
Mathematical Programming Computation (2023) 15:269–326
https://doi.org/10.1007/s12532-022-00232-2

FULL LENGTH PAPER

A branch and bound algorithm for robust binary
optimization with budget uncertainty

Christina Büsing1 · Timo Gersing1 · Arie M. C. A. Koster2

Received: 30 July 2021 / Accepted: 2 December 2022 / Published online: 23 January 2023
© The Author(s) 2023

Abstract
Since its introduction in the early 2000s, robust optimization with budget uncertainty
has received a lot of attention. This is due to the intuitive construction of the uncer-
tainty sets and the existence of a compact robust reformulation for (mixed-integer)
linear programs. However, despite its compactness, the reformulation performs poorly
when solving robust integer problems due to its weak linear relaxation. To overcome
the problems arising from the weak formulation, we propose a bilinear formulation
for robust binary programming, which is as strong as theoretically possible. From
this bilinear formulation, we derive strong linear formulations as well as structural
properties for robust binary optimization problems, which we use within a tailored
branch and bound algorithm. We test our algorithm’s performance together with other
approaches from the literature on a diverse set of “robustified” real-world instances
from the MIPLIB 2017. Our computational study, which is the first to compare many
sophisticated approaches on a broad set of instances, shows that our algorithm outper-
forms existing approaches by far. Furthermore,we show that the fundamental structural
properties proven in this paper can be used to substantially improve the approaches
from the literature. This highlights the relevance of our findings, not only for the
tested algorithms, but also for future research on robust optimization. To encourage
the use of our algorithms for solving robust optimization problems and our instances
for benchmarking, we make all materials freely available online.

Keywords Robust optimization · Combinatorial optimization · Mathematical
programming · Branch and bound · Computation

Mathematics Subject Classification 90C11 · 90C17 · 90C27 · 90C57

B Timo Gersing
gersing@combi.rwth-aachen.de

1 Combinatorial Optimization, RWTH Aachen University, Ahornstraße 55, 52074 Aachen,
Germany

2 Discrete Optimization, RWTH Aachen University, Pontdriesch 10-12, 52062 Aachen, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12532-022-00232-2&domain=pdf
https://orcid.org/0000-0002-3394-2788
http://orcid.org/0000-0001-9291-0762
http://orcid.org/0000-0002-8035-7012


270 C. Büsing et al.

1 Introduction

Dealing with uncertainties is inevitable when considering real-world optimization
problems. A classical approach to include uncertainties into the optimization process
is robust optimization, where different realizations of the uncertain parameters are
modeled via an uncertainty set. A robust optimal solution remains feasible for all con-
sidered scenarios in the uncertainty set and minimizes the worst-case cost occurring
under these scenarios. The concept was first introduced by Soyster [40] in the early
1970s, was later considered for combinatorial optimization problems and discrete
uncertainty sets by Kouvelis and Yu [30] in the 1990s, and was analyzed in detail by
Ben-Tal and Nemirovski [10–12] and Bertsimas and Sim [15, 16] at the beginning of
this century. An overview on robust optimization is given in [9, 13, 21]. The approach
by Bertsimas and Sim has proven to be the most popular, with the introductory paper
[16] being the most cited document on robust optimization in the literature databases
Scopus and Web of Science (search for robust optimization in title, keywords, and
abstract). The approach’s popularity is primarily based on the intuitive definition of
the uncertainty set and the existence of a compact reformulation for the robust coun-
terpart. However, instances from practice can still pose a considerable challenge for
modern MILP solvers, even if the non-robust problem is relatively easy to solve, as
observed e.g. byKuhnke et al. [31]. In this paper, we address this challenge by studying
the structure of robust binary problems and proposing a new branch and bound algo-
rithm. Thereby, we restrict ourselves to problems with uncertain objective functions.
However, most of our results carry over to general robust optimization.

We start by formally defining a standard, so called nominal, binary program

NOM
min

n∑

i=1

ci xi

s.t. Ax ≥ b, x ∈ {0, 1}n

with an objective vector c ∈ R
n , a constraint matrix A ∈ R

m×n , and a right-hand side
b ∈ R

m . Instead of assuming the objective coefficients ci to be certain, we consider
uncertain coefficients c′

i that lie in an interval c′
i ∈ [

ci , ci + ĉi
]
and can deviate from

their nominal value ci by up to the deviation ĉi . In the worst-case, all coefficients
c′

i are equal to their maximum value ci + ĉi , as this maximizes the optimal solution
value. However, for practical problems it is in general very unlikely that all coefficients
deviate to their maximum value. Bertsimas and Sim [16] propose a robust counterpart
to NOM, with an adjustable level of conservatism, by defining a budget Γ ∈ [0, n]
on the set of considered uncertain scenarios. For this robust counterpart, we do not
consider all scenarios, but only those in which at most �Γ � coefficients c′

i deviate to
their maximum ci + ĉi and one coefficient deviates by a fraction of (Γ − �Γ �). The
robust counterpart can be written as

123



Branch and bound for robust binary optimization… 271

min
n∑

i=1

ci xi + max
S∪{t}⊆[n]:

|S|≤�Γ �,t /∈S

(
(Γ − �Γ �) ĉt xt +

∑

i∈S

ĉi xi

)

s.t. Ax ≥ b, x ∈ {0, 1}n

with [n] := {1, . . . , n}. The above problem is non-linear and thus impractical, but can
be reformulated by dualizing the inner maximization problem, as shown by Bertsimas
and Sim [16]. This results in the compact robust problem

ROB
min Γ z +

n∑

i=1

(ci xi + pi )

s.t. (x, p, z) ∈ PROB, x ∈ {0, 1}n

with

PROB =

⎧
⎪⎨

⎪⎩
(x, p, z)

∣∣∣∣∣∣∣

Ax ≥ b

pi + z ≥ ĉi xi ∀i ∈ [n]

x ∈ [0, 1]n , p ∈ R
n≥0, z ∈ R≥0

⎫
⎪⎬

⎪⎭
.

Unfortunately, solving ROB as an MILP may require much more time than solving
the nominal problem NOM. For example, we observed in our computational study
that Gurobi [26] already struggles to solve robust knapsack instances with only 100
items within a time limit of an hour (see Sect. 8.5). This is because the integrality gap
of the formulation PROB may be arbitrarily large, even if the integrality gap of the
corresponding nominal problem is zero (see Sect. 2). This is problematic, since a large
integrality gap implies that optimal solutions to the linear relaxation are most likely far
from being integer feasible, i.e., many variables that should be integer take fractional
values. However, primal heuristics in MILP solvers, like the feasibility pump [19],
perform better for solutions that are nearly integer feasible. Furthermore, even if we
find an optimal solution, we probably have to spend much more time proving that it
is indeed optimal.

There exist several approaches and studies in the literature on how to solve ROB in
practice. Bertsimas et al. [14] as well as Fischetti and Monaci [20] evaluate whether it
is more efficient to solve ROB over the compact reformulationPROB or using a sepa-
ration approach over an alternative formulation with exponentially many inequalities,
all of which correspond to a scenario from the uncertainty set. Although the alternative
formulation is exponentially large, it is theoretically as strong, or weak respectively, as
the compact reformulation. Atamtürk [5] addresses the issue of the weak formulation
PROB and proposes four different strong, although considerably larger, formulations
for solving ROB. Atamtürk even proves that the strongest of the four formulations
describes the convex hull of the set of robust solutions if the linear relaxation

PNOM = {
x ∈ [0, 1]n |Ax ≥ b}

123



272 C. Büsing et al.

is the convex hull of the set of nominal solutions. Another approach for solving ROB
is to resort to its nominal counterpart. Bertsimas and Sim [15] show that there always
exists an optimal solution (x, p, z) to ROB such that z ∈ {

ĉ0, ĉ1, . . . , ĉn
}
, with ĉ0 = 0.

Note that the ideal choice for pi is always
(
ĉi − z

)+
xi , with (a)+ := max {a, 0} for

a ∈ R. When fixing z ∈ {
ĉ0, ĉ1, . . . , ĉn

}
, the term

(
ĉi − z

)+
xi becomes linear, and

thus ROB can be written as an instance of its nominal counterpart

NOS (z)
min Γ z +

n∑

i=1

(
ci + (

ĉi − z
)+)

xi

s.t. Ax ≥ b, x ∈ {0, 1}n .

Hence, solving ROB reduces to solving up to
∣∣{ĉ0, ĉ1, . . . , ĉn

}∣∣ ≤ n + 1 nominal
subproblems NOS (z), implying that the robust counterpart of polynomially solvable
nominal problems is again polynomially solvable. However, if the number of distinct
deviations

∣∣{ĉ0, . . . , ĉn
}∣∣ is large then solving all nominal subproblems may require

too much time. Hence, it is beneficial to discard as many non-optimal choices for z as
possible. For Γ ∈ Z, Álvarez-Miranda et al. [4] as well as Park and Lee [38] showed
independently that there exists a subset Z ⊆ {

ĉ0, . . . , ĉn
}
containing an optimal

choice for z with |Z | ≤ n + 2 − Γ , or |Z | ≤ n + 1 − Γ respectively. This result
was later improved by Lee and Kwon [33], who prove that Z can be chosen such
that |Z | ≤ ⌈ n−Γ

2

⌉ + 1 holds. Hansknecht et al. [27] propose a divide and conquer
approach for the robust shortest path problem that also aims to reduce the number
of nominal subproblems to be solved. Their algorithm, which can as well be used to
solve general problems ROB, successively divides the set of deviations

{
ĉ0, . . . , ĉn

}

into intervals and chooses in each iteration a value z from the most promising interval
for solving the nominal subproblem NOS (z). After each iteration, given the optimal
objective values of the previously considered subproblems, non-optimal choices of z
are identified and discarded by using a relation between the optimal objective values
of NOS (z) for different z.

Roughly summarized, there are two general directions for solving ROB in the liter-
ature: strong formulations on the one hand and fixing z on the other hand. In this paper,
we take a middle course between these directions by proposing a branch and bound
algorithm that combines restrictions on z with strong formulations. The general idea of
the branch and bound paradigm, which was first proposed by Land and Doig [32], for
solving general optimization problemsmin

{
v (x)

∣∣x ∈ X
}
is to partition (branch) the

set of feasible solutionsX = ⋃k
i=1 Xi and then solve the corresponding subproblems

min
{
v (x)

∣∣x ∈ Xi
}
recursively. In order to avoid a complete enumeration, an easy

to obtain dual bound v (X) ≤ min
{
v (x)

∣∣x ∈ X
}
is computed for every considered

X ⊆ X and comparedwith a primal bound, which is the value of the so far best known
solution. In our case, we partition the set of solutionsX = PROB∩ (Zn × R

n × Z ),
whereZ contains an optimal choice for z, into subsetsPROB ∩ (Zn × R

n × Z) with
Z ⊆ Z . For the corresponding robust subproblems ROB (Z), we introduce improved
formulationsP (Z) and prove structural properties, fromwhich we derive strong dual
bounds on the optimal objective value v (ROB (Z)). This enables us to prune subsets

123



Branch and bound for robust binary optimization… 273

Z ⊆ Z containing non-optimal values for z. Furthermore, once the not yet pruned
sets Z are sufficiently small, our findings enable us to solve ROB (Z) efficiently as an
MILP, sparing us from considering many nominal subproblems NOS (z) separately.

The fourfold contribution of this paper is summarized in the following.

– We propose a branch and bound algorithm to solve ROB and show in an extensive
computational study that it outperforms all existing approaches from the literature
by far. The code of all tested algorithms is available online [23].

– For developing the branch and bound algorithm, we first introduce different strong
formulations and prove several structural properties for ROB.

– We show that these structural properties can as well be used to improve exist-
ing approaches from the literature substantially, highlighting the relevance of our
findings also for future research.

– To conduct the computational study, we carefully construct a set of hard robust
instances on the basis of real-world nominal problems from MIPLIB 2017 [25].
We make these instances freely available online for future benchmarking in the
field of robust optimization [24].

Outline Before we introduce the basic framework of our branch and bound algorithm,
we provide the theoretical foundations in Sects. 2 and 3. In Sect. 2, we discuss the
weakness of PROB and propose a bilinear formulation PBIL for ROB, which is
as strong as theoretically possible. Although the bilinearity limits the practical use
of this formulation, PBIL will play a critical role in the design of our branch and
bound algorithm. Based on the bilinear formulation, we introduce the strong linear
formulations P (Z) for restricted z ∈ Z in Sect. 3. Using formulation P (Z), we
present a basic framework of our branch and bound algorithm in Sect. 4, which will
then be improved in the subsequent sections by gaining more insight in the structure
of ROB. In Sect. 5, we show how to improve the formulations by using cliques in the
so-called conflict graph of the nominal problem. In Sect. 6, we characterize optimal
choices of p and z, establishing the theoretical background for many components of
the branch and bound algorithm, which we describe in detail in Sect. 7. Finally, in
Sect. 8 we conduct our computational study.

2 A strong bilinear formulation

To better understand why formulation PROB is problematic, we start by considering
an example showing that the integrality gap of ROB can be arbitrarily large, even if
the integrality gap of the corresponding nominal problem is zero.

Example 1 Consider the trivial task of choosing the smallest out of n elements

min
n∑

i=1

ci xi

s.t.
n∑

i=1

xi = 1, x ∈ {0, 1}n ,

123



274 C. Büsing et al.

whose integrality gap is zero for all c ∈ R
n . Now, consider an instance of the uncertain

counterpart ROB with c = 0, ĉ = 1, and Γ = 1

min z +
n∑

i=1

pi

s.t.
n∑

i=1

xi = 1

pi + z ≥ xi ∀i ∈ [n]

x ∈ {0, 1}n , p ∈ R
n≥0, z ∈ R≥0.

Let v (ROB) be the optimal objective value of ROB and vR (ROB) be the optimal
value of the linear relaxation. For the above problem, we have v (ROB) = 1. However,
(x, p, z) = ( 1

n , . . . , 1
n , 0, . . . , 0, 1

n

)
is an optimal fractional solutionwith vR (ROB) =

1
n . Thus, the integrality gap is v(ROB)−vR(ROB)

|vR(ROB)| = n − 1.

The example shows that choosing fractional values of x in the linear relaxation
enables us to meet the constraints pi + z ≥ ĉi xi with a relatively low value of z, which
marginalizes the influence of the deviations on the objective value. To overcome these
problems, we will discuss alternative formulations for modeling ROB.

Formally, we call P ⊆ R
n1+n2 a formulation for the problem min

{
cT x

∣∣x ∈ X
}

with a set of solutions X ⊆ Z
n1 × R

n2 ifP ∩ (Zn1 × R
n2) = X holds [42]. Using

a formulation, we can solve the original problem by solving min
{
cT x

∣∣x ∈ P
}
and

branching on the integer variables. Additionally, P ′ ⊆ R
n+n′

is called an extended
formulation for a problem if its projection proj

(
P ′) ⊆ R

n into the original solu-
tion space is a formulation for that problem. For two formulations P1 and P2 with
P1 ⊆ P2, we say that P1 is at least as strong as P2. When considering extended
formulations, we compare their projections instead.

To the best of our knowledge, the only results directly targeting the weakness of
PROB are presented by Atamtürk [5], who proposes four problems RP1 - RP4 that
are equivalent to ROB, using different (extended) formulationsPRP1, . . . ,PRP4. The
theoretical strength of the four formulations exceeds the one of PROB by far. More
precisely, we have proj

(
PRP4

)
� proj

(
PRP1

) = PRP2 = proj
(
PRP3

)
� PROB

for non-trivial cases. The problem

RP4
min Γ z +

n∑

i=1

ci xi + pi

s.t. (x, p, z, ω, λ) ∈ PRP4, ω ∈ {0, 1}n×n+1

over the strongest formulation

123



Branch and bound for robust binary optimization… 275

PRP4 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x, p, z, ω, λ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n∑

k=0

λk = 1

Aωk ≥ λkb ∀k ∈ [n]0

ωk
i ≤ λk ∀i ∈ [n] , k ∈ [n]0
n∑

k=0

ωk
i = xi ∀i ∈ [n]

z ≥
n∑

k=0

ĉkλk

pi ≥
n∑

k=0

(
ĉi − ĉk

)+
ωk

i ∀i ∈ [n]

x ∈ [0, 1]n , p ∈ R
n≥0, z ∈ R≥0,

ω ∈ [0, 1]n×n+1 , λ ∈ [0, 1]n+1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

with [n]0 := {0, . . . , n}, is especially interesting. For every vertex (x, p, z, ω, λ) of
the polyhedron PRP4, it holds λk∗ = 1 for a k∗ ∈ [n]0 and λk = 0 for k 
= k∗.
Choosing λ in such a way reduces RP4 to solving the nominal subproblem NOS

(
ĉk∗

)
.

Thus, RP4 essentially combines the nominal subproblems NOS (z) that are solved in
the Bertsimas and Sim approach for all possible values z ∈ {

ĉ0, . . . , ĉn
}
into one

problem.
FormulationPRP4 is not only the strongest proposed by Atamtürk, but can be seen

as the strongest possible polyhedral formulation overall. This is because it preserves
the integrality gap of the nominal problem [5]. However, the disadvantage of all for-
mulationsPRP1, . . . ,PRP4 is that they may become too large for practical purposes,
as we will see in the computational study in Sect. 8.

To deal with this issue, we introduce a smaller, although bilinear, formulation for
ROB. For this, wemultiply z in the constraints pi +z ≥ ĉi xi of the original formulation
PROB with xi for all i ∈ [n]. The resulting constraint pi + zxi ≥ ĉi xi is valid for all
solutions of ROB, since the inequality becomes pi ≥ 0 for xi = 0 and is equivalent
to the original inequality for xi = 1. The new bilinear formulation

PBIL =

⎧
⎪⎨

⎪⎩
(x, p, z)

∣∣∣∣∣∣∣

Ax ≥ b

pi + zxi ≥ ĉi xi ∀i ∈ [n]

x ∈ [0, 1]n , p ∈ R
n≥0, z ∈ R≥0

⎫
⎪⎬

⎪⎭

is at least as strong asPRP4, as stated in the following theorem.

Theorem 1 It holds PBIL ⊆ proj
(
PRP4

)
.

Proof Let (x, p, z) ∈ PBIL and assume that 0 = ĉ0 ≤ ĉ1 ≤ · · · ≤ ĉn holds. First,
consider the case inwhichwe have z ≤ ĉn . Then there exists an index j ∈ [n − 1]0 and
a value ε ∈ [0, 1]with z = εĉ j +(1 − ε) ĉ j+1.Wedefineλk = 0 for k /∈ { j, j + 1} and

123



276 C. Büsing et al.

λ j = ε aswell asλ j+1 = 1−ε. Furthermore,we setωk
i = λk xi for all i ∈ [n] , k ∈ [n]0

and show that (x, p, z, ω, λ) ∈ PRP4. The first five constraints of formulation PRP4
are trivially satisfied by the definition of ε, λ and ω. For the last constraint, we have

n∑

k=0

(
ĉi − ĉk

)+
ωk

i = (
ĉi − ĉ j

)+
εxi + (

ĉi − ĉ j+1
)+

(1 − ε) xi

(∗)= ((
ĉi − ĉ j

)
ε + (

ĉi − ĉ j+1
)
(1 − ε)

)+
xi

= (
ĉi − z

)+
xi

≤ pi

for all i ∈ [n], where equality (∗) holds since
(
ĉi − ĉ j

)
and

(
ĉi − ĉ j+1

)
are either

both non-positive if we have i ≤ j or both non-negative if we have i ≥ j + 1.
For the case z > ĉn , we define λk = 0 for k ∈ [n − 1]0 and λn = 1. Furthermore,

let ωk
i = λk xi for all i ∈ [n] and k ∈ [n]0. Again, (x, p, z, ω, λ) satisfies the first five

constraints trivially. Moreover, we have

n∑

k=0

(
ĉi − ĉk

)+
ωk

i = (
ĉi − ĉn

)+
ωn

i = 0 ≤ pi

and thus (x, p, z, ω, λ) ∈ PRP4, which completes the proof. ��
Although formulationPBIL is strong and compact, its bilinearity is rather hindering

when solving instances in practice. To understand how we can still make practical
use of it, we first consider PBIL with z restricted to a fixed value. The formulation
becomes not only linear, but it also holds pi = (

ĉi − z
)+

xi for all i ∈ [n] in an
optimal (fractional) solution (x, p, z). Hence, the problem of optimizing over the set
PBIL ∩ (

R
2n × {z}) is equivalent to

min Γ z +
n∑

i=1

(
ci + (

ĉi − z
)+)

xi

s.t. Ax ≥ b, x ∈ [0, 1]n ,

which is the linear relaxation of the nominal subproblem NOS (z). This is noteworthy,
since this equivalence does not hold for PROB ∩ (

R
2n × {z}). The strength of the

linearization for fixed z suggests that we may also derive strong linearizations of
PBIL for general restrictions on z, that is z ∈ Z ⊆ {

ĉ0, . . . , ĉn
}
. In the next section,

we introduce such a linearization, which will be a key component of our branch and
bound algorithm.

