
Mathematical Programming Computation (2023) 15:445–470
https://doi.org/10.1007/s12532-023-00236-6

FULL LENGTH PAPER

Faster exact solution of sparse MaxCut and QUBO problems

Daniel Rehfeldt1 · Thorsten Koch1,2 · Yuji Shinano1

Received: 31 January 2022 / Accepted: 3 February 2023 / Published online: 15 April 2023
© The Author(s) 2023

Abstract
The maximum-cut problem is one of the fundamental problems in combinatorial opti-
mization. With the advent of quantum computers, both the maximum-cut and the
equivalent quadratic unconstrained binary optimization problem have experienced
much interest in recent years. This article aims to advance the state of the art in the
exact solution of both problems—by using mathematical programming techniques.
The main focus lies on sparse problem instances, although also dense ones can be
solved. We enhance several algorithmic components such as reduction techniques and
cutting-plane separation algorithms, and combine them in an exact branch-and-cut
solver. Furthermore, we provide a parallel implementation. The new solver is shown
to significantly outperform existing state-of-the-art software for sparse maximum-cut
and quadratic unconstrained binary optimization instances. Furthermore, we improve
the best known bounds for several instances from the 7th DIMACS Challenge and the
QPLIB, and solve some of them (for the first time) to optimality.

Keywords Maximum-cut · Quadratic unconstrained binary optimization ·
Branch-and-cut

Mathematics Subject Classification 90C27 · 90C10

B Daniel Rehfeldt
rehfeldt@zib.de

Thorsten Koch
koch@zib.de

Yuji Shinano
shinano@zib.de

1 Applied Algorithmic Intelligence Methods departement, Zuse Institute Berlin, Takustr. 7,
14195 Berlin, Germany

2 TU Berlin, Chair of Software and Algorithms for Discrete Optimization, Str. des 17. Juni 135,
10623 Berlin, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12532-023-00236-6&domain=pdf

446 D. Rehfeldt et al.

1 Introduction

Given an undirected graphG = (V , E), and edge weightsw : E → Q, themaximum-
cut (MaxCut) problem is to find a partition (V1, V2) of V such that the summed weight
of the edges between V1 and V2 is maximized.MaxCut is one of the fundamentalNP-
hard optimization problems [28] and has applications for example in VLSI design [3]
and the theory of spin glasses in physics [33].1 The latter application is particularly
interesting, because it requires an exact solution of the MaxCut problem.

A problem that is equivalent to MaxCut is the quadratic unconstrained binary
optimization (QUBO) problem. Given a matrix Q ∈ Qn×n , the corresponding QUBO
problem can be formulated as

min xT Qx

x ∈ {0, 1}n .
Any QUBO instance can be formulated as a MaxCut instance in a graph with n + 1
vertices, and any MaxCut instance on a graph (V , E) can be formulated as a QUBO
instance with n = |V | − 1, see e.g. [4]. The focus of this article is mostly on MaxCut
algorithms, but due to the just mentioned equivalence, all results can be (and indeed
are) applied to QUBO as well.

The huge recent interest in quantum computing has also put MaxCut and QUBO
in the spotlight: Both of them can be heuristically solved by current quantum anneal-
ers. However, Jünger et al. [25] demonstrate on a wide range of test-sets that digital
computing methods prevail against state-of-the-art quantum annealers.

For digital computers, many heuristics have been proposed both for MaxCut and
QUBO. See Dunning et. al. [13] for a recent overview. There have also been various
articles on exact solution. See Barahona et al. [4] for an early, Rendl et al. [37] for
a more recent, and Jünger et al. [25] for an up-to-date overview. In the last years,
more focus has been put on the development of methods that are best suited for dense
instances, see for example [20, 23, 31] for state-of-the-art methods. However, the
maximum number of nodes for MaxCut (or number of variables for QUBO) instances
that can be handled by these methods is roughly 300. In contrast, this article aims
to advance the state of the art in the practical exact solution of sparse MaxCut and
QUBO instances. The largest (sparse) instance solved in this article has more than
10,000 nodes.

1.1 Contribution and structure

This article describes the design and implementation of a branch-and-cut based Max-
Cut and QUBO solver. In particular, we suggest several algorithmic improvements of
key components of a branch-and-cut framework.

Section 2 shows how to efficiently solve a well-known linear programming (LP)
relaxation for the MaxCut problem by using cutting planes. Among other things,
we demonstrate how the separation of maximally violated constraints, which was

1 As a side note, the 2021 Nobel prize in Physics was awarded for work on spin glasses.

123

Faster exact solution of sparse MaxCut and QUBO problems 447

described by many authors as being too slow for practical use, can be realized with
quite moderate run times.

Section 3 is concerned with another vital component within branch-and-cut: reduc-
tion techniques. We review methods from the literature and propose new ones. The
reduction methods can be applied for preprocessing and domain propagation.

Section 4 shows how to integrate the techniques from the previous two sections as
well as several additional methods in a branch-and-cut algorithm. Parallelization is
also discussed.

Section 5 provides computational results of the newly implemented MaxCut and
QUBO solver on a large collection of test-sets from the literature. It is shown that
the new solver outperforms the previous state of the art. Furthermore, the best known
solutions of several benchmark instances can be improved and one is even solved (for
the first time) to optimality.

1.2 Preliminaries and notation

In the remainder of this article, we assume that a MaxCut instance IMC = (G, w)

with graph G = (V , E) and edge weights w is given. Graphs are always assumed
to be undirected and simple, i.e., without parallel edges or self-loops. Given a graph
G = (V , E), we refer to the vertices and edges of any subgraph G ′ ⊆ G as V (G ′)
and E(G ′) respectively, An edge between vertices u, v ∈ V is denoted by {u, v}. An
edge set C = {{v1, v2}, {v2, v3}, ..., {vk−1, vk}, {v1, vk}} is called a cycle. A cycle C
is called simple if all its vertices have degree 2 in C . An edge {u, w} ∈ E\C is called
a chord of C if both u and w are contained in (an edge of) C . If no such {u, w} exists,
we say that C is chordless. Given a graph G = (V , E) and a U ⊆ V , we define the
induced edge cut as δ(U) := {{u, v} ∈ E | u ∈ U , v ∈ V \U }.

Finally, for any function x : M �→ R with M finite, and any M ′ ⊆ M , we define
x(M ′) := ∑

i∈M ′ x(i).

2 Solving the relaxation: efficient separation of odd-cycle cuts

This section is concerned with an integer programming (IP) formulation for MaxCut
due to Barahona and Mahjoub [5], given below.

max wT x (1)

s.t.
∑

e∈F
x(e) −

∑

e∈C\F
x(e) ≤ |F | − 1 for all cycles C, F ⊆ C, |F | odd (2)

x(e) ∈ {0, 1} for all e ∈ E . (3)

The formulation is based on the observation that for any edge cut δ(U) and any cycle
C the number of their common edges, namely |C ∩ δ(U)|, is even. This property is
enforced by the constraints (2). These constraints are called cycle inequalities.

123

448 D. Rehfeldt et al.

Fig. 1 MaxCut graph and corresponding auxiliary graph for cycle cut separation

2.1 Cutting plane separation

Barahona andMahjoub [5] show that the LP-relaxation of Formulation 1 can be solved
in polynomial time. More precisely, they describe how to separate the constraints (2)
in polynomial time, as demonstrated in the following. First, rewrite the constraints (2)
as ∑

e∈F
(1 − x(e)) +

∑

e∈C\F
x(e) ≥ 1 for all cycles C, F ⊆ C, |F | odd. (4)

Next, construct a new graph H from the MaxCut graph G = (V , E). This graph H
consists of two copies G ′ = (V ′, E ′) and G ′′ = (V ′′, E ′′) of G, connected by the
following additional edges. For each v ∈ V let v′ and v′′ be the corresponding vertices
in G ′ and G ′′, respectively. For each edge {v,w} ∈ E let {v′, w′′} and {v′′, w′} be
in H . Finally, for any (LP-relaxation vector) x ∈ [0, 1]E define the following edge
weights p on H : For each e = {v,w} ∈ E , set p({v′, w′}) := p({v′′, w′′}) := x(e)
and p({v′, w′′}) := p({v′′, w′}) := 1−x(e). The construction is exemplified in Fig. 1.
Consider, for example, the edge {v,w} in Fig. 1a. The weight p of the corresponding
(dashed) edges {v′, w′′} and {v′′, w′} in Fig. 1b is 1 − x({v,w}). The weight p of the
corresponding (bold) edges {v′, w′} and {v′′, w′′} is x({v,w}).

Given an LP-relaxation vector x ∈ [0, 1]E , we can find violated inequalities (2) as
follows. For each v ∈ V compute a shortest path between v′ and v′′ in the weighted
graph (H , p). By construction of H , such a path contains an odd number of edges
which are neither in E ′ nor E ′′. Let F be the corresponding set of edges in E ; i.e. for
each edge {v′, w′′} or {v′′, w′} that is in the shortest path, let {v,w} be in F . Further-
more, the edges of the shortest path correspond to a closed walk C in G. The length of
the shortest path in (H , p) is equal to

∑
e∈F (1 − x(e)) + ∑

e∈C\F x(e). Thus, if for
each v ∈ V the corresponding shortest path between v′ and v′′ in (H , p) has length

123

Faster exact solution of sparse MaxCut and QUBO problems 449

at least 1, the vector x is an optimal solution to the LP-relaxation of Formulation 1.
Otherwise, we have found at least one violated constraint.

