
Mathematical Programming Computation (2023) 15:703–731
https://doi.org/10.1007/s12532-023-00246-4

FULL LENGTH PAPER

A computational study of perspective cuts

Ksenia Bestuzheva1 · Ambros Gleixner2 · Stefan Vigerske3

Received: 4 March 2021 / Accepted: 4 May 2023 / Published online: 21 August 2023
© The Author(s) 2023

Abstract
The benefits of cutting planes based on the perspective function are well known for
many specific classes of mixed-integer nonlinear programs with on/off structures.
However, we are not aware of any empirical studies that evaluate their applicabil-
ity and computational impact over large, heterogeneous test sets in general-purpose
solvers. This paper provides a detailed computational study of perspective cuts within
a linear programming based branch-and-cut solver for general mixed-integer nonlin-
ear programs. Within this study, we extend the applicability of perspective cuts from
convex to nonconvex nonlinearities. This generalization is achieved by applying a per-
spective strengthening to valid linear inequalities which separate solutions of linear
relaxations. The resulting method can be applied to any constraint where all variables
appearing in nonlinear terms are semi-continuous and depend on at least one common
indicator variable. Our computational experiments show that adding perspective cuts
for convex constraints yields a consistent improvement of performance, and adding
perspective cuts for nonconvex constraints reduces branch-and-bound tree sizes and
strengthens the root node relaxation, but has no significant impact on the overall mean
time.

Keywords Perspective cuts · Mixed-integer nonlinear programming · Nonconvex
optimization · Computational study

Mathematics Subject Classification 90-04 · 90-05 · 90-08 · 90C11 · 90C26 · 90C30 ·
90C57

B Ksenia Bestuzheva
bestuzheva@zib.de

Ambros Gleixner
gleixner@htw-berlin.de

Stefan Vigerske
svigerske@gams.com

1 Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany

2 Zuse Institute Berlin and HTW Berlin, Berlin, Germany

3 GAMS Software GmbH, c/o Zuse Institute Berlin, Berlin, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12532-023-00246-4&domain=pdf
https://orcid.org/0000-0002-7018-7099
https://orcid.org/0000-0003-0391-5903
https://orcid.org/0009-0001-2262-0601

704 K. Bestuzheva et al.

1 Introduction

Consider a mixed-integer nonlinear program (MINLP) with semi-continuous vari-
ables:

min 〈c, (x, y, z)〉 (1a)

s.t. g(x, y, z) ≤ 0, (1b)

(y
j
− y0j)zk ≤ y j − y0j ≤ (y j − y0j)zk, ∀ j ∈ Sk, ∀k ∈ I, (1c)

x ∈ R
n, y ∈ R

p, z ∈ {0, 1}q . (1d)

Here, 〈c, (x, y, z)〉 is the linear objective function given by a scalar product of
a constant vector c ∈ R

n+p+q and the vectors of continuous variables x, semi-
continuous variables y andbinary variables z. Constraints (1b) are givenby inequalities
g(x, y, z) ≤ 0, where g : R

n ×R
p × [0, 1]q → R

m is a vector function and some of
its elements gi are nonlinear.

The set Sk ⊆ {1, . . . , p} shall contain the indices of semi-continuous variables
controlled by the indicator variable zk , and I ⊆ {1, . . . , q} is the set of indices of
all indicator variables. Constraints (1c) ensure that for each j ∈ Sk , the value of y j
belongs to the domain [y

j
, y j] when the indicator variable zk is equal to 1 and has a

fixed value y0j when zk is equal to 0. Semi-continuous variables are typically used to
model “on” and “off” states of a process and can be found in such problems as optimal
line switching in electrical networks [12], blending [39] and production planning [5],
to name but a few.

In order to simplify the notation, in the rest of the paper the subscript k will be
omitted and we will be referring to a vector of semi-continuous variables y ∈ R

p

controlled by the indicator variable z ∈ {0, 1}. The semi-continuity relation is then
defined by the inequality (y − y0)z ≤ y − y0 ≤ (y − y0)z.

In the theoretical part of the paper, we consider constraints of the form

g(x, y) = f (y) − x� ≤ 0 (2)

for some � ∈ {1, . . . , n} and f : Rp → R. When z = 0, function f is reduced to
a fixed value f (y0). A common example of such constraints are on/off constraints
which become redundant when the corresponding indicator variable is set to 0.

The continuous variable x� represents the linear non-semi-continuous part of the
expression on the left-hand side. This is without loss of generality, since the same
arguments can be directly adapted for a more general linear part. For the experiments,
arbitrary linear parts are allowed, with the condition that any non-semi-continuous
variables must only appear linearly in the entire expression.

Many state-of-the-art algorithms for the solution ofMINLP (1) make use of nonlin-
ear and linear programming relaxations where the condition z ∈ {0, 1} is replacedwith
z ∈ [0, 1]. However, for a constraint of the form (2), simply dropping the integrality
condition generally does not produce the tightest possible continuous relaxation. The
reason for this is that the dependence of y’s bounds on the indicator variable z is not

123

A computational study of perspective cuts 705

exploited by a straightforward continuous relaxation. Consequently, the same applies
for the linearization of Constraint (2) via gradient cuts [29], that is, inequalities

f (ŷ) + 〈∇ f (ŷ), y − ŷ
〉 ≤ x�, (3)

where ŷ is the point at which f is linearized.
The strongest continuous relaxation of the set described byConstraint (2), given that

y is semi-continuous, can be achieved by applying the perspective reformulation [15].
Linearizing this reformulation provides valid linear inequalities known as perspective
cuts.

In this paper we present a computational study of perspective cuts within SCIP [7],
a general-purpose solver that implements an LP-based branch-and-cut algorithm to
solve mixed-integer nonlinear programs to global optimality. Section2 provides the
theoretical background for this study and a review of applications that can be found
in existing literature. In Sect. 3, we describe our approach to creating perspective
cuts and show that for convex instances, it is equivalent to linearizing the perspective
formulation via gradient cuts. Section4 gives an outline of our implementation of
perspective cuts in SCIP, which includes detection of suitable structures and separation
and strengthening of perspective cuts. Finally, in Sect. 5 the results of computational
experiments on instances from MINLPLib1 [9] are presented.

2 Perspective formulations for convex nonlinearities

This section gives a review of the existing literature on theoretical and computational
results related to perspective formulations for convex nonlinearities.

2.1 Theoretical background

A key concept that is widely used in constructing convex hulls of unions of convex
sets is that of the perspective function:

Definition 1 [32] For a given convex function f : Rp → R, its perspective function
f̃ : Rp+1 → (R ∪ {+∞}) is defined as:

f̃ (y, z) =
{
z f (y/z), if z > 0,

+∞, otherwise,

where y ∈ R
p, z ∈ R.

2.1.1 Convex hulls of unions of convex sets

The line of research that is concerned with formulating convex hulls of unions of
convex sets began with the works of Balas [3, 4] on unions of polyhedral sets. These

1 https://www.minlplib.org

123

https://www.minlplib.org

706 K. Bestuzheva et al.

works introduced the disjunctive programming approach to represent the feasible set
of a mixed-integer program as a union of sets.

Considering the case of nonlinear sets, Ceria and Soares [10] studied convex hull
formulations for unions of convex sets and their applications to disjunctive program-
ming. Stubbs and Mehrotra [35] described the convex hull of the feasible set of a
convex 0–1 program in an extended space and developed a procedure for generating
cutting planes. Grossmann and Lee [24] extended the convex hull results to gener-
alized disjunctive programs (GDPs). Similarly to disjunctive programming, feasible
sets of GDPs are given as unions of convex sets, but more general logical relations are
also allowed.

Khajavirad and Sahinidis [30] employed a convex hull formulation in line with the
aforementioned works in order to construct a convex envelope of a nonconvex lower
semi-continuous function, thus extending the applicability of disjunctive programming
results to a wider class of problems.

2.1.2 Formulations in the original space

For the case where all sets in the disjunction lie in orthogonal subspaces, Tawarmalani
et al. [36] proposed a formulation of the convex hull of a disjunction of a finite number
of orthogonal sets. This formulation does not require the introduction of additional
variables. Further, this technique is applied for constructing relaxations of nonconvex
constraints that are not naturally disjunctive.

Hijazi et al. [27, 28] formulated the convex hull in the original space for the case
of two sets corresponding to the two possible values of a binary indicator variable z.
When z = 0, the values of y are restricted to an interval [y0, y0]. The function f is
required to be isotone, that is, monotone in any given coordinate.