123



Branch and bound for robust binary optimization… 277

3 Strong linear formulations for bounded z

Consider a subset Z ⊆ {
ĉ0, . . . , ĉn

}
and let z = min (Z) and z = max (Z) for the

remainder of this paper. Assuming that there exists an optimal solution (x, p, z) to
ROB with z ∈ Z , we can restrict ourselves to the domain R

2n × [
z, z

]
. We use this to

obtain a linear relaxation of the restricted bilinear formulationPBIL∩(
R
2n × [

z, z
])
.

Lemma 1 The linear constraints

pi + z ≥ (
ĉi − z

)+
xi + z (1)

and
pi ≥ (

ĉi − z
)+

xi (2)

are valid for all (x, p, z) ∈ PBIL ∩ (
R
2n × [

z, z
])

.

Proof Since pi + zxi ≥ ĉi xi and pi ≥ 0 hold for all (x, p, z) ∈ PBIL, the restriction
z ≤ z implies

pi + zxi ≥ ĉi xi

⇔ pi + (
z − z + z

)
xi ≥ ĉi xi

⇒ pi + z − z + zxi ≥ ĉi xi

⇔ pi + z ≥ (
ĉi − z

)+
xi + z.

Furthermore, due to z ≤ z, we obtain

pi + zxi ≥ ĉi xi

⇔ pi ≥ (
ĉi − z

)+
xi

⇒ pi ≥ (
ĉi − z

)+
xi .

��

Note that the Constraints (1) and (2) strictly dominate the inequalities pi + z ≥ ĉi xi

and pi ≥ 0 of PROB in the case of z > 0 and ĉi > z respectively. Both constraints
address the problem of the original formulation, which is that one can decrease xi in a
fractional solution down to xi ≤ z

ĉi
in order to choose pi = 0, even if we have ĉi > z.

Given a lower bound z ≥ z, Constraint (1) reduces the benefit of decreasing xi , as the

right-hand side only decreases with the factor
(
ĉi − z

)+ instead of ĉi . For an upper
bound z ≤ z, Constraint (2) guarantees that pi is not zero for ĉi > z and xi > 0 by
using the fact that the value of pi is at least ĉi − z if we have ĉi > z and xi = 1.

Using these strengthened constraints, we obtain the robust subproblem

123



278 C. Büsing et al.

ROB (Z)
min Γ z +

n∑

i=1

ci xi + pi

s.t. (x, p, z) ∈ P (Z) , x ∈ {0, 1}n

over the linear formulation

P (Z) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(x, p, z)

∣∣∣∣∣∣∣∣∣∣

Ax ≥ b

pi + z ≥ (
ĉi − z

)+
xi + z ∀i ∈ [n]

pi ≥ (
ĉi − z

)+
xi ∀i ∈ [n]

x ∈ [0, 1]n , p ∈ R
n, z ∈ [

z, z
]

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

.

As shown in Lemma 1, P (Z) is a relaxation of the restricted bilinear formulation
PBIL∩(

R
2n × [

z, z
])
. Note thatP (Z) becomes stronger, the narrower the bounds of

Z are, i.e., for Z , Z ′ with
[
z, z

]
�

[
z′, z′] it holdsP (Z) � P

(
Z ′)∩ (

R
2n × [

z, z
])

for non-trivial cases. The following statement shows that P (Z) is even as strong as
PBIL in the case where z equals one of the bounds z, z.

Proposition 1 It holds P (Z) ∩ (
R
2n × {

z, z
}) = PBIL ∩ (

R
2n × {

z, z
})

.

Proof Consider a solution (x, p, z) ∈ P (Z) ∩ (
R
2n × {

z, z
})
. For z = z, it holds

pi + zxi ≥ (
ĉi − z

)+
xi + z − z (1 − xi ) ≥ (

ĉi − z
)

xi + z − z (1 − xi ) = ĉi xi

and for z = z, we have

pi + zxi ≥ (
ĉi − z

)+
xi + zxi ≥ (

ĉi − z
)

xi + zxi = ĉi xi .

Hence, (x, p, z) ∈ PBIL and thusP (Z)∩(
R
2n × {

z, z
}) ⊆ PBIL∩(

R
2n × {

z, z
})
.

The statement follows together with Lemma 1. ��

Note that the improved formulationP (Z) comes with the cost of a larger constraint
matrix compared to PROB, as we have pi ≥ (

ĉi − z
)+

xi instead of pi ≥ 0. This
can be hindering in practice, as smaller constraint matrices tend to be computationally
beneficial. We overcome this issue by substituting pi = p′

i + (
ĉi − z

)+
xi and z =

z′ + z. We then obtain the equivalent substituted problem

ROBS (Z)
min Γ z + Γ z′ +

n∑

i=1

(
ci + (

ĉi − z
)+)

xi + p′
i

s.t.
(
x, p′, z′) ∈ PS (Z) , x ∈ {0, 1}n

123



Branch and bound for robust binary optimization… 279

over the substituted formulation

PS (Z) =

⎧
⎪⎨

⎪⎩

(
x, p′, z′)

∣∣∣∣∣∣∣

Ax ≥ b

p′
i + z′ ≥ (

min
{
ĉi , z

} − z
)+

xi ∀i ∈ [n]

x ∈ [0, 1]n , p′ ∈ R
n≥0, z′ ∈ [

0, z − z
]

⎫
⎪⎬

⎪⎭
.

The substituted problem ROBS (Z) is also interesting from a theoretical point of view.
Since z′ ≤ z − z holds for all optimal solutions, ROBS (Z) is equivalent to ROB for an

instancewith objective coefficients ci +
(
ĉi − z

)+, deviations ĉ′
i = (

min
{
ĉi , z

} − z
)+,

and an added constant Γ z. This will be useful in subsequent sections, since properties
that we prove for ROB carry over directly to ROBS (Z) and ROB (Z).

In the next section, we show how to use formulationP (Z) in a branch and bound
algorithm for solving ROB.

4 The basic branch and bound framework

The general idea of our branch and bound framework, which is sketched in Algo-
rithm 1, is to solve ROB by branching the set

{
ĉ0, . . . , ĉn

}
of possible values for

z into subsets Z ⊆ {
ĉ0, . . . , ĉn

}
, for which we then consider the robust subprob-

lem ROB (Z). For each considered subset Z , we store a dual bound v (Z) based
on the linear relaxation value vR

(
ROBS

(
Z ′)) for a superset Z ′ ⊇ Z using the

strong formulation from the previous section. If the dual bound v (Z) is greater
than or equal to the current primal bound v then we can prune Z . If Z cannot be
pruned, we first asses the strength of formulation PS (Z), which converges towards
the strength of PBIL ∩ (

R
2n × {

z, z
})

and achieves equality at latest for |Z | = 1
according to Proposition 1. If PS (Z) is almost as strong as PBIL ∩ (

R
2n × {

z, z
})

then we may directly solve the substituted robust subproblem ROBS (Z), spar-
ing us from considering further subsets of Z . Otherwise, if PS (Z) is too weak,
we continue solving the linear relaxation and branching into subsets Z = Z1 ∪
Z2.

Note that the framework given in Algorithm 1 only serves for getting a basic intu-
ition, as many components are described vaguely. For example, we leave open for
now how to evaluate whether we can stop branching Z due to PS (Z) being “strong
enough”. We will describe all components of our algorithm in detail in Sect. 7. There,
we will not only discuss whether and how we should branch Z (Sect. 7.5) and how
to choose the next Z ∈ N (Sect. 7.4), but also improve on the computation of dual
bounds (Sect. 7.1) and primal bounds (Sect. 7.2) and discuss an efficient pruning
strategy (Sect. 7.3).

Before doing so, we first establish some theoretical background in the following
two sections that will be crucial for the design of our algorithm.

123



280 C. Büsing et al.

Algorithm 1: The Basic Branch and Bound Framework
Input: An instance of ROB
Output: An optimal solution

(
x∗, p∗, z∗) of value v

1 Initialize N = {{
ĉ0, . . . , ĉn

}}

2 Set dual bound v
({

ĉ0, . . . , ĉn
}) = −∞ and primal bound v = ∞

3 while N 
= ∅ do
4 Choose Z ∈ N and removeN ← N \ {Z}
5 if v (Z) < v then
6 if PS (Z) is “strong enough” then
7 Solve ROBS (Z) and update

(
x∗, p∗, z∗) and v if a new incumbent is found

8 else
9 Compute optimal solution

(
x, p′, z′) ∈ PS (Z) with value v

((
x, p′, z′))

10 Divide Z = Z1 ∪ Z2, set v (Zi ) ← v
((

x, p′, z′)) for i = 1, 2, and insert
N ← N ∪ {Z1, Z2}

11 return
(
x∗, p∗, z∗)

5 A reformulation using cliques in conflict graphs

In this section, we propose a stronger formulation for ROB that depends on so-called
conflicts between variables and can also be used to solve the robust subproblems
ROB (Z). We already considered the concept of extended formulations in Sect. 2.
We now propose a reformulation that is also not in the original variable space, but
not an extended formulation. To generalize the concept, we call a problem v′ =
min

{
c′T x ′∣∣x ′ ∈ X ′} over a polyhedronP ′ ⊆ R

n′
1+n′

2 withP ′∩
(
Z

n′
1 × R

n′
2

)
= X ′

a reformulation in a different variable space of v = min
{
cT x

∣∣x ∈ X
}
, if both have

the same optimum objective value, i.e., v = v′, and there exists a polynomially time
computable, cost preserving mapping φ : P ′ → R

n1+n2 with φ
(
X ′) ⊆ X . Then,

instead of solving the original problem, we can solve the problem over X ′ and map
an optimal solution x ′ ∈ X ′ to an optimal solution φ

(
x ′) ∈ X . To generalize

the concept of strong formulations, we say that P ′
1 is at least as strong as P ′

2 if
φ1

(
P ′

1

) ⊆ φ′ (P ′
2

)
holds.

Here, we reformulate ROB in a different variable space by aggregating variables
p in a tailored preprocessing step. Preprocessing routines, which aim to reduce the
size and improve the strength of a given problem formulation, are key components
of modern MILP solvers and critical to their performance [1, 3, 17]. One of these
preprocessing routines involves the search for logical implications between binary
variables, e.g., xi = 1⇒ x j = 0 for every solution x . These implications can be
modeledwithin a so-called conflict graph, consisting of a node for every binary variable
xi and its complement xi = (1 − xi ) [6]. There exists an edge between two nodes
in the conflict graph if there exists no solution where the corresponding literals are
both equal to one. Since every solution to the original problem corresponds to an
independent set within the conflict graph, all valid inequalities for the independent set
problem on the conflict graph are also valid for the original problem. An interesting
type of valid inequalities are set-packing constraints, which are defined by cliques in

123



Branch and bound for robust binary optimization… 281

the conflict graph, i.e., subsets of nodes forming a complete subgraph. For a clique{
xi1 , . . . , xiq

}∪ {
x j1 , . . . , x jq

}
, at most one of the literals can be equal to one, which

yields the corresponding set-packing constraint
∑q

k=1 xik + ∑q
k=1

(
1 − x jk

) ≤ 1.
Here, we are less interested in adding set-packing constraints to our formulations,

as they are already used in modern MILP solvers. Instead, we focus on the structural
implications of set-packing constraints consisting of positive literals xi on the variables
p and robustness constraints pi + z ≥ xi . To ease notation, we call a subset Q ⊆ [n]
a clique if the variables

{
xi
∣∣i ∈ Q

}
form a clique in the conflict graph. The following

proposition shows that we can use a partitioning Q of [n] into cliques to obtain a
stronger reformulation of ROB in a smaller variable space.

Proposition 2 Let Q be a partitioning of [n] into cliques. Then the problem

ROB (Q)
min Γ z +

n∑

i=1

ci xi +
∑

Q∈Q
p′

Q

s.t.
(
x, p′, z

) ∈ PROB (Q) , x ∈ {0, 1}n

over the formulation

PROB (Q) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
x, p′, z

)

∣∣∣∣∣∣∣∣∣

Ax ≥ b

p′
Q + z ≥

∑

i∈Q

ĉi xi ∀Q ∈ Q

x ∈ [0, 1]n , p′ ∈ R
Q≥0, z ∈ R≥0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

is a reformulation in a different variable space of ROB that is at least as strong as
PROB.

Proof First, note that if p′
Q = ∑

i∈Q pi for all Q ∈ Q holds then (x, p, z) and(
x, p′, z

)
have the same objective value for their respective problems. Hence, in order

to show v (ROB) = v (ROB (Q)), we construct corresponding solutions fulfilling this
property.

Let (x, p, z) be a solution to ROB and consider
(
x, p′, z

)
with p′ ∈ R

Q≥0 such that
p′

Q = ∑
i∈Q pi . For all cliques Q ∈ Q, we have

∑
i∈Q xi ≤ 1 and thus there exists

an index j ∈ Q such that xi = 0 for all i ∈ Q\ { j}. It follows

p′
Q + z ≥ p j + z ≥ ĉ j x j =

∑

i∈Q

ĉi xi

for all Q ∈ Q, proving
(
x, p′, z

) ∈ PROB (Q), and thus v (ROB (Q)) ≤ v (ROB).

It remains to show that every
(
x, p′, z

) ∈ PROB (Q) ∩
(
Z

n × R|Q|+1
)
has a

corresponding solutionφ
(
x, p′, z

) ∈ PROB∩(
Z

n × R
n+1

)
of the samecost.Note that

such a mapping φ : PROB (Q) → R
2n+1 already implies v (ROB (Q)) ≥ v (ROB),

and thus v (ROB) = v (ROB (Q)). We define the image of
(
x, p′, z

) ∈ PROB (Q) as

123



282 C. Büsing et al.

φ
(
x, p′, z

) = (x, p, z) and consider two different cases for the definition of p ∈ R
n .

For cliques Q ∈ Q with
∑

j∈Q ĉ j x j > 0, we define pi = ĉi xi p′
Q∑

j∈Q ĉ j x j
for all i ∈ Q.

Then pi + z ≥ ĉi xi holds, since we have

pi + z = ĉi xi p′
Q∑

j∈Q ĉ j x j
+ z ≥

ĉi xi

(
p′

Q + z
)

∑
j∈Q ĉ j x j

≥ ĉi xi
∑

j∈Q ĉ j x j∑
j∈Q ĉ j x j

= ĉi xi .

For cliques Q ∈ Q with
∑

j∈Q ĉ j x j = 0, we can choose pi arbitrarily as long as
p′

Q = ∑
j∈Q p j , since pi + z ≥ 0 = ĉi xi holds for any pi ≥ 0. This shows not

only that φ
(
PROB (Q) ∩

(
Z

n × R|Q|+1
))

⊆ PROB ∩ (
Z

n × R
n+1

)
holds, but also

proves the strength of ROB (Q), because we did not use the integrality of x and thus
have φ

(
PROB (Q)

) ⊆ PROB. ��
Reconsider Example 1 from Sect. 2 to see that reformulation ROB (Q) is not only

equal, but actually stronger. In the example, [n] is a clique and we thus have

vR (ROB (Q)) = p[n] + z ≥
n∑

i=1

xi = 1,

compared to vR (ROB) = 1
n .

Asmentioned in Sect. 3, the improvement of ROB can also be applied to ROBS (Z).
Given a clique partitioning Q of [n] we obtain the stronger reformulation

ROBS (Z ,Q)
min Γ z + Γ z′ +

n∑

i=1

(
ci + (

ĉi − z
)+)

xi +
∑

Q∈Q
p′

Q

s.t.
(
x, p′, z′) ∈ PS (Z ,Q) , x ∈ {0, 1}n

over

PS (Z ,Q) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
x, p′, z′)

∣∣∣∣∣∣∣∣∣

Ax ≥ b

p′
Q + z′ ≥

∑

i∈Q

(
min

{
ĉi , z

} − z
)+

xi ∀Q ∈ Q

x ∈ [0, 1]n , p′ ∈ R
Q≥0, z′ ∈ [

0, z − z
]

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
.

Obviously, in order to obtain these strong reformulations, we first have to compute
a conflict graph and a clique partitioning Q of [n]. Ideally, this partitioning contains
few cliques that are as large as possible. However, finding a partitioning of minimum
cardinality is equivalent to computing a minimum clique cover, which was shown to
be N P–hard by Karp [28]. Moreover, building the whole conflict graph itself is
alsoN P–hard [18]. Consequently, we have to restrict ourselves to a subgraph of the
whole conflict graph. If our algorithm was natively implemented in a MILP solver,
we could use the conflict graph that is computed during the solver’s preprocessing

123



Branch and bound for robust binary optimization… 283

without spending additional time searching for conflicts. Unfortunately, we cannot
access the conflict graph in Gurobi [26], the solver we use for our implementation.
Thus, we implement our own heuristics in which we check for each constraint of the
nominal problem whether it implies conflicts between variables. Afterwards, we use
these conflicts to partition [n] greedily into cliques. As the construction of conflict
graphs and clique partitionings are not the focus of this paper, we refer to Appendix A
for a detailed description of our implementation. For related work on the construction
and handling of conflict graphs, we refer to Achterberg et al. [1], Atamtürk et al. [6],
as well as Brito and Santos [18].

Note that our approach of aggregating constraints and variables depends on the
variable z being shared by all constraints pi + z ≥ xi . Atamtürk et al. [7] propose for
the mixed vertex packing problem a similar approach for aggregating constraints con-
taining conflicting binary variables and a common continuous variable. Their mixed
clique inequalities are analogous to our clique inequalities and their strengthened star
inequalities can be adapted for generalizing these. For now, we leave the adaptation
for future research and stick to using clique inequalities depending on clique parti-
tionings, as we otherwise cannot benefit from the reduced number of variables. We
will see in our computational study in Sect. 8 that using clique partitionings already
yields a substantially stronger reformulation for many instances and improves the per-
formance of our branch and bound algorithm. Before describing the branch and bound
algorithm in detail in Sect. 7, we further establish some theoretical background in the
next section by characterizing optimal solutions of ROB. Note that although we solve
ROBS (Z ,Q) in practice, for the sake of simplicity, we mostly refer to the equivalent
problem ROB (Z) in the remainder of this paper and only refer to ROBS (Z ,Q) when
necessary, e.g., when considering its linear relaxation or the strength of the formulation
PS (Z ,Q).

6 Characterization of optimal values for p and z

The central idea of our branch and bound algorithm for solving ROB is to restrict the
value of z and trying to find an optimal corresponding nominal solution x ∈ PNOM.
In this section, however, we want to consider the opposite direction. Given a nominal
solution x ∈ PNOM, what are the optimal values for p and z? The answer to this
question will deepen our understanding of the structural properties of ROB and is
of practical use in many ways. First, we will generalize the result of Lee and Kwon
[33], who showed for Γ ∈ Z that there exists a subset Z ⊆ {

ĉ0, . . . , ĉn
}
, with

|Z | ≤ ⌈ n−Γ
2

⌉ + 1, containing an optimal choice for z. This reduction is relevant for
our branch and bound algorithm, as we only have to consider subsets Z ⊆ Z . Second,
given a choice of z, we will be able to restrict our search for a corresponding nominal
solution x ∈ PNOM to those for which the chosen z is optimal. We will extensively
use this idea within our branch and bound algorithm, especially in Sect. 7.1 where we
describe further dual bounding strategies. Third, as we prove the characterization for
(potentially fractional) solutionswithinPBIL, we can compute for any x ∈ PNOM the
corresponding objective value for the optimization problem overPBIL. This provides

123



284 C. Büsing et al.

an upper bound on the optimal objective value over PBIL, which we compare to
vR

(
ROBS (Z ,Q)

)
in order to obtain an indicator of the strength of PS (Z ,Q). We

use this indicator in our branch and bound algorithm to decide whether ROBS (Z ,Q)

should be solved directly as an MILP or whether Z needs to be shrunk further, as
explained in Sect. 7.5. The following theorem states the characterization of optimal
values for p and z.