Although shortest paths can be computed in polynomial time, the literature has so
far considered the above separation procedure as too time-consuming to be directly
used in practical exact MaxCut or QUBO solution. Instead, heuristics are employed
and exact cycle separation is only used if no more cuts can be found otherwise, see,
e.g., [3, 4, 9, 25, 33]. However, as we will show in the following, the exact separation
can actually be realized in a practically quite efficient way.

2.2 Fast computation of maximally-violated constraints

Initially, we observe that it is usually possible to considerably reduce the size of
the auxiliary graph H described above. First, all edges e of H with p(e) = 1 (or
practically, with p(e) being sufficiently close to 1) can be removed. Because all edge
weights are non-negative, no such edges can be contained in a path of weight smaller
than 1. Second, one can contract edges e with p(e) = 0. Both of these operations can
be done implicitly while creating the auxiliary graph (e.g., edges with weight 1 are
never added). In this way, one can use cache-efficient, static data structures, such as
the compressed-sparse-row format, see e.g. [29], for representing the auxiliary graph.

For computing a shortest path, we use a modified version of Dijkstra’s algorithm.
For any vertex v in the auxiliary graph let d(v) denote the distance of v to the start
vertex, as computed by the algorithm. We use the following modifications. First, we
stop the execution of the algorithm as soon as we scan a vertex v with d(v) ≥ 1.
Second, as already observed in Jünger andMallach [26], one does not need to proceed
the shortest path computation from any vertex, say v′, in the auxiliary graph where
the twin vertex, v′′, has already been scanned and the following condition holds:
d(v′) + d(v′′) ≥ 1.

Finally, we use an optimized implementation of Dijkstra’s algorithm together with
a specialized binary heap. For the latter, we exploit the fact that the values (i.e. vertex
indices) of the key, value pairs inserted into the heap are natural numbers bounded by
the number of vertices of the auxiliary graph.

2.3 Post-processing

As already mentioned above, the edges of the shortest path computed in the auxiliary
graph correspond to a closed walk in G—but not necessarily to a simple cycle. Thus,
Jünger and Mallach [26] suggest to extract all simple cycles from such a closed walk
and separate the corresponding inequalities. We follow this suggestion (although we
note that this modification is performance neutral in our implementation).

Barahona and Mahjoub [5] observe that a cycle inequality is only facet-defining if
the corresponding cycle is chordless. If a cycle C has a chord e, one readily obtains
two smaller cycles C1 and C2 with C1 ∪ C2 = C ∪ {e} and C1 ∩ C2 = {e}. One
verifies that any cycle inequality defined on C can be written as the sum of two cycle
inequalities defined on C1 and C2, where e is in the odd edges set F of exactly one of
the two cycle inequalities. Jünger andMallach [27] suggest a procedure to extract from

123

450 D. Rehfeldt et al.

any simple cycle C with corresponding violated cycle-inequality a chordless cycle C ′
whose cycle-inequality is also violated. This procedure runs in O(|E |). However, a
disadvantage of this approach is that it finds only one such chordless cycle, which
might not be the smallest or most violated one. Additionally, there can be several
such chordless cycles. In the following, we suggest a procedure to find several non-
overlapping chordless cycleswith corresponding violated cycle inequality fromagiven
cycle C with violated cycle inequality.

Consider a simple cycle C = {{v1, v2}, {v2, v3}, ..., {vk−1, vk}, {v1, vk}} and let
F ⊆ C with |F | odd. Assume there is a vector x ∈ [0, 1]E such that the cycle
inequality corresponding to C and F is violated, that is:

∑

e∈F
(1 − x(e)) +

∑

e∈C\F
x(e) < 1.

For each i = 2, ..., k define Pi := {{v1, v2}, {v2, v3}, ..., {vi−1, vi }} and store the
following information.

– f (i) := |F ∩ Pi |,
– q(i) := ∑

e∈F∩Pi (1 − x(e)) + ∑
e∈(C∩Pi)\F x(e).

This information can be computed in total time O(|C |): Traverse the nodes vi , i =
2, 3, .., k of C in this order and compute the above two values for i from i − 1.

With the above information at hand, traverse for each i = 2, ..., k the incident
edges of vi . Whenever a chord {vi , v j } with j < i is found, check whether the cycle
inequality of one or both of the corresponding cycles is violated. This check can be
performed in constant time by using the precomputed information for the indices i and
j . For example, if f (i)− f (j) is even, one of the corresponding two cycle inequalities
is

q(i) − q(j) + 1 − x({vi , v j }) ≥ 1.

If a violated cycle inequality is found, add the corresponding chord together with
a flag that indicates which of the two possible cycles is to be used to some (ini-
tially empty) queue R. Once the incident edges of all nodes vi for i = 2, ..., k
have been traversed, sort the elements of R according to the size of the corre-
sponding cycles in non-decreasing order. Consider all indices of the original cycle
as unmarked. Check the (implicit) cycles in R in non-decreasing order. Let {vi , v j }
with i < j be the corresponding chord. If both i and j are unmarked, mark the
indices i + 1, i + 2, ..., j − 1. Otherwise, discard the (implicit) cycle. Finally, add all
cycle inequalities corresponding to non-discarded cycles to the cut pool. The overall
procedure runs in O(|E | log(|E |)). In practice, its run time is completely neglectable.

Finally, we suggest a procedure to obtain additional cycle cuts from the auxiliary
graph. This approach is particularly useful for MaxCut instances with few vertices,
because the number of generated cycle inequalities separated in each round is limited
by the number of vertices of the MaxCut instance (if we ignore additional cycle-
inequalities that are possibly found by the above post-processing). The procedure
makes use of the symmetry of the auxiliary graph. Assume that we have computed a
shortest path between a pair of vertices, say v′ and v′′, as described above. Recall that

123

Faster exact solution of sparse MaxCut and QUBO problems 451

d(w) denotes the distance of any vertex w to the start vertex v′. If there is a twin pair
of vertices u′, u′′ such that none of them are part of the shortest path between v′ and
v′′, and d(u′) + d(u′′) < 1, we can get another violated cycle inequality as follow:
First, we take the v′-u′ path computed by the algorithm. Second, we consider the v′-u′′
path, and transform it to an u′′-v′′ path (of same length) by exploiting the symmetry
of the auxiliary graph. By combining the two paths, we obtain an v′-v′′ path of length
d(u′) + d(u′′).

3 Simplifying the problem: reduction techniques

Reduction techniques are a key ingredient for the exact solution of many NP-hard
optimization problems, such as Steiner tree [36] or vertex coloring [34]. For QUBO,
several reductions methods have been suggested in the literature. Basic techniques
can already be found in Hammer et al. [22]. The perhaps most extensive reduction
framework is given in Tavares et. al. [10]. Recently, Glover et al. [18] provided efficient
realizations and extensions of the classic first and second order derivative and co-
derivative techniques [21]. We have implemented the methods from Glover et al. [18]
for this article. However, we do not provide details, but rather concentrate on MaxCut
reduction techniques in the following.

For MaxCut, there are several articles that discuss reduction techniques for
unweighted MaxCut. Ferizovic et al. [14] provide the practically most powerful col-
lection of such techniques. Lange et al. [32] provide techniques for general (weighted)
MaxCut instances. In the following, we will describe some of their methods. Further-
more, we suggest new MaxCut reduction methods. Their practical strength will be
demonstrated in Sect. 5.

Initially, we note that any edge with weight 0 can be removed from IMC . Any
solution to this reduced version of IMC can be extended to a solution of same weight
to the original instance (in linear time). Thus, in the following we assume no edges
have weight 0. We also note that for the incidence vector x ∈ {0, 1}E of any graph
cut one obtains a corresponding (but not unique) vertex assignment y ∈ {0, 1}V that
satisfies for all {u, v} ∈ E the relation y(u) �= y(v) ⇐⇒ x({u, v}) = 1. This
correspondence will be used repeatedly in the following.

3.1 Cut-based reduction techniques

The first reduction technique from Lange et al. [32] is based on the following propo-
sition.

Proposition 1 [32] Let e ∈ E and U ⊂ V such that e ∈ δ(U). If

|w(e)| ≥
∑

a∈δ(U)\{e}
|w(a)|,

then there is an optimal solution x ∈ {0, 1}E to IMC with x(e) = β, where β = 1 if
w(e) > 0, and β = 0 if w(e) < 0.

123

452 D. Rehfeldt et al.

Note that in the case of x(e) = 0, one can simply contract e. In the case of x(e) = 1,
one needs to multiply the weights of the incident edges of one of the endpoints of e
by −1 before the contraction.