Let F denote the disjunctive set obtained as the union of two sets F0 and F1

corresponding to values 0 and 1 of z, respectively:

F0 = {(y, z) | y ∈ [y0, y0], z = 0}, (4)

F1 = {(y, z) | f (y) ≤ 0, y ∈ [y, y], z = 1}. (5)

The work by Hijazi et al. [27, 28] provides the formulation of the convex hull of F in
the space of original problem variables using an exponential number of constraints. To
avoid an exponentially large formulation, the authors employed a convex relaxation
given by a subset of constraints defining the convex hull. They showed that this relaxed
formulation provides strong dual bounds which yield considerable improvements
in performance for the delay-constrained routing problem in telecommunications.
Bestuzheva et al. [8] extended this result to the case of univariate non-isotone func-
tions.

2.1.3 Formulations for a union of a convex set and a singleton set

Consider a special case where the set corresponding to the 0 value of the indicator
variable is a singleton set, and let F1 be now defined through an epigraph, that is,

123

A computational study of perspective cuts 707

F = F0 ∪ F1, where

F0 = {(x�, y, z) | f (y0) ≤ x�, y = y0, z = 0}, (6)

F1 = {(x�, y, z) | f (y) ≤ x�, y ∈ [y, y], z = 1}. (7)

Note that F is the set given by Constraint (2) together with semi-continuity conditions
on y. For this case, original space convex hull formulations are known which do not
require an exponential number of constraints, unlike the more general formulations
[27, 28].

In particular, Frangioni and Gentile [15] proposed a compact reformulation in the
original space. Considering a semi-continuous vector y, an indicator variable z, and
a convex function f depending only on y such that y0 = (0, . . . , 0) and f (0) = 0,
they capture the disjunctive structure by defining a new nonconvex function f d :

f d(y, z) =

⎧
⎪⎨

⎪⎩

f (y) if z = 1, y ∈ [y, y],
0 if y = z = 0,

+∞ otherwise.

The function f d is directly related to the set F : the latter can be described as the set
of all points (x�, y, z) such that f d(y, z) is finite and f d(y, z) ≤ x�. Frangioni and
Gentile described the convex envelope of f d :

co f d(y, z) =

⎧
⎪⎨

⎪⎩

f̃ (y, z) if z ∈ (0, 1],
0 if z = 0,

+∞ otherwise.

In a related work, Günlük and Linderoth [25] showed that, under similar assump-
tions, the convex hull of F is given by

conv(F) = {(x�, y, z) | co f d(y, z)≤ x�, yz ≤ y ≤ yz, z ∈ [0, 1]}. (8)

Therefore, replacing f with co f d in Constraint (2) results in a reformulation with
the tightest possible continuous relaxation: the perspective reformulation. This is a
valid reformulation since f = co f d for z ∈ {0, 1}.

Figure 1 shows an example of a disjunctive set and compares its continuous relax-
ations. The disjunctive set (shown in Fig. 1a) consists of the ray {(x�, y, z) | x� ≥
0, y = 0, z = 0} and the convex set {(x�, y, z) | x� ≥ f (y), z = 1}, where
f (y) = y2. The convex hull, shown in Fig. 1b, is the closure of the set of all points
above the dark gray surface defined by x� = y2/z, z ∈ (0, 1]. This equation is obtained
by applying the perspective operator to f : f̃ (y, z) = z f (y/z) = y2/z. For compar-
ison, the boundary of the straightforward continuous relaxation given by x� = y2,
z ∈ [0, 1], is shown in Fig. 1b in light gray color.

Due to the division by z in the perspective function, the perspective reformulation (8)
is non-differentiable at z = 0. This may lead to numerical difficulties in regions where

123

708 K. Bestuzheva et al.

Fig. 1 Example of a disjunctive set and its convex hull (created with Geogebra https://www.geogebra.org/)

the indicator variable is close to zero. In some special cases, formulation (8) can be
written as a second-order cone (SOC) constraint [1, 17, 25, 37]. In particular, this is
possible when Constraint (2) itself is SOC-representable. For the general case where
the perspective reformulation is not SOC-representable, Furman et al. [21] proposed
an ε-approximation of the convex hull of a disjunctive set which alleviates these
numerical issues.

Frangioni and Gentile [13, 18] introduced projection approaches for additively
separable closed convex functions. In the projected perspective reformulation (P2R)
[18], the perspective function is projected into the space of continuous variables and
rewritten as a piecewise-convex function. This technique avoids the numerical issues
associated with the perspective functions while yielding strong bounds, but at the cost
of using piecewise-continuous functions which cannot be directly passed to off-the-
shelf solvers. The approximated projected perspective reformulation (AP2R) method
[13] lifts theP2R formulation back into the original space by reintroducing the indicator
variables. AP2R can be solved by general-purpose solvers and, if y0 ≤ y, has the same
number of variables and constraints as the original problem. The bound provided
by AP2R is generally weaker than the one from P2R. An algorithm was proposed
that enhances bound quality of AP2R by using dual information obtained from P2R
[14], thus combining some of the bounding strength of P2R with the computational
efficiency of AP2R.

Alternatively, the perspective reformulation (8) can be represented by an infinite
number of linear outer approximationswhich are then dynamically separated. Suppose
that we have a point (x̂�, ŷ, ẑ) such that ẑ ∈ (0, 1) and x̂� < f̃ (ŷ, ẑ). By performing
first-order analysis of the convex envelope co f d , Frangioni and Gentile [15] derived
cuts that separate (x̂�, ŷ, ẑ) from the convex hull of F , referred to as perspective cuts:

〈∇ f (y∗), y
〉 + (

f (y∗) − 〈∇ f (y∗), y∗〉) z ≤ x�, (9)

where y∗ = ŷ/ẑ.

123

https://www.geogebra.org/

A computational study of perspective cuts 709

It is easy to adjust the perspective reformulation and the inequalities (9) for the case
of nonzero y0 and f (y0):

〈
∇ f (y∗), y − y0

〉
+ (f (y∗) − f (y0) −

〈
∇ f (y∗), y∗ − y0

〉
)z + f (y0) ≤ x�,

(10)

where y∗ = (ŷ − y0)/ẑ + y0. We refer to (10) as the perspective cut at y∗.

2.2 Existing applications and computational results

Perspective cuts and reformulations were tested on several applications which contain
convex functions of semi-continuous variables.

Frangioni andGentile [15] applied perspective cuts (10) to the thermal unit commit-
ment problem. In order to avoid the technical difficulties of incorporating perspective
cuts into a general-purpose solver, the authors implemented their own NLP-based
branch-and-cut algorithm. Perspective cuts are applied to the objective function via a
specialized separation procedure, which replaces a univariate termwith its perspective
linearization if the perspective linearization is tighter at the current relaxation solution.
The linearization is represented by an auxiliary variable, and as more perspective cuts
are added for the term, the variable is set to be equal to the maximum of all lineariza-
tions. Perspective cuts were shown to have a considerable impact on the performance.
The geometric mean of the running time of the best performing setting was smaller
than that for the algorithm with the straightforward continuous relaxation by a factor
of 60.

Perspective reformulations were studied by Günlük and Linderoth [25, 26]. Their
key observation is that for some problems, the perspective reformulation can bewritten
with the use of second-order cone constraints. The applications studied in this paper
are:

– Separable quadratic uncapacitated facility location on a testset consisting of 16
instances. With the perspective reformulation, 50% more instances are solved
within the time limit of 8 hours and on the instances that are solved with both
formulations, the perspective formulation is faster by a factor of 8 when comparing
the geometric mean.

– Network design with congestion constraints on a testset consisting of 35 instances.
The perspective formulation is solved for 29 instances within the time limit of 4
hours, as opposed to only 2 instances with the standard formulation.

– Mean-variance optimization (portfolio optimization) on a testset consisting of
20 instances. Although none of the instances are solved within the time limit of
10,000 CPU seconds, perspective reformulation significantly improves the gap.
For example, the final gap between the best found lower and upper bounds is
reduced from 185.1% with the standard formulation to 4.2% with the perspective
reformulation on instances of smaller size, and from 490.0 to 5.9% on instances
of larger size.

123

710 K. Bestuzheva et al.

Atamtürk and Gómez [2] applied the perspective-based conic reformulation to the
image segmentation problem, testing it on 4 instances of different sizes. On the one
instance that was solved within a time limit of 1 hour, the running time was reduced
by a factor of 18 when compared to the standard formulation. On the three remaining
instances, using the perspective formulation resulted in a 45–55% decrease of the
remaining gap at time limit.

Aktürk et al. [1] presented a perspective-based conic reformulation of themachine-
job assignment problem with controllable processing times. The tests were conducted
on 180 randomly generated instances of varying sizes with quadratic and cubic objec-
tives. For problems with a quadratic objective, 91% of the 90 instances were solved
when using the strengthened conic formulation, whereas at most 36% of instances
were solved when using non-perspective formulations. For problems with a cubic
objective, 88% of the 90 instances were solved with the perspective formulation and
at most 27% were solved with non-perspective formulations.