Theorem 2 Let x ∈ PNOM be a (fractional) solution to NOM. We define

z (x) = min

⎧
⎨

⎩z ∈ {
ĉ0, . . . , ĉn

}
∣∣∣∣∣∣

∑

i∈[n]:ĉi >z

xi ≤ Γ

⎫
⎬

⎭

and

z (x) = max

⎛

⎝{0} ∪
⎧
⎨

⎩z ∈ {
ĉ0, . . . , ĉn,∞}

∣∣∣∣∣∣

∑

i∈[n]:ĉi ≥z

xi ≥ Γ

⎫
⎬

⎭

⎞

⎠ .

The values z ∈ [
z (x) , z (x)

]
are together with pi = (

ĉi − z
)+

xi for i ∈ [n] exactly
the optimal values satisfying (x, p, z) ∈ PBIL and minimizing Γ z + ∑n

i=1 pi .

For integer solutions x ∈ PNOM, the theorem states that z should be large enough
such that there are at most Γ indices i ∈ [n] with xi = 1 and ĉi > z. Otherwise, we
could increase z while simultaneously decreasing pi for more than Γ indices, leading
to an improvement of the objective value. Conversely, z should be small enough such
that there exist at least Γ indices i ∈ [n] with xi = 1 and ĉi ≥ z. Otherwise, we could
decrease z and would have to increase pi for less than Γ indices, also yielding an
improvement of the objective value. Obviously, if Γ is so large that

∑
i∈[n] xi < Γ

holds then we need to choose z as small as possible, i.e., z = 0.
Before proving Theorem 2, we characterize the bounds z (x) and z (x) in an addi-

tional way. The proof of the following lemma can be found in Appendix B.

Lemma 2 For x ∈ R
n, we have

z (x) = max

⎛

⎝{0} ∪
⎧
⎨

⎩z ∈ {
ĉ0, . . . , ĉn

}
∣∣∣∣∣∣

∑

i∈[n]:ĉi ≥z

xi > Γ

⎫
⎬

⎭

⎞

⎠ (3)

and

z (x) = min

⎛

⎝{∞} ∪
⎧
⎨

⎩z ∈ {
ĉ0, . . . , ĉn

}
∣∣∣∣∣∣

∑

i∈[n]:ĉi >z

xi < Γ

⎫
⎬

⎭

⎞

⎠ . (4)

Using the above lemma, we are able to prove Theorem 2.

Proof of Theorem 2 First, note that the interval
[
z (x) , z (x)

]
is well-defined, since∑

i∈[n]:ĉi >z xi ≤ Γ is a weaker requirement than
∑

i∈[n]:ĉi >z xi < Γ and we thus

123



Branch and bound for robust binary optimization… 285

have z (x) ≤ z (x) by definition of z (x) and Eq. (4). Furthermore, pi = (
ĉi − z

)+
xi

is optimal for a given x and z, as we minimize and have pi ≥ (
ĉi − z

)
xi and pi ≥ 0

for all (x, p, z) ∈ PBIL.
Now, let z ≥ z (x) and consider another value z′ > z together with an appropriate

p′ such that
(
x, p′, z′) ∈ PBIL. By definition of z (x), it holds

∑

i∈[n]:ĉi >z

xi ≤
∑

i∈[n]:ĉi >z(x)

xi ≤ Γ

and thus

Γ z +
n∑

i=1

(
ĉi − z

)+
xi = Γ z +

∑

i∈[n]:ĉi >z

(
z′ − z

)
xi +

∑

i∈[n]:ĉi >z

(
ĉi − z′) xi

(∗)≤ Γ z + (
z′ − z

)
Γ +

∑

i∈[n]:ĉi >z

(
ĉi − z′) xi

= Γ z′ +
∑

i∈[n]:ĉi >z′

(
ĉi − z′) xi +

∑

i∈[n]:z′≥ĉi >z

(
ĉi − z′) xi

≤ Γ z′ +
∑

i∈[n]:ĉi >z′

(
ĉi − z′) xi

≤ Γ z′ +
n∑

i=1

p′
i .

Hence, the objective value is non-decreasing for z ≥ z (x). Moreover, for z (x) < ∞,
we even have

∑
i∈[n]:ĉi >z xi < Γ in the case of z = z (x) by Eq. (4). Then (∗) is a

proper inequality and it follows that all choices z′ > z (x) are non-optimal.
Now, let z ≤ z (x) and consider z′ < z. This implies z (x) > 0 and together with

the definition of z (x), we obtain
∑

i∈[n]:ĉi ≥z

xi ≥
∑

i∈[n]:ĉi ≥z(x)

xi ≥ Γ .

It follows

Γ z +
n∑

i=1

(
ĉi − z

)+
xi = Γ z′ + (

z − z′)Γ +
∑

i∈[n]:ĉi ≥z

(
ĉi − z

)
xi

(∗∗)≤ Γ z′ +
∑

i∈[n]:ĉi ≥z

(
z − z′) xi +

∑

i∈[n]:ĉi ≥z

(
ĉi − z

)
xi

= Γ z′ +
∑

i∈[n]:ĉi ≥z

(
ĉi − z′) xi

≤ Γ z′ +
∑

i∈[n]:ĉi ≥z′

(
ĉi − z′) xi

123



286 C. Büsing et al.

≤ Γ z′ +
n∑

i=1

p′
i .

Therefore, the objective value is non-increasing for z ≤ z (x), which shows that all
z ∈ [

z (x) , z (x)
]
are optimal. Furthermore, if it holds z′ < z (x) then we have

0 < z (x) and thus
∑

i∈[n]:ĉi ≥z(x) xi > Γ by Eq. (3). Then, for z = z (x) it follows
that (∗∗) is again a proper inequality and all choices z′ < z (x) are non-optimal. ��

As already mentioned, Lee and Kwon [33] showed for Γ ∈ Z that the number
of different values for z to be considered can be reduced from n + 1 to

⌈ n−Γ
2

⌉ + 1.
To see this, it is helpful to sort the deviations ĉi . Therefore, for the remainder of
this paper, we assume without loss of generality that ĉ0 ≤ · · · ≤ ĉn holds. The
first observation leading to the reduction of Lee and Kwon is that the values z ∈{
ĉn+1−Γ , . . . , ĉn

}
are no better than the value z = ĉn−Γ , i.e., ĉn−Γ ≥ z (x) for all

solutions x ∈ PNOM. The second observation is that if the value z = ĉi is optimal
then z ∈ {

ĉi−1, ĉi+1
}
also contains an optimal choice. To put it in terms of Theorem 2:

if ĉi ∈ [
z (x) , z (x)

]
holds then we also have

{
ĉi−1, ĉi+1

}∩[
z (x) , z (x)

] 
= ∅. Hence,
Z = {

ĉ0, ĉ2, ĉ4, . . . , ĉn−Γ

}
contains an optimal choice for z. The following statement

generalizes the first observation to Γ ∈ R≥0. Furthermore, both observations are
strengthened by using conflicts and a clique partitioning, which we already compute
to obtain the strengthened formulations from Sect. 5, to reduce the set Z .

Proposition 3 Let Q be a partitioning of [n] into cliques and q : [n] → Q be the
mapping that assigns an index j ∈ [n] its corresponding clique Q ∈ Q with j ∈ Q.
For

imax = min ({n} ∪ {i ∈ [n − 1]0 | |{q (i + 1) , . . . , q (n)}| ≤ Γ }) ,

it holds ĉimax ≥ z (x) for all solutions x ∈ PNOM ∩{0, 1}n and there exists an optimal
solution (x, p, z) to ROB with z ∈ {

ĉ0, . . . , ĉimax
}
.

Now, let G = ([n] , E) be a conflict graph for ROB and Γ ∈ Z. Furthermore, let
Z ⊆ {

ĉ0, . . . , ĉimax
}

such that ĉimax ∈ Z and for every i ∈ [
imax − 1

]
0 it holds

– ĉi ∈ Z or
– there exists an index k < i with ĉk ∈ Z and for all j ∈ {k + 1, . . . , i − 1} there

exists an edge { j, i} ∈ E in the conflict graph G.

Then there exists an optimal solution (x, p, z) to ROB with z ∈ Z .

A proof of the above proposition and an algorithm for computing a setZ meeting
the required criteria can be found in Appendix C. Note that the second part of the
proposition only holds for Γ ∈ Z. This is because the statement relies on the fact
that for ĉi ∈ [

z (x) , z (x)
]
and Γ ∈ Z, it also holds ĉk ∈ [

z (x) , z (x)
]
. However,

for Γ /∈ Z, we always have z (x) = z (x), which implies that ĉi always needs to be
contained in Z .

After paving the way with the theoretical results of the previous sections, we now
describe the components of our branch and bound algorithm in detail in the next
section.

123



Branch and bound for robust binary optimization… 287

7 The branch and bound algorithm

In the following sections, wewill describe our approach for computing dual and primal
bounds, our pruning rules as well as our node selection and branching strategies.
A summary of the components, merged into one algorithm, is given in Sect. 7.6.
An overview on different strategies regarding the components of branch and bound
algorithms is provided by Morrison et al. [37].

For the remainder of this paper, Z ⊆ {
ĉ0, . . . , ĉn

}
will be a set of possible values

for z, as constructed by Algorithm 6 from Appendix C. To ease notation, we will refer
to the considered subsets Z ⊆ Z as nodes in a rooted branching tree, whereZ is the
root node and Z ′ is a child node of Z if it emerges directly via branching. Furthermore,
we denote withN ⊆ 2Z the set of active nodes, that are the not yet pruned leaves of
our branching tree, which are still to be considered.

7.1 Dual bounding

The focus of this paper is primarily on the computation of strong dual bounds v (Z).
We already paved the way for these in the previous sections by introducing the strong
reformulation ROBS (Z ,Q) , yielding dual bounds v (Z) = vR

(
ROBS (Z ,Q)

)
. In

the following, we show that we can obtain even better bounds by restricting ourselves
to solutions fulfilling the optimality criterion in Theorem 2.

7.1.1 Deriving dual bounds from ROB (Z)

Imagine that we just solved a robust subproblem ROB (Z), using the equivalent prob-
lem ROBS (Z ,Q), and observed that the optimal objective value v (ROB (Z)) is
significantly higher than the current primal bound v. Furthermore, imagine that there
exists a yet to be considered value z′ in an active node Z ′ ∈ N that is very close to one
of the just considered values z ∈ Z . Note that the objective function of the nominal sub-
problem NOS (z), arising from fixing z, differs only slightly in its objective function

Γ z + ∑n
i=1

(
ci + (

ĉi − z
)+)

xi from the nominal subproblem NOS
(
z′). This sug-

gests that the objective value v
(
NOS

(
z′)) is probably not too far from v (NOS (z)).

Since v (ROB (Z)) is higher than v and also a dual bound on v (NOS (z)), we might
be able to prune z′ without considering ROB

(
Z ′) if we are able to carry over some

information from NOS (z) to NOS
(
z′). In fact, Hansknecht et al. [27] showed that

there exists a relation between the optimal solution values v (NOS (z)) for different
values z.

Lemma 3 [27] For z′ ≤ z, it holds v
(
NOS

(
z′)) ≥ v (NOS (z)) − Γ

(
z − z′).

Proof The objective function Γ z + ∑n
i=1

(
ci + (

ĉi − z
)+)

xi of NOS (z) is non-in-

creasing in z when omitting the constant term Γ z. This implies v
(
NOS

(
z′))−Γ z′ ≥

v (NOS (z)) − Γ z, which proves the statement. ��
Accordingly, in addition to the dual bound v

(
Z ′) for a node Z ′ ∈ N , we can also

maintain individual dual bounds v
(
z′) on the optimal objective value v

(
NOS

(
z′))

123



288 C. Büsing et al.

with v
(
z′) = v (ROB (Z)) − Γ

(
z − z′) for z′ < z after solving ROB (Z). The

dual bound for a node Z ′ is then the combination of the linear relaxation value
vR

(
ROBS

(
Z ′,Q

))
and the minimum of all individual bounds min

{
v
(
z′) ∣∣z′ ∈ Z ′},

i.e., we have

v
(
Z ′) = max

{
vR

(
ROBS (Z ′,Q

))
,min

{
v
(
z′) ∣∣z′ ∈ Z ′}} .

While this already strengthens the dual bounds in our branch and bound algorithm,
we can improve the results of Hansknecht et al. even more by using the optimality cri-
terion from Theorem 2 and the clique partitioningQ from Sect. 5. Since we are solely
interested in optimal solutions to ROB, it is sufficient to only consider solutions to
NOS

(
z′) that fulfill the optimality criterion, i.e., solutions x ′ with z′ ∈ [

z
(
x ′) , z

(
x ′)].

If an optimal solution to NOS
(
z′) does not fulfill this property then z′ is no optimal

choice in the first place and can therefore be pruned. Accordingly, we establish an
improved bound that is not a dual bound on v

(
NOS

(
z′)), but a dual bound on the

objective value of all solutions to NOS
(
z′) fulfilling the optimality criterion.

Let x ′ be such a solution to NOS
(
z′) with objective value v′. Note that x ′ is also a

feasible solution to NOS (z) and let v ≥ v (NOS (z)) be the corresponding objective
value. For z′ < z, the value v′ is decreased by δdec = Γ

(
z − z′) compared to v, but

increased by δinc = ∑n
i=1

((
ĉi − z′)+ − (

ĉi − z
)+)

x ′
i . This yields the estimation

v′ = v − δdec + δinc ≥ v (NOS (z)) − δdec + δinc (5)

on the objective value v′. Note that the decrease by δdec is taken into account in the
estimation of Lemma 3, but the increase δinc is not. Obviously, δinc can be zero if we
have x ′

i = 0 for all i ∈ [n] with ĉi > z′. However, if x ′ fulfills the optimality criterion
then we know from Theorem 2 that there exist at least Γ indices with ĉi ≥ z′ and
x ′

i = 1. Assuming that there do not exist Γ indices with ĉi = z′, there must exist at
least one i ∈ [n] with ĉi > z′ and x ′

i = 1, yielding a positive lower bound on δinc.
Taking conflicts between variables xi into account, we might even deduce that there
must exist some indices with x ′

i = 1 and very high ĉi , which improves the bound on
δinc.

Note that for z′ > z, Lemma 3 provides no bound on NOS
(
z′), although we

can apply similar arguments to this case. Observe that Inequality (5) still holds, with
δinc ≤ 0 and δdec < 0. Unfortunately, if we have x ′

i = 1 for all i ∈ [n] with ĉi > z then
δinc < 0 might have a large absolute value, leading to a weak estimation. However,
if x ′ fulfills the optimality criterion then we know from Theorem 2 that there exist
at most Γ indices with ĉi > z and x ′

i = 1. From this, we can again deduce a lower
bound on δinc, which can also be improved by taking conflicts between variables xi

into account.

Theorem 3 Let Q be a partitioning of [n] into cliques, z, z′ ∈ R≥0, and x ′ be an
arbitrary solution to NOS

(
z′) of value v′ that satisfies z′ ∈ [

z (x) , z (x)
]
. Then we

have v′ ≥ v (NOS (z)) − δz
(
z′), where the estimator δz

(
z′) is defined as

123



Branch and bound for robust binary optimization… 289

δz
(
z′) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑
Q∈Q:

∃i∈Q:z<ĉi ≤z′

max
{
ĉi − z

∣∣i ∈ Q, z < ĉi ≤ z′} for z′ > z,

max
Q′⊆Q,|Q′|≤Γ

{
∑

Q∈Q′
max

{
z − ĉi

∣∣i ∈ Q, ĉi ≥ z′}} for 0 < z′ < z,

Γ z for z′ = 0.

Proof For z′ = 0, the statement follows from Lemma 3. Otherwise, we obtain an
estimation

v′ ≥ v (NOS (z)) −
(

Γ
(
z − z′) +

n∑

i=1

((
ĉi − z

)+ − (
ĉi − z′)+) x ′

i

)
,

as in Inequality (5), by considering the difference in the objectives of NOS
(
z′) and

NOS (z). Consider the case z′ > z. Since it holds z′ ≥ z
(
x ′), it follows from the

definition of z
(
x ′) in Theorem 2 that we have

∑

i∈[n]:ĉi >z′
x ′

i ≤
∑

i∈[n]:ĉi >z(x ′)
x ′

i ≤ Γ .

We obtain

Γ
(
z − z′) +

n∑

i=1

((
ĉi − z

)+ − (
ĉi − z′)+) x ′

i

= Γ
(
z − z′) +

∑

i∈[n]:z<ĉi ≤z′

(
ĉi − z

)
x ′

i +
∑

i∈[n]:ĉi >z′

(
z′ − z

)
x ′

i

≤ Γ
(
z − z′) +

∑

i∈[n]:z<ĉi ≤z′

(
ĉi − z

)
x ′

i + (
z′ − z

)
Γ =

∑

i∈[n]:z<ĉi ≤z′

(
ĉi − z

)
x ′

i

≤ max

⎧
⎨

⎩
∑

i∈[n]:z<ĉi ≤z′

(
ĉi − z

)
x ′′

i

∣∣∣x ′′ ∈ PNOM ∩ {0, 1}n
}

≤ max

⎧
⎪⎨

⎪⎩

∑

i∈[n]:z<ĉi ≤z′

(
ĉi − z

)
x ′′

i

∣∣∣∣∣∣∣

∑

i∈Q

x ′′
i ≤ 1 ∀Q ∈ Q

x ′′ ≥ 0

⎫
⎪⎬

⎪⎭

=
∑

Q∈Q:
∃i∈Q:z<ĉi ≤z′

max
{
ĉi − z

∣∣i ∈ Q, z < ĉi ≤ z′} ,

where the last equality holds sinceQ is a partitioning of [n].
Now, let 0 < z′ < z. Since z′ ≤ z

(
x ′) holds, Theorem 2 implies

∑

i∈[n]:ĉi ≥z′
x ′

i ≥
∑

i∈[n]:ĉi ≥z(x ′)
x ′

i ≥ Γ .

123



290 C. Büsing et al.

We obtain

Γ
(
z − z′) +

n∑

i=1

((
ĉi − z

)+ − (
ĉi − z′)+) x ′

i

= Γ
(
z − z′) −

∑

i∈[n]:z′≤ĉi <z

(
ĉi − z′) x ′

i −
∑

i∈[n]:ĉi ≥z

(
z − z′) x ′

i

= Γ
(
z − z′) −

∑

i∈[n]:ĉi ≥z′

(
min

{
z, ĉi

} − z′) x ′
i

≤ Γ
(
z − z′) − min

⎧
⎪⎨

⎪⎩

∑

i∈[n]:ĉi ≥z′

(
min

{
z, ĉi

} − z′) x ′′
i

∣∣∣∣∣∣∣

∑

i∈[n]:ĉi ≥z′
x ′′

i ≥ Γ

x ′′ ∈ PNOM ∩ {0, 1}n

⎫
⎪⎬

⎪⎭

≤ Γ
(
z − z′) − min

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑

i∈[n]:ĉi ≥z′

(
min

{
z, ĉi

} − z′) x ′′
i

∣∣∣∣∣∣∣∣∣∣∣∣

∑

i∈[n]:ĉi ≥z′
x ′′

i = Γ

∑

i∈Q

x ′′
i ≤ 1 ∀Q ∈ Q

x ′′ ≥ 0

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

= max

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑

i∈[n]:ĉi ≥z′

(
z − min

{
z, ĉi

})
x ′′

i

∣∣∣∣∣∣∣∣∣∣∣∣

∑

i∈[n]:ĉi ≥z′
x ′′

i = Γ

∑

i∈Q

x ′′
i ≤ 1 ∀Q ∈ Q

x ′′ ≥ 0

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

= max
Q′⊆Q,|Q′|=Γ

⎧
⎨

⎩
∑

Q∈Q′
max

{
z − min

{
z, ĉi

} ∣∣i ∈ Q, ĉi ≥ z′}}

= max
Q′⊆Q,|Q′|≤Γ

⎧
⎨

⎩
∑

Q∈Q′
max

{
z − ĉi

∣∣i ∈ Q, ĉi ≥ z′}} ,

which concludes the proof. ��
The above statement now enables us not only to compute bounds for z′ > z, but also

stronger bounds for 0 < z′ < z. Note that for z′ = 0, we have to use the dual bound
from Lemma 3, since Theorem 2 provides no statement on the required structure of
x ′ in this case.