One way to check for all e ∈ E whether anU ⊂ V exists such that the conditions of
Proposition 1 are satisfied is by using Gomory-Hu trees. We have only implemented a
simpler check that considers for an edge e = {v, u} ∈ E the sets {v} and {u} as U , as
already suggested in Lange et al. [32]. A combined check for all edges can be made
in O(|E |). We note that this test corresponds to the first order derivative reduction
method (mentioned above) for QUBO. This relation can be readily verified by means
of the standard transformations between MaxCut and QUBO.

The next reduction technique from Lange et al. [32] is based on triangles, and is
given below.

Proposition 2 [32] Assume there is a triangle in G with edges {v1, v2}, {v1, v3},
{v2, v3}. Let V1 ⊂ V such that {v1, v2}, {v1, v3} ⊂ δ(V1), and V2 ⊂ V such that
{v1, v2}, {v2, v3} ⊂ δ(V2). If

−w({v1, v3}) − w({v1, v2}) ≥
∑

e∈δ(V1)\{{v1,v3},{v1,v2}}
|w(e)|

and
−w({v1, v2}) − w({v2, v3}) ≥

∑

e∈δ(V2)\{{v1,v2},{v2,v3}}
|w(e)|,

then there is an optimal solution x ∈ {0, 1}E to IMC with x({v1, v2}) = 0.

Similarly to the previous proposition, we only implemented tests for the simple cases
of {v1}, {v2}, {v1, v3}, and {v2, v3} for V1 and V2, respectively.

In the following, we propose a new reduction test based on triangles, which com-
plements the above one from Lange et al. [32].

Proposition 3 Assume there is a triangle in G with edges {v1, v2}, {v1, v3}, {v2, v3} ∈
E such that w({v1, v2}) > 0, w({v1, v3}) > 0, and w({v2, v3}) < 0. Let V1 ⊂ V such
that {v1, v2}, {v1, v3} ∈ δ(V1) and let V2 ⊂ V such that {v1, v2}, {v2, v3} ∈ δ(V2). If

w({v1, v2}) + w({v1, v3}) ≥
∑

e∈δ(V1)\{{v1,v2},{v1,v3}}
|w(e)|, (5)

and
w({v1, v2}) − w({v2, v3}) ≥

∑

e∈δ(V2)\{{v1,v2},{v1,v3}}
|w(e)|, (6)

then there is an optimal solution x ∈ {0, 1}E to IMC such that x({v1, v2}) = 1.

Proof Let x ∈ {0, 1}E be a feasible solution to IMC with x({v1, v2}) = 0. We will
construct a feasible solution x ′ ∈ {0, 1}E with x({v1, v2}) = 1 such thatwT x ′ ≥ wT x .
Thus, there exists at least one optimal solution x ∈ {0, 1}E with x({v1, v2}) = 1.

123

Faster exact solution of sparse MaxCut and QUBO problems 453

Because x({v1, v2}) = 0, it needs to hold that either

x({v1, v3}) = x({v2, v3}) = 0 (7)

or
x({v1, v3}) = x({v2, v3}) = 1. (8)

We just consider the case (7); the second one can be handled in an analogeous way. Let
y ∈ {0, 1}V be a vertex assignment corresponding to x ; i.e., for all {u, v} ∈ E it holds
that y(u) �= y(v) ⇐⇒ x({u, v}) = 1. Define a new vertex assignment y′ ∈ {0, 1}V
as follows

y′(v) :=
{
1 − y(v) if v ∈ V1
y(v) otherwise.

Let x ′ ∈ {0, 1}E be the cut corresponding to y′; i.e., for all {u, v} ∈ E it holds
x ′({u, v}) = 1 if y(u) �= y(v), and x ′({u, v}) = 0 otherwise. Note that for all
e ∈ E\δ(V1) it holds that x ′(e) = x(e). For all e ∈ δ(V1) it holds that x ′(e) = 1−x(e).
In particular,

x ′({v1, v2}) = x ′({v1, v3}) = 1, (9)

because of x({v1, v2}) = x({v1, v3}) = 0. Thus, we obtain

∑

e∈E
w(e)x ′(e) =

∑

e∈E\δ(V1)
w(e)x ′(e) +

∑

e∈δ(V1)

w(e)x ′(e)

=
∑

e∈E\δ(V1)
w(e)x(e) +

∑

e∈δ(V1)

w(e)x ′(e)

(9)=
∑

e∈E\δ(V1)
w(e)x(e)

+
∑

e∈δ(V1)\{{v1,v2},{v1,v3}}
w(e)x ′(e) + w({v1, v2}) + w({v1, v3})

(5)≥
∑

e∈E\δ(V1)
w(e)x(e)

+
∑

e∈δ(V1)\{{v1,v2},{v1,v3}}
(w(e)x ′(e) + |w(e)|)

≥
∑

e∈E\δ(V1)
w(e)x(e)

+
∑

e∈δ(V1)\{{v1,v2},{v1,v3}}
w(e)(1 − x ′(e))

=
∑

e∈E\δ(V1)
w(e)x(e)

+
∑

e∈δ(V1)\{{v1,v2},{v1,v3}}
w(e)x(e)

123

454 D. Rehfeldt et al.

=
∑

e∈E\δ(V1)
w(e)x(e) +

∑

e∈δ(V1)

w(e)x(e)

=
∑

e∈E
w(e)x(e),

which concludes the proof.

As for the previous triangle test, we only consider the simple cases of {v1}, {v2},
{v1, v3}, and {v2, v3} for V1 and V2 in our implementation.

Note that Lange et al. [32] furthermore propose a generalization of Proposition 2 to
more general connected subgraphs.AlsoProposition 3 could begeneralized in a similar
way. However, since we only implemented reductions tests for the triangle conditions,
we do not provide details on this generalization here. We also note that exploiting this
more general condition for effective practical reductions is not straight-forward and
seems computationally considerably more expensive than the triangle tests.

3.2 Further reduction techniques

In the following, we propose two additional reduction methods, based on different
techniques. One uses the reduced-costs of the LP-relaxation of Formulation 1, and
one exploits simple symmetries in MaxCut instances.

We start with the latter. If successful, the test based on the following proposition
allows one to contract two (possibly non-adjacent) vertices.

Proposition 4 Assume there are two distinct vertices u, v ∈ V such that N (u)\{v} =
N (v)\{u}. If there exists a non-zero α such that w(e) = αw(e′) for all pairs e, e′ with
e ∈ δ(u)\{u, v}, e′ ∈ δ(v)\{u, v}, e ∩ e′ �= ∅, and moreover

– {u, v} /∈ E ∨ w({u, v}) < 0 in case of α > 0
– {u, v} /∈ E ∨ w({u, v}) > 0 in case of α < 0,

then there is an optimal vertex solution y ∈ {0, 1}V to IMC such that y(u) = y(v) if
α > 0, and y(u) = (1 − y(v)) if α < 0.

Proof We consider only the case α > 0; the case α < 0 can be shown in a similar way.
Let y ∈ {0, 1}V with y(v) �= y(u).Wewill construct a y′ ∈ {0, 1}V with y′(v) = y′(u)

such that the weight of the induced cut of y′ is not lower than the weight of the induced
cut of y. In this way, the proof is complete, because we can apply this construction
also for any optimal vertex assignment

Let x ∈ {0, 1}E be the induced cut of y. Assume that

∑

e∈δ(u)\{u,v}
w(e)x(e) ≥ α

∑

e∈δ(v)\{u,v}
w(e)x(e). (10)

Otherwise, switch the roles of u and v in the following.

123

Faster exact solution of sparse MaxCut and QUBO problems 455

Let f : δ(v)\ {{u, v}} → δ(u)\ {{u, v}} such that e ∩ f (e) �= ∅ for all e ∈
δ(v)\{u, v}. Note that f is well-defined. Define a new cut x ′ ∈ {0, 1}E as follows

x ′(e) :=
⎧
⎨

⎩

x(e) if e ∈ E \ δ(v)

x(f (e) if e ∈ δ(v) \ {{u, v}}
0 if e = {u, v}

Because of (10) and {u, v} /∈ E ∨ w({u, v}) < 0 it holds that wT x ′ ≥ wT x .

The condition of Proposition 4 can be checked efficiently in practice by using hash-
ing techniques, similar to the ones used for the parallel rows test for mixed-integer
programs [2].

A well-known reduction method for binary integer programs, which was already
used for MaxCut [4], is as follows. Consider a feasible solution x̃ to the LP-relaxation
of Formulation 1, with reduced-costs w̃, and with objective value Ũ . Further, let L be
the weight of a graph cut. If for an e ∈ E it holds that x̃(e) = 0 and Ũ−w̃(e) < L , one
can fix x(e) := 0. If for a e ∈ E it holds that x̃(e) = 1 and Ũ + w̃(e) < L , one can fix
x(e) := 1. This method can also be used for LP-solutions (obtained during separation)
that satisfy only a subset of the cycle inequalities (2). In the following, we will only
consider optimal LP-solutions x̃ (possibly for a subset of the cycle inequalities). Since
we furthermore consider only LP-solutions obtained by the Simplex algorithm, all
non-zero variables have reduced-cost 0.

From incident fixed edges one obtains a (non-unique) partial vertex assignment
y′ : V ′ → {0, 1}. This assignment can be used to obtain additional fixings, as detailed
in the following proposition.