A comparison between SOC-based perspective formulations and perspective cut-
ting planes was performed by Frangioni andGentile [17]. Using the CPLEX-11 solver,
they tested the two approaches on two sets of mixed-integer quadratic problems,
namely, the Markowitz mean-variance model and the unit commitment problem. The
difference between the two formulations is particularly significant with the setup used
in the paper [17] since by default, CPLEX obtains dual bounds by solving nonlinear
relaxations. The results favor the cutting planes approach, with the difference being
larger for theMarkowitzmean-variance problem. The authors observed that the advan-
tage of perspective cuts stemsmostly from efficient reoptimization of linear programs.
They add that the perspective conic reformulation is more competitive for problems
that are larger, more nonlinear (i.e., have more nonlinear constraints or non-quadratic
nonlinear constraints) or have richer structure.

Frangioni and Gentile [13, 18] tested the projected perspective reformulation
(P2R) and the approximated perspective projected reformulation (AP2R) on sensor
placement, nonlinear network design, mean-variance portfolio and unit commitment
problems. P2R was implemented as part of a specialized branch-and-bound algorithm
and AP2R was solved directly with CPLEX 12. Both approaches were compared to
perspective cuts implemented as a callback in CPLEX. Computational results show
that P2R is the best performing method for problems that have a well-suited structure
and require little or no branching. For problems with more complex structures, AP2R
is competitive with the perspective cut approach. When there are constraints link-
ing indicator variables and few linear approximations provide a good estimate of the
original nonlinear function, perspective cuts tend to be the best performing method.

Salgado et al. [33] studied the alternating current optimal power flow problem
with activation/deactivation of generators (ACOPFG) using 8 test instances. They
tested two perspective-based reformulations of the objective function. The first uses
four perspective cuts of the form (10); the other is obtained by applying AP2R [13].
Although the results of enhancing the standardACOPFGmodelwith perspective refor-
mulations are inconclusive, an outer approximation [34] of the problem significantly
benefits from both perspective cuts andAP2R. The perspective cuts approach performs
best, solving one more instance than the standard formulation within the time limit of

123

A computational study of perspective cuts 711

1 hour and taking less than 4 s on all the remaining instances, whereas the standard
formulation requires over 1000 s on most instances.

The applications on perspective cuts are not limited to the structure given by (2).
Gómez [23] considered mixed-integer sets given by a conic quadratic constraint
with semi-continuous variables and proposed a convex hull formulation for a spe-
cial case when some variables are unbounded, and valid inequalities for the bounded
case. Anstreicher and Burer proposed a convex hull representation for the set
{(y, yyT , zzT) | 0 ≤ y ≤ z ∈ {0, 1}n} for the case n = 2. For mixed-integer
quadratic problems, perspective-based approaches were developed which decompose
the problem Hessian in ways that enable the use of perspective reformulations [16, 19,
40]. These reformulations either have to be developed specifically for a narrower class
of constraints, or require non-trivial transformations of the problem to be performed
before the start of the solution process. Such tailored approaches may yield better
performance than the general-purpose approach that this paper focuses on, at the cost
of the necessity to develop such approaches for special, more restrictive classes of
problems.

In many of the aforementioned applications, perspective cuts were applied only to
the objective function. In this work, we focus on constraints, which is without loss
of generality since the objective function can always be moved into a constraint, and
the theory developed for objective functions can be directly adapted to the case of
constraints.

3 Generalized perspective cuts

If f is nonconvex, neither the gradient cuts (3) nor the perspective cuts (10) are
guaranteed to be valid. However, the perspective reformulation can be applied to a
convex underestimator of f , from which the perspective cuts (10) can be derived.
Alternatively, any linear inequality φ(y) ≤ x� that is valid for the ‘on’ set F1 can be
adjusted for the ‘off’ set F0.

In the following, we propose a cut extension procedure that ensures that the gener-
ated inequality is equivalent to φ(y) ≤ x� when the indicator is equal to 1 and holds
with equality at the point (x�, y, z) = (f (y0), y0, 0).

Theorem 1 (Generalized perspective cuts) Consider a vector of semi-continuous vari-
ables y ∈ R

p with an indicator z ∈ {0, 1}, such that y = y0 if z = 0, and a linear
inequality φ(y) ≤ x� that is valid for the set

F1 = {(x�, y, z) | x� ≥ f (y), y ∈ [y, y], z = 1}.

Let

φ̃(y, z) = φ(y) +
(
f (y0) − φ(y0)

)
(1 − z).

123

712 K. Bestuzheva et al.

Then the linear inequality φ̃(y, z) ≤ x� is valid for the set F0 ∪ F1, where

F0 = {(x�, y, z) | x� ≥ f (y0), y = y0, z = 0}.

Proof It is sufficient to check the validity for each possible value of z ∈ {0, 1}. By
substituting z = 1 and z = 0 in φ̃(y, z), we immediately obtain

1. φ̃(y, 1) = φ(y) ∀ y ∈ R
p and

2. φ̃(y0, 0) = f (y0),

respectively. Therefore, φ̃(y, z) ≤ x� is a valid inequality. ��
If the cut φ(y) ≤ x� is already valid for F0, then the described above adjustment

always produces a cut that is at least as strong as the original cut. Since φ(y) ≤ x� is
in this case implied by f (y) ≤ x� for (x�, y) ∈ F0, we have φ(y0) ≤ f (y0). Hence
the coefficient of (1 − z) in φ̃(y, z) is nonnegative and

φ̃(y, z) ≥ φ(y), ∀z ∈ [0, 1], ∀ y ∈ R
p.

If additionallyφ(y0) < f (y0), i.e., the original cut is not tight at y0, then the new cut is
also stronger. Otherwise, ifφ(y) ≤ x� does not hold for F0 (that is, ifφ(y0) > f (y0)),
then the adjustment is necessary to obtain a cut that is valid for F0 ∪ F1.

This cut extension procedure has two main advantages:

1. It does not depend on the convexity of f and requires no assumptions on the cut
except for its validity for F1.

2. In the case where y0 /∈ [y, y], variable bounds for F1 are tighter than those for

F0 ∪ F1. This is useful for nonconvex constraints since the tightness of their
relaxations depends on variable bounds, and therefore cuts constructed for y ∈
[y, y] will generally be stronger than those for y ∈ [min{ y0, y},max{ y0, y}].
When the cut strengthening is applied to the convex setting, the result is equivalent

to the well-known perspective cuts:

Theorem 2 (Alternative derivation of perspective cuts) Suppose that f : Rp → R is
convex and (x̂�, ŷ, ẑ) /∈ conv(F) as defined in Sect.2.1. Consider the gradient cut (3)
at point y∗ = (ŷ − y0)/ẑ + y0 for Constraint (2):

φ(y) = f (y∗) + 〈∇ f (y∗), y − y∗〉 ≤ x�.

Let φ̃(y, z) be the linear function obtained from φ(y) by following the strengthening
procedure in Theorem 1. Then φ̃(y, z) is written as follows:

φ̃(y, z) =
〈
∇ f (y∗), y − y0

〉
+ (f (y∗) − f (y0) −

〈
∇ f (y∗), y∗ − y0

〉
)z + f (y0)

and the cut φ̃(y, z) ≤ x� is equivalent to the perspective cut (10) at point (ŷ, ẑ).

123

A computational study of perspective cuts 713

Fig. 2 Example of cut extension (created with Geogebra https://www.geogebra.org/)

Proof The coefficient of (1 − z) in φ̃(y, z) is

α = f (y0) − φ(y0) = f (y0) − f (y∗) −
〈
∇ f (y∗), y0 − y∗〉 .

Adding α(1 − z) to the left hand side of the gradient cut produces the perspective
cut (10):

φ̃(y, z) = φ(y) + α(1 − z) =
〈
∇ f (y∗), y − y0

〉
+ (f (y∗) − f (y0) −

〈
∇ f (y∗), y∗ − y0

〉
)z + f (y0).

��
To paraphrase, for a convex function f the perspective cut at a solution (x̂�, ŷ, ẑ)

of the LP relaxation can equivalently be obtained by first generating a gradient cut
for f at the modified point y∗ and then applying the strengthening procedure from
Theorem 1.

Let us consider an example to illustrate the cut extension method.

Example 1 Consider a constraint f (y) = −y3 + y ≤ x�. The boundary of the feasible
region is shown in Fig. 2 by the dark gray nonlinear surface, and the feasible points
are located above it. Let 0.5z ≤ y ≤ z, where y is a scalar, semi-continuous variable
modeled using the binary variable z ∈ {0, 1}.

First we find an underestimator of f (y) valid for z = 1. In this case, y is constrained
to belong to the interval [0.5, 1]. Since f (y) is concave on [0.5, 1], the underestimator
is the secant through points (0.5, f (0.5)) and (1, f (1)):

f sec(y) = −0.75y + 0.75.

The cut f sec ≤ x� (shown inFig. 2a) is not valid for thewhole feasible set. In particular,
a feasible point (y, z, x�) = (0, 0, 0) violates the cut: f sec(0, 0) = 0.75 > 0 = x�.