In our branch and bound algorithm, we use the estimators δz
(
z′) for all z′ < z

and δz
(
z′) for z′ > z after solving ROB (Z). Accordingly, we define for Z ⊆ Z the

estimators

δZ
(
z′) =

{
δz

(
z′) for z′ < z,

δz
(
z′) for z′ > z.

123



Branch and bound for robust binary optimization… 291

The improved bounds v (ROB (Z))− δZ
(
z′) come with the cost of a higher computa-

tional effort compared to the bounds fromLemma 3. However, the additional overhead
is marginal, as we can solve the involved maximization problems in linear time and
compute all estimators δz

(
z′), or δz

(
z′) respectively, simultaneously. Algorithm 2

describes our approach for computing the estimators for a set Z ′ ⊆ Z of remaining
values z′.

Algorithm 2: Procedure for computing estimators δz
(
z′).

Input: A set Z ′ =
{

z′
1, . . . , z′

p

}
⊆ Z with z′

1 < . . . < z′
p , values z, z ∈ R≥0, a robustness budget

Γ ∈ [0, n], sorted deviations
{
ĉ0, . . . , ĉn

}
, a clique partitioning Q ⊆ 2[n], and a

corresponding mapping q : [n] �→ Q
Output: Estimators δz

(
z′) for z′ < z and δz

(
z′) for z′ > z

1 Let l = min
{
i ∈ [p]

∣∣z′
i > z

}
and k = min

{
i ∈ [n]0

∣∣ĉi > z
}

2 Initialize estimator δ = 0, set of considered cliquesQ′ = ∅, and mapping to the corresponding index

q−1 : Q′ → [n]
3 for j = l, . . . , p do
4 while ĉk ≤ z′

j do
5 if q (k) ∈ Q′ then
6 Update δ ← δ −

(
ĉq−1(q(k))

− z
)

7 Add Q′ ← Q′ ∪ {q (k)} and set q−1 (q (k)) = k
8 Update δ ← δ + (

ĉk − z
)
and increase k ← k + 1

9 Set δz

(
z′

j

)
= δ

10 Let l = max
{
i ∈ [p]

∣∣z′
i < z

}
and k = max

{
i ∈ [n]0

∣∣ĉi < z
}

11 Set δ = 0, Q′ = ∅, and initialize empty list L
12 for j = l, . . . , 1 do
13 if z′

j = 0 then

14 Set δz

(
z′

j

)
= Γ z

15 else
16 while ĉk ≥ z′

j do
17 if q (k) ∈ Q′ then
18 Update δ ← δ −

(
z − ĉq−1(q(k))

)
and remove q−1 (q (k)) from L

19 Add Q′ ← Q′ ∪ {q (k)}, set q−1 (q (k)) = k, and append k to L
20 Update δ ← δ + (

z − ĉk
)
and decrease k ← k − 1

21 while |L| > Γ do
22 Update δ ← δ − (

z − ĉL[0]
)

23 RemoveQ′ ← Q′\ {q (L [0])} and delete L [0] from L

24 Set δz

(
z′

j

)
= δ

25 return δz and δz

123



292 C. Büsing et al.

We first compute δz
(
z′) for z′ ∈ {

z′ ∈ Z ′∣∣z′ > z
}
(lines 1 to 9). For computing

δz

(
z′

j

)
, we consider all deviations ĉk with z < ĉk ≤ z′

j (line 4) and add the corre-

sponding value ĉk − z (line 8). Furthermore, we mark the clique q (k) containing k as
considered by adding it to the setQ′ and we associate the clique q (k) with the index
k by maintaining a mapping q−1 : Q′ → [n] (line 7). However, if q (k) is already
contained withinQ′ then we considered an index k′ = q−1 (q (k))with q (k) = q

(
k′)

before k and counted the value ĉk′ −z towards δz
(
z′). Hence, either ĉk −z or ĉk′ −z has

to be subtracted, as we only count the highest value per clique. Since we iterate over
the deviations in a non-decreasing order, it holds ĉk −z ≥ ĉk′ −z, which is whywe sub-

tract ĉk′ − z (line 6). Note that we do not have to consider all values
{

ĉk
∣∣z < ĉk ≤ z′

j

}

for computing δz

(
z′

j

)
if we already considered the values

{
ĉk
∣∣z < ĉk ≤ z′

j−1

}
for

δz

(
z′

j−1

)
. Instead, we construct δz

(
z′

j

)
on the basis of δz

(
z′

j−1

)
and only iterate

over
{

ĉk
∣∣z′

j−1 < ĉk ≤ z′
j

}
.

The computation of δz
(
z′) for z′ ∈ {

z′ ∈ Z ′∣∣z′ < z
}
is almost analogous (lines

10 to 24). The difference here is that we only consider up to Γ values z − ĉk . Hence,
we not only maintain the set Q′ and the mapping q−1, but also a list containing the
indices of currently added values z − ĉk . The list is updated every time we subtract
(line 18) or add (line 20) a value z − ĉk . Furthermore, since we iterate reversely over{

ĉk
∣∣z′

j ≤ ĉk < z
}
, the list is ordered non-decreasing with respect to z − ĉk . Hence,

before assigning δz
(
ĉi j

)
, we check whether L contains more than Γ elements and, if

necessary, remove the first Γ − |L| indices together with their value z − ĉk and their
clique q (k) (lines 21 to 23).

7.1.2 Optimality-cuts

Consider a node Z ⊆ Z of our branching tree and assume that (x, p, z) is a solution to
ROB (Z) with

[
z (x) , z (x)

]∩ Z = ∅. We know from Theorem 2 that it is needless to
consider x for the subset Z , as there is a different set Z ′ ⊆ Z with

[
z (x) , z (x)

]∩Z ′ 
=
∅ if x is part of a globally optimal solution. Nevertheless, it is possible that (x, p, z) is
an optimal solution to ROB (Z), resulting in an unnecessarily weak dual bound v (Z).
Using the following theorem, we are able to strengthen our formulations such that we
only consider solutions (x, p, z) with

[
z (x) , z (x)

] ∩ Z 
= ∅ and thus raise the dual
bound v (Z).

Theorem 4 Let x ∈ PNOM ∩ {0, 1}n be a solution to NOM and c ≤ c bounds on z.
Then

[
z (x) , z (x)

] ∩ [
c, c

]
= ∅ holds if and only if x satisfies

123



Branch and bound for robust binary optimization… 293

∑

i∈[n]:ĉi >c

xi ≤ �Γ � (6)

and in the case of c > 0 also

∑

i∈[n]:ĉi ≥c

xi ≥ �Γ � . (7)

Proof We have
[
z (x) , z (x)

]∩ [
c, c

]
= ∅ if and only if z (x) ≤ c and c ≤ z (x) holds.
We first show that z (x) ≤ c holds if and only if x fulfills Inequality (6). We know
from Theorem 2 that

∑
i∈[n]:ĉi >z(x) xi ≤ Γ . Then z (x) ≤ c implies

∑

i∈[n]:ĉi >c

xi ≤
∑

i∈[n]:ĉi >z(x)

xi ≤ Γ

and thus Inequality (6) due to x being binary. Additionally, x cannot fulfill Inequal-
ity (6) if we have c < z (x), as this contradicts the minimality in the definition of
z (x).

It is clear to see that c ≤ z (x) applies if we have c = 0. Hence, it remains to show
that for 0 < c, it holds c ≤ z (x) if and only if x fulfills Inequality (7). We know from
Theorem 2 that

∑
i∈[n]:ĉi ≥z(x) xi ≥ Γ holds. Then c ≤ z (x) implies

∑

i∈[n]:ĉi ≥c

xi ≥
∑

i∈[n]:ĉi ≥z(x)

xi ≥ Γ

and thus Inequality (6). Additionally, x cannot fulfill Inequality (7) if z (x) < c holds,
as this contradicts the maximality in the definition of z (x). ��
In our branch and bound algorithm, we add the above Inequalities (6) and (7), with
c = z and c = z, as optimality-cuts to the formulation PS (Z ,Q) when solving
the corresponding linear problem. However, the optimality-cuts can cause several
problems when added to a robust subproblem ROB (Z), especially with respect to the
dual bounds of the last section. Let ROB

(
Z , c, c

)
be the corresponding problem with

added optimality-cuts for bounds c ≤ z and z ≤ c. Note that in the proof of Theorem 3,
we require x ′, the solution to NOS

(
z′), to be feasible for NOS (z) in order to show

that v (NOS (z)) − δz
(
z′) is a dual bound. Analogously, we require x ′ to be a feasible

solution to ROB
(
Z , c, c

)
in order to derive a dual bound from v

(
ROB

(
Z , c, c

))
.

That is, if x ′ does not meet the optimality-cuts then we can not derive any dual bounds
from v

(
ROB

(
Z , c, c

))
. However, if

[
z
(
x ′) , z

(
x ′)] ∩ [

c, c
] 
= ∅ holds then x ′ is

according to Theorem 4 a feasible solution to ROB
(
Z , c, c

)
, leading to the following

generalization of Theorem 3.

123



294 C. Büsing et al.

Corollary 1 Let Z ⊆ R≥0 and c ≤ c with Z ⊆ [
c, c

]
. Furthermore, let z′ ∈ [

c, c
]

and x ′ be an arbitrary solution to NOS
(
z′) of value v′ satisfying z′ ∈ [

z
(
x ′) , z

(
x ′)].

Then v′ ≥ v
(
ROB

(
Z , c, c

)) − δZ
(
z′) holds.

Accordingly, there is a trade-off in the choice of c, c. On the one hand, the optimal
objective value v

(
ROB

(
Z , c, c

))
, and thus the derived dual bounds for other z′ ∈[

c, c
]
, increases if the bounds c, c are close together. On the other hand, we want to

derive dual bounds for as many z′ as possible. Furthermore, the optimality-cuts can be
hindering for finding good primal bounds. We resolve this trade-off by adding loose
optimality-cuts, corresponding to wide bounds c, c, in the beginning and gradually
strengthening them as we consider more robust subproblems.

Let Z ∗ ⊆ Z be the union of all nodes Z∗ ⊆ Z for which we already solved a
robust subproblemROB

(
Z∗, c∗, c∗) and letZ ′ = ⋃

Z∈N Z be the union of all active
nodes. In our branch and bound algorithm, for a node Z ∈ N , we choose c, c ∈ Z ′
as wide as possible around Z such that there exists no z∗ ∈ Z ∗ in between, i.e.,

c = min
{
z′ ∈ Z ′ ∣∣�z∗ ∈ Z ∗ : z′ ≤ z∗ < z

}

and

c = max
{
z′ ∈ Z ′ ∣∣�z∗ ∈ Z ∗ : z < z∗ ≤ z′} .

In order to see that it is not reasonable to expand the interval
[
c, c

]
, consider a value

z′ ∈ Z ′\ [c, c]. By definition, we already considered a subproblem ROB
(
Z∗, c∗, c∗)

with z′ ∈ [
c∗, c∗] for a node Z∗ containing a value z∗ with z′ < z∗ < z or z <

z∗ < z′. Since δZ∗
(
z′) ≤ δz∗

(
z′) < δZ

(
z′) holds, we have already computed a

dual bound v
(
z′) = v

(
ROB

(
Z∗, c∗, c∗)) − δZ∗

(
z′) that is probably better than a

potential dual bound derived from ROB
(
Z , c, c

)
. Thus, expanding

[
c, c

]
tends to

be useless for obtaining new dual bounds. Now, assume that there exists a nominal
solution x with

[
z (x) , z (x)

] ∩ [
c, c

] = ∅ such that (x, p, z) is feasible for ROB (Z)

and also defines an improving primal bound v. In this case, it would be beneficial to
expand

[
c, c

]
such that x fulfills the optimality-cuts and we obtain a new incumbent.

However, we have seen in the proof of Theorem 2 that the objective value of (x, p, z)
is non-increasing for z ≤ z (x) and non-decreasing for z ≥ z (x) with the appropriate

p = (
ĉi − z

)+
xi . Using the arguments from above, we should have already found

a solution (x, p∗, z∗) that is at least as good as (x, p, z) for a previous subproblem
ROB

(
Z∗, c∗, c∗). Accordingly, expanding

[
c, c

]
is also uninteresting for obtaining

new primal bounds.
In the next section, we show what else we can do except for choosing appropriate

bounds c, c in order to guide the branch and bound algorithm in the search for primal
bounds.

7.2 Primal bounding

We already stated in the introduction that the potentially large optimality gap of ROB
can cause problems for MILP solvers when trying to compute feasible solutions.

123



Branch and bound for robust binary optimization… 295

Hence, we have to provide guidance for the solver in order to consistently obtain
strong primal bounds. As the focus of this paper is on the robustness structures of ROB,
and not the corresponding nominal problem NOM, we implement no heuristics that
explicitly compute feasible solutions x to NOM. Nevertheless, our branch and bound
algorithm naturally aids in the search for optimal solutions by quickly identifying non-
promising values of z. This allows us early on to focus on nodes Z ⊆ Z containing
(nearly) optimal choices for z, for which solving ROB

(
Z , c, c

)
is much easier, using

the equivalent problem ROBS
(
Z ,Q, c, c

)
, and yields (nearly) optimal solutions to

ROB.
Furthermore, evenwhen consideringROB

(
Z , c, c

)
for a node Z ⊆ Z that contains

no optimal choice for z, we can potentially derive good primal bounds or even opti-
mal solutions to ROB. In many cases, an optimal solution (x, p, z) to ROB

(
Z , c, c

)

does not meet the optimality criterion z ∈ [
z (x) , z (x)

]
, which leaves potential for

improving the primal bound provided by v
(
ROB

(
Z , c, c

))
. Since z (x) is easily com-

putable, we can obtain a better primal bound v (x) provided by the solution value
of

(
x, p′, z (x)

)
, with p′

i = (
ĉi − z (x)

)+
xi . Moreover, we can not only compute

v (x) for an optimal solution x to ROB
(
Z , c, c

)
, but any feasible solution the solver

reports while solving ROB
(
Z , c, c

)
. This increases the chance of finding good primal

bounds, as an improved sub-optimal solution may provide an even better bound than
an optimal solution to ROB

(
Z , c, c

)
. We will see in our computational study that

our branch and bound algorithm quickly finds optimal solutions to ROB, often while
considering the very first robust subproblem. Additionally, the possibility to derive
strong primal bounds from sub-optimal solutions, which may be found early on while
solving ROB

(
Z , c, c

)
, will be relevant for our pruning strategy in the next section.

7.3 Pruning

In theory, a problem is solved to optimality if the primal bound v is equal to a proven
dual bound v. In practice, however, it is neither always necessary to prove v = v,
nor is it always possible due to numerical issues. Instead, one considers a problem
to be solved if v is sufficiently close to v, that is, it either holds v − v ≤ tabs or
v−v
|v| ≤ t rel, where tabs > 0 is the absolute tolerance and t rel > 0 is the relative

tolerance. The concept of “sufficiently solved” problems is also applied to the pruning
of nodes Z ⊆ Z within our branching tree. More specifically, we prune Z not only
if v (Z) ≥ v holds, but as soon as we have v − v (Z) ≤ tabs or v−v(Z)

|v| ≤ t rel. In our

computational study, we choose tabs = 10−10 and t rel = 10−4, which are the default
tolerances used by Gurobi [26]. Note that for v = 0 and v > v, the relative gap v−v

|v|
is defined to be ∞. If v ≥ v = 0 holds then the relative gap does not matter, since
we have v − v ≤ tabs. To simplify notation, we define prn

(
v, v

) = 1 if the dual and
primal bounds v, v are strong enough for pruning and prn

(
v, v

) = 0 otherwise.
Recall that the dual bound v (Z) for Z ⊆ Z is themaximum of the linear relaxation

value vR
(
ROBS

(
Z ,Q, z, z

))
and theworst individual boundmin

{
v (z)

∣∣z ∈ Z
}
from

Sect. 7.1.1. Even if v (Z) is too weak for pruning, i.e., prn
(
v (Z) , v

) = 0, it may hold
prn

(
v (z) , v

) = 1 for a value z ∈ Z . Therefore, we apply a further pruning step in

123



296 C. Büsing et al.

addition to the pruning of the whole node Z . Every time we consider a node Z , we
check for all z ∈ Z whether z can be pruned according to its individual dual bound
v (z). This is beneficial, as we obtain a stronger formulation for the resulting subset of
Z . Furthermore, before solving a robust subproblem ROB

(
Z , c, c

)
, we check for all

remaining z′ ∈ ⋃
Z∈N Z whether prn

(
v
(
z′) , v

) = 1 holds, so that the bounds c, c,
as chosen in Sect. 7.1.2, are as narrow as possible.

Once we consider a robust subproblem ROB
(
Z , c, c

)
, we let the MILP solver

manage the pruning itself, as the otherwise necessary interference into its solving
process would lead to a performance degradation. However, we can monitor the best
known dual bound v

(
ROB

(
Z , c, c

))
and terminate the subproblem as soon as we have

prn
(
v
(
ROB

(
Z , c, c

))
, v

) = 1. This is especially important for robust subproblems
ROB

(
Z , c, c

)
corresponding to nodes Z containing values that are far from being

optimal. In this case, we are usually aware of a primal bound v that is substantially
smaller than the optimal solution value v

(
ROB

(
Z , c, c

))
, allowing for a fast termi-

nation. Such a primal bound can either come from a previously considered robust
subproblem or from a solution to ROB

(
Z , c, c

)
that we improved as described in the

previous section.
Unfortunately, terminating ROB

(
Z , c, c

)
prematurely is problematic regarding the

dual bounds v
(
ROB

(
Z , c, c

)) − δZ
(
z′) computed in Sect. 7.1.1. Note that in prac-

tice, we do not necessarily know the optimal solution value v
(
ROB

(
Z , c, c

))
and

thus use the best known dual bound v
(
ROB

(
Z , c, c

))
instead. Hence, there is a

trade-off in saving time by terminating ROB
(
Z , c, c

)
early and generating strong

dual bounds v
(
ROB

(
Z , c, c

)) − δZ
(
z′). We resolve this trade-off by computing the

estimators δZ
(
z′) before solving ROB

(
Z , c, c

)
and constantly evaluating whether

improving v
(
ROB

(
Z , c, c

))
can potentially lead to the pruning of additional values

z′. LetZ ′ ∩ [
c, c

]
be the remaining values of z for which we computed the estimators

δZ
(
z′). Furthermore, let v

(
ROB

(
Z , c, c

))
be the currently best known primal bound

for ROB
(
Z , c, c

)
. For evaluating whether z′ ∈ Z ′ ∩ [

c, c
]
can potentially be pruned,

we consider three different cases.

Case 1. If prn
(
max

{
v (z) , v

(
ROB

(
Z , c, c

)) − δZ
(
z′)} , v

) = 1 holds then z′ can
already be pruned.

Case 2. Otherwise, if prn
(
v
(
ROB

(
Z , c, c

)) − δz
(
z′) , v

) = 1 holds then z′ can be
pruned if we manage to increase v

(
ROB

(
Z , c, c

))
up to v

(
ROB

(
Z , c, c

))
.

Case 3. Otherwise, z′ can only be pruned if we find a better global primal bound v.

If Case 1 applies then z′ is irrelevant to the question whether we should terminate
ROB

(
Z , c, c

)
early, as it will be pruned anyway. In contrast, it is unlikely that z′ will be

pruned if Case 3 applies.We have already stated in the previous section that our branch
and bound algorithm usually finds (nearly) optimal solutions to ROB while solving
the first robust subproblem. Hence, most of the time, the primal bound v will not be
improved, leaving little chance for z′ to be pruned.Accordingly, in our implementation,
we continue solving ROB

(
Z , c, c

)
as long as there exists a value z′ ∈ Z ′ ∩ [

c, c
]
for

which Case 2 applies. However, since closing the gap between v
(
ROB

(
Z , c, c

))
and

v
(
ROB

(
Z , c, c

))
can potentially waste much time, we use an additional termination

criterion. In our implementation, we also terminate ROB
(
Z , c, c

)
if no z′ ∈ Z ′∩[

c, c
]

switched to Case 1 within the last 10 s. That is, raising the dual bound did not lead to a

123



Branch and bound for robust binary optimization… 297

pruning of an additional z′ within this time. Of course, this criterion is highly arbitrary,
but it leads to an improvement of our algorithm’s performance in our computational
study. As heavy engineering is beyond the scope of this paper, we leave a detailed
analysis of this component and its potential for future research.