Proposition 5 Let x̃ be an optimal solution to the LP-relaxation of Formulation 1,
with reduced-costs w̃, and objective value Ũ . Let L be an upper bound on the weight
of a maximum-cut. Let V ′ ⊂ V and y′ : V ′ → {0, 1} such that for any optimal
vertex assignment y ∈ {0, 1}V it holds that y(v) = y′(v) for all v ∈ V ′. Further, let
u ∈ V \V ′ and define

�̃0 :=
∑

{u,v}∈δ(u)|v∈V ′,y(v)=0

w̃({u, v})

and
�̃1 :=

∑

{u,v}∈δ(u)|v∈V ′,y(v)=1

w̃({u, v}).

For any optimal vertex assignment y ∈ {0, 1}V the following conditions hold. If
L + �̃0 > Ũ , then y(u) = 0. If L + �̃1 > Ũ , then y(u) = 1.

The proposition follows from standard linear programming results. If one of the con-
ditions of the proposition is satisfied, one can fix all edges between u and V ′.

123

456 D. Rehfeldt et al.

4 Solving to optimality: branch-and-cut

This section describes how to incorporate the methods introduced so far together with
additional components in an exact branch-and-cut algorithm. This branch-and-cut
algorithm has been implemented based on the academicMIP solver SCIP [7]. Besides
being a stand-alone MIP solver, SCIP provides a general branch-and-cut framework.
Most importantly, we rely on SCIP for organizing the branch-and-bound search, and
the cutting plane management. Most native, general-purpose algorithms of SCIP such
as primal heuristics, conflict analysis, or generic cutting planes are deactivated by our
solver for performance reasons.

4.1 Key components

In the following, we list the main components of the branch-and-cut framework that
was implemented for this article.

Presolving For presolving, the reduction methods described in this article are executed
iteratively within a loop. This loop is reiterated as long as at least one edge has been
contracted during the previous round, and the predefined maximum number of loop
passes has not been reached yet.

Domain propagation For domain propagation we use the reduced-cost criteria
described in Sect. 3.2. The simple single-edge fixing is done by the generic reduced-
costs propagator plug-in of SCIP. For the new implication based method we have
implemented an additional propagator.

A classic propagation method, e.g. [4], is as follows: Consider the connected com-
ponents induced by edges that have been fixed to 0 or 1. All additional edges in these
connected components can be readily fixed. However, this technique brought no ben-
efits in our experiments, since the variable values of such edges are implied by the
cycle inequalities (2).

Decomposition It is well-known that connected components of the graph underly-
ing a MaxCut instance can be solved separately, see e.g. [25]. More generally, one
can solve biconnected components separately (this simple observation does not seem
to have been mentioned in the MaxCut literature so far). Since several benchmark
instances used in this article contain many very small biconnected components, we
solve components with a limited number of vertices by enumeration. In this way, we
avoid the overhead associated with creating and solving a new MaxCut instance for
each subproblem.

Primal heuristics Primal heuristics are an important component of practical branch-
and-bound algorithms: First, to find an optimal solution (verified by the dual-bound),
and second to find strong primal bounds that allow the algorithm to cut off many
branch-and-bound nodes. For computing an initial primal solution, we have imple-
mented the MaxCut heuristic by Burer et. al. [11]. We further use the Kernighan-Lin
algorithm [30] to improve any (intermediary) solution found by the algorithm of Burer

123

Faster exact solution of sparse MaxCut and QUBO problems 457

et. al. Additionally, we use this combined algorithm as a local search heuristic when-
ever a new best primal solution has been found during the branch-and-bound search.
In this case, we initiate the heuristic with this new best solution (which can be done
by translating the solution into the two-dimensional angle vectors required by the
heuristic).

We also implemented the spanning-tree heuristic from Barahona et al. [4], which
uses a given (not necessarily optimal) LP-solution to find graph cuts. We execute this
heuristic after each separation round.

Separation In each separation round, we initially try to find violated cycle inequalities
on triangles of the underlying graph (by enumerating some triangles). Moreover, we
use a heuristic strategy based on a minimum spanning tree computation to obtain
additional odd-cycle cuts, see [4] for details. Next, we use shortest-path computations
to find (locally) maximally violated cuts, as described in Sects. 2.2 and 2.3. Among the
speed-up techniques, we have not (yet) implemented the contraction of edges, since
the separation routine is already quite fast and other implementations seemed more
promising. Finally, we also use the odd-clique-cuts introduced in [5]. For separating
these cuts, we initially enumerate a (bounded) number of cliques of size 5, 7, and 9
at the beginning of the solving process. In each separation round, we check whether
some of the corresponding cuts are violated, and if so, add them to the LP. Overall,
we bound the number of cuts that can be added per separation round.

BranchingWe simply branch on the edge variables and use the pseudo-costs branching
strategy of SCIP, see Gamrath [16] for more details. Initial experiments showed that
the default branching strategy of SCIP, reliable pseudo-costs branching, spends too
much time on strong-branching to be competitive.

4.2 Parallelization

For parallelizing our solver, we use the Ubiquity Generator Framework (UG) [38], a
software package to parallelize branch-and-bound based solvers—for both shared- and
distributed-memory environments.UG implements a Supervisor-Worker load coordi-
nation scheme [35]. Importantly, Supervisor functions make decisions about the load
balancing without actually storing the data associated with the branch-and-bound
(B&B) search tree.

Amajor problem of parallelizing the B&B search lies in the simple fact that parallel
resources can only be used efficiently once the number of open B&B nodes is suffi-
ciently large. Thus, we employ so-called racing ramp-up [35]: Initially, each thread
(or process) starts the solving process of the given problem instance, but each with
different (customized) parameters and random seeds. Additionally, we reserve some
threads to exclusively run primal heuristics. During the racing, information such as
improved primal solutions or global variable fixings is being exchanged among the
threads. We terminate the racing once a predefined number of open B&B nodes has
been created by one thread, or the problem has been solved. Once the racing has been
terminated and the problem is still unsolved, the open nodes are distributed among the
threads and the actual parallel solving phase starts.

123

458 D. Rehfeldt et al.

Possible further paralleizations would be of the cutting plane generation or the
solution of the linear programs. However, as demonstrated in Sect. 5.1, the cutting
plane generation only requires a small portion of the entire solving time, so paral-
lizing it would have little overall impact. The parallelization of the linear program
(re-)optimizations is possible, but since a Simplex algorithm is used (which is notori-
ously hard to parallelize), using more than one thread also has little impact.

5 Computational results

This section provides computational results on a large collection ofMaxCut andQUBO
instances from the literature. We look at the impact of individual components, and
furthermore compare the new solver with the state of the art for the exact solution of
MaxCut and QUBO instances. An overview of the test-sets used in the following is
given in Table 1. The second column gives the number of instances per test-sets. The
third and fourth columns give the range of nodes and edges in the case of MaxCut, or
the range of variables and non-zero coefficients in the case of QUBO.

Only a few exact MaxCut or QUBO solvers are publicly available, and some, such
as BiqMac [37], only as web services. Still, the state-of-the-art solvers BiqBin [20],
BiqCrunch [31] andMADAM [23] are freely available. However, we have observed
that all of these solvers are outperformed on most instances listed in Table 1 by the
recent release 9.5 of the state-of-the-art commercial solver Gurobi [19]. Gurobi
solves mixed-integer quadratic programs, which are a superclass of QUBO. In fact,
the standard benchmark library for quadratic programs, QPLIB [15], contains vari-
ous QUBO instances. Compared to the previous release 9.1, Gurobi 9.5 has hugely
improved onQUBO (and thereby alsoMaxCut) instances. For example, whileGurobi
9.1 could not solve any of the IsingChain instances from Table 1 in one hour (with one
thread),Gurobi 9.5 solves all of them in less than one minute. Thus, in the following,
we will use Gurobi 9.5 as a reference for our new solver. We will also provide results
from the literature, but the comparison with Gurobi 9.5 allows us to obtain results
in the same computational environment. Very recently, an article describing a new
solver, called McSparse, specialized to sparse MaxCut and QUBO instances was
published [12]. The computational experiments in [12] demonstrate that McSparse
outperforms previous MaxCut and QUBO solvers on sparse instances. Like Biq-
Mac [37] and BiqBin [20], this solver is only available via a web interface. However,
we will still provide some comparison with our solver in the following by using the
results published in [12].

The computational experiments were performed on a cluster of Intel Xeon Gold
5122 CPUs with 3.60 GHz, and 96 GB RAM per compute node. We ran only one
job per compute node at a time, to avoid a distortion of the run time measures—
originating for example from shared (L3) cache. For our solver, we use the commerical
CPLEX 12.10 [24] as LP-solver, although our solver also allows for the use of the
non-commercial (but slower) SoPlex [7] instead. For Gurobi we set the parame-
ter MipGap to 0. Otherwise, we would obtain suboptimal solutions even for many
instances with integer weights.

