAVID,

and the results are shown in Table 3. According to the

functional annotation results, many of these genes con-

tribute to cancer initiation and progression and may act as

potential breast cancer genes.

Fig. 6 Up- and down-regulated

gene node degrees in the final

tumor and normal GGI

networks. Normal indicates a

normal GGI network, tumor

indicates a tumor GGI network,

up degree gene indicates the

degree of genes was larger in

the tumor GGI network than in

the normal GGI network, and

down degree gene indicates that

the degree of genes was smaller

in the tumor GGI network than

in the normal GGI network
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Fig. 7 Breast disease genes and

their neighbors. In this figure,

known breast disease-related

genes are mapped to the final

tumor GGI network, and their

adjacent neighbors are filtered

out

Table 1 Functional annotation of clusters detected using MINE in the tumor GGI network

Cluster DAVID/SIGORA annotate Gene Benjamini p value

1 Ribosome, translational elongation 68 2.9E-125 1.1E-127

2 Cell cycle, P53 signaling pathway, DNA replication 73 9.5E-59 1.8E-61

3 Regulation of lymphocyte activation, regulation of leukocyte activation, immune response, T cell

receptor signaling pathway, Jak-STAT signaling pathway

39 1.9E-21 2.3E-24

4 Eextracellular matrix, proteinaceous extracellular matrix, cell adhesion, hydroxylation, extracellular

region

32 4.0E-36 4.4E-38

5 Immune response, apoptosis, regulation of apoptosis, response to virus 23 6.7E-9 3.3E-11

6 Mitotic cell cycle, chromosome, centromeric region, intracellular non-membrane-bounded organelle,

chemokine signaling pathway

16 8.4E-11 4.1E-13

7 Antigen processing and presentation of peptide antigen via MHC class I 12 1.5E-13 1.5E-13

8 Antigen processing and presentation of peptide or polysaccharide antigen via MHC class II, immune

response

8 1.4E-13 9.1E-16

9 IgG binding, alternative splicing 8 1.4E-8 1.5E-9

10 SH2 domain, chemokine signaling pathway 7 1.2E-4 2.4E-6

11 Protein biosynthesis, RNA transport 7 1.7E-4 1.8E-5

12 7

13 Chemokine signaling pathway, response to wounding, Cytokine-cytokine receptor interaction 6 1.7E-8 2.2E-10

14 Epidermis development, epithelial cell differentiation, ectoderm development 5 1.9E-7 6.8E-9

15 Immune response 5 2.6E-4 6.2E-6

16 Chemokine signaling pathway, NOD-like receptor signaling pathway, sh3 domain 5 1.7E-2 5.1E-4

17 Cell cycle, DNA replication 5 2.3E-6 3.8E-7
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4 Conclusion

In this study, both normal and tumor GGI networks were

constructed under the same parameter settings, and

multi-level comparisons are conducted. Results show that

the tumor GGI network has larger network diameter with

longer characteristic path length but a smaller clustering

coefficient and much sparse network connections, which

are different from those of normal GGI network. The

tumor GGI network contains fewer functional modules,

and many of them were enriched in known cancer-re-

lated pathways. Among the up-regulated genes, BRD7

encodes a protein that interacts with p53 and is required

for p53-dependent oncogene-induced senescence, which

prevents tumor growth. Among the down-regulated

degree gene, KIAA1967, also known as Deleted in

Breast Cancer 1 (DBC1), is a candidate tumor suppressor

gene involved in breast cancer [53, 54]. Finally, by

mapping known breast-related disease genes to the final

tumor GGI networks, three clusters were filtered out.

Because genes within the same cluster tend to have

similarly functions, genes within these clusters may be

potential breast cancer genes. These findings allow for a

better understanding of tumor mechanisms and may have

potential implications for the identification of novel drug

targets.

Table 2 KEGG pathway

enrichment analysis results
ID Pathway p value

1 Cytokine–cytokine receptor interaction 4.46E-200

2 Metabolic pathways 2.25E-34

3 Jak-STAT signaling pathway 3.24E-21

4 Protein processing in endoplasmic reticulum 1.18E-10

5 ErbB signaling pathway 8.19E-09

6 Amino sugar and nucleotide sugar metabolism 3.92E-06

7 Histidine metabolism 9.17E-06

8 Caffeine metabolism 1.05E-05

9 Glycerophospholipid metabolism 1.32E-05

10 Asthma 1.41E-05

11 Vitamin B6 metabolism 1.60E-05

12 Sulfur relay system 1.67E-05

13 Small cell lung cancer 2.35E-05

14 Cysteine and methionine metabolism 2.80E-05

15 Glycosphingolipid biosynthesis—lacto and neolacto series 3.14E-05

16 Fc gamma R-mediated phagocytosis 6.53E-05

17 Base excision repair 0.0001419

18 Synthesis and degradation of ketone bodies 0.0001611

19 Protein digestion and absorption 0.0001899

20 Porphyrin and chlorophyll metabolism 0.0002799

21 GnRH signaling pathway 0.0003071

22 Osteoclast differentiation 0.0004201

23 Alanine, aspartate and glutamate metabolism 0.0006986

24 Long-term potentiation 0.0007306

25 Glycosylphosphatidylinositol(GPI)-anchor biosynthesis 0.0007490

Table 3 DAVID annotation results of the three clusters in Fig. 7

Cluster DAVID Annotate Gene Benjamini p value

1 Extracellular matrix, cell adhesion, blood vessel development, EGF-like region, conserved site, cell

migration, pathways in cancer

77 1.0E-54 5.7E-57

2 Disulfide bond, transmembrane protein, Chemokine signaling pathway, inflammatory. Response,

immune response, apoptosis

62 1.3E-14 5.9E-17

3 Cell cycle, DNA repair, regulation of cell cycle process, pathways in cancer, apoptosis, immune

response

180 8.0E-41 2.7E-43
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