7.4 Node selection

The node selection strategy determines the order in which we explore nodes within
our branching tree, and thus directly impacts the number of nodes we consider before
finding an optimal solution. Hence, a good node selection strategy is critical to the
performance of any branch and bound algorithm, as finding an optimal (or at least
good) solution quickly enables us to prune more efficiently. A review of different
strategies in the context of mixed integer programming is given by Linderoth and
Savelsbergh [34]. A survey on machine learning for node selection is given by Lodi
and Zarpellon [35].

Two basic strategies, from which many other strategies emerge as a combination,
are depth-first and best-first search. Depth-first search is based on the last-in-first-
out principle and thus follows a path down the branching tree until a prunable node is
reached. In contrast, best-first search ranks the nodes of the branching tree by assigning
a value to each node and always picking a node with the best value. Here, we consider
the case where the ranking value is equal to the node’s dual bound. In this case, best-
first search is also called best-bound search. Naturally, both strategies, depth-first and
best-bound search, have advantages and disadvantages, as discussed by Linderoth and
Savelsbergh [34]. An advantage of depth-first search is that it requires less memory,
as the number of active nodes |N | in the branching tree is relatively small. It also
allows for a fast reoptimization after branching, since the optimal dual solution to
the parent node’s subproblem is readily available to warm start the, typically similar,
subproblem of the child node. Furthermore, depth-first search usually finds feasible
solutions quickly, as integer feasible solutions tend to be located deep in the branching
tree, wheremany variables are fixed due to branching. An obvious drawback, however,
is that depth-first search may explore many unnecessary nodes and can get stuck in
unpromising subtrees if the current primal bound is far from the optimal solution value.
In contrast, best-bound search tends to minimize the number of nodes in the branching
tree. This is because best-bound search will never select a node whose dual bound is
worse than the optimal solution value. However, the drawback of best-bound search is
that it may require more memory, as the number of active nodes in the branching tree
grows large if there exist many nodes with similar bounds. This can also prevent the
algorithm from finding feasible solutions early, since deeper levels of the branching
tree are explored late. Furthermore, the reoptimization is hindered, as sequentially
considered subproblems are less related compared to the depth-first search.

The strategy for our branch and bound algorithm can be seen as a hybrid of depth-
first and best-bound search. Note that our algorithm switches back and forth between
two phases. In phase one, we branch the setZ into subsets Z and obtain dual bounds
vR

(
ROBS

(
Z ,Q, z, z

))
from solving linear subproblems. In phase two, we stick to

a node Z ⊆ Z and solve the robust subproblem ROBS
(
Z ,Q, c, c

)
. Phase two can

123



298 C. Büsing et al.

be seen as a leaning towards depth-first search, since we focus on the chosen values
in Z until the problem ROBS

(
Z ,Q, c, c

)
is either solved to optimality or terminated

as described in the previous section. Since ROBS
(
Z ,Q, c, c

)
is potentially a hard

problem, it would be beneficial to only solve it for promising nodes Z , presumably
leading to good solutions. We use the dual bound v (Z) of a node Z ⊆ Z as an
indicator for the node’s potential to contain good solutions (x, p, z) with z ∈ Z , and
thus perform a best-bound search in phase one. In detail, for the set of active tree
nodesN , we always process a node Z ∈ N for which the current dual bound v (Z)

is minimum among all nodes, i.e., Z ∈ argmin
{
v (Z)

∣∣Z ∈ N
}
.

Fortunately, the drawbacks of best-bound search described above are not critical in
our case. The number of active nodes is at most |N | ≤ |Z | ≤ ⌈ n−Γ

2

⌉ + 1. Hence,
memory consumption should be no limiting factor in phase one. This also allows us to
store a solution basis for each node towarm start the simplex algorithm after branching.
However, while warm starting usually accelerates the solving process, we observed
that it leads to less consistent results in our computational study, as it disables Gurobi’s
LP presolve [26]. Therefore, we do not consider warm starts for the evaluation of our
branch and bound approach in Sect. 8.

7.5 Branching

Much research has been devoted to the question of how to branch efficiently in integer
linear programming, see, e.g., Achterberg et al. [2] or Linderoth and Savelsbergh
[34]. However, the main question that is addressed there is on which integer infeasible
variable to branch. Obviously, this question is uninteresting in our case, sincewe solely
branch on the variable z and hand the robust subproblems to the chosen MILP solver,
which manages the branching on its own. Instead, we have to address the question
how to divide a node Z ⊆ Z so that the branching is efficient. Furthermore, we want
to discuss how to decide whether a node Z should be branched at all or whether we
solve ROBS

(
Z , Q, c, c

)
directly as an MILP.

To answer the latter, let (x, p, z) ∈ P
(
Z ,Q, z, z

)
be an optimal solution to the lin-

ear relaxation of ROB
(
Z ,Q, z, z

)
. Here, we consider ROB

(
Z ,Q, z, z

)
instead of the

equivalent ROBS
(
Z , Q, z, z

)
for simplicity. Since x meets the optimality-cuts, there

exists a value z′ ∈ [
z, z

] ∩ [
z (x) , z (x)

]
. The bilinear solution

(
x, p′, z′) ∈ PBIL,

with p′
i = (

ĉi − z′)+ xi , provides an upper bound on the optimal objective value
over all solutions in PBIL fulfilling the optimality-cuts for c = z and c = z. This
upper bound is easily computable, as we have v

((
x, p′, z′)) = v

((
x, p′′, z (x)

))
,

with p′′
i = (

ĉi − z (x)
)+

xi , and z (x) can be determined in linear time. Now, imagine
that the objective values v ((x, p, z)) and v

((
x, p′, z′)) are nearly identical. Since

PBIL is the strongest possible formulation for ROB, there is not much potential for
improving the integrality gap of ROB

(
Z ,Q, z, z

)
via branching. While this does

not necessarily imply for
[
c, c

]
�

[
z, z

]
that the integrality gap of ROB

(
Z ,Q, c, c

)

is also small enough, we use the relation between the objective values v ((x, p, z))
and v

((
x, p′, z′)) as an indicator and stop branching Z once they are sufficiently

close to each other. In our implementation, we consider the two values to be suf-

123



Branch and bound for robust binary optimization… 299

ficiently close, if their gap is in the relative tolerance or absolute tolerance, that is
prn

(
v ((x, p, z)) , v

((
x, p′, z′))) = 1, as defined in Sect. 7.3. However, we do not

solve ROBS
(
Z , Q, c, c

)
right away, but first reinsert the node Z into the set of active

nodes N and mark Z to be considered for a robust subproblem by storing a value
sol (Z) = 1. This is because Z was not selected with respect to the just computed
dual bound vR

(
ROBS

(
Z , Q, z, z

))
, but a dual bound based on the linear relaxation

value of a parent node. Once Z is chosen again with respect to its new (potentially sig-
nificantly improved) dual bound, we solve the robust subproblem ROBS

(
Z , Q, c, c

)

directly as an MILP.
Now, assume that we have decided otherwise and want to branch the node Z ⊆ Z

further into subnodes Z1, Z2. Obviously, Z1, Z2 should form “intervals”, that is[
z1, z1

] ∩ [
z2, z2

] = ∅, as otherwise, the bounds on z would be unnecessarily wide,
leading to weaker formulations. Hence, we search for a branching-point θ ∈ [

z, z
)

defining Z1 = {
z′ ∈ Z

∣∣z′ ≤ θ
}
and Z2 = {

z′ ∈ Z
∣∣z′ > θ

}
. Another desirable prop-

erty of Z1, Z2 would be that the computed optimal solution (x, p, z) ∈ P
(
Z ,Q, z, z

)

is neither contained in P
(
Z1,Q, z1, z1

)
, nor in P

(
Z2,Q, z2, z2

)
. We can achieve

this by choosing θ = z. First, note that θ < max (Z) holds, since we did not
stop branching and thus have (x, p, z) /∈ PBIL, which implies z < max (Z) due
to Proposition 1. Furthermore, if z /∈ Z holds then it is trivial that (x, p, z) is
not feasible for any child node. In the case of z ∈ Z , we have z = z1, and thus
(x, p, z) ∈ P

(
Z1,Q, z1, z1

)
would again imply (x, p, z) ∈ PBIL due to Proposi-

tion 1.
Unfortunately, the computed value z is in practice often near to one of the bounds

z, z, leading to an unbalanced branching, where the optimal linear relaxation value
vR

(
ROB

(
Zi ,Q, zi , zi

))
for one child node rises significantly, while the other remains

nearly unchanged. This problem is also observed in the context of spatial branch and
bound, which is a common approach for solving non-linear optimization problems.
In spatial branch and bound, a convex relaxation of the non-linear formulation is
considered to obtain lower bounds on the optimal objective value. This relaxation
is then strengthened via branching on (continuous) variables occurring in non-linear
terms, similar to the branching we perform on z to obtain stronger relaxationsP (Z)

of the bilinear formulationPBIL. A common choice for the branching-point in spatial
branch and bound is a convex combination of the variable’s value in the current solution
and the middle point of the variable’s domain [41]. In our case, this translates to
choosing αz + (1 − α)

(
z + z

)
/2 with α ∈ [0, 1]. This value is then often projected

into a subinterval to ensure that θ is not at the boundaries of its domain, i.e., θ ∈[
z + β

(
z − z

)
, z − β

(
z − z

)]
with β ∈ [0, 0.5]. In summary, the branching point is

chosen as

θ = max
{
z + β

(
z − z

)
,min

{
z − β

(
z − z

)
, αz + (1 − α)

(
z + z

)
/2

}}
.

Obviously, the parameters α and β leave room for engineering and differ between
solvers. For example, the solvers SCIP [22] and COUENNE [8] choose θ with default
values α = 0.25 and β = 0.2, while ANTIGONE (α = 0.75, β = 0.1) and BARON
(α = 0.7, β = 0.01) choose a significantly higher value for α, according to [41]. Note
that β has actually no effect on θ for any of these choices. Again, we don’t dive too

123



300 C. Büsing et al.

deep into the engineering of our branch and bound algorithm in this paper and simply
take a middle course by choosing α = 0.5 and β = 0. However, in some cases, this
leads to a branching where (x, p, z) is still feasible for one of the child nodes. Hence,
we check if the branching is effective, by evaluating for both child nodes Z1, Z2 if
(x, p, z) /∈ P

(
Zi ,Q, zi , zi

)
holds. If not, we update θ by choosing the middle value

between z and θ . We do this until (x, p, z) is infeasible for both nodes, which is
guaranteed to happen, as our branching point converges to z.

7.6 Summary and implementation

In this section, we summarize the components of our branch and bound approach and
merge them into one algorithm, as described in Algorithm 3. We also discuss some
details regarding the implementation of the algorithm, which is written in Java and
uses Gurobi [26] as an MILP and LP solver.

Algorithm 3 starts with the preparation for the branch and bound by computing
the conflict graph and clique partitioning (line 1), which are then used to computeZ
(line 2). Afterwards, the set of active nodes N is initialized with the root node Z ,
which is marked with sol (Z ) = 0, since we don’t know whether ROBS

(
Z ,Q, c, c

)

should be solved directly as an MILP (line 3). Afterwards, we initialize the primal
and dual bounds (line 4), as well as the set of already considered values z ∈ Z for
subproblems ROBS

(
Z ,Q, c, c

)
with z ∈ Z (line 5). Note that we manage the whole

branching tree outside of Gurobi, as it does not provide all callbacks to perform the
necessary branching and node-selection [26].

After the initialization, our algorithm starts processing the nodes Z within the set
of active nodesN until no node remains, and thus the problem is solved to optimality
(line 6). In accordance with Sect. 7.4, we choose a node among those having the lowest
dual bound v (Z) (line 7). Afterwards, we checkwhether ROBS

(
Z ,Q, c, c

)
is marked

to be solved as an MILP (line 8). If so, we try to prune all remaining values z′ in active
nodes (lines 9 and 10) in order to reduce Z as much as possible and allow for a choice
of tighter bounds c, c for the optimality-cuts, as described in Sect. 7.1.2 (line 11). We
then compute the estimators δZ

(
z′) for the remaining values in

[
c, c

]
(line 12), which

we need for our termination strategy of ROBS
(
Z ,Q, c, c

)
and also for updating the

dual bounds v
(
z′).We then construct the problemROBS

(
Z ,Q, c, c

)
and pass it to the

solver (line 13).While constructing the robust subproblem in practice,we have to avoid
some pitfalls regarding numerical issues. Since the deviations ĉi , and thus the values
z ∈ Z , can be arbitrarily close to each other, it is possible that our subproblem contains
constraints p′

Q + z′ ≥ ∑
i∈Q

(
min

{
ĉi , z

} − z
)+

xi for which the coefficients on the
right-hand side are very small. Such constraints may not only be troublesome for the
solver’s performance, but also irrelevant in practice, since Gurobi considers per default
all constraints that are violated by less than the feasibility tolerance 10−6 as satisfied
[26]. Hence, we only add the constraint p′

Q + z′ ≥ ∑
i∈Q

(
min

{
ĉi , z

} − z
)+

xi if

min
{
ĉi , z

} − z > 10−6 holds for at least one i ∈ Q. Once the subproblem is passed
to the solver, we monitor the solution process via callbacks. Using these, the solver
allows us to access the current best solution of the subproblem, and improve it as in
Sect. 7.2, every time a new incumbent is found (line 14). Furthermore, we can query

123



Branch and bound for robust binary optimization… 301

Algorithm 3: The Branch and Bound Algorithm
Input: An instance of ROB
Output: An optimal solution

(
x∗, p∗, z∗) of value v

1 Compute conflict graph and clique partitioning Q, as in Appendix A
2 Compute possible optimal values Z ⊆ {

ĉ0, . . . , ĉn
}
, as in Appendix C

3 Initialize set of active nodesN = {Z } with sol (Z ) = 0
4 Set dual bounds v (Z ) = v (z) = −∞ for all z ∈ Z , and primal bound v = ∞
5 Initialize set Z ∗ = ∅ of already considered values for robust subproblems
6 while N 
= ∅ do
7 Choose Z ∈ argmin

{
v
(
Z ′)∣∣Z ′ ∈ N

}

8 if sol (Z) = 1 then
9 Let Z ′ = ⋃

Z ′∈N Z ′ be the set of remaining values
10 Prune all z′ ∈ Z ′ with prn

(
v
(
z′) , v

) = 1
11 Choose c, c, as in Sect. 7.1.2
12 Compute estimators δZ

(
z′) for all z′ ∈ Z ′ ∩ [

c, c
]
, as in Algorithm 2

13 Solve ROBS (
Z ,Q, c, c

)
with the following callbacks

14 Update v and
(
x∗, p∗, z∗) for all solutions found, as in Sect. 7.2

15 Terminate ROBS (
Z ,Q, c, c

)
, as in Sect. 7.3

16 RemoveN ← N \ {Z} and add Z ∗ ← Z ∗ ∪ Z

17 Update v
(
z′) ← max

{
v
(
z′) , v

(
ROBS (

Z ,Q, c, c
)) − δZ

(
z′)} for all z′ ∈ Z ′ ∩ [

c, c
]

18 Update v
(
Z ′) ← max

{
v
(
Z ′) ,min

{
v
(
z′)∣∣z′ ∈ Z ′}} for all Z ′ ∈ N

19 else
20 RemoveN ← N \ {Z}
21 Prune all z ∈ Z with prn

(
v (z) , v

) = 1

22 if PS (
Z ,Q, z, z

) 
= ∅ then
23 Compute optimal solution

(
x, p′, z′) ∈ PS (

Z ,Q, z, z
)

24 if
(
x, p′, z′) is integer feasible then

25 Update v and
(
x∗, p∗, z∗)

26 else if prn
(
v
((

x, p′, z′)) , v
) = 0 then

27 if prn
(
v
((

x, p′, z′)) ,
(
x, p′′, z (x)

)) = 1 then
28 Set sol (Z) = 1 and reinsertN ← N ∪ {Z}
29 else
30 Branch Z into Z1, Z2, as in Sect. 7.5
31 Set v (Zi ) ← max

{
v
((

x, p′, z′)) ,min
{
v (z)

∣∣z ∈ Zi
}}

for i = 1, 2
32 Insert N ← N ∪ {Z1, Z2} with sol (Z1) = sol (Z2) = 0

33 Prune all Z ′ ∈ N with prn
(
v
(
Z ′) , v

) = 1

34 return
(
x∗, p∗, z∗)

the current primal and dual bounds of the subproblem at every node of its branching
tree in order to decide whether the subproblem can be terminated, as in Sect. 7.3 (line
15). After the subproblem is solved or terminated, we remove Z from the set of active
nodes, add the values in Z to the set of already considered values Z ∗ (line 16), and
update dual bounds using the estimators δZ

(
z′) (lines 17 and 18).

If we don’t solve ROBS
(
Z ,Q, c, c

)
directly as an MILP, we remove Z from the

set of active nodes, as it will either be pruned or branched (line 20). In order to obtain
a formulation that is as strong as possible, we try to prune all values z ∈ Z , using their

123



302 C. Büsing et al.

individual dual bound v (z) (line 21). Afterwards, we let the solver solve the linear
relaxation over PS

(
Z ,Q, z, z

)
, also avoiding numerical issues as above. If there

exists no solution to the linear relaxation then Z can be pruned and there is nothing
left to do (line 22). Otherwise, we check whether the optimal solution

(
x, p′, z′) is

integer feasible and potentially update the best known solution (x∗, p∗, z∗) (lines 23
to 25). If the solution is not integer feasible, we check whether Z can be pruned
using the new dual bound v

((
x, p′, z′)) (line 26). If this is not the case, then we

decide whether Z should be branched further, as in Sect. 7.5 (line 27). If we decide to
solve ROBS

(
Z ,Q, c, c

)
directly, we reinsert Z into N and mark sol (Z) = 1 (line

28). Otherwise, we branch Z into subsets Z1, Z2, as described in Sect. 7.5 (line 30),
compute dual bounds for both child nodes (line 31), and insert them into the set of
active nodes (line 32).

After Z is processed, either by solving the robust subproblemor its linear relaxation,
we check whether the potentially obtained new primal and dual bounds allow for a
pruning of some active nodes (line 33). If any active nodes remain, we continue with
choosing the next node, otherwise we report the optimal solution (x∗, p∗, z∗).

Obviously, it will not always be possible to solve ROB to optimality within a given
time limit. Hence, in practice, we also keep track of a dual bound v (ROB) in order to
evaluate the quality of the best solution found.We do this by initializing v (ROB) = ∞
and updating it every time a node Z is pruned, using the corresponding dual bound,
i.e., v (ROB) ← min

{
v (ROB) , v (Z)

}
. After the algorithm is terminated, we update

v (ROB) ← min
{
v (ROB) , v (Z)

}
for all remaining active nodes Z ∈ N . Doing so,

we make sure that the dual bound v (ROB) is equal to the minimum dual bound v (Z)

of all leaves Z of our branching tree.
The above summary of our branch and bound algorithm closes the theoretical part

of this paper. In the next section, we perform an extensive computational study to
evaluate the performance of our approach.

8 Computational study

In this section, we first carefully construct a set of hard robust problems, which
we then use to experimentally compare our branch and bound algorithm with other
approaches from the literature. Afterwards, we perform several tests on the robust
knapsack problem to further demonstrate different trends and effects of our branch
and bound algorithm. All experiments have been implemented in Java 11 and are per-
formed on a single core of a Linux machine with an Intel® CoreTM i7-5930K CPU
@ 3.50GHz, with 4 GB RAM reserved for each calculation. All LPs and MILPs are
solved using Gurobi version 9.1.0 [26] in single thread mode and all other settings at
default.

All implemented algorithms [23] and benchmark instances [24] are freely available
online for further use.

123



Branch and bound for robust binary optimization… 303

8.1 Instance generation

In order to avoid a bias towards certain combinatorial problems, we generate robust
instances on the basis of the diverse MIPLIB 2017 [25]. To transform a given nominal
problem from the MIPLIB 2017 into a robust problem, we have to decide which
objective coefficients ci are uncertain, that is ĉi > 0, how large the corresponding
deviations ĉi are, and what our robustness budget Γ is. In real-world applications, a
coefficient is uncertain if, for example, it is the result of a forecast or a measurement.
In [12, 14, 16], a coefficient is expected to be a result of such procedures, and thus
uncertain, if it is an “ugly” number. In particular, integer values are considered “non-
ugly” and are assumed to be certain. However, since many MIPLIB instances only
contain integer values, treating all integer objective coefficients as certain would leave
us with few instances for our study. Therefore, we take a middle course by considering
ci to be certain only if we have ci ∈ {−1, 0, 1} in the nominal instance, since it is
unlikely that ci is the result of a forecast or measurement in this case. Coefficients
ci ∈ {−1, 1} usually do not represent a numerical objective value for xi , but are for
counting the number of chosen variables. Moreover, ci = 0 suggests that the choice of
xi has no direct effect on the objective at all. Regarding the choice of the deviations, in
[12, 14, 16, 20] a fixed percentage of the absolute nominal coefficient is considered,
i.e., ĉi = ξ |ci | for uncertain objective coefficients, where ξ ranges from from 0.01%
to 2% across the different studies. Furthermore, the robustness budget Γ is chosen
from a predefined set of arbitrarily fixed values [14, 16, 20].