123

Faster exact solution of sparse MaxCut and QUBO problems 459

Ta
bl
e
1

D
et
ai
ls
of

M
ax
C
ut

(u
pp
er

pa
rt
)
an
d
Q
U
B
O
(l
ow

er
pa
rt
)
te
st
-s
et
s
us
ed

in
th
is
ar
tic
le

N
am

e
#

|V
|

|E|
D
es
cr
ip
tio

n

D
IM

A
C
S

4
51

2–
33

75
15

36
–1

01
25

In
st
an
ce
s
in
tr
od

uc
ed

at
th
e

7t
h
D
IM

A
C
S
C
ha
lle

ng
e

M
an
ni
no

4
48

–4
87

11
28

–8
51

1
In
st
an
ce
s
fr
om

a
ra
di
o
fr
eq
ue
nc
y
as
si
gn

m
en
tp

ro
bl
em

in
tr
od

uc
ed

in
[9
]

PM
1s

10
0

10
10

0
49

5
In
st
an
ce
s
ge
ne
ra
te
d
w
ith

th
e
ru
dy

fr
am

ew
or
k

fr
om

th
e
B
iq
M
ac

L
ib

[4
0]

W
01

10
0

10
10

0
49

5
In
st
an
ce
s
ge
ne
ra
te
d
w
ith

th
e
ru
dy

fr
am

ew
or
k

fr
om

th
e
B
iq
M
ac

L
ib

[4
0]

K
64

-c
hi
m
er
a

80
20

49
80

64
In
st
an
ce
s
on

D
-W

av
e
C
hi
m
er
a
gr
ap
hs

in
tr
od

uc
ed

in
[2
5]

K
er
ne
l

14
33

–2
88

8
91

–2
98

1
In
st
an
ce
s
fr
om

va
ri
ou

s
so
ur
ce
s

co
lle
ct
ed

by
[1
4]

Is
in
gC

ha
in

30
10
0–
30
0

49
50
–4
48
50

In
st
an
ce
s
fr
om

an
ap
pl
ic
at
io
n
in

st
at
is
tic
al
ph
ys
ic
s

in
tr
od

uc
ed

in
[3
3]

To
ru
s

18
10

0–
34

3
20

0–
10

29
2D

an
d
3D

to
ru
s
in
st
an
ce
s
fr
om

an
ap
pl
ic
at
io
n
in

st
at
is
tic
al
ph
ys
ic
s,
in
tr
od
uc
ed

in
[3
3]

N
am

e
#

n
nn

z
D
es
cr
ip
tio

n

Q
PL

IB
22

12
0–

12
25

60
2–

34
87

6
Q
U
B
O
in
st
an
ce
s
fr
om

th
e
st
an
da
rd

be
nc
hm

ar
k
so
ft
w
ar
e

fo
r

qu
ad
ra
tic

pr
og
ra
m
s,
se
e
[1
5]

B
Q
P1

00
10

10
0

47
1–

52
8

R
an
do

m
ly

ge
ne
ra
te
d
in
st
an
ce
s

in
tr
od

uc
ed

in
[6
]

123

460 D. Rehfeldt et al.

Ta
bl
e
1

co
nt
in
ue
d

N
am

e
#

n
nn

z
D
es
cr
ip
tio

n

B
Q
P2

50
10

25
0

30
39

–3
20

8
R
an
do

m
ly

ge
ne
ra
te
d
in
st
an
ce
s

in
tr
od

uc
ed

in
[6
]

B
E
12

0.
3

10
12

0
21

76
–2

25
3

R
an
do

m
ly

ge
ne
ra
te
d
in
st
an
ce
s

in
tr
od

uc
ed

in
[8
]

B
E
25

0
10

25
0

32
68

–3
38

8
R
an
do

m
ly

ge
ne
ra
te
d
in
st
an
ce
s

in
tr
od

uc
ed

in
[8
]

G
K
A
a-
d

35
20

–1
25

20
4–

77
88

R
an
do

m
ly

ge
ne
ra
te
d
in
st
an
ce
s
w
ith

di
ff
er
en
td

en
si
tie

s

in
tr
od

uc
ed

in
[1
7]

123

Faster exact solution of sparse MaxCut and QUBO problems 461

Table 2 Average times spent in
separation and (re-) optimization
of the LP for MaxCut and
QUBO test-sets

Name # Sepa-time [%] LP-time [%]

BE120.3 10 2.5 79.3

BE250 10 2.8 84.3

BQP100 10 3.0 32.0

BQP250 10 2.6 86.2

GKAa-d 35 6.7 49.1

IsingChain 30 0.0 0.0

K64-chimera 80 10.1 58.3

Kernel 14 1.3 4.8

PM1s100 10 13.1 78.3

QPLIB 22 18.1 65.5

Torus 18 16.7 15.5

W01100 10 12.0 59.3

5.1 Individual components

This section takes a look at individual algorithmic components introduced in Sects. 2
and 3.

First, we show the run time required for our improved separation of cycle inequali-
ties. Table 2 reports per test-set the average (arithmetic mean) percentual time required
for the separation procedure (column four), as well as for solving the LP-relaxations
(column five). Recall that the latter is done by CPLEX 12.10, one of the leading
commercial LP-solvers. For more than half of the test-sets the average time required
for the separation is less than 10 %. Also for the remaining test-sets it is always less
than 20 %. Notably, this time also includes adding the cuts (including the triangle
inequalities) to the cut pool, which requires additional computations. The time could
be further reduced by contracting 0-weight edges in the auxiliary graph, as described
in Sect. 2. Notably, both the separation time and LP-solution time are very small for
the IsingChain and Kernel instances. This behavior is due to the fact that many of
these instances are already solved during presolving, as detailed in the following,

Next, we demonstrate the strength of the reduction methods implemented for
this article. Only results for the MaxCut test-sets are reported. We show the impact
of the MaxCut reduction techniques from [32] described in Sect. 3 as well as the
QUBO reduction techniques from [18]—by using the standard problem transforma-
tions between QUBO and MaxCut. We refer to the combination of these two as base
preprocessing. Additionally, themethods described in Propositions 3 and 4 are referred
to as new techniques. Note that Proposition 5 cannot be applied, because no reduced-
costs are available.

Table 3 shows in the first column the name of the test-set, followed by its number of
instances. The next columns show the percentual average number of nodes and edges
of the instances after the preprocessing without (column three and four), and with
(columns five and six) the new methods. The last two columns report the percentual

123

462 D. Rehfeldt et al.

Table 3 Average remaining size of MaxCut instances after preprocessing

Test-set # Base preprocessing +new techniques Relative change

|V| [%] |E| [%] |V| [%] |E| [%] |V| [%] |E| [%]

IsingChain 30 6.1 0.8 1.1 <0.05 −82.0 <−93.8

K64-chimera 80 3.1 4.6 3.1 4.6 0.0 0.0

Kernel 14 24.1 30.1 16.4 20.6 −32.0 −31.6

Mannino 4 64.1 69.3 63.2 68.7 −1.4 −0.9

Torus 18 80.6 87.5 78.5 85.2 −2.6 −2.6

W01100 10 99.1 94.8 99.1 94.8 0.0 0.0

DIMACS 4 97.0 98.9 96.9 98.9 −0.1 0.0

PM1s100 10 99.7 99.9 99.7 99.9 0.0 0.0

Bold numbers signify a favorable impact of the new algorithms

relative change between the previous results. The run time is not reported, because it
is on all instances below 0.05 s.

The new reduction techniques have an impact on five of the eight test-sets. The
strongest reductions occur on Kernel and IsingChain. We remark that the symmetry-
based reductions from Proposition 4 have a very small impact, and only allow for
contracting a few dozen additional edges on Kernel. We also note that while the
IsingChain instances are already drastically reduced by the base preprocessing, the
new methods still have an important impact, as they reduce the number of edges
of several instances from more than a thousand to less than 300. The IsingChain
instances were already completely solved by reduction techniques in Tavares [39], by
using maximum-flow based methods. However the run time was up to three orders
of magnitudes larger than in our case. The machine used by Tavares had a Pentium
4 CPU at 3.60 GHz, thus being significantly slower than the machines used for this
article. Still, also when taking the different computing environments into account, the
run time difference is huge.

5.2 Exact solution

This section compares our new solver with state-of-the-art exact solvers with respect
to the mean time, the maximum time, and the number of solved instances. For the
mean time we use the shifted geometric mean [1] with a shift of 1 second. In this
section, we use only single-thread mode.

First, we provide a comparison with Gurobi 9.5. Table 4 provides the results for
a time-limit of one hour. The second column shows the number of instances in the
test-set. Columns three gives the number of instances solved by Gurobi, column four
the number of instances solved by our solver. Column five and six show the mean
time taken by Gurobi and our solver. The next column gives the relative speedup of
our solver. The last three columns provide the same information for the maximum run
time, Speedups that signify an improved performance of the new solver are marked in
bold.

123

Faster exact solution of sparse MaxCut and QUBO problems 463

It can be seen that our solver consistently outperforms Gurobi 9.5—both with
respect to mean and maximum time. Also, it solves on each test-set at least as many
instances as Gurobi. The only test-set where Gurobi performs better is BQP100,
which, however, can be solved by both solvers in far less than a second.

