
Mathematical Programming Computation (2023) 15:53–101
https://doi.org/10.1007/s12532-022-00226-0

FULL LENGTH PAPER

Performance enhancements for a generic conic interior
point algorithm

Chris Coey1 · Lea Kapelevich1 · Juan Pablo Vielma2

Received: 8 July 2021 / Accepted: 29 July 2022 / Published online: 17 September 2022
© The Author(s) 2022

Abstract
In recent work, we provide computational arguments for expanding the class of proper
cones recognized by conic optimization solvers, to permit simpler, smaller, more
natural conic formulations. We define an exotic cone as a proper cone for which we
can implement a small set of tractable (i.e. fast, numerically stable, analytic) oracles for
a logarithmically homogeneous self-concordant barrier for the cone or for its dual cone.
Our extensible, open-source conic interior point solver, Hypatia, allows modeling and
solving any conic problem over a Cartesian product of exotic cones. In this paper, we
introduce Hypatia’s interior point algorithm, which generalizes that of Skajaa and Ye
(Math. Program. 150(2):391–422, 2015) by handling exotic cones without tractable
primal oracles. To improve iteration count and solve time in practice, we propose four
enhancements to the interior point stepping procedure of Skajaa and Ye: (1) loosening
the central path proximity conditions, (2) adjusting the directions using a third order
directional derivative barrier oracle, (3) performing a backtracking search on a curve,
and (4) combining the prediction and centering directions. We implement 23 useful
exotic cones in Hypatia. We summarize the complexity of computing oracles for these
cones and show that our new third order oracle is not a bottleneck. From 37 applied
examples, we generate a diverse benchmark set of 379 problems. Our computational
testing shows that each stepping enhancement improves Hypatia’s iteration count and
solve time. Altogether, the enhancements reduce the geometric means of iteration
count and solve time by over 80% and 70% respectively.

B Lea Kapelevich
lkap@mit.edu

Chris Coey
coey@mit.edu

Juan Pablo Vielma
jvielma@google.com

1 Operations Research Center, MIT, Cambridge, MA, USA

2 Google Research and MIT Sloan School of Management, Cambridge, MA, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12532-022-00226-0&domain=pdf

54 C. Coey et al.

Keywords Conic optimization · Logarithmically homogeneous self-concordant
barrier functions · Higher-order derivatives · Interior point methods

Mathematics Subject Classification 90-08 · 90C25 · 90C51

1 Introduction

Any convex optimization problem may be represented as a conic problem that min-
imizes a linear function over the intersection of an affine subspace with a Cartesian
product of primitive proper cones (i.e. irreducible, closed, convex, pointed, and full-
dimensional conic sets). Under certain conditions, a conic problem has a simple and
easily checkable certificate of optimality, primal infeasibility, or dual infeasibility [60].
Most commercial and open-source conic solvers (such as CSDP [8], CVXOPT [3],
ECOS [24, 63], MOSEK [42], SDPA [68], Alfonso [56]) implement primal-dual inte-
rior point methods (PDIPMs) based on the theory of logarithmically homogeneous
self-concordant barrier (LHSCB) functions. Compared to first order conic methods
(see [54] on SCS solver), idealized PDIPMs typically exhibit higher per-iteration cost,
but have a lower iteration complexity of O(

√
ν log(1/ε)) iterations to converge to ε

tolerance, where ν is the barrier parameter of the LHSCB. We limit the scope of this
paper to conic PDIPMs, but note that there are other notions of duality and PDIPMs
for convex problems outside of the conic realm (see e.g. [37]).

1.1 Conic optimization with Hypatia solver

Hypatia [20] is an open-source, extensible conic primal-dual interior point solver.1

Hypatia is written in the Julia language [7] and is accessible through a flexible, low-
level native interface or the modeling tool JuMP [25]. A key feature of Hypatia is a
generic cone interface that allows users to define new exotic cones. An exotic cone is
a proper cone for which we can implement a small set of tractable LHSCB oracles
(listed in Sect. 1.2) for either the cone or its dual cone. Defining a new cone through
Hypatia’s cone interface makes both the cone and its dual available for use in conic
formulations. We have already predefined 23 useful exotic cone types (some with
multiple variants) in Hypatia. Several cones are new and required the development of
LHSCBs and efficient procedures for oracle evaluations (see [18, 35]).