Note that the aforementioned studies not only consider uncertain objective coeffi-
cients, but also uncertainties in the constraints. Bearing this in mind, the above choices
may be appropriate in the respective settings for illustrating the effect of uncertainty
[12, 16] and the creation of sufficiently hard instances [14, 20]. Nevertheless, we advo-
cate for a different choice of ĉi and Γ in order to construct instances with which we
can test our algorithms to their limits. In the following, we study the impact of ĉi and
Γ on the integrality gap of ROB to evaluate how they should be chosen to obtain hard
instances.

Just like in the literature, we define our deviations ĉi = ξi |ci | with respect to the
nominal coefficients. However, the factor ξi is chosen independently for each uncertain

coefficient from an interval
[
ξ, ξ

]
. In order to seewhether a strong correlation between

ĉi and ci raises the integrality gap, we test different ranges
[
ξ, ξ

]
with a fixed middle

value
(
ξ + ξ

)
/2.We also testmuch higher values ξi , compared to the values chosen in

[12, 14, 16, 20], since large deviations result in more difficult problems and deviations
of even more than 100% are relevant in practice, as observed in [29].

The choice of Γ must be made especially carefully. For a problem ROB, let nROB

be the number of uncertain variables contributing to an arbitrary optimal solution. If
Γ = 0 or Γ ≥ nROB holds then either none or all coefficients of the chosen uncertain
variables deviate to their maximum. This not only leads the idea of budgeted robust
optimization to absurdity, but also results in a relatively small integrality gap.Hence,Γ
should be somewhere between 0 and nROB to obtain a difficult instance. Accordingly,
choosing Γ from a fixed set of values for all instances is not appropriate for our

123



304 C. Büsing et al.

purpose, as, e.g., Γ = 100 may be suitable for large instances, while it is way too high
for the smaller ones. Obviously, we cannot choose Γ with respect to nROB, as we do
not know the exact value in advance. Furthermore, in contrast to a practitioner solving
a real problem, we have no insight into the structure of the diverse problems from
the MIPLIB 2017. Hence, our best bet is to solve the nominal problem first, count
the number nNOM of uncertain variables appearing in the obtained optimal solution,
and choose Γ relative to nNOM. We will see in the following that for the choice
Γ = γ nNOM, there is a correlation between γ and the integrality gap of ROB.

Before determining the integrality gap of ROB for different choices of ĉi and Γ , we
have to select the nominal instances to be transformed into robust problems. Naturally,
not all instances from the MIPLIB 2017 are suitable for this transformation. Of the
available 1065 instances, we consider the ones that are labeled to be feasible, have an
objective function, and consist only of binary variables. Furthermore, we only consider
instances that have the “easy” label, as we cannot expect to solve the robust counterpart
of hard instances. After this first selection, we try to solve the remaining 123 nominal
instanceswithin one hour usingGurobi. Of the instances that could be solved,we select
those whose computed optimal solution contains at least ten uncertain variables, i.e.,
nNOM ≥ 10. This ensures that variables with uncertain coefficients have an impact on
the optimal solution. From the remaining instances, we also had to exclude pb-fit2d
and supportcase11 due to numerical issues. After this final selection, we are left with
67 nominal instances for our computational study.

For these 67 instances, we construct robust problems by choosing Γ = ⌈
γ nNOM

⌉
,

with γ ∈ {0%, 10%, 20%, . . . , 200%} , as well as ĉi = ξi |ci |, where ξi is an indepen-

dent and uniformly distributed random integer percentage within an interval
[
ξ, ξ

]
.

Here,we choose
[
ξ, ξ

]
∈ {[10%, 90%] , [30%, 70%] , [45%, 55%] , {50%}}. For each

resulting robust problem, we solve the linear relaxation, try to compute an optimal
integer solution using our branch and bound algorithm, and determine the integrality
gap. For a fair comparison of the integrality gap with respect to different choices of γ

and
[
ξ, ξ

]
, we only consider the 44 underlying nominal instances for which we were

able to compute an optimal solution for all combinations of γ and
[
ξ, ξ

]
. As we are

interested in the impact of γ and
[
ξ, ξ

]
, and not of the nominal instance, we normalize

the integrality gaps by dividing each gap by the maximum gap over all combinations

of γ and
[
ξ, ξ

]
for the respective instance. Figure 1 shows for all combinations of γ

and
[
ξ, ξ

]
the mean of the normalized integrality gaps over all considered instances.

For all choices of
[
ξ, ξ

]
, the mean integrality gap first increases monotonically in γ ,

peaks at latest at γ = 100% and decreases afterwards. This suggests that, at least for
most problems, the maximum integrality gap is achieved for a value Γ somewhere
in

[
0, nNOM

]
. We take this into account by choosing γ ∈ {10%, 40%, 70%, 100%}

in our computational study. Note that γ = 100% is most likely way too conservative
for a practical problem. However, we are not interested in constructing meaningful

123



Branch and bound for robust binary optimization… 305

Fig. 1 Mean normalized integrality gap for different choices of γ and
[
ξ, ξ

]

practical instances, but instances where uncertainty contributes to the difficulty of the
problem.

Regarding the deviations, the integrality gap is higher for narrow intervals
[
ξ, ξ

]
,

suggesting that a strong correlation between ĉi and ci results in hard robust instances.
Although choosing ξ = ξ seems to be beneficial in this regard, we chose ξ 
= ξ

for our computational study, since fixing ξi may result in structural properties that
lead to a biased performance of the tested algorithms. For example, Monaci and Pfer-
schy [36] showed that an adaptation of the classical greedy heuristic for the binary
knapsack problem has a better worst-case performance for the robust knapsack if
max

{
ξi/ξ j

∣∣i, j ∈ [n]
}
is small. Moreover, our branch and bound algorithm would

particularly benefit from choosing ξ = ξ , as this usually provides a smaller set Z of

possible values for z. Therefore, we choose
[
ξ, ξ

]
= [45%, 55%] in our computa-

tional study and additionally take smaller and larger deviations into account by also

considering
[
ξ, ξ

]
∈ {[5%, 15%] [95%, 105%]}.

8.2 Impact of components of the branch and bound algorithm

Before comparing the branch and bound algorithm with approaches from literature,
we first evaluate the different components described in the previous sections. More
precisely, we disable components to test their impact on the performance, leading to
the following variants of our branch and bound algorithm.

BnB is our branch and bound algorithm as in Algorithm 3.
BnB-Clique does not compute the conflict graph and cliques from Sect. 5.
BnB-Filter does not filter Z as in Sect. 6, i.e., Z = {

ĉ0, . . . , ĉn
}
.

BnB-Estimators does not derive estimators from one ROB (Z) to another as in
Sect. 7.1.1.

BnB-CutLP does not use optimality-cuts for solving linear relaxations as in
Sect. 7.1.2.

123



306 C. Büsing et al.

BnB-CutMILP does not use optimality-cuts for robust subproblems as in
Sect. 7.1.2.

BnB-Cut does not use optimality-cuts at all.
BnB-Primal does not improve primal bounds as in Sect. 7.2.
BnB-Terminate does not terminate robust subproblems as in Sect. 7.3, but solves

them to optimality.
BnB-Branching does not choose the branching point θ as in Sect. 7.3, but chooses

θ = z.

Note that disabling some components can also have an effect on other components.
The computation of cliques not only prevents us from using reformulation ROB (Q),
but also worsens the filtering of Z and the estimators δz

(
z′). Disabling estimators

allows us to terminate robust subproblems ROB
(
Z , c, c

)
more aggressively, as raising

the dual bound v
(
ROB

(
Z , c, c

))
past the current primal bound v is no longer benefi-

cial. Furthermore, disabling optimality-cuts for robust subproblems allows us to use
estimators δz

(
z′) for z′ /∈ [

c, c
]
.

Weuse the ten variants above to solve the 67·3·4 = 804 robust instances (67nominal

instances, 3 different
[
ξ, ξ

]
, 4 different γ ) constructed in the previous section within

a time limit of 3600 s, including preprocessing, construction of subproblems, etc.
Detailed results per instance and algorithm are provided in a supplementary electronic
file.

The plots in Fig. 2 give an indicator of the performances on an aggregate level
by showing for all variants the proportion of instances that could be solved within
a specific number of seconds. Figure 2a suggests that disabling the filtering of the
set Z of possible values for z barely makes a difference for our branch and bound
algorithm. In contrast, disabling cliques or estimators heavily affects the algorithm’s
performance. After 3600 s, the default algorithm solves around 5% instances more
than these two variants.

Surprisingly, Fig. 2b shows that disabling optimality-cuts (especially for linear pro-
grams) slightly improves the performance for the tested instances. A detailed look at
the computational results shows that the impact of optimality-cuts can differ highly
between instances. This is partially because the different variants solve different robust
subproblems, whose complexity can vary significantly. However, there is also a syn-
ergy between our branching strategy, described in Sect. 7.5, and the disabling of
optimality-cuts for linear relaxations. Although it seems unintuitive, the addition of
optimality-cuts for linear relaxations often results in an increase in the number of
nodes in our branching tree, which is partially due to the following reason. Consider
a node Z ⊆ Z such that all solutions x obeying the optimality-cuts for z, z are far off
from being optimal. Furthermore, let (x, p, z) ∈ P (Z ,Q) be an optimal solution for
the linear relaxation without optimality-cuts. We observed for many instances that in
this case z ∈ {

z, z
}
holds and thus the linear formulation is as strong as the bilinear

formulation according to Proposition 1. Hence, we stop branching the node due to our
branching strategy, and directly solve ROBS (Z ,Q) as an MILP, which usually leads
to a quick pruning of Z . In contrast, when adding optimality cuts, z usually lies in
the inner of the interval

[
z, z

]
which often results in further unnecessary branching.

This observation suggests that the current branching strategy has potential for further

123



Branch and bound for robust binary optimization… 307

Fig. 2 Proportion of instances solved within a specific number of seconds for variants of the branch and
bound algorithm with different components disabled

improvement in future research. In the current state of the algorithm, it is reasonable
to test whether using optimality-cuts is useful when solving a practical problem.

Figure 2c shows that terminating robust subproblems prematurely improves the
algorithm’s performance and results in solving around 2% instances more. Choosing
the branching point θ as a convex combination of the solution value z and themiddle of
the interval

(
z + z

)
/2 seems to have a marginal positive effect. The same holds for the

improvement of the primal bound via computing optimal z for incumbent solutions,
which suggests that our approach for selecting nodes Z ⊆ Z containing promising z
is very effective. We already stated in Sect. 7.2 that most of the time, we already have
a (nearly) optimal solution after solving the very first robust subproblem. For our test
instances, the relative gap between the best known solution value after the first robust
subproblem and the primal bound after 3600 s is below 10−2 for 99% of all instances
and even below 10−4 for 87.8% of all instances. When disabling the improvement
of incumbent solutions, this still holds for more than 94.5% (below 10−2) and 69%
(below 10−4) of all instances respectively.

Another noteworthy setting is the one in which estimators and improvement of
primal bounds are disabled together. This version of BnB still solves 76.7% of all
instances, and thus outperforms all approaches from literature, as we will see in
the next section. The setting is of particular interest, since it only relies on results
that are also generalizable to uncertain constraints with budget uncertainty. Here, the

123



308 C. Büsing et al.

j-th constraint
∑

i∈[n] a ji ≥ b j of the constraint matrix Ax ≥ b would become∑
i∈[n]

(
a ji − p ji

)−Γ j z j ≥ b with additional constraints z j + p ji ≥ â j i xi for devi-
ations â j i and a constraint specific budget Γ j . Since the additional constraints have
the same structure as for the uncertain objective function, we can branch on the vari-
ables z j , use clique reformulations, filter possible values for z j , and add optimality
cuts. Estimators and the improvement of primal bounds cannot be generalized, since
these rely on the fact that a feasible solution for a fixed z has a corresponding feasible
solution for a different z′, which does not apply when fixing z j to different values. The
observation that the generalizable results yield a well-performing branch and bound
algorithm for uncertain objective functions suggests that our approach and the theoret-
ical results in this paper might also be relevant for robust optimization with uncertain
constraints.

8.3 Comparing algorithms from the literature

We now evaluate our branch and bound approach by comparing BnB-CutLP with the
following eight algorithms.

ROB is the MILP over the standard formulation PROB.
SEP is the cutting-plane approach separating scenarios from the uncertainty

set, as described in [14].
BS is the approach of Bertsimas and Sim [15] solving nominal subprob-

lems NOS (z) for all z ∈ {
ĉ0, . . . , ĉn

}
.

DnC is the divide and conquer algorithm of Hansknecht et al. [27] making
use of Lemma 3.

RP1,...,RP4 are the corresponding reformulations of Atamtürk [5].

The approaches ROB, SEP, and BS are widely known and studied, and can thus be
considered as the current state-of-the-art approaches. In contrast, DnC has so far only
been considered for robust shortest path problems and was not evaluated for general
robust optimization problems [27]. To the best of our knowledge, we also present the
first study that evaluates the reformulations RP1,...,RP4 on a set of instances based on
real-world problems.

In our implementation, we slightly adapt RP2 and RP3 compared to [5]. Reformu-
lation RP2 consists of an exponential number of valid inequalities that are separated in
O

(
n2

)
by searching for negativeweighted paths in an acyclic directed graph.Atamtürk

shows that a subset of these inequalities is sufficient to define the convex hull of

{
(x, p, z) ∈ {0, 1}n × R

n+1
≥0

∣∣pi + z ≥ ĉi xi∀i ∈ [n]
}

.

It is easy to see that the graph constructed in [5] can be modified by deleting some
arcs, such that there exists a one-to-one correspondence between paths in the graph
and inequalities defining the convex hull.We use this reduced graph for our implemen-
tation. Reformulation RP3 incorporates the valid inequalities of RP2 by adding n + 2
additional variables and O

(
n2

)
constraints. Similar to the graph for the separation

problem some of these constraints can be omitted, resulting in a smaller formulation.

123



Branch and bound for robust binary optimization… 309

Fig. 3 Proportion of instances solved within a specific number of seconds for different approaches from
the literature

Just like in the previous section, we use the different algorithms to solve our 804
robust instances within a time limit of 3600 s. Again, detailed results per instance
and algorithm are provided in a supplementary electronic file. Figure 3 shows for
all algorithms the proportion of instances that were solved in a specific number of
seconds. It is evident that our branch and bound algorithm outperforms all existing
approaches from the literature by far, solving 83.8% of all instances in 3600 s. Among
all other algorithms, DnC solves the most instances, ending at 55.3% after 3600 s. In
comparison, BnB-CutLP only needs 220 s to solve 55.3% of all instances. ROB solves
less problems (53.1%) than DnC but is faster in the beginning, solving more problems
in shorter time. SEP solves only 31.6% of all instances and thus performs significantly
worse thanROB. Interestingly, this is in contrast to the findings of Bertsimas et al. [14],
who observed no clear winner between these two approaches for robust problems with
uncertain constraints. BS solves more instances (45.9%) than SEP but is still clearly
worse than ROB and DnC, supporting our claim from the introduction that BS is
not practical if the number of different deviations

∣∣{ĉ0, . . . , ĉn
}∣∣ is large. Of the four

reformulations of Atamtürk, RP2 is the only practicable one, solving 49.1% of all
instances. This is because RP1, RP3, and RP4 are simply too large for most practical
problems. RP1 exceeds the memory limit of 4 GB for 29.9% of all instances, RP3 for
20.9% and RP4 even for 36.1%. Even if the models can be build obeying the memory
limit, they are most of the time still too large for Gurobi to solve them. RP1 was not
even able to solve the linear relaxation of the root node for 5.8% of all instances. For
RP3 and RP4, this was the case for 44.8% and 12.1% of all instances respectively.

Obviously, many of the robust instances are very difficult to solve. Thus, in practice,
one might also be satisfied obtaining a nearly optimal solution. Figure 4 shows the
proportion of instances that are solved up to a specified relative optimality gap within
the time limit of 3600 s. Our branch and bound algorithm also clearly outperforms the
other algorithms in this regard. BnB-CutLP solves 94% of all instances to the opti-
mality gap of 1% and 98.8% to the gap of 10%. In contrast, ROB, which is the second
best performing algorithm, only solves 78.9% of all instances to the optimality gap of
10%. Note that the line corresponding to BS is nearly horizontal, as the dual bound
computed by BS equals the minimum dual bound over all nominal subproblems, and

123



310 C. Büsing et al.

Fig. 4 Proportion of instances solved within a specific relative optimality gap for different approaches from
the literature

is thus negative infinity before all z ∈ {
ĉ0, . . . , ĉn

}
have been considered. Therefore,

we usually either solve an instance to the optimality gap of 10−4 or report an infinite
gap. The small increase in instances solved before 1% is due to an error of Gurobi
occurring for robust instances emerging from the nominal instance neos-1516309.
For these problems, Gurobi solves all nominal subproblems within the time limit, but
reports for some a dual bound that is too low. For a fair comparison, we still consider
these instances to be solved to optimality.

In order to evaluate the impact of the deviations ĉi and the robustness budgetΓ on the
algorithms’ performances, we report in Table 1 the proportion of instances solved for

every combination of
[
ξ, ξ

]
and γ . Our branch and bound approach solves consistently

for every setting more instances than any other algorithm and has a relatively stable

performance for the different choices of
[
ξ, ξ

]
. This is in contrast to ROB, which

performs significantly worse for higher deviations, as these weaken the formulation.
ROB also performs worse for γ around 40% and 70%, which supports our claim from
Sect. 8.1 that choosing Γ somewhere within

[
0, nNOM

]
results in hard problems. For

BnB-CutLP, the performance increases for higher γ , as the set of possibly optimal
valuesZ for z decreases. Higher γ are also beneficial for BS, as for these, the optimal
choice for z is smaller and thus found faster when iterating over

{
ĉ0, . . . , ĉn

}
. Hence,

we find a good primal bound early on, which can be used to terminate the remaining
nominal subproblems once their respective dual bounds are high enough.

8.4 Improving algorithms from literature

We close our computational study on the MILIB instances by showing that the the-
oretical results from this paper can also be used to significantly improve most of the
algorithms considered in the previous section. An obviously improvement for ROB is
to compute a partitioning into cliques, determine ĉimax , the highest possible optimal
value for z as in Sect. 6, and solve the reformulation ROBS

([
0, ĉimax

]
,Q

)
instead

of the original one. In the following, we call this approach ROB+. For improving
RP4, recall that the reformulation combines the nominal subproblems NOS (z) for

123



Branch and bound for robust binary optimization… 311

Ta
bl
e
1

Pr
op

or
tio

n
of

in
st
an
ce
s
so
lv
ed

fo
r
di
ff
er
en
ta
lg
or
ith

m
s
an
d
ch
oi
ce
s
of

γ
an
d
[ ξ

,
ξ
]

[ ξ
,
ξ
]

γ
(%

)
A
lg
or
ith

m

B
nB

-C
ut
L
P
(%

)
R
O
B
(%

)
SE

P
(%

)
B
S
(%

)
D
nC

(%
)

R
P1

(%
)

R
P2

(%
)

R
P3

(%
)

R
P4

(%
)

[5
%

,
15

%
]

10
80

.6
73

.1
62

.7
38

.8
56

.7
23

.9
67

.2
20

.9
7.
5

40
82

.1
67

.2
47

.8
41

.8
55

.2
20

.9
56

.7
17

.9
10

.4

70
83

.6
58

.2
37

.3
43

.3
52

.2
19

.4
56

.7
17

.9
9.
0

10
0

88
.1

58
.2

37
.3

46
.3

50
.7

20
.9

52
.2

17
.9

11
.9

[4
5%

,
55

%
]

10
85

.1
56

.7
38

.8
38

.8
50

.7
19

.4
52

.2
17

.9
10

.4

40
82

.1
44

.8
22

.4
44

.8
53

.7
14

.9
44

.8
17

.9
10

.4

70
82

.1
43

.3
20

.9
47

.8
53

.7
13

.4
43

.3
16

.4
11

.9

10
0

83
.6

44
.8

17
.9

53
.7

53
.7

16
.4

37
.3

16
.4

16
.4

[9
5%

,
10

5%
]

10
82

.1
52

.2
28

.4
41

.8
59

.7
16

.4
46

.3
17

.9
10

.4

40
83

.6
38

.8
23

.9
46

.3
59

.7
16

.4
41

.8
17

. 9
10

.4

70
83

.6
46

.3
22

.4
50

.7
58

.2
13

.4
41

.8
19

.4
13

.4

10
0

89
.6

53
.7

19
.4

56
.7

59
.7

19
.4

49
.3

22
.4

20
.9

123



312 C. Büsing et al.

Fig. 5 Proportion of instances solvedwithin a specific number of seconds for different improved approaches
from the literature

all z ∈ {
ĉ0, . . . , ĉn

}
into one problem. However, it is sufficient to define RP4 for

the filtered set Z of possible optimal values for z, instead of the set of all deviations{
ĉ0, . . . , ĉn

}
. An analogous reduction can be applied for the reformulation RP1, which

is quite similar to RP4. In the following, we call the approaches using these reduced
reformulations RP1+ and RP4+.