On the other test-sets, the mean time of the new solver is better, often by large
factors (up to 60.07). On the instance sets that can both be fully solved, the maximum
time taken by the new solver is inmost cases alsomuch smaller. On five of the test-sets,
the new solver can solve more instances to optimality than Gurobi 9.5.

Next,we compareour solverwith thevery recentQUBOandMaxCut solverMcSparse,
specialized on sparse instances. In Table 5 we provide an instance-wise comparison
of our solver and McSparse. We provide the number of branch-and-bound nodes
(columns three and four) and the run times (columns five and six) of McSparse and
our solver per problem instance. We use the 14 instances that were selected in the arti-
cle by Charfreitag et al. [12] as being representative of their test-bed. The first seven
instances are MaxCut and the last seven QUBO problems. Charfreitag et al. [12] only
use one thread per run. Their results were obtained on a system with AMD EPYC
7543P CPUs at 2.8 GHz, and with 256 GB RAM. CPU benchmarks 2 consider this
system to be faster than the one used in this article, already in single-thread mode.
Furthermore, McSparse is embedded into Gurobi (version 9.1), which is widely
regarded as the fastest commercial MIP-solver, whereas our solver is based on the
non-commercial SCIP, although we also use a commercial LP-solver.

As to the number of branch-and-bound nodes, the pictures is somewhat mixed—
with McSparse requiring fewer nodes on three, and more nodes on four instances.
Notably, McSparse also includes a specialized branching strategy, while we use a
simple generic one. This feature might explain the smaller number of nodes on some
instances. As to the run time, five instances can be solved in less than a second by both
solvers (with the new solver being slightly faster). On the remaining nine instances,
the new solver is always faster—for all but one instances by a factor of more than 3.
On one instance (mannino_k487b), it is even by a factor of more than 40 faster.

Finally, we also provide a few remarks concerning dense instances, although these
are not the focus of this article. It is often reported, see e.g. [37], that LP-based
approaches using odd-cycle cuts do not work well on dense instances. However,
dense instances from the literature are typically randomly generated. We have indeed
observed that our solver is not at all competitive with semidefinite-based solvers for
randomly generated dense instances with more than around 80 vertices (although
these solver typically cannot handle instances with more than 250 vertices). However,
the picture can be different on real-world instances. We exemplarily demonstrate this
behavior on two test-sets from the literature. First, we selected the test-set PW05 [40],
which consists of nine randomly generated instances with 100 vertices and 50 % den-
sity each. Second, we selected the IsingChain test-set from Table 1, which consists
of instances with up to 50 % density. We compare our solver with the state-of-the-art
semidefinite solver BiqBin. On the (randomly generated) PW05 instances, BiqBin
performs vastly better, solving all instances with a mean time of 64s. In contrast,
our solver cannot solve any of them within one hour, and the primal-dual gaps are

2 https://www.cpubenchmark.net/singleThread.html#server-thread.

123

https://www.cpubenchmark.net/singleThread.html#server-thread

464 D. Rehfeldt et al.

Ta
bl
e
4

C
om

pa
ri
so
n
of

G
u
ro

bi
9.
5
(G

rb
)
an
d
ne
w
so
lv
er

(n
ew

)

Te
st
-s
et

#
so
lv
ed

M
ea
n
tim

e
(s
h.

ge
o.
m
ea
n)

M
ax
im

um
tim

e

#
G
rb

N
ew

G
rb
[s
]

N
ew

[s
]

Sp
ee
du
p

G
rb
[s
]

N
ew

[s
]

Sp
ee
du
p

PM
1s

10
0

10
10

10
19

2.
3

20
.9

9.
20

30
3.
3

48
.4

6.
27

W
01

10
0

10
10

10
44

.1
3.
1

14
.2
3

97
.1

21
.5

4.
52

K
er
ne
l

14
14

14
0.
7

0.
1

7.
00

14
.3

1.
1

13
.0
0

Is
in
gC

ha
in

30
30

30
1.
3

<
0.
05

>
26

.0
0

41
.0

<
0.
05

>
82

0.
00

To
ru
s

18
18

18
3.
8

0.
4

9.
50

62
8.
0

7.
6

82
.6
3

K
64
-c
hi
m
er
a

80
80

80
90
.1

1.
5

60
.0
7

19
5.
4

6.
0

32
.5
7

Q
PL

IB
22

8
13

68
7.
4

16
5.
5

4.
15

36
00

36
00

1.
00

B
Q
P1

00
10

10
10

0.
1

0.
1

1.
00

0.
2

0.
3

0.
67

B
Q
P2

50
10

0
7

36
00

61
0.
6

5.
90

36
00

36
00

1.
00

B
E
12

0.
3

10
9

10
26

5.
6

50
.1

5.
30

36
00

52
5.
1

>
6.
86

B
E
25

0
10

0
8

36
00

57
1.
8

6.
30

36
00

36
00

1.
00

G
K
A
a-
d

35
29

31
6.
5

6.
1

1.
07

36
00

36
00

1.
00

B
ol
d
nu

m
be
rs
si
gn

if
y
a
fa
vo
ra
bl
e
im

pa
ct
of

th
e
ne
w
al
go

ri
th
m
s

123

Faster exact solution of sparse MaxCut and QUBO problems 465

Table 5 Comparison ofMcSparse (MS) and our solver (new) on sevenMaxCut and sevenQUBO instances
(considered to be representative [12])

Name |V| |E| # B&B nodes Run time

MS New MS[s] New[s]

pm1s_100.3 100 495 341 741 48.2 48.0

pw01_100.0 100 495 171 179 20.0 8.5

mannino_k487b 487 5391 1 15 167.3 4.3

bio-diseasome 516 1188 1 1 9.5 0.6

ca-netscience 379 914 1 1 0.1 0.0

g000981 110 188 1 1 0.0 0.0

imgseg_138032 12,736 23,664 1 1 30.5 3.9

Name n nnz MS New MS [s] New [s]
bqp250-3 250 3092 25 17 414.1 84.1

gka2c 50 813 1 1 0.5 0.3

gka4d 100 2010 129 9 219.6 43.7

gka5c 80 721 1 1 0.1 0.1

gka7a 30 241 1 1 0.0 0.0

be120.3.5 120 2248 111 15 257.7 46.6

be250.3 250 3277 107 47 841.0 150.7

up to 4.4%. It should be mentioned that our solver does not perform any better on
most randomly-generated instances with 100 or more vertices from the literature. The
(real-world) IsingChain, instances, on the other hand, are all solved within 0.1 s by
our solver. In contrast, the mean time of BiqBin is 144s on these instances and four
of the instances cannot be solved within one hour. These four include instances with
density of around 50 %.

5.3 Parallelization

Although parallelization is not the main topic of this article, we still provide some
corresponding results in the following. To give insights into the strengths and weak-
nesses of our racing-based parallelization, we provide instance-wise results. We use
the test-setsMannino andDIMACS, which both contain instances that cannot be solved
within one hour by Gurobi and our new solver in single-thread mode. The sizes of
the instances are given in Table 6.

Table 7 provides results of Gurobi and the new solver on theDIMACS andMannino
instances. Both solvers are run once with one thread and once with eight threads. As
before, a time-limit of one hour is used. The table provides the percentual primal-
dual gap, as well as the run time. The results reveal for both solvers a performance
degradation on easy instances with increased number of threads. Most notably on
mannino_k487b, where Gurobi takes almost 10 times longer with eight threads. On
the other hand, the new solver shows a strong speedup on twohard instances that cannot

123

466 D. Rehfeldt et al.

Table 6 Details on DIMACS (left) and Mannino (right) instances

Name | V | |E| Name |V| |E|
torusg3-8 512 1536 mannino_k487a.mc 487 1435

toruspm3-8-50 512 1536 mannino_k487b.mc 487 5391

torusg3-15 3375 10125 mannino_k487c.mc 487 8511

toruspm3-15-50 3375 10125 mannino_k48.mc 48 1128

be solved in one hour singke-threaded, namely toruspm3-8-50 and mannino_k487c.
On the latter, one even observes a super-linear speedup. This speedup can be at least
partly attributed to the exclusive use of primal heuristics on one thread during racing,
which finds an optimal solution quickly in both cases. On the other hand, in single-
thread mode the best primal solution is sub-optimal even at the time-limit.

Finally, Table 8 provides results for several previously unsolvedMaxCut andQUBO
benchmark instances from theQPLIB and the 7th DIMACS Challenge. We also report
the previous best known solution values (previous primal) from the literature, which
were taken from the QPLIB and the MQLib [13]. For the QPLIB instances we report
the results from the one hour single-thread run in Sect. 5.2. However, for the DIMACS
instances, torusg3-15 and toruspm3-15-50, we performed additional runs. Note that
the DIMACS instances were originally intended to be solved with negated weights.
However, it seems thatmost publications, e.g., [13], do not perform this transformation.
Thus, we also use the unmodified instances, to allow for better comparison. However,
we additionally report the solution values of the transformed instances, these trans-
formed instances are marked by a �. We used a machine with 88 cores of Intel Xeon
E7-8880 v4 CPUs@ 2.20GHz.We ran the two instances (non-exclusively) for at most
3 days while using 80 threads. Both torusg3-15 and torusg3-15� could be solved to
optimality in this way, but toruspm3-15-50 and toruspm3-15-50� still remained with
a primal-dual gap of 1.8 percent each.