123

https://www.geogebra.org/

714 K. Bestuzheva et al.

Now we extend the cut so that to ensure validity at z = 0. By Theorem 1, the new
cut is written as:

f̃ sec = f sec + (f (y0) − f sec(y0))(1 − z) = −0.75y + 0.75z.

This cut, shown in Fig. 2b, is valid for the whole feasible set given by the cubic
constraint and the semi-continuity condition.

4 Implementation of perspective cuts

An effective implementation of perspective cuts within a general-purpose solver
requires providing methods for detecting suitable structures in a general problem
and generating the cuts during the solution process. In the following, we describe our
implementation within SCIP, but many considerations discussed here will be applica-
ble to MINLP solvers in general.

4.1 Organization of nonlinear constraints in SCIP

SCIP builds a relaxation for the MINLP (1) by means of an extended formulation,
where auxiliary variables w are introduced for the subexpressions that constitute the
constraint functions g(x, y, z). Without loss of generality, we can assume that (1b)
has been replaced by a new system

hi (x, y, w1, . . . , wi−1, z) � wi , i = 1, . . . ,m′, (11a)

w� ≤ w ≤ wu, (11b)

where wl and wu denote global lower and upper bounds on w.
The handling of nonlinear constraints in the version of SCIP used for this work is

performedbymodules called “nonlinearity handlers”. Eachnonlinearity handlerworks
on a specific structure (e.g. quadratic, convex, etc.) and provides callback methods.
For the purposes of this paper, three types of callbacks are relevant:

– Detection callbacks receive an expression and determine whether it is suitable for
the nonlinearity handler.

– Estimation callbacks provide linear under- and overestimators given an expression
and a point at which to linearize it.

– Enforcement callbacks enforce a givenviolated constraint by adding cuttingplanes,
tightening bounds, detecting infeasibility, etc.

Our addition of generalized perspective cuts is implemented via a specialized per-
spective nonlinearity handler.

123

A computational study of perspective cuts 715

4.2 Structure detection

The detection algorithm identifies constraints of the form (11), where hi is nonlinear
and at least one other nonlinearity handler provides an estimation callback for it.
All variables that hi depends on must be semi-continuous with at least one common
indicator variable. If several binary variables satisfying this condition are found, all
such variables are stored for use in cut generation.

A special case is that of hi being a sum. Here, only the variables appearing in
nonlinear terms of the sum are required to be semi-continuous.

To determine whether a variable y j is semi-continuous, the detection callback of
the perspective nonlinearity handler searches for pairs of implied bounds on y j with
the same indicator zk :

y j ≤ α(u)zk + β(u),

y j ≥ α(�)zk + β(�).

If β(u) = β(�), then y j is a semi-continuous variable and y0j = β(u), y
j
= α(�) + β(�)

and y j = α(u) + β(u).
This information can be obtained either directly from linear constraints in y j and

zk , or by finding implicit relations between y j and zk . Such relations can be detected
by probing, which fixes zk to its possible values and propagates all constraints in the
problem, thus detecting implications of zk = 0 and zk = 1. SCIP stores the implied
bounds in a globally available data structure.

In addition, the perspective nonlinearity handler detects semi-continuous auxiliary
variables, that is, variables wi that were introduced to express the extended formula-
tion (11). Given hi (y, w1, . . . , wi−1) � wi , where variables y and w1, . . . , wi−1
are semi-continuous and depend on the same indicator zk , the auxiliary vari-
able wi is semi-continuous with w0

i = hi (y0, w0
1, . . . , w

0
i−1) and [wi , wi] =

hi ([y0, y0], [w1, w1], . . . , [wi−1, wi−1]) computed by interval arithmetic.
According to Theorem 1, the constraint must have the form

wi ≥ hi (y, w1, . . . , wi−1),

where all variables y, w1, . . . , wi−1 are semi-continuous with respect to the same
indicator zk . In our implementation we allow a more general form:

hi (x, y, w1, . . . , wi−1, z) = hsci,k(y, w1, . . . , wr)

+ hnsci,k (x, wr+1, . . . , wi−1, z) � wi , (12)

where hsc is a nonlinear function, hnsc is a linear function, variables y andw1, . . . , wr

are semi-continuous and variables x, wr+1, . . . , wi−1 can be non-semi-continuous.
Auxiliary variables are assumed to be sorted so that semi-continuous variables
w1, . . . , wr come before the non-semi-continuous variables wr+1, . . . , wi−1 and the

123

716 K. Bestuzheva et al.

variable wi representing hi . The semi-continuity of auxiliary variables is determined
based on the semi-continuity of the expressions they represent.

Thus, for each suitable indicator zk the function hi is split up into the semi-
continuous part hsci,k , which can depend only on variables that are semi-continuous
with respect to indicator zk , and a non-semi-continuous part hnsci,k , which depends on
non-semi-continuous variables. The non-semi-continuous part must be linear. If the
sum has a constant term, the constant is considered to be part of hsci,k .

4.3 Separation and strengthening of generalized perspective cuts

During the cut generation loop, generalized perspective cuts as in Theorem 1 are
constructed for constraints of the form (12).

In the following, let v denote the vector of all problem variables: v = (x, y,w, z),
and let F1

i,k and F0
i,k be the sets of points satisfying a constraint of the form (12) for a

given i ∈ {1, . . . ,m′} together with implied variable bounds for zk = 1 and zk = 0,
respectively. For simplicity, we fix the inequality sign and consider “less than or equal
to” constraints:

F1
i,k ={v | hi (x, y, w1, . . . , wi−1, z) ≤ wi , y ∈ [y, y],w ∈ [w,w], zk = 1},

F0
i,k ={v | hi (x, y, w1, . . . , wi−1, z) ≤ wi , y = y0,w = w0, zk = 0}.

Suppose that the point v̂ violates the nonlinear constraint:

hi (x̂, ŷ, ŵ1, . . . , ŵi−1, ẑ) > ŵi .

If hi is nonconvex and its estimators depend on variable bounds, the enforcement
callback first performs probing for zk = 1 in order to tighten the implied bounds
[y, y] and [w j , w j] for j ≤ r .

Estimation callbacks of non-perspective nonlinearity handlers are called in order
to find valid cuts that separate v̂ from F1

i,k , which are then modified according to
Theorem 1. For a constraint of the generalized form hi = hsci,k + hnsci,k ≤ wi , which is
described in Sect. 4.2, an estimation callback will provide an underestimator of hi :

hi = hsci,k + hnsci,k .

This underestimator consists of an underestimator of the semi-continuous part hsci,k
and the non-semi-continuous part hnsci,k , which remains unchanged since it is already
linear and shares none of the variables with the semi-continuous part. The extension
procedure from Theorem 1 is applied only to hsci,k to obtain h̃

sc
i,k . Since h

sc
i,k depends

only on semi-continuous variables, similar arguments to Sect. 3 hold for feasibility and
tightness of the strengthened underestimator h̃

sc
i,k . The strengthened underestimator of

hi is then written as

h̃i,k = h̃
sc
i,k + hnsci,k .

123

A computational study of perspective cuts 717

If v̂ violates the cut h̃i,k ≤ wi , the cut is passed to the SCIP core where it will be
considered for addition to the LP relaxation.

Let us consider an example of generalized perspective cut separation by extending
Example 1.

Example 2 The extended formulation of the constraint from Example 1 is written as:

h(xl , y) = −y3 + y − xl ≤ w ≤ 0.

The semi-continuous part of h is hsc(y) = −y3 + y, and the non-semi-continuous
part is hnsc(xl) = −xl . The perspective underestimator of h is h(xl , y, z) = −0.75y+
0.75z − xl and the perspective cut is written as follows:

−0.75y + 0.75z − xl ≤ w.

Suppose that the point to be separated is (x̂l , ŷ, ẑ, ŵ) = (0, 0.4, 0.7, 0). Substituting
the variables with their values at this point in the perspective cut, we get a violated
inequality 0.225 ≤ 0. Therefore the cut is violated and will be considered for addition
to the LP relaxation.

5 Computational results

This section presents the results of computational experiments. A development version
of SCIP [6] was used, together with the linear solver SoPlex 5.0.1.3 [22] and the
nonlinear solver Ipopt 3.12.13 [38]. All the experiments were run on a cluster of
3.60GHz Intel Xeon E5-2680 processors with 64 GB memory per node. The time
limit was set to one hour and the optimality gap limit to 0.01%.

The basis of our experiments were the instances of MINLPLib. These include also
instances from QPLib2 [20], and we analyze results on subsets of convex/nonconvex
and quadratic/non-quadratic instances in Sect. 5.3.

Throughout the section, we analyze the following settings, each defined by the
types of constraints for which perspective cuts are added:

– Off : perspective cuts are disabled;
– Convex: perspective cuts are enabled only for convex constraints;
– Full: perspective cuts are enabled for both convex and nonconvex constraints.