The algorithm that can be improved the most is the DnC of Hansknecht et al. [27].
DnC chooses specific values z ∈ {

ĉ0, . . . , ĉn
}
, solves the corresponding nominal

subproblems NOS (z), and computes dual bounds for other z′ ∈ {
ĉ0, . . . , ĉn

}
on the

basis of Lemma 3 until all z are either pruned or considered for a nominal subproblem.
To improve DnC, we only consider values for z within the filtered set Z and use the
estimators from Theorem 3 instead of the ones from Lemma 3. Furthermore, we
apply optimality-cuts for the nominal subproblems, with c, c chosen analogously as
in Sect. 7.1.2. We also improve incumbent solutions by computing the corresponding
optimal z and terminate nominal subproblems prematurely, analogously to Sects. 7.2
and 7.3. The improved DnC is called DnC+ in the following.

While the approaches SEP, RP2, and RP3 cannot be improved using our theoretical
results, BS could be enhanced similarly to DnC. However, we do not consider an
improved version of BS, since it is essentially a strictly weaker algorithm compared
to DnC.

We again report results per instance and algorithm in a supplementary electronic
file and show aggregate results in Fig. 5. We see that computing a partitioning into
cliques and ĉimax pays off, as the improved formulation used for ROB+ enables us
to solve 57.2% instances, compared to 53.1% for ROB. The filtering of Z is also
effective for reducing the size of the reformulations RP1 and RP4. RP1+ exceeds the
memory limit for 19.4% of all instances, instead of 29.9%. For RP4+, this reduction is
from36.1% to 29.4%.Both approaches also solvemore instanceswithin the time limit.
RP1+ solves 19.7% instead of 17.9%,whileRP4+even solves 20.5% instead of 11.9%.
Nevertheless, both reformulations are still way too large for most problems and cannot
compete with the other approaches. This is especially true in comparison with DnC+,
which performs significantly better than DnC, solving 83% of all instances instead
of 55.3%. In fact, DnC+ performs similar to our branch and bound approach. While

123



Branch and bound for robust binary optimization… 313

Fig. 6 Proportion of instances solved within a specific relative optimality gap for different improved
approaches from the literature

Fig. 7 Proportion of instances solved within a specific number of seconds for different variants of DnC+

DnC+ solves more instances early on, BnB-CutLP solves slightly more instances
within 3600s (83.8%). A glance at the proportion of instances solved within a specific
relative optimality gap, shown in Fig. 6, indicates that our branch and bound is indeed
slightly better than DnC+ in solving very hard instances, as BnB-CutLP still solves
clearly more instances (94%) to the optimality gap of 1% than DnC+ (89.4%).

We close this section with an evaluation of the improvements applied to DnC+. We
do so by disabling the components individually, analogously to Sect. 8.2. Figure 7a
shows that disabling the filtering of Z and the computation of clique partitionings
lead to a slight degradation in performance. Both variants solve 82.5% of all instances
instead of 83%.While the effect of disabling the filtering is similar for BnB andDnC+,
the partitioning into cliques is much more important for BnB than it is for DnC+. This
is because DnC+ only uses the cliques for improving the filtering and the estimators
of Theorem 3, but BnB also relies on the strengthened clique reformulation. Using the
estimators from Lemma 3 instead of Theorem 3 significantly worsens the algorithm,
solving only 78.9% of all instances. Figure 7b reveals that disabling the improvement
of primal bounds, the termination of robust subproblems or optimality-cuts is also
hindering. In contrast to BnB, which chooses nodes based on the linear relaxation,
DnC+ selects many values for z that are not promising. Accordingly, improving the

123



314 C. Büsing et al.

incumbent solutions for the corresponding subproblems and terminating them early
is much more important to DnC+ compared to BnB. Disabling the improvement of
primal bounds results in solving 81.5% of all instances. Disabling the termination of
robust subproblems even leads to solving only 77.6%of the instances. Surprisingly, the
addition of optimality-cuts has the largest impact on DnC+, although we observed that
they slightlyworsenBnB in the current implementation.With optimality-cuts disabled,
we only solve 75.6% of all instances. This shows the potential of the optimality-cuts
and raises hope that they can also be a helpful addition to our branch and bound
approach with further engineering.

8.5 When to use branch and bound or divide and conquer

We have seen that both our branch and bound algorithm and our improved version of
the divide and conquer perform exceptionally well compared to the other approaches
from literature, with BnB-CutLP solving slightly more instances and DnC+ being
faster on the easier ones. We close our computational study with a more detailed
comparison of these algorithms, providing some guidance on which algorithm to use
in different practical settings.

A major strength of our branch and bound is that we only need to solve very few
robust subproblems ROB (Z). Considering only the instances that were solved by
both BnB-CutLP and DnC+, BnB-CutLP solves on average 7.9 subproblems, while
DnC+solves 13.9 subproblems NOS (z). Furthermore, as already stated in Sect. 8.2,
our branch and bound finds (nearly) optimal solutionswithin the very first subproblem,
resulting in a fast termination of the following ones. Despite this advantage, DnC+
solves many instances faster than BnB-CutLP. The reason for this is that solving
the linear relaxations over PS (Z ,Q) can require surprisingly much time. In fact,
considering only the solved instances, BnB-CutLP spends on average 33.1% of its
time solving LPs, although we only consider 45.9 of these on average. To further
demonstrate the relevance of the LPs for the computation time and better understand
the underlying effects, we provide an additional computational study on the robust
knapsack problem.

In order to construct hard instances of the robust knapsack problem

max
n∑

i=1

ci xi −
(

Γ z +
n∑

i=1

pi

)

s.t.
n∑

i=1

ai xi ≤ b

pi + z ≥ ĉi xi ∀i ∈ [n]

x ∈ {0, 1}n , p ∈ R
n≥0, z ∈ R≥0

for a number of items n ∈ N, we first select independent and uniformly distributed
weights ai ∈ [10,000] for all i ∈ [n]. Afterwards, we choose profits ci = �ζi ai�,
where ζi ∈ [0.95, 1.05] is an independent and uniformly distributed random vari-

123



Branch and bound for robust binary optimization… 315

able. This choice is based on the observation that the profits and weights should
be correlated, as otherwise many items can be excluded easily due to domination
[39]. Similar to Sect. 8.1, we choose deviations ĉi = �ξi ci�, where the random
variable ξi ∈ [0.45, 0.55] is again independent and uniformly distributed. The
capacity b and robustness budget Γ depend on the number of items n. We choose
b = min

{ n
2 , 1000

} · 5000, i.e., we can store min
{ n
2 , 1000

}
items of average weight

into the knapsack.Note thatwe choose theminimumof n
2 and 1000 such that the capac-

ity doesn’t become too large for the sake of numerical stability. Finally, we choose

Γ = min{ n
2 ,1000}
2 , i.e., approximately half of the included items will deviate from

their nominal weight, which results in hard instances according to our observations
regarding Table 1.

In Table 2, we show computational results for different numbers of items ranging
from n = 50 to n = 1,000, 000. For every n, we generate 10 different instances to test
the algorithms ROB, ROB+, DnC, DnC+, and BnB-CutLP. As before, all algorithms
are given a time limit of 3600 s. For ROB and ROB+, Table 2 shows the number of
instances that could not be solved to optimality within the time limit and themean time
in seconds used for the instances that could be solved to optimality. The generated
instances are apparently quite hard, as ROB and ROB+ already fail to solve nine out
of ten instances with n = 100 items. Note that ROB+ has a noticeable advantage over
ROB although there exist no conflicts between items which ROB+ could make use
of. The advantage depends solely on filtering the possible values Z and solving the
problem ROB (Z ).

Still, the performance of ROB+ is not even close to the performance of the other
three algorithms. As DnC, DnC+, and BnB-CutLP are able to solve all instances,
we omit the timeout column for these algorithms in Table 2. The mean computation
time in seconds reveals that DnC+ performs especially well. This is partially due to the
nominal knapsack subproblemsNOS (z) being quite easy to solve. Furthermore,DnC+
considers on average only 25.3 subproblems for n = 1,000,000 items, compared to
an average of 165.6 subproblems that are solved by DnC.

BnB-CutLP even solves only one robust subproblem ROB (Z) for each knapsack
instance and on average 24.2 linear relaxations over PS (Z) for n = 1,000,000
items. Nevertheless, its performance degrades for higher n as solving the LPs becomes
more and more challenging. For n = 1,000,000, BnB-CutLP spends on average
93.17% of its time solving linear relaxations. This is due to the up to n + 1 additional
variables p′, z′ and n additional constraints p′

i + z′ ≥ (
min

{
ĉi , z

} − z
)+

xi contained
in formulationPS (Z). Interestingly, the very first LP corresponding to the root node
Z = Z is by far the hardest one and requires on average 1062 s for n = 1, 000, 000
items. After branching on z, the LPs become easier, since the tighter bounds z, z

lead to many constraints p′
i + z′ ≥ (

min
{
ĉi , z

} − z
)+

xi becoming redundant for
z ≥ ĉi or at least less impactful for small z − z. In fact, the single robust subproblem
ROB (Z) that we solve for each knapsack instance only requires 74.8 s on average for
n = 1,000,000, and is thus significantly easier than the LP of the root node.

These observations suggest that our branch and bound could benefit drastically
from further research on how to solve the linear relaxation of the robust problem. As
of now, the branch and bound seems to have an advantage for problems where the

123



316 C. Büsing et al.

Ta
bl
e
2

M
ea
n
co
m
pu
ta
tio

n
tim

e
fo
r
in
st
an
ce
s
th
at
w
er
e
so
lv
ed

to
op
tim

al
ity
.A

dd
iti
on
al
ly
,f
or

R
O
B
an
d
R
O
B
+
th
e
nu
m
be
r
of

in
st
an
ce
s
th
at
ar
e
no
ts
ol
ve
d
w
ith

in
36

00
s
an
d

fo
r
B
nB

-C
ut
L
P
th
e
pr
op

or
tio

n
of

tim
e
sp
en
d
so
lv
in
g
lin

ea
r
re
la
xa
tio

ns

n
A
lg
or
ith

m

R
O
B

R
O
B
+

D
nC

D
nC

+
B
nB

-C
ut
L
P

T
im

e
(s
ol
ve
d)

T
im

eo
ut

T
im

e
(s
ol
ve
d)

T
im

eo
ut

T
im

e
T
im

e
T
im

e
T
im

e
L
P
(%

)

50
11

.6
8

0
7.
32

0
0.
23

0.
12

0.
17

13
.8
3

10
0

31
00

.0
0

9
74

7.
07

9
0.
68

0.
11

0.
23

18
.0
9

50
0

–
10

–
10

4.
55

0.
15

0.
43

36
.5
0

10
00

–
10

–
10

10
.3
2

0.
19

0.
93

36
.2
7

50
00

–
10

–
10

18
.0
4

0.
45

4.
53

67
.8
5

10
,0
00

–
10

–
10

38
.2
8

0.
84

11
.3
9

74
.4
7

50
,0
00

–
10

–
10

17
0.
67

13
.0
0

77
.5
3

79
.4
1

10
0,
00

0
–

10
–

10
29

5.
12

26
.7
9

14
8.
84

84
.6
7

50
0,
00

0
–

10
–

10
96

9.
56

21
0.
23

11
68

.8
1

90
.2
8

1,
00

0,
00

0
–

10
–

10
13

81
.3
4

46
5.
96

27
84

.2
7

93
.1
7

123



Branch and bound for robust binary optimization… 317

MILP subproblems ROB (Z) and NOS (z) dominate the problem’s complexity, while
our version of the divide and conquer should be used if the linear relaxations over
PS (Z ,Q) are hard to solve.

9 Conclusion

In this paper, we considered robust binary optimization problems with budget uncer-
tainty in the objective, which are tractable in theory, but often hard to solve in practice.
We identified that the standard formulation for solving these problems is weak and
that the variable z is critical in this regard. To address this issue, we proposed a com-
pact bilinear formulation that is as strong as theoretically possible. To benefit from
the formulation’s strength in practice, we derived a strong linear formulation for the
case where z is bounded. Building upon this linear formulation and many structural
properties of the robust problem, we proposed a branch and bound algorithm in which
we obtain bounds on z via branching.

To test the algorithms strength, we compared it to other sophisticated algorithms
from the literature within a comprehensive computational study. For this, we care-
fully generated a set of hard robust instances based on real-world problems from the
MIPLIB 2017, which we made available online [24] together with the implemented
algorithms [23]. The computational results show that our algorithm outperforms all
existing approaches by far. Furthermore, we showed that the structural properties
shown in this paper can be used to substantially improve the divide and conquer
approach by Hansknecht et al. [27], providing us with two potent algorithms for robust
optimization.

For future research, the different components of our approach leave much room for
engineering to further enhance the branch and bound algorithm. Additionally, it would
be interesting to test our approach for robust optimization with uncertain constraints.
We already mentioned that most theoretical results can be generalized to this case and
showed that our algorithm performs well relying only on these general results.

Acknowledgements We want to thank the anonymous referees for their kind, constructive, and thoughtful
feedback which helped in improving the paper.

Author contributions Christina Büsing: Conceptualization, Writing—Review and Editing, Supervision,
Project administration, Funding acquisition. Timo Gersing: Conceptualization, Methodology, Software,
Validation, Formal analysis, Investigation, Data Curation, Writing—Original Draft, Writing—Review and
Editing, Visualization. Arie Koster: Conceptualization, Writing—Review and Editing, Supervision, Project
administration, Funding acquisition.

Funding Open Access funding enabled and organized by Projekt DEAL. This work was partially sup-
ported by the German Federal Ministry of Education and Research (Grants no. 05M16PAA) within the
project “HealthFaCT - Health: Facility Location, Covering and Transport”, the Freigeist-Fellowship of the
Volkswagen Stiftung, and the German research council (DFG) Research Training Group 2236 UnRAVeL.

Data Availability Statement All test instances used in our computational study are published and available
for download, sharing, and reuse, see [24].

123



318 C. Büsing et al.

Code availibility The branch and bound algorithm and all other tested approaches have been implemented
in Java and are available on GitHub, see [23].

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Implementation of conflict graph and clique partitioning

We restrict ourselves here to detecting conflicts between positive literals xi of uncertain
variables, as these are the only ones we need for our clique reformulation. In order
to determine if there exists a conflict between two uncertain variables xi1 and xi2 , we
have to evaluate whether

{
x ∈ X

∣∣xi1 = xi2 = 1
}
is empty. Since this is in general

N P-hard, we resort to a simpler problem. Let
∑n

i=1 a ji xi ≤ b j be a row of the
constraint matrix Ax ≤ b and let li ≤ xi ≤ ui be bounds on variable xi for all i ∈ [n].
If

min

{
n∑

i=1

a ji xi

∣∣∣∣x ∈ [l, u] , xi1 = xi2 = 1

}
> b j (8)

holds then xi1 and xi2 cannot both be equal to one and we can add an edge
{

xi1 , xi2

}

to the conflict graph. In order to evaluate Inequality (8) efficiently for all pairs i1, i2,
we first compute

b′
j = b j − min

{
n∑

i=1

a ji xi

∣∣∣∣x ∈ [l, u]

}

by setting xi = li for a ji > 0 and xi = ui if a ji < 0. Since the uncertain variables
xi1 , xi2 are binary, we have

min

{
n∑

i=1

a ji xi

∣∣∣∣x ∈ [l, u] , xi1 = xi2 = 1

}

= min

{
n∑

i=1

a ji xi

∣∣∣∣x ∈ [l, u]

}
+ max

{
a ji1 , 0

} + max
{
a ji2 , 0

}
,

and thus it is sufficient to evaluate whether

b′
j < max

{
a ji1 , 0

} + max
{
a ji2 , 0

}

123

http://creativecommons.org/licenses/by/4.0/


Branch and bound for robust binary optimization… 319

holds. In order to find conflicting variables xi1 , xi2 having this property, we use Algo-
rithm 4, which is similar to the one presented by Brito and Santos [18]. Instead
of performing a pairwise evaluation, Algorithm 4 directly searches for subsets
h ⊆ {x1, . . . , xn} forming a clique in the conflict graph. This is not only faster than a
pairwise evaluation, but also beneficial for storing the conflict graph. Assume that a
row of the constraint matrix implies conflicts of a large clique in the conflict graph.
Atamtürk et al. [6] already mentioned that storing these conflicts as a set of edges or
using adjacency lists consumes too much memory. Instead, one should use a separate
structure to store these conflicts. Here, we store conflicts implied by cliques h with
|h| = 2 in adjacency lists, while cliques with |h| > 2 are stored directly as a list of
variables. To guarantee fast access to the cliques, we maintain for each variable a list
of references to cliques in which it is contained. Thus, the memory requirement of
adding a clique h is only O (|h|) instead of O

(|h|2). In the following, we think of
the conflict graph as a hyper graph G = (V , H), with V = {x1, . . . , xn} being the
variables and H ⊆ 2V being a set of hyper edges representing cliques in the conflict
graph.

Algorithm 4: Algorithm for computing hyper edges for the conflict graph.
Input: Constraints Ax ≤ b with A ∈ R

m×n and uncertain variables V
Output: A hyper graph G = (V , H) with hyper edges H ⊆ 2V

1 Initialize hyper edges H = ∅
2 for j ∈ [m] do
3 Compute b′

j = b j − min
{∑n

i=1 a ji xi
∣∣x ∈ [l, u]

}

4 Let a∗ = max
{
a ji

∣∣i ∈ [n]
}

5 if 2max
{
a∗, 0

}
> b′

j then
6 Let L = (

xi1 , . . . , xik

)
be a list of uncertain variables with

max
{
a∗, 0

} + max
{
a jil , 0

}
> b′

j for l ∈ [k]

7 if k > 1 then
8 Sort L non-decreasing w.r.t. max

{
a ji , 0

}

9 Let l∗ = argmin
{

l ∈ [k − 1]
∣∣∣max

{
a jil , 0

} + max
{

a jil+1 , 0
}

> b′
j

}

10 Add H ← H ∪
{{

xil∗ , . . . , xik

}}

11 for p ∈ [
l∗ − 1

]
do

12 Let l ′ = argmin
{

l ∈ [k]
∣∣∣max

{
a ji p , 0

}
+ max

{
a jil , 0

}
> b′

j

}

13 Add H ← H ∪
{{

xi p , xil′ , . . . , xik

}}

14 return G = (V , H)

Algorithm 4 constructs this hyper graph by iterating over all constraints
∑n

i=1 a ji xi

≤ b j . For each constraint, we first compute b′
j (line 3) and the highest coefficient a∗

occurring in the constraint (line 4). If we have 2max {a∗, 0} ≤ b′
j then the constraint

will imply no conflicts, which allows for a fast skipping of uninteresting constraints
(line 5). Otherwise, we construct a list of candidates for which we have max {a∗, 0}+
max

{
a jil , 0

}
> b′

j , that is the variable xil either defines a∗ or has a conflict with
the variable defining a∗ (line 6). If the list consists of more than one variable, i.e.,

123



320 C. Büsing et al.

the variable defining a∗, then we have found a conflict (line 7). We sort the list of
candidates (line 8) and find the lowest index l∗ such that xil∗ and xil∗+1 are in conflict
(line 9). Due to the ordering of the list, all variables

{
xil∗ , . . . , xik

}
are in conflict with

each other and can thus be added as a hyper edge to the conflict graph (line 10). For
all variables xi p that do not belong to the hyper edge, we search for the lowest index
l ′ such that xi p and xil′ are in conflict (line 12). Such an index exists, since xi p is in
conflict with xik . Again, due to the ordering of the list, the variables

{
xi p , xil′ , . . . , xik

}

are in conflict and can be added to our graph (line 13).
Note that the hyper edge added in line 13 consists of a subset of the first hyper edge

added to the constraint, starting at an index l ′, and an additional variable xi p . Brito
and Santos [18] pointed out that this can be used to store the graph more efficiently.
Instead of storing the whole hyper edge

{
xi p , xil′ , . . . , xik

}
, we only store the variable

xi p , a reference to the hyper edge
{

xil∗ , . . . , xik

}
and the starting index l ′, from which

we can reconstruct the hyper edge
{

xi p , xil′ , . . . , xik

}
.