Finally, we note that using more than 8 threads (on the above machine with 88
cores) does not provide additional speed-ups on most instances, neither for our solver
nor Gurobi. This behaviour can be put down to the fact that we parallelize mostly the
branch-and-bound search, and the number of open branch-and-bound nodes is usually
quite small on most instances.

6 Conclusion and outlook

This article has demonstrated how to design a state-of-the-art solver for sparse QUBO
andMaxCut instances, by enhancing and combining key algorithmic ingredients such
as presolving and cutting-plane generation. The newly implemented solver outper-
forms both the leading commercial and non-commercial competitors on a wide range
of test-sets from the literature. Moreover, the best known solutions to several instances
could be improved.

123

Faster exact solution of sparse MaxCut and QUBO problems 467

Ta
bl
e
7

R
es
ul
ts
of

G
u
ro

bi
9.
5
(G

rb
)
an
d
th
e
ne
w
so
lv
er

(n
ew

),
w
ith

on
e
(-
T
1)

an
d
ei
gh

t(
-T
8)

th
re
ad
s
ea
ch

N
am

e
Pr
im

al
-d
ua
lg

ap
[%

]
R
un

tim
e
[s
]

G
rb
-T
1

G
rb
-T
8

N
ew

-T
1

N
ew

-T
8

G
rb
-T
1

G
rb
-T
8

N
ew

-T
1

N
ew

-T
8

to
ru
sg
3-
8

0.
0

0.
0

0.
0

0.
0

14
94
.2

11
78
.5

8.
5

9.
3

to
ru
sp
m
3-
8-
50

1.
8

1.
8

0.
5

0.
0

>
36

00
>
36

00
>
36

00
14

15
.8

to
ru
sg
3-
15

6.
8

3.
4

1.
3

0.
4

>
36

00
>
36

00
>
36

00
>
36

00

to
ru
sp
m
3-
15

-5
0

9.
5

12
.2

2.
3

2.
3

>
36

00
>
36

00
>
36

00
>
36

00

m
an
ni
no

_k
48

7a
0.
0

0.
0

0.
0

0.
0

3.
5

10
.7

1.
1

1.
3

m
an
ni
no

_k
48

7b
0.
0

0.
0

0.
0

0.
0

9.
2

80
.5

4.
3

2.
8

m
an
ni
no

_k
48

7c
0.
1

0.
0

0.
1

0.
0

>
36

00
31

76
.7

>
36

00
39

8.
2

m
an
ni
no

_k
48

0.
0

0.
0

0.
0

0.
0

0.
1

0.
4

2.
7

3.
8

123

468 D. Rehfeldt et al.

Table 8 Improved solutions for MaxCut (first four) and QUBO (last two) benchmark instances

Name gap [%] New primal Previous primal

torusg3-15 opt 286626481 282534518

torusg3-15� opt 292031950 –

toruspm3-15-50 1.8 3010 2968

toruspm3-15-50� 1.8 3008 –

QPLIB_3693 1.0 −1154 −1148

QPLIB_3850 1.1 −1198 −1192

Bold numbers signify that an optimal solution was found

For QUBO and MaxCut instances with not more than 10 % density, the compu-
tational results obtained for this article strongly suggest the use of our new solver.
However, for instances with 20 % or more density, using semidefinite programming
based solvers such asBiqBin [20],BiqCrunch [31] andMADAM [23] seems usually
far more promising. However, one should keep in mind that most dense instances from
the literature are randomly generated. For instances from real-world applications the
picture can be somewhat different, especially when presolving is effective (which is
not included in any of the mentioned solvers). A prominent example are the dense
Ising chain instances discussed in this article, which can all be solved in less than 0.1
seconds by our solver, but some of which cannot be solved even in one hour by a
state-of-the-art semidefinite programming based solver.

There are various promising routes for further improvement. Examples would be a
new branching strategy, or the implementation of additional separation methods [9].
In this way, a considerable further speedup of the new solver might be achieved.

Funding Open Access funding enabled and organized by Projekt DEAL. The work for this article has been
conducted in the Research Campus MODAL 646 funded by the German Federal Ministry of Education and
Research (BMBF) (fund numbers 05M14ZAM, 647 05M20ZBM).

Data availibility The data used for the computational experiments in this article is available on the websites:
https://biqmac.aau.at/biqmaclib.html. http://bqp.cs.uni-bonn.de/library/html/index.html. https://qplib.zib.
de.

Code availability The full code was made available to the reviewers

Conflict of interest The authors declare no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Achterberg, T.: Constraint integer programming. In: Ph.D. Thesis, TechnischeUniversität Berlin (2007)

123

https://biqmac.aau.at/biqmaclib.html
http://bqp.cs.uni-bonn.de/library/html/index.html
https://qplib.zib.de
https://qplib.zib.de
http://creativecommons.org/licenses/by/4.0/

Faster exact solution of sparse MaxCut and QUBO problems 469

2. Achterberg, T., Bixby, R.E., Gu, Z., Rothberg, E., Weninger, D.: Presolve reductions in mixed integer
programming. INFORMS J. Comput. 32(2), 473–506 (2020). https://doi.org/10.1287/ijoc.2018.0857

3. Barahona, F., Grötschel, M., Jünger, M., Reinelt, G.: An application of combinatorial optimization
to statistical physics and circuit layout design. Oper. Res. 36(3), 493–513 (1988). https://doi.org/10.
1287/opre.36.3.493

4. Barahona, F., Jünger, M., Reinelt, G.: Experiments in quadratic 0–1 programming. Math. Program.
44(1–3), 127–137 (1989). https://doi.org/10.1007/BF01587084

5. Barahona, F., Mahjoub, A.R.: On the cut polytope. Math. Program. 36(2), 157–173 (1986). https://doi.
org/10.1007/BF02592023

6. Beasley, J.: Heuristic algorithms for the unconstrained binary quadratic programming problem. Tech.
Rep. (1998)

7. Bestuzheva, K., Besançon, M., Chen, W.K., Chmiela, A., Donkiewicz, T., van Doornmalen, J., Eifler,
L., Gaul, O., Gamrath, G., Gleixner, A., Gottwald, L., Graczyk, C., Halbig, K., Hoen, A., Hojny, C.,
van derHulst, R.,Koch,T., Lübbecke,M.,Maher, S.J.,Matter, F.,Mühmer, E.,Müller,B., Pfetsch,M.E.,
Rehfeldt, D., Schlein, S., Schlösser, F., Serrano, F., Shinano, Y., Sofranac, B., Turner, M., Vigerske, S.,
Wegscheider, F., Wellner, P., Weninger, D., Witzig, J.: The SCIP Optimization Suite 8.0. ZIB-Report
21-41, Zuse Institute Berlin (2021). http://nbn-resolving.de/urn:nbn:de:0297-zib-85309

8. Billionnet, A., Elloumi, S.: Using a mixed integer quadratic programming solver for the unconstrained
quadratic 0–1 problem. Math. Program. 109(1), 55–68 (2007). https://doi.org/10.1007/s10107-005-
0637-9

9. Bonato, T., Jünger, M., Reinelt, G., Rinaldi, G.: Lifting and separation procedures for the cut polytope.
Math. Program. 146(1–2), 351–378 (2014). https://doi.org/10.1007/s10107-013-0688-2

10. Boros, E., Hammer, P.L., Tavares, G.: Preprocessing of unconstrained quadratic binary optimization.
Tech. Rep. (2006)

11. Burer, S., Monteiro, R.D.C., Zhang, Y.: Rank-two relaxation heuristics for MAX-CUT and
other binary quadratic programs. SIAM J. Optim. 12(2), 503–521 (2002). https://doi.org/10.1137/
S1052623400382467

12. Charfreitag, J., Jünger, M., Mallach, S., Mutzel, P.: McSparse: Exact solutions of sparse maximum cut
and sparse unconstrained binary quadratic optimization problems. In: Phillips, C.A., Speckmann, B.
eds.) Proceedings of the Symposium on Algorithm Engineering and Experiments (ALENEX 2022),
online first (2022)

13. Dunning, I., Gupta, S., Silberholz, J.: What works best when? A systematic evaluation of heuristics
for max-cut and QUBO. INFORMS J. Comput. 30(3), 608–624 (2018). https://doi.org/10.1287/ijoc.
2017.0798

14. Ferizovic, D., Hespe, D., Lamm, S., Mnich, M., Schulz, C., Strash, D.: Engineering Kernelization for
Maximum Cut. In: Blelloch, G.E., Finocchi, I. (eds.) Proceedings of the Symposium on Algorithm
Engineering and Experiments, ALENEX2020, Salt LakeCity, UT, USA, January 5-6, 2020, pp. 27–41.
SIAM (2020). doi:https://doi.org/10.1137/1.9781611976007.3

15. Furini, F., Traversi, E., Belotti, P., Frangioni, A., Gleixner, A.M., Gould, N., Liberti, L., Lodi, A.,
Misener, R.,Mittelmann,H.D., Sahinidis,N.V.,Vigerske, S.,Wiegele,A.:QPLIB: a library of quadratic
programming instances. Math. Program. Comput. 11(2), 237–265 (2019). https://doi.org/10.1007/
s12532-018-0147-4