5.1 Detection of suitable structures

Out of the 1703 instances ofMINLPLib, suitable constraints of the extended form (12)
were detected for 186 instances. Table 1 shows the numbers of instances where at
least one such constraint was detected, when counting: all instances, instances where
detection succeeded for convex constraints only, instances where detection succeeded
both for convex and nonconvex constraints and instances where detection succeeded
for nonconvex constraints only.

2 https://qplib.zib.de.

123

https://qplib.zib.de

718 K. Bestuzheva et al.

Table 1 Detection results All Convex Both Nonconvex

186 89 53 44

Only those instances were counted for Table 1 where suitable constraints were
detected in the main problem. Additionally, sometimes a constraint can only be
detected by the perspective nonlinearity handler in a subproblem. A typical exam-
ple of this is a heuristic creating a subproblem to represent a restricted version of
the main problem. This often involves fixing some variables or modifying bounds,
which can result in new semi-continuous variables and thus new suitable constraints.
In our test set there are 3 instances where suitable constraints were found only in
subproblems. However, subproblem detections are not guaranteed to have an impact
on performance. Because of this, subproblem detections are not counted in Table 1.

As pointed out in Sect. 2, in many problems where perspective cuts can be applied,
all expressions defined in terms of semi-continuous variables are contained in the
objective function. However, since SCIP supports linear objective functions only, any
nonlinear term f (x) in the objective is replaced by an auxiliary variable xobj , and a
constraint f (x) ≤ xobj is added. Therefore, a relevant question to ask is how many
constraints in the model are suitable for perspective cuts.

To this end, in Fig. 3 we report for each instance the numbers of nonlinear con-
straints (11a) in the extended formulation (Nconss) and the numbers of such constraints
where perspective cuts can be applied (Ndetects). Comparing these numbers shows
what fraction of the nonlinear part of an instance is amendable to the perspective
approach, and is motivated by the fact that it is the nonlinear part of an instance that
presents the most difficulty for the solver and determines how difficult to solve the
instance is. The plot shows that this fraction tends to be large, with many points on the
diagonal, representing the instances where all nonlinear constraints fit the structure
suitable for perspective cuts, and only few points far below the diagonal, represent-
ing the instances where the number of nonlinear constraints fitting this structure is
considerably less than the number of all nonlinear constraints.

5.2 Overall performance impact

This section evaluates the overall impact of perspective cuts on the performance of
SCIP. Its purpose is to give an overview of how the three major settings compare
against each other before moving onto more detailed comparisons in the next section.

In order to robustify our results against the effects of performance variability [31],
four different permutations of the order of variables and constraints were applied to
each of the 186 instances, for which suitable structures were detected. Each permu-
tation is treated as a separate instance, and together with the instances without any
permutation they comprise a test set of 930 instances. In our analysis, we exclude
instances where one of the solver settings encountered numerical troubles or where
the numerical results of the different solver settings are inconsistent.

123

A computational study of perspective cuts 719

Fig. 3 Numbers of nonlinear constraints in the extended formulation (Nconss) and constraints amenable to
perspective cuts (Ndetects) (created with LibreOffice https://www.libreoffice.org/)

Table 2 Overview of solved
instances

Off Convex Full

Solved 741 764 759

Limit 175 154 154

Fails 14 12 17

Table 3 Overall results on the
subset of 672 affected instances

Off Convex Full

Time 13.79 11.23 11.27

Relative time 1.00 0.81 0.82

Nodes 620 479 472

Relative nodes 1.00 0.77 0.76

Table 2 provides an overview of the number of instances solved to global optimality
by each setting. The row Limit contains the count of instances where the time limit
was reached. The row Fails reports the number of instances where numerical troubles
were encountered. The largest number of instances solved with a given setting was
764, yielded by setting Convex, which had both the smallest number of numerical
fails and time outs. It is followed by Full, which solved 759 instances. The setting Off
solved the least number of instances overall.

Table 3 shows the shifted geometric mean of the running time in seconds (with a
shift of 1 s) and the shifted geometric mean of the number of branch-and-bound nodes
(with a shift of 100 nodes). All numbers in the table are computed for the subset of
672 affected instances: all instances where at least two of the three settings yielded a
different solving path (judged by a different number of linear programming iterations),

123

https://www.libreoffice.org/

720 K. Bestuzheva et al.

Table 4 Overall results on the
subset of 404 affected convex
instances

Off Convex Full

Time 9.58 6.95 6.95

Relative time 1.00 0.73 0.73

Nodes 502 329 329

Relative nodes 1.00 0.66 0.66

Table 5 Overall results on the
subset of 268 affected
nonconvex instances

Off Convex Full

Time 23.50 22.40 22.61

Relative time 1.00 0.95 0.96

Nodes 844 809 781

Relative nodes 1.00 0.96 0.93

Table 6 Overall results on the
subset of 215 affected quadratic
instances

Off Convex Full

Time 36.64 24.55 24.78

Relative time 1.00 0.67 0.68

Nodes 448 258 248

Relative nodes 1.00 0.58 0.55

where the solver failed with none of the settings, and solved the instance to optimality
with at least one setting.

From Table 3 one can see that a significant improvement is achieved when enabling
perspective cuts for convex constraints. The results with the settings Convex and Full,
however, are almost identical.

5.3 Overall performance impact by instance type

In this section, we evaluate the impact of perspective cuts on solver performance when
considering subsets of instances grouped by type: convex and nonconvex instances,
and quadratic and general nonlinear instances.

Tables 4 and 5 show results obtained for the convex and nonconvex subsets of
affected instances, respectively. The impact of enabling perspective cuts for convex
constraints is more pronounced on the convex instance subset, but some impact can
be observed on the nonconvex instance subset as well, since nonconvex instances can
contain convex constraints. Enabling perspective cuts for nonconvex constraints, as
expected, does not have any effect on the convex instance subset, and is consistent
with what is shown in Table 3 but more pronounced on the nonconvex instance subset.

From Tables 6 and 7 we can see that the impact of perspective cuts on quadratic
instances is greater than the impact on general nonlinear instances. The effect of
enabling perspective cuts for nonconvex constraints in addition to perspective cuts for
convex constraints remains small for both subsets.

123

A computational study of perspective cuts 721

Table 7 Overall results on the
subset of 457 affected general
nonlinear instances

Off Convex Full

Time 8.53 7.65 7.65

Relative time 1.00 0.90 0.90

Nodes 719 626 622

Relative nodes 1.00 0.87 0.87

Table 8 Relevant and affected
instances

Off vs Convex Convex vs Full

Relevant 710 485

Affected 544 205

Table 9 Root node dual bound
differences

Off Convex Convex Full

better by > 50% 16 46 0 31

better by 5–50% 25 39 14 11

same within 5% 584 429

5.4 Detailed comparisons

In this section we provide a more detailed analysis of the performance results by
comparing pairs of settings, in order to evaluate the impact of each major feature more
thoroughly.

First, we present the numbers of relevant and affected instances in Table 8. It has
the following rows:

– Relevant: the number of instances where more expressions are detected with the
second setting than with the first setting;

– Affected: the number of instances which were solved with at least one of the two
settings, where the number of linear programming iterations differs between the
two settings and the solver failed with none of the two settings.

From Table 8 we can see that while nonconvex structures can be found on more
than half of the test set, applying generalized perspective cuts to nonconvex functions
affects the solving path less often than applying perspective cuts to convex functions.

Table 9 summarizes the effect of perspective cuts on the dual bound at the end of
the root node. It reports the numbers of instances of the subset Relevant where the
dual bound was better with the corresponding setting by a percentage that is specified
in the first column, as well as the numbers of instances where the dual bound change
was less than 5%.

A significant difference in root node dual bound can be observed only for a relatively
small number of instances. The comparison betweenOff andConvex is consistent with
the results in the above tables, withConvex improving more dual bounds thanOff. The
comparison betweenConvex andFull deserves a closer look.When inspectingmedium
dual bound changes (5–50%), Convex yields a better bound than Full slightly more

123

722 K. Bestuzheva et al.

Table 10 Time on subsets of affected instances

often than the other way round. However, when considering only large improvements
(> 50%),we observe that thosewere always due to settingFull. From thiswe conclude
that, overall, enabling perspective cuts for nonconvex constraints improves the quality
of dual bounds in the root node.

On several instances, a decrease in the quality of root node dual bounds can be
observed when enabling perspective cuts. This is due to the fact that adding a different
cut results in a different LP, which leads to different, possibly better, cuts being added,
as well as changes in many other parts of the solution process which can likewise
contribute to an improvement in the dual bound.