Algorithm 5: Greedy heuristic for clique partitioning in a conflict graph.
Input: A conflict graph G = (V , H) consisting of nodes and hyper edges
Output: A partitioning Q of V into cliques

1 Initialize the partitioning into cliques Q = ∅ and set of remaining nodes V ′ = V .
2 while V ′ 
= ∅ do
3 Choose v′ ∈ V ′
4 Choose h ∈ argmax

{∣∣h ∩ V ′∣∣∣∣h ∈ (
H ∪ {

v′}) , v′ ∈ h
}

5 Initialize new clique Q = h ∩ V ′
6 Compute candidates N = V ′ ⋂

v∈Q
N (v)

7 while N 
= ∅ do
8 Choose any v ∈ N
9 Add candidate Q ← Q ∪ {v}

10 Update candidates N ← N ∩ N (v)

11 Add clique Q ← Q ∪ {Q}
12 Remove from remaining nodes V ′ ← V ′\Q

13 return Q

After constructing the conflict graph, we use Algorithm 5 to compute a partitioning
of V into cliques. Algorithm 5 is a greedy heuristic that builds on the idea that a
minimum clique cover consists without loss of generality only of cliques that are
maximal with respect to inclusion. We first initialize a set of cliques Q = ∅ and
remaining nodes V ′ = V (line 1). Until there are nodes left for partitioning (line 2),
we iteratively select an arbitrary remaining node v′ ∈ V ′ (line 3) and construct a
maximal clique Q ⊆ V ′ containing v′. We initialize Q as the largest hyper edge on
the remaining nodes h∩V ′ containing v′ (line 4 and 5). This speeds up the construction
of Q, since we do not have to check whether the variables in h are in conflict. We then
expand Q by iteratively adding remaining nodes that are contained in the neighborhood
of all current clique members (lines 6 to 10). Afterwards, we add this clique to our
partitioning (line 11), remove the contained nodes from the remaining nodes (line 12),
and proceed until no nodes are left.

123



Branch and bound for robust binary optimization… 321

B Proof of Lemma 2

Lemma 2 For x ∈ R
n, we have

z (x) = max

⎛

⎝{0} ∪
⎧
⎨

⎩z ∈ {
ĉ0, . . . , ĉn

}
∣∣∣∣∣∣

∑

i∈[n]:ĉi ≥z

xi > Γ

⎫
⎬

⎭

⎞

⎠ (3)

and

z (x) = min

⎛

⎝{∞} ∪
⎧
⎨

⎩z ∈ {
ĉ0, . . . , ĉn

}
∣∣∣∣∣∣

∑

i∈[n]:ĉi >z

xi < Γ

⎫
⎬

⎭

⎞

⎠ . (4)

Proof Recall that z (x) and z (x) are initially defined as

z (x) = min

⎧
⎨

⎩z ∈ {
ĉ0, . . . , ĉn

}
∣∣∣∣∣∣

∑

i∈[n]:ĉi >z

xi ≤ Γ

⎫
⎬

⎭

and

z (x) = max

⎛

⎝{0} ∪
⎧
⎨

⎩z ∈ {
ĉ0, . . . , ĉn,∞}

∣∣∣∣∣∣

∑

i∈[n]:ĉi ≥z

xi ≥ Γ

⎫
⎬

⎭

⎞

⎠ .

We first prove Equality (3). If we have z (x) = 0 then for all z > 0, it holds

∑

i∈[n]:ĉi ≥z

xi ≤
∑

i∈[n]:ĉi >0

xi ≤ Γ

and thus we have

max

⎛

⎝{0} ∪
⎧
⎨

⎩z ∈ {
ĉ0, . . . , ĉn

}
∣∣∣∣∣∣

∑

i∈[n]:ĉi ≥z

xi > Γ

⎫
⎬

⎭

⎞

⎠ = 0 .

For z (x) > 0, there exists an index j ∈ [n] with ĉ j = z (x) and ĉ j−1 < z (x). It holds∑
i∈[n]:ĉi ≥z(x) xi > Γ , as otherwise we would have

∑

i∈[n]:ĉi >ĉ j−1

xi =
∑

i∈[n]:ĉi ≥z(x)

xi ≤ Γ ,

which contradicts the minimality of z (x). Assume that there exists a value z > z (x)

with
∑

i∈[n]:ĉi ≥z xi > Γ . Then we would have

∑

i∈[n]:ĉi >z(x)

xi ≥
∑

i∈[n]:ĉi ≥z

xi > Γ ,

123



322 C. Büsing et al.

contradicting the definition of z (x).
We now prove Equality (4). If we have z (x) = ∞ then it holds

Γ ≤
∑

i∈[n]:ĉi ≥∞
xi = 0

and thus

min

⎛

⎝{∞} ∪
⎧
⎨

⎩z ∈ {
ĉ0, . . . , ĉn

}
∣∣∣∣∣∣

∑

i∈[n]:ĉi >z

xi < Γ

⎫
⎬

⎭

⎞

⎠ = ∞ .

For simplicity, we denote ĉn+1 = ∞. Then in the case of z (x) < ∞, there exists an
index j ∈ [n]0 with ĉ j = z (x) and ĉ j+1 > z (x). It holds

∑
i∈[n]:ĉi >z(x) xi < Γ , as

otherwise we would have

∑

i∈[n]:ĉi ≥ĉ j+1

xi =
∑

i∈[n]:ĉi >z(x)

xi ≥ Γ ,

which contradicts the maximality of z (x). Assume that there exists a value z < z (x)

with
∑

i∈[n]:ĉi >z xi < Γ . Then we would have

∑

i∈[n]:ĉi ≥z(x)

xi ≤
∑

i∈[n]:ĉi >z

xi < Γ ,

contradicting the definition of z (x). ��

C Filtering possible values for z

We start with proving the proposition.

Proposition 3 Let Q be a partitioning of [n] into cliques and q : [n] → Q be the
mapping that assigns an index j ∈ [n] its corresponding clique Q ∈ Q with j ∈ Q.
For

imax = min ({n} ∪ {i ∈ [n − 1]0 | |{q (i + 1) , . . . , q (n)}| ≤ Γ }) ,

it holds ĉimax ≥ z (x) for all solutions x ∈ PNOM ∩{0, 1}n and there exists an optimal
solution (x, p, z) to ROB with z ∈ {

ĉ0, . . . , ĉimax
}
.

Now, let G = ([n] , E) be a conflict graph for ROB and Γ ∈ Z. Furthermore, let
Z ⊆ {

ĉ0, . . . , ĉimax
}

such that ĉimax ∈ Z and for every i ∈ [
imax − 1

]
0 it holds

– ĉi ∈ Z or
– there exists an index k < i with ĉk ∈ Z and for all j ∈ {k + 1, . . . , i − 1} there

exists an edge { j, i} ∈ E in the conflict graph G.

123



Branch and bound for robust binary optimization… 323

Then there exists an optimal solution (x, p, z) to ROB with z ∈ Z .

Proof The first part of the statement is easy to see with Theorem 2, as for all x ∈
PNOM ∩ {0, 1}n , we have

∑

i∈[n]:ĉi >ĉimax

xi ≤ Γ

and thus ĉimax ≥ z (x). Since the objective value is non-decreasing for z ≥ z (x), we
do not have to consider z ∈ {

ĉimax+1, . . . , ĉn
}
.

For the second part, let x ∈ PNOM ∩ {0, 1}n be an arbitrary solution to NOM and
Z be a set fulfilling the above properties. It suffices to showZ ∩ [

z (x) , z (x)
] 
= ∅.

Note that 0 = ĉ0 ∈ Z holds, as there exists no index k < 0. Hence, we can assume
that z (x) > 0 holds, as otherwise there is nothing left to show.

Now, assume that z (x) ≥ ĉimax holds. Since we have ĉimax ≥ z (x), it holds ĉimax ∈[
z (x) , z (x)

]
and thus Z ∩ [

z (x) , z (x)
] 
= ∅.

We are left with 0 < z (x) < ĉimax . Since

z (x) = min

⎧
⎨

⎩z ∈ {
ĉ1, . . . , ĉimax−1

}
∣∣∣∣∣∣

∑

i∈[n]:ĉi >z

xi < Γ

⎫
⎬

⎭

= max

⎧
⎨

⎩z ∈ {
ĉ1, . . . , ĉimax−1

}
∣∣∣∣∣∣

∑

i∈[n]:ĉi ≥z

xi ≥ Γ

⎫
⎬

⎭

is well-defined, there exists an index i∗ ∈ [n] with
∑n

i=i∗ xi = Γ and
∑n

i=i∗+1 xi =
Γ − 1. It holds ĉi∗ = z (x), as we have

∑

i∈[n]:ĉi >ĉi∗
xi ≤

n∑

i=i∗+1

xi = Γ − 1 < Γ ,

which implies ĉi∗ ≥ z (x), and

∑

i∈[n]:ĉi ≥ĉi∗
xi ≥

n∑

i=i∗
xi = Γ ,

implying ĉi∗ ≤ z (x). If we have ĉi∗ ∈ Z then there is nothing left to show. Otherwise,
there exists an index k < i∗ with ĉk ∈ Z and an edge { j, i∗} ∈ E in the conflict
graph for all j ∈ {k + 1, . . . , i∗ − 1}. Since xi∗ = 1 holds, we have

∑i∗−1
i=k+1 xi = 0

and thus

∑

i∈[n]:ĉi >ĉk

xi ≤
n∑

i=k+1

xi =
i∗−1∑

i=k+1

xi +
n∑

i=i∗
xi =

n∑

i=i∗
xi = Γ ,

123



324 C. Büsing et al.

which implies ĉk ≥ z (x). ��

The above statement already determines the structure of Algorithm 6, which we use to
compute a minimal set Z satisfying the requested properties. We start by computing
the index imax (lines 1 to 5). Afterwards, we add themandatory deviation ĉ0 (line 6) and
check whether Γ ∈ Z holds (line 7). If so, we evaluate for all i ∈ {1, . . . , imax − 1} if
deviation ĉi has to be added according to Proposition 3 (lines 8 to 13). Lastly, we add
deviation ĉimax , which always needs to be considered (line 14). Note that the second
part of Proposition 3 only holds for Γ ∈ Z, as otherwise we have z (x) = z (x), which
makes it impossible to skip deviations. Hence, in the case of Γ /∈ Z, we only use the
first part (line 16).

Algorithm 6: Procedure for filtering possible optimal values of z.
Input: A robustness budget Γ ∈ [0, n], sorted deviations

{
ĉ0, . . . , ĉn

}
, a conflict graph

G = ([n] , E), a clique partitioningQ ⊆ 2[n], and a corresponding mapping q : [n] �→ Q
Output: A subset Z ⊆ {

ĉ0, . . . , ĉn
}
containing an optimal value of z

1 Initialize imax = n + 1 andQ′ = ∅
2 while imax > 0 and

∣∣Q′∣∣ ≤ Γ do
3 reduce imax ← imax − 1
4 if imax > 0 then
5 Add Q′ ← Q′ ∪ {

q
(
imax)}

6 Initialize Z = {
ĉ0
}

7 if Γ ∈ Z then
8 for i = 1, . . . , imax − 1 do
9 if ĉi /∈ Z then

10 Let k = max
{

j ∈ {0, . . . , i − 1}∣∣ĉ j ∈ Z
}

11 Let N (i) be the neighborhood of i in G
12 if {k + 1, . . . , i − 1} � N (i) then
13 Add Z ← Z ∪ {

ĉi
}

14 Add Z ← Z ∪ {
cimax

}

15 else
16 Add Z ← Z ∪ {

ĉ1, . . . , ĉimax
}

17 return Z

References

1. Achterberg, T., Bixby, R.E., Gu, Z., Rothberg, E., Weninger, D.: Presolve reductions in mixed integer
programming. INFORMS J. Comput. 32(2), 473–506 (2020)

2. Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Oper. Res. Lett. 33(1), 42–54 (2005)
3. Achterberg, T.,Wunderling, R.:Mixed integer programming: analyzing 12 years of progress. In: Facets

of Combinatorial Optimization, pp. 449–481. Springer (2013)
4. Álvarez-Miranda, E., Ljubić, I., Toth, P.: A note on the Bertsimas & Sim algorithm for robust combi-

natorial optimization problems. 4OR 11(4), 349–360 (2013)
5. Atamtürk, A.: Strong formulations of robust mixed 0–1 programming. Math. Program. 108(2–3),

235–250 (2006)
6. Atamtürk, A., Nemhauser, G.L., Savelsbergh, M.W.: Conflict graphs in solving integer programming

problems. Eur. J. Oper. Res. 121(1), 40–55 (2000)

123



Branch and bound for robust binary optimization… 325

7. Atamtürk, A., Nemhauser, G.L., Savelsbergh, M.W.: The mixed vertex packing problem. Math. Pro-
gram. 89(1), 35–53 (2000)

8. Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques
for non-convex minlp. Optim. Methods Softw. 24(4–5), 597–634 (2009)

9. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton university press, Princeton
(2009)

10. Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res. 23(4), 769–805 (1998)
11. Ben-Tal, A., Nemirovski, A.: Robust solutions of uncertain linear programs. Oper. Res. Lett. 25(1),

1–13 (1999)
12. Ben-Tal, A., Nemirovski, A.: Robust solutions of linear programming problems contaminated with

uncertain data. Math. Program. 88(3), 411–424 (2000)
13. Bertsimas, D., Brown, D.B., Caramanis, C.: Theory and applications of robust optimization. SIAM

Rev. 53(3), 464–501 (2011)
14. Bertsimas, D., Dunning, I., Lubin, M.: Reformulation versus cutting-planes for robust optimization.

CMS 13(2), 195–217 (2016)
15. Bertsimas, D., Sim, M.: Robust discrete optimization and network flows. Math. Program. 98(1–3),

49–71 (2003)
16. Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52(1), 35–53 (2004)
17. Bixby, R., Rothberg, E.: Progress in computational mixed integer programming: a look back from the

other side of the tipping point. Ann. Oper. Res. 149(1), 37–41 (2007)
18. Brito, S.S., Santos, H.G.: Preprocessing and cutting planes with conflict graphs. Comput. Oper. Res.

128, 105176 (2021)
19. Fischetti, M., Glover, F., Lodi, A.: The feasibility pump. Math. Program. 104(1), 91–104 (2005)
20. Fischetti, M., Monaci, M.: Cutting plane versus compact formulations for uncertain (integer) linear

programs. Math. Program. Comput. 4(3), 239–273 (2012)
21. Gabrel, V., Murat, C., Thiele, A.: Recent advances in robust optimization: an overview. Eur. J. Oper.

Res. 235(3), 471–483 (2014)
22. Gamrath, G., Anderson, D., Bestuzheva, K., Chen, W.K., Eifler, L., Gasse, M., Gemander, P., Gleixner,

A., Gottwald, L., Halbig, K., et al.: The scip optimization suite 7.0 (2020)
23. Gersing, T.: Algorithms for robust binary optimization (2022). https://doi.org/10.5281/zenodo.

7463371
24. Gersing, T., Büsing, C., Koster, A.: Benchmark Instances for Robust Combinatorial Optimization with

Budgeted Uncertainty (2022). https://doi.org/10.5281/zenodo.7419028
25. Gleixner, A., Hendel, G., Gamrath, G., Achterberg, T., Bastubbe, M., Berthold, T., Christophel, P.M.,

Jarck,K.,Koch, T., Linderoth, J., Lübbecke,M.,Mittelmann,H.D.,Ozyurt,D., Ralphs, T.K., Salvagnin,
D., Shinano, Y.: MIPLIB 2017: data-driven compilation of the 6th mixed-integer programming library.
Math. Program. Comput. (2021). https://doi.org/10.1007/s12532-020-00194-3

26. GurobiOptimization, LLC:Gurobi optimizer referencemanual, version 9.1 (2021). http://www.gurobi.
com

27. Hansknecht, C., Richter, A., Stiller, S.: Fast robust shortest path computations. In: 18th Workshop on
Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2018).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2018)

28. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations,
pp. 85–103. Springer (1972)

29. Koster, A.M., Kutschka, M.: Network design under demand uncertainties: a case study on the abilene
and geant network data. In: Photonic Networks, 12. ITG Symposium, pp. 1–8. VDE (2011)

30. Kouvelis, P., Yu, G.: Robust Discrete Optimization and Its Applications. Kluwer Academic Publishers,
Boston (1997)

31. Kuhnke, S., Richter, P., Kepp, F., Cumpston, J., Koster, A.M., Büsing, C.: Robust optimal aiming
strategies in central receiver systems. Renew. Energy 152, 198–207 (2020)

32. Land, A., Doig, A.: An automatic method of solving discrete programming problems. Econom.: J.
Econom. Soc. pp. 497–520 (1960)

33. Lee, T., Kwon, C.: A short note on the robust combinatorial optimization problems with cardinality
constrained uncertainty. 4OR 12(4), 373–378 (2014)

34. Linderoth, J.T., Savelsbergh, M.W.: A computational study of search strategies for mixed integer
programming. INFORMS J. Comput. 11(2), 173–187 (1999)

35. Lodi, A., Zarpellon, G.: On learning and branching: a survey. TOP 25(2), 207–236 (2017)

123

https://doi.org/10.5281/zenodo.7463371
https://doi.org/10.5281/zenodo.7463371
https://doi.org/10.5281/zenodo.7419028
https://doi.org/10.1007/s12532-020-00194-3
http://www.gurobi.com
http://www.gurobi.com


326 C. Büsing et al.

36. Monaci, M., Pferschy, U.: On the robust knapsack problem. SIAM J. Optim. 23(4), 1956–1982 (2013)
37. Morrison, D.R., Jacobson, S.H., Sauppe, J.J., Sewell, E.C.: Branch-and-bound algorithms: a survey of

recent advances in searching, branching, and pruning. Discrete Optim. 19, 79–102 (2016)
38. Park, K., Lee, K.: A note on robust combinatorial optimization problem. Manag. Sci. Financ. Eng.

13(1), 115–119 (2007)
39. Pisinger, D.: Where are the hard knapsack problems? Comput. Oper. Res. 32(9), 2271–2284 (2005)
40. Soyster, A.L.: Convex programming with set-inclusive constraints and applications to inexact linear

programming. Oper. Res. 21(5), 1154–1157 (1973)
41. Speakman, E., Lee, J.: On branching-point selection for trilinear monomials in spatial branch-and-

bound: the hull relaxation. J. Global Optim. 72(2), 129–153 (2018)
42. Wolsey, L.A.: Integer Programming. Wiley, London (2020)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	A branch and bound algorithm for robust binary optimization with budget uncertainty
	Abstract
	1 Introduction
	2 A strong bilinear formulation
	3 Strong linear formulations for bounded z
	4 The basic branch and bound framework
	5 A reformulation using cliques in conflict graphs
	6 Characterization of optimal values for p and z
	7 The branch and bound algorithm
	7.1 Dual bounding
	7.1.1 Deriving dual bounds from ROB(Z)
	7.1.2 Optimality-cuts

	7.2 Primal bounding
	7.3 Pruning
	7.4 Node selection
	7.5 Branching
	7.6 Summary and implementation

	8 Computational study
	8.1 Instance generation
	8.2 Impact of components of the branch and bound algorithm
	8.3 Comparing algorithms from the literature
	8.4 Improving algorithms from literature
	8.5 When to use branch and bound or divide and conquer

	9 Conclusion
	Acknowledgements
	A Implementation of conflict graph and clique partitioning
	B Proof of Lemma 2
	C Filtering possible values for z
	References