Advanced conic solvers such as MOSEK 9 currently recognize at most only a
handful of standard cones: nonnegative, (rotated) second order, positive semidefinite
(PSD), and three-dimensional exponential and power cones. In [20], we show across
seven applied examples that modeling with the much larger class of exotic cones
often permits simpler, smaller, more natural conic formulations. Our computational
experiments with these examples demonstrate the potential advantages, especially in
terms of solve time and memory usage, of solving natural formulations with Hypatia
compared to solving standard conic extended formulations with either Hypatia or

1 Hypatia is available at github.com/chriscoey/Hypatia.jl under the MIT license. See [19] for documenta-
tion, examples, and instructions for using Hypatia.

123

https://github.com/chriscoey/Hypatia.jl

Performance enhancements for a generic… 55

MOSEK 9. However, a description of Hypatia’s algorithms was outside the scope of
[20]. In contrast, the main purpose of this paper is to introduce some key features of
our exotic conic PDIPM that enable it to be both general and performant.

1.2 The Skajaa-Ye algorithm

Most conic PDIPM solvers use efficient algorithms specialized for symmetric cones,
in particular, the nonnegative, (rotated) second order, and PSD cones. Although non-
symmetric conic PDIPMs proposed in [47, 50] can handle a broader class of cones,
they have several disadvantages compared to specialized symmetric methods (e.g.
requiring larger linear systems, strict feasibility of the initial iterate, or conjugate
LHSCB oracles). The algorithm by Skajaa and Ye [64], henceforth referred to as SY,
addresses these issues by approximately tracing the central path of the homogeneous
self-dual embedding (HSDE) [2, 67] to an approximate solution for the HSDE. This
final iterate provides an approximate conic certificate for the conic problem, if a
conic certificate exists. The SY algorithm relies on an idea by Nesterov [47] that a
high quality prediction direction (enabling a long step and rapid progress towards a
solution) can be computed if the current iterate is in close proximity to the central path
(i.e. it is an approximate scaling point). To restore centrality after each prediction step,
SY performs a series of centering steps.

By using a different definition of central path proximity to [47], SY avoids needing
conjugate LHSCB oracles.2 Indeed, a major advantage of SY is that it only requires
access to a few tractable oracles for the primal cone: an initial interior point, feasibility
check, and gradient and Hessian evaluations for the LHSCB. In our experience, for
a large class of proper cones, these oracles can be evaluated analytically, i.e. without
requiring the implementation of iterative numerical procedures (such as optimization)
that can be expensive and may need numerical tuning. Conjugate LHSCB oracles
in general require optimization, and compared to the analytic oracles, they are often
significantly less efficient and more prone to numerical instability.

1.3 Practical algorithmic developments

For many proper cones of interest, including most of Hypatia’s non-symmetric cones,
we are aware of LHSCBs with tractable oracles for either the cone or its dual cone but
not both. Suppose a problem involves a Cartesian product of exotic cones, some with
primal oracles implemented and some with dual oracles implemented (as in several
example formulations described in [20]). In this case, SY can solve neither the primal
problem nor its conic dual, as SY requires primal oracles. Our algorithm generalizes
SY to allow a conic formulation over any Cartesian product of exotic cones.

The focus of [64] is demonstrating that SY has the best known iteration complexity
for conic PDIPMs. This complexity analysis was corrected by Papp and Yıldız [56],
who implemented SY in their recent MATLAB solver Alfonso [58, 59]. It is well
known that performant PDIPM implementations tend to violate assumptions used in

2 Some proposed techniques such as the Hessian scaling updates and central path proximity definitions of
[21, 46] require conjugate LHSCB oracles.

123

56 C. Coey et al.

iteration complexity analysis, so in this paper we are not concerned with iteration
complexity. Our goal is to reduce iteration counts and solve times in practice, by
enhancing the performance of the interior point stepping procedure proposed by SY
and implemented by Alfonso.

The basic SY-like stepping procedure computes a prediction or centering direction
by solving a large structured linear system, performs a backtracking line search in
the direction, and steps as far as possible given a restrictive central path proximity
condition. We propose a sequence of four practical performance enhancements.

Less restrictive proximity. We use a relaxed central path proximity condition,
allowing longer prediction steps and fewer centering steps.
Third order adjustments. After computing the prediction or centering direction,
we compute a third order adjustment (TOA) direction using a new third order
oracle (TOO) for exotic cones. We use a line search in the unadjusted direction to
determine how to combine it with the TOA direction, before performing