Table 10 compares the running time when considering pairs of settings and the
corresponding subsets of affected instances. It has the following rows:

– Time: shifted geometric mean of the running time in seconds (with a shift of 1 s);
– Relative time: shifted geometric mean of the running time relative to the first of
the two settings;

– Faster: the number of instances where SCIP was faster with the given setting than
with the other setting by at least 25%.

In order to analyze the impact on subsets of increasingly hard instances, these rows
repeat for three subsets of instances given by time brackets [t, 3600], which contain
the instances that were solved to optimality with both settings and took at least t s by
at least one setting.

The results shown in Table 10 strongly confirm that enabling perspective cuts for
convex constraints decreases the mean running time. This effect becomes more pro-
nounced as the difficulty of the instances increases. On instances that took at least 100 s
to solve, setting Convex was faster almost by a factor of 3. The additional activation
of perspective cuts for nonconvex constraints, however, rather had a detrimental effect

123

A computational study of perspective cuts 723

Table 11 Number of nodes on subsets of affected instances

Fig. 4 Performance profiles comparing Off and Convex (created with Matplotlib https://matplotlib.org/)

on performance, especially as instances become more difficult. This is despite the fact
that there are more speed-ups than slow-downs when switching from settingConvex to
setting Full, as seen from the rows Faster. Hence, the increase in the mean time is due
to significant slow-downs on a few challenging instances. However, these observed
slow-downs should not be overestimated since the size of the subsets [100, 3600] and
[1000, 3600] are comparatively small.

A comparison of branch-and-bound tree sizes is given in Table 11. Again, a consis-
tent improvement is observed when enabling perspective cuts for convex expressions.
This improvement becomes more pronounced as the instances becomemore challeng-
ing. Here we also observe an overall improvement when enabling perspective cuts for
nonconvex constraints. However, on the harder subsets [100, 3600] and [1000, 3600],
Convex still remains the best setting.

Figures 4 and 5 show performance profiles [11] for running time and number of
nodes with settings Off and Convex and settings Convex and Full, respectively. Let
ti,s denote the running time for instance i with setting s. The virtual best setting used
for the running time performance profiles, denoted by index vb, is defined as a setting
whose running time for each instance is equal to the minimum of the running times
with the two settings that are being compared: ti,vb = mins{ti,s}. The horizontal axis
represents themaximumallowed ratios to the timewith the virtual best setting, denoted

123

https://matplotlib.org/

724 K. Bestuzheva et al.

Fig. 5 Performance profiles comparing Convex and Full (created with Matplotlib https://matplotlib.org/)

by τ . The vertical axis represents the fraction of instances solved within the maximum
allowed fraction of time of the virtual best, denoted as ps(τ):

ps(τ) = number of instances i s.t.: ti,s ≤ τ · ti,vb
total number of instances

.

Performance profiles for the number of nodes in the branch-and-bound tree are con-
structed similarly, the only difference being that t.,. is replaced everywhere with n.,.,
which represents the number of nodes per instance and setting.

From Fig. 4 we see that setting Convex dominates setting Off. With Convex, over
55%of instances are solved faster or as fast as with settingOff. It is able to solve around
80%of instanceswithin a factor of 4 of the best time, and the curve approaches approx-
imately 82% in the limit, i.e., Convex is able to solve around 82% of the instances.
The respective numbers forOff lie at around 10% lower than those forConvex. A very
similar picture is observed for the number of nodes.

According to Fig. 5, the setting Full is roughly on par with Convex in terms of
running time if the ratio we are interested in is below 3. As the ratio increases, Convex
becomes the better setting, which reflects the fact that it solves slightly more instances
than Full. When looking at the number of nodes, Full yields the best result for around
74% of instances, as opposed to around 70% yielded by Convex. For ratios above 16,
Convex is better than Full, which, again, is due to it solving more instances.

5.5 Feature evaluation: bound tightening

As explained in Sect. 4.3, if the constraint is nonconvex and its relaxation depends on
variable bounds, then the indicator variable is first set to 1 and bound tightening is
performed. A cut is then computed for this possibly tighter set F1

i and strengthened
according to Theorem 1. In this section we evaluate the usefulness of this feature.

To this end, we introduce the setting Full-noBT. It is equivalent to Full except that
the bound tightening feature is disabled. Table 12 compares settings Full-noBT and
Full for the 68 affected instances.

123

https://matplotlib.org/

A computational study of perspective cuts 725

Table 12 Comparison between Full-noBT and Full

Fails Limit Solved RootImpr > 50% Time Nodes

Full-noBT 16 153 761 4 34.45 2910

Full 17 154 759 25 33.68 2618

Fig. 6 Performance profiles comparing Full-noBT and Full (created with Matplotlib https://matplotlib.
org/)

When bound tightening is disabled, two more instances are solved due to one less
fail and one less time out. Enabling it, on the other hand, leads to large (> 50%) root
node dual bounds improvements on 25 out of 68 affected instances and a comparable
weakening of root node dual bounds only on 4 instances. Enabling bound tightening
also yields a small decrease in the mean time (2.2%) and a moderate decrease in the
number of nodes (10%). According to these results, the two settings are very close
in performance, Full-noBT being the slightly more reliable setting and Full yielding
smaller branch-and-bound trees and slightly better solving times.

Performance profiles comparingFull-noBT andFull are shown in Fig. 6. The curves
are very close since there are fewaffected instances. The settingFull performed slightly
better thanFull-noBT both in terms of running times and tree sizes, and the two settings
are nearly identical in the limit.

5.6 Comparison to perspective reformulations

Another approach that can be applied to convex constraints is to modify the prob-
lem formulation itself by applying a perspective reformulation to the constraints, as
described in Sect. 2.1.3. Table 13 shows a comparison between the performance of
perspective cuts and of perspective reformulations on the instances from MINLPLib
for which a reformulated version is available. In particular, this includes rsyn
(retrofit-synthesis), squfl (separable quadratic uncapacitated facility location) and syn
(synthesis) instances; reformulations for clay instances are not included, since the
semi-continuity relations present in these instances are modeled in a form not detected
by our implementation.

123

https://matplotlib.org/
https://matplotlib.org/

726 K. Bestuzheva et al.

Table 13 Comparison of perspective cuts and perspective reformulations on 310 convex instances

Full Reformulated Reformulated-convex

Solved 308 253 305

Time 7.08 18.02 2.80

Relative time 1.00 2.55 0.40

Nodes 261 797 4.5

Relative nodes 1.00 3.05 0.02

Perspective reformulations of (r)syn instances are not SOC-representable, and the
non-differentiability at 0 is alleviated by replacing the indicators z in the reformulated
expressions with ε + (1 − ε)z, as proposed by Furman et al. [21]. This is equivalent
to z when z = 1, and at z = 0 other constraints in the model ensure that the feasible
set remains the same as in the original formulation. Furman et al. determined the best
value of ε experimentally, and the instances from the test set we ran our experiments
on use the value 1e−06. Further details on reformulations employed in these instances
and references to articles discussing these reformulations can be found in the instance
descriptions provided by MINLPLib.

Reformulated versions of squfl instances were not included into the initial test set
comprised of instances selected as described in Sect. 5.1. The reason for this is that
SCIP identified reformulated constraints as second order cone constraints involving
non-semi-continuous variables, thus not satisfying the conditions stated in Sect. 4.2.
Reformulated versions of (r)syn instances were included in the initial test set, but were
never among the affected instances, since perspective cuts were redundant.

The first column of Table 13, Full, shows the performance on the non-reformulated
versions of the instances with perspective cuts turned on, similarly to the settingFull in
the previous comparisons. The second column, Reformulated, shows the performance
on the reformulated instances. The drastic worsening of performance here is to a large
extent due to SCIP not recognizing the convexity of the reformulated constraints.
Thus, we enabled an option which instructs SCIP to assume that all constraints in an
instance are convex and reran it on the reformulated instances. The results of this run
are presented in column Reformulated-convex. We observe a considerable decrease
in the geometric mean time and branch-and-bound tree size compared to the non-
reformulated instances with perspective cuts enabled.

These results suggest that there are other reductions that SCIP can perform based on
the reformulated constraints, which are important for the overall performance. Solving
techniques that benefit from a stronger nonlinear formulation include, for example,
bound propagation and the generation of gradient cuts at a solution point of the prob-
lem’s NLP relaxation. Thus we conclude that where reformulations are available, they
can yield a greater performance improvement compared to only cut strengthening.
However, one must be careful that the solver does not lose the view of convexity,
and that explicit perspective reformulations do not lead to numerical instability. One
source of numerical difficulties is the non-differentiability of such reformulations,
which, however, can to a large extent be alleviated by utilizing ε-approximations [21].

123

A computational study of perspective cuts 727

Table 14 Comparison between
Full and Full+Box

Fails Limit Solved Time Nodes

Full 3 60 110 16.79 816

Full+Box 3 58 112 17.85 880

The second source of numerical difficulties is that explicit nonlinear reformulations
may lead to incorrect solutions due to errors produced by finite-precision floating-
point arithmetic. For a more detailed discussion see, for example, Section 3.1 of the
paper by Bestuzheva et al. [7].