16. Gamrath, G.: Enhanced predictions and structure exploitation in branch-and-bound. Technische Uni-
versitaet Berlin (Germany) (2020)

17. Glover, F., Kochenberger, G.A., Alidaee, B.: Adaptive memory tabu search for binary quadratic pro-
grams. Manag. Sci. 44(3), 336–345 (1998)

18. Glover, F.W., Lewis, M.W., Kochenberger, G.A.: Logical and inequality implications for reducing the
size and difficulty of quadratic unconstrained binary optimization problems. Eur. J. Oper. Res. 265(3),
829–842 (2018). https://doi.org/10.1016/j.ejor.2017.08.025

19. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2021). https://www.gurobi.com
20. Gusmeroli, N., Hrga, T., Lužar, B., Povh, J., Siebenhofer, M., Wiegele, A.: Biqbin: A parallel branch-

and-bound solver for binary quadratic problems with linear constraints. ACM Trans. Math. Softw.
(2022). https://doi.org/10.1145/3514039

21. Hammer, P.L., Hansen, P., Simeone, B.: Roof duality, complementation and persistency in quadratic
0–1 optimization. Math. Program. 28(2), 121–155 (1984). https://doi.org/10.1007/BF02612354

22. Hammer, P.L., Rudeanu, S.: Boolean Methods in Operations Research and Related Areas. Springer
(1968)

123

https://doi.org/10.1287/ijoc.2018.0857
https://doi.org/10.1287/opre.36.3.493
https://doi.org/10.1287/opre.36.3.493
https://doi.org/10.1007/BF01587084
https://doi.org/10.1007/BF02592023
https://doi.org/10.1007/BF02592023
http://nbn-resolving.de/urn:nbn:de:0297-zib-85309
https://doi.org/10.1007/s10107-005-0637-9
https://doi.org/10.1007/s10107-005-0637-9
https://doi.org/10.1007/s10107-013-0688-2
https://doi.org/10.1137/S1052623400382467
https://doi.org/10.1137/S1052623400382467
https://doi.org/10.1287/ijoc.2017.0798
https://doi.org/10.1287/ijoc.2017.0798
https://doi.org/10.1137/1.9781611976007.3
https://doi.org/10.1007/s12532-018-0147-4
https://doi.org/10.1007/s12532-018-0147-4
https://doi.org/10.1016/j.ejor.2017.08.025
https://www.gurobi.com
https://doi.org/10.1145/3514039
https://doi.org/10.1007/BF02612354

470 D. Rehfeldt et al.

23. Hrga, T., Povh, J.:MADAM: a parallel exact solver formax-cut based on semidefinite programming and
ADMM. Comput. Optim. Appl. 80(2), 347–375 (2021). https://doi.org/10.1007/s10589-021-00310-
6

24. IBM: CPLEX (2020). https://www.ibm.com/analytics/cplex-optimizer
25. Jünger,M., Lobe, E.,Mutzel, P., Reinelt, G., Rendl, F., Rinaldi, G., Stollenwerk, T.: Quantum annealing

versus digital computing: an experimental comparison. ACM J. Exp. Algorithmics (2021). https://doi.
org/10.1145/3459606

26. Jünger, M., Mallach, S.: Odd-cycle separation for maximum cut and binary quadratic optimization.
In: Bender, M.A., Svensson, O., Herman, G. (eds.) 27th Annual European Symposium on Algorithms,
ESA 2019, September 9-11, 2019, Munich/Garching, Germany, LIPIcs, vol. 144, pp. 63:1–63:13.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019). doi:https://doi.org/10.4230/LIPIcs.ESA.
2019.63

27. Jünger, M., Mallach, S.: Exact facetial odd-cycle separation for maximum cut and binary quadratic
optimization. INFORMS J. Comput. 33(4), 1419–1430 (2021). https://doi.org/10.1287/ijoc.2020.1008

28. Karp, R.: Reducibility among combinatorial problems. In: R. Miller, J. Thatcher (eds.) Complexity of
Computer Computations, pp. 85–103. Plenum Press (1972). doi:https://doi.org/10.1007/978-1-4684-
2001-2_9

29. Kepner, J., Gilbert, J.: Graph algorithms in the language of linear algebra. SIAM (2011). https://doi.
org/10.1137/1.9780898719918

30. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J.
49(2), 291–307 (1970). https://doi.org/10.1002/j.1538-7305.1970.tb01770.x

31. Krislock, N., Malick, J., Roupin, F.: Biqcrunch: a semidefinite branch-and-bound method for solving
binary quadratic problems. ACM Trans. Math. Softw. (2017). https://doi.org/10.1145/3005345

32. Lange, J., Andres, B., Swoboda, P.: Combinatorial Persistency Criteria for Multicut and Max-Cut. In:
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA,
June 16-20, 2019, pp. 6093–6102. Computer Vision Foundation / IEEE (2019). doi:https://doi.org/10.
1109/CVPR.2019.00625

33. Liers, F.: Contributions to determining exact ground-states of ising spin-glasses and to their physics.
In: Ph.D. Thesis, University of Cologne (2004)

34. Lin, J., Cai, S., Luo, C., Su, K.: A reduction based method for coloring very large graphs. In: Sierra, C.
(ed.) Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI
2017, Melbourne, Australia, August 19-25, 2017, pp. 517–523. ijcai.org (2017). https://doi.org/10.
24963/ijcai.2017/73

35. Ralphs, T., Shinano, Y., Berthold, T., Koch, T.: Parallel Solvers for Mixed Integer Linear Optimization,
pp. 283–336. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-
63516-3_8

36. Rehfeldt, D., Koch, T.: Implications, Conflicts, and Reductions for Steiner Trees. In: Singh, M.,
Williamson, D.P. (eds.) Integer Programming and Combinatorial Optimization - 22nd International
Conference, IPCO 2021, Atlanta, GA, USA, May 19-21, 2021, Proceedings, Lecture Notes in Com-
puter Science, vol. 12707, pp. 473–487. Springer (2021). https://doi.org/10.1007/978-3-030-73879-
2_33

37. Rendl, F., Rinaldi, G., Wiegele, A.: Solving max-cut to optimality by intersecting semidefinite and
polyhedral relaxations. Math. Program. 121(2), 307–335 (2010). https://doi.org/10.1007/s10107-008-
0235-8

38. Shinano, Y., Achterberg, T., Berthold, T., Heinz, S., Koch, T.,Winkler, M.: Solving openMIP instances
with parascip on supercomputers using up to 80, 000 cores. In: 2016 IEEE International Parallel and
Distributed Processing Symposium, IPDPS 2016, Chicago, IL, USA, May 23-27, 2016, pp. 770–779.
IEEE Computer Society (2016). doi:10.1109/IPDPS.2016.56

39. Tavares, G.: New algorithms for quadratic unconstrained binary optimization (qubo) with applications
in engineering and social sciences. In: Ph.D. Thesis, Rutgers, the State University of New Jersey-New
Brunswick (2008)

40. Wiegele, A.: BiqMac Library: A collection of Max-Cut and quadratic 0-1 programming instances of
medium size. Tech. Rep. (2007)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1007/s10589-021-00310-6
https://doi.org/10.1007/s10589-021-00310-6
https://doi.org/10.1145/3459606
https://doi.org/10.1145/3459606
https://doi.org/10.4230/LIPIcs.ESA.2019.63
https://doi.org/10.4230/LIPIcs.ESA.2019.63
https://doi.org/10.1287/ijoc.2020.1008
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1137/1.9780898719918
https://doi.org/10.1137/1.9780898719918
https://doi.org/10.1002/j.1538-7305.1970.tb01770.x
https://doi.org/10.1145/3005345
https://doi.org/10.1109/CVPR.2019.00625
https://doi.org/10.1109/CVPR.2019.00625
https://doi.org/10.24963/ijcai.2017/73
https://doi.org/10.24963/ijcai.2017/73
https://doi.org/10.1007/978-3-319-63516-3_8
https://doi.org/10.1007/978-3-319-63516-3_8
https://doi.org/10.1007/978-3-030-73879-2_33
https://doi.org/10.1007/978-3-030-73879-2_33
https://doi.org/10.1007/s10107-008-0235-8
https://doi.org/10.1007/s10107-008-0235-8

	Faster exact solution of sparse MaxCut and QUBO problems
	Abstract
	1 Introduction
	1.1 Contribution and structure
	1.2 Preliminaries and notation

	2 Solving the relaxation: efficient separation of odd-cycle cuts
	2.1 Cutting plane separation
	2.2 Fast computation of maximally-violated constraints
	2.3 Post-processing

	3 Simplifying the problem: reduction techniques
	3.1 Cut-based reduction techniques
	3.2 Further reduction techniques

	4 Solving to optimality: branch-and-cut
	4.1 Key components
	4.2 Parallelization

	5 Computational results
	5.1 Individual components
	5.2 Exact solution
	5.3 Parallelization

	6 Conclusion and outlook
	References