5.7 Cut strengthening for the union of a nonlinear set and a box

In a preliminary experiment, we extended our method to the more general case where
the variable bounds on y are reduced to a non-singleton box when the indicator vari-
able z = 0, namely:

F0 = {(x�, y, z) | x� ∈ [x0�, x0�], y ∈ [y0, y0], z = 0}, (13a)

F1 = {(x�, y, z) | x� ≥ f (y), y ∈ [y, y], z = 1}. (13b)

In other words, the inequality x� ≥ f (y) is an on/off constraint which becomes
inactive when z = 0.

In detection, we consider constraints of the original (non-extended) problem for-
mulation with at least one semi-continuous variable with respect to some indicator
z, but we no longer require that all variables appearing in nonlinear terms are semi-
continuous. Instead, to test redundancy of the inequality x� ≥ f (y), we use interval
arithmetic to compute an upper bound on f ([y0, y0]) and check that it does not exceed
x0� . If the constraint is redundant at z = 0, it is marked for cut strengthening.

The cut strengthening procedure is an extension of the procedure presented in
Sect. 3. Given a linear cut φ(y) ≤ x� that is valid for the set given by f (y) ≤ x�, we
build a strengthened cut φ(y) + α(1 − z) ≤ x� by choosing the largest constant α

that is guaranteed to maintain the validity of the cut. To this end, we identify a vertex
(x̂�, ŷ) of the box [x0�, x0�] × [y0, y0] where the value of φ(y) − x� is largest and set
α = x̂� − φ(ŷ).

When run on 1703 MINLPLib instances, the detection algorithm identified 173
instances where suitable structures are present. On these instances, we used the set-
ting Full as a baseline and compared it to the setting that enables generalized cut
strengthening, which we call Full+Box.

We report the results in Table 14. Enabling perspective cuts for sets of the form (13)
resulted in an increase of 6% in running time and an increase of 8% in the number of
nodes. However, with setting Full+Box two more instances could be solved.

An efficient implementation of this method would require careful handling of vari-
able bounds and their dependence on the indicator variable in order to obtain the
strongest possible cuts. Based on these preliminary results, we believe that perspec-
tive cuts for sets (13) are worth further investigation.

123

728 K. Bestuzheva et al.

6 Conclusion

In this paper we introduced a general method to construct perspective cuts not only
for convex constraints as previously proposed in the literature, but also for nonconvex
constraints for which linear underestimators are readily available. We conducted a
computational study of perspective cuts for convex and nonconvex constraints. Rele-
vant structureswere detected in about 10%ofMINLPLib instances. The computational
results indicate that adding perspective cuts for convex constraints reduces the mean
running times and tree sizes by over 20%. Adding perspective cuts for nonconvex con-
straints can be detrimental to performance on challenging instances and can lead to
an increased amount of numerical issues, which is reflected in a small decrease in the
number of solved instances. Despite this, perspective cuts for nonconvex constraints
reduce the geometric mean of the number of nodes of the branch-and-bound tree by
5% and improve dual bounds at the root node.

These results indicate that perspective cuts improveperformance of general-purpose
solvers. However, in order to efficiently utilize perspective cuts for nonconvex struc-
tures, careful implementation and tuning is necessary.

Further, we compared perspective cuts to nonlinear perspective reformulations or
their ε-approximations on those instances from our test set where such reformula-
tions are available. In our experiments, applying reformulations reduced the mean
solving time by 60% compared to applying perspective cuts only. Thus, when avail-
able, perspective reformulations are preferable to only perspective cuts. Furthermore,
the success of nonlinear perspective reformulations indicates that even non-SOC-
representable reformulations are worth further investigation despite the associated
numerical difficulties.

There are several directions for future work. One such direction is extending detec-
tion algorithms. Someproblems contain constraints that do not satisfy the requirements
in our current implementation, but with more careful analysis of the problem structure
can be revealed to be suitable for applying perspective cuts. An example of this are
constraints containing expressions that are defined by non-semi-continuous variables,
but are semi-continuous due to other constraints in the problem. A straightforward
approach would be to test expressions for semi-continuity with respect to all binary
variables present in the problem, but the computational cost of doing so may become
very high. Thus, more sophisticated algorithms are required to identify such cases.

Another direction for future research is generalizing the cut strengthening method
to on/off variables whose “off” domain is a non-singleton interval, as well as to more
general types of on/off sets. The convex hull characterization and strong convex relax-
ations based on perspective functions are known for isotone or non-isotone univariate
convex constraints such that the “off” domain reduces to a box defined by variable
bounds [8, 27, 28], as discussed in Sect. 2.1.2. However, the exponential number of
constraints describing the convex hull complicates the choice of a linear outer approx-
imation, and, to the best of our knowledge, no compact formulation of the convex hull
is known for the general case of multivariate nonconvex or even convex constraints.

In a preliminary experiment, we implemented a cut strengthening procedure that
works on convex and nonconvex constraints which become redundant when an indi-
cator variable z is set to 0. The implementation that we tested did not yield an

123

A computational study of perspective cuts 729

improvement in either time or tree sizes, but enabled us to solve two more instances.
A more thorough and efficient implementation of this method may be one subject
of future work. Alternatively, one could attempt to implement perspective cuts as an
outer approximation of the relaxed formulation by Hijazi et al. [27, 28], since this
relaxation was shown to yield very strong dual bounds.

Acknowledgements The work for this article has been conducted within the Research Campus MODAL
funded by the German Federal Ministry of Education and Research (BMBF grant numbers 05M14ZAM,
05M20ZBM).

Funding Open Access funding enabled and organized by Projekt DEAL. The work for this article has been
conducted within the Research Campus MODAL funded by the German Federal Ministry of Education and
Research (BMBF grant numbers 05M14ZAM, 05M20ZBM).

Data availibility All data analyzed during this study are publicly available. URLs are included in this
published article.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Code availability The code is publicly available at https://github.com/KBestuzheva/SCIP-perspective-cuts.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Aktürk, M.S., Atamtürk, A., Gürel, S.: A strong conic quadratic reformulation for machine-job assign-
ment with controllable processing times. Oper. Res. Lett. 37(3), 187–191 (2009). https://doi.org/10.
1016/j.orl.2008.12.009

2. Atamtürk, A., Gómez, A.: Strong formulations for quadratic optimization with M-matrices and indi-
cator variables. Math. Program. 170(1), 141–176 (2018). https://doi.org/10.1007/s10107-018-1301-
5

3. Balas, E.: Disjunctive programming. Ann. Discrete Math. 5, 3–51 (1979)
4. Balas, E.: Disjunctive programming and a hierarchy of relaxations for discrete optimization problems.

SIAM J. Algebr. Discrete Methods 6(3), 466–486 (1985)
5. Barbaro, R., Ramani, R.:GeneralizedmultiperiodMIPmodel for production scheduling and processing

facilities selection and location. Min. Eng. 38(2), 107–114 (1986)
6. Bestuzheva, K.: KBestuzheva/SCIP-perspective-cuts: implementation of perspective cuts in SCIP

(2023). https://doi.org/10.5281/zenodo.8134526
7. Bestuzheva, K., Besançon, M., Chen, W.K., Chmiela, A., Donkiewicz, T., van Doornmalen, J., Eifler,

L., Gaul, O., Gamrath, G., Gleixner, A., Gottwald, L., Graczyk, C., Halbig, K., Hoen, A., Hojny, C.,
van der Hulst, R., Koch, T., Lübbecke, M., Maher, S., Matter, F., Mühmer, E., Müller, B., Pfetsch, M.,
Rehfeldt, D., Schlein, S., Schlösser, F., Serrano, F., Shinano, Y., Sofranac, B., Turner, M., Vigerske, S.,
Wegscheider, F.,Wellner, P.,Weninger, D.,Witzig, J.: Enabling research through the SCIP optimization
Suite 8.0. ACM Trans. Math. Softw. (2023). https://doi.org/10.1145/3585516

123

https://github.com/KBestuzheva/SCIP-perspective-cuts
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.orl.2008.12.009
https://doi.org/10.1016/j.orl.2008.12.009
https://doi.org/10.1007/s10107-018-1301-5
https://doi.org/10.1007/s10107-018-1301-5
https://doi.org/10.5281/zenodo.8134526
https://doi.org/10.1145/3585516

730 K. Bestuzheva et al.

8. Bestuzheva, K., Hijazi, H., Coffrin, C.: Convex relaxations for quadratic on/off constraints and appli-
cations to optimal transmission switching. INFORMS J. Comput. 32(3), 682–696 (2020)

9. Bussieck, M.R., Drud, A.S., Meeraus, A.: MINLPLib: a collection of test models for mixed-integer
nonlinear programming. INFORMS J. Comput. 15(1), 114–119 (2003). https://doi.org/10.1287/ijoc.
15.1.114.15159

10. Ceria, S., Soares, J.: Convex programming for disjunctive convex optimization. Math. Program. 86(3),
595–614 (1999). https://doi.org/10.1007/s101070050106

11. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Pro-
gram. 91(2), 201–213 (2002). https://doi.org/10.1007/s101070100263

12. Fisher, E.B., O’Neill, R.P., Ferris, M.C.: Optimal transmission switching. IEEE Trans. Power Syst.
23(3), 1346–1355 (2008). https://doi.org/10.1109/TPWRS.2008.922256

13. Frangioni, A., Furini, F., Gentile, C.: Approximated perspective relaxations: a project and lift approach.
Comput. Optim. Appl. 63(3), 705–735 (2016). https://doi.org/10.1007/s10589-015-9787-8

14. Frangioni, A., Furini, F., Gentile, C.: Improving the approximated projected perspective reformulation
by dual information. Oper. Res. Lett. 45(5), 519–524 (2017)

15. Frangioni, A., Gentile, C.: Perspective cuts for a class of convex 0–1 mixed integer programs. Math.
Program. 106(2), 225–236 (2006). https://doi.org/10.1007/s10107-005-0594-3

16. Frangioni, A., Gentile, C.: SDP diagonalizations and perspective cuts for a class of nonseparableMIQP.
Oper. Res. Lett. 35(2), 181–185 (2007)

17. Frangioni, A., Gentile, C.: A computational comparison of reformulations of the perspective relaxation:
SOCP vs. cutting planes. Oper. Res. Lett. 37(3), 206–210 (2009). https://doi.org/10.1016/j.orl.2009.
02.003

18. Frangioni, A., Gentile, C., Grande, E., Pacifici, A.: Projected perspective reformulations with appli-
cations in design problems. Oper. Res. 59(5), 1225–1232 (2011). https://doi.org/10.1287/opre.1110.
0930

19. Frangioni, A., Gentile, C., Hungerford, J.: Decompositions of semidefinitematrices and the perspective
reformulation of nonseparable quadratic programs. Math. Oper. Res. 45(1), 15–33 (2020)

20. Furini, F., Traversi, E., Belotti, P., Frangioni, A., Gleixner, A., Gould, N., Liberti, L., Lodi, A., Misener,
R., Mittelmann, H., et al.: QPLIB: a library of quadratic programming instances. Math. Program.
Comput. 11(2), 237–265 (2019)

21. Furman, K.C., Sawaya, N.W., Grossmann, I.E.: A computationally useful algebraic representation of
nonlinear disjunctive convex sets using the perspective function. Comput. Optim. Appl. 76(2), 589–614
(2020)

22. Gamrath, G., Anderson, D., Bestuzheva, K., Chen, W.K., Eifler, L., Gasse, M., Gemander, P., Gleixner,
A., Gottwald, L., Halbig, K., et al.: The SCIP Optimization Suite 7.0. ZIB-Report 20-10, Zuse Institute
Berlin (2020)

23. Gómez, A.: Strong formulations for conic quadratic optimization with indicator variables. Math. Pro-
gram. 188(1), 193–226 (2021)

24. Grossmann, I.E., Lee, S.: Generalized convex disjunctive programming: Nonlinear convex hull relax-
ation. Comput. Optim. Appl. 26(1), 83–100 (2003). https://doi.org/10.1023/A:1025154322278

25. Günlük, O., Linderoth, J.: Perspective reformulations of mixed integer nonlinear programswith indica-
tor variables. Math. Program. 124(1–2), 183–205 (2010). https://doi.org/10.1007/s10107-010-0360-
z

26. Günlük, O., Linderoth, J.: Perspective reformulation and applications. In: J. Lee, S. Leyffer (eds.)
Mixed Integer Nonlinear Programming, pp. 61–89. Springer, New York, NY (2012). https://doi.org/
10.1007/978-1-4614-1927-3_3

27. Hijazi,H.,Bonami, P.,Cornuéjols,G.,Ouorou,A.:Mixed integer nonlinear programs featuring “on/off”
constraints: convex analysis and applications. Electron. Notes Discrete Math. 36, 1153–1160 (2010)

28. Hijazi, H., Bonami, P., Cornuéjols, G., Ouorou, A.: Mixed-integer nonlinear programs featuring
“on/off” constraints. Comput. Optim. Appl. 52(2), 537–558 (2012)

29. Kelley, J.E., Jr.: The cutting-plane method for solving convex programs. J. Soc. Ind. Appl. Math. 8(4),
703–712 (1960). https://doi.org/10.1137/0108053

30. Khajavirad, A., Sahinidis, N.V.: Convex envelopes generated from finitely many compact convex sets.
Math. Program. 137(1–2), 371–408 (2013)

31. Lodi, A., Tramontani, A.: Performance variability in mixed-integer programming. In: Theory Driven
by Influential Applications, pp. 1–12. INFORMS (2013). https://doi.org/10.1287/educ.2013.0112

32. Rockafellar, R.T.: Convex analysis. Princeton University Press (2015)

123

https://doi.org/10.1287/ijoc.15.1.114.15159
https://doi.org/10.1287/ijoc.15.1.114.15159
https://doi.org/10.1007/s101070050106
https://doi.org/10.1007/s101070100263
https://doi.org/10.1109/TPWRS.2008.922256
https://doi.org/10.1007/s10589-015-9787-8
https://doi.org/10.1007/s10107-005-0594-3
https://doi.org/10.1016/j.orl.2009.02.003
https://doi.org/10.1016/j.orl.2009.02.003
https://doi.org/10.1287/opre.1110.0930
https://doi.org/10.1287/opre.1110.0930
https://doi.org/10.1023/A:1025154322278
https://doi.org/10.1007/s10107-010-0360-z
https://doi.org/10.1007/s10107-010-0360-z
https://doi.org/10.1007/978-1-4614-1927-3_3
https://doi.org/10.1007/978-1-4614-1927-3_3
https://doi.org/10.1137/0108053
https://doi.org/10.1287/educ.2013.0112

A computational study of perspective cuts 731

33. Salgado, E., Gentile, C., Liberti, L.: Perspective cuts for the ACOPF with generators. In: New Trends
in Emerging Complex Real Life Problems, pp. 451–461. Springer (2018)

34. Salgado, E., Scozzari,A., Tardella, F., Liberti, L.:Alternating current optimal power flowwith generator
selection. In: Lee, J., Rinaldi, G., Mahjoub, A.R. (eds.) Combinatorial Optimization, pp. 364–375.
Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-96151-4_31

35. Stubbs, R.A., Mehrotra, S.: A branch-and-cut method for 0–1 mixed convex programming. Math.
Program. 86(3), 515–532 (1999). https://doi.org/10.1007/s101070050103

36. Tawarmalani, M., Richard, J.P.P., Chung, K.: Strong valid inequalities for orthogonal disjunctions and
bilinear covering sets. Math. Program. 124(1–2), 481–512 (2010)

37. Tawarmalani, M., Sahinidis, N.V.: Convex extensions and envelopes of lower semi-continuous func-
tions. Math. Program. 93(2), 247–263 (2002). https://doi.org/10.1007/s10107-002-0308-z

38. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for
large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006). https://doi.org/10.1007/
s10107-004-0559-y

39. Williams, H.P.: The reformulation of twomixed integer programming problems.Math. Program. 14(1),
325–331 (1978). https://doi.org/10.1007/BF01588974

40. Zheng, X., Sun, X., Li, D.: Improving the performance of MIQP solvers for quadratic programs
with cardinality and minimum threshold constraints: A semidefinite program approach. INFORMS J.
Comput. 26(4), 690–703 (2014)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1007/978-3-319-96151-4_31
https://doi.org/10.1007/s101070050103
https://doi.org/10.1007/s10107-002-0308-z
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1007/BF01588974

	A computational study of perspective cuts
	Abstract
	1 Introduction
	2 Perspective formulations for convex nonlinearities
	2.1 Theoretical background
	2.1.1 Convex hulls of unions of convex sets
	2.1.2 Formulations in the original space
	2.1.3 Formulations for a union of a convex set and a singleton set

	2.2 Existing applications and computational results

	3 Generalized perspective cuts
	4 Implementation of perspective cuts
	4.1 Organization of nonlinear constraints in SCIP
	4.2 Structure detection
	4.3 Separation and strengthening of generalized perspective cuts

	5 Computational results
	5.1 Detection of suitable structures
	5.2 Overall performance impact
	5.3 Overall performance impact by instance type
	5.4 Detailed comparisons
	5.5 Feature evaluation: bound tightening
	5.6 Comparison to perspective reformulations
	5.7 Cut strengthening for the union of a nonlinear set and a box

	6 Conclusion
	Acknowledgements
	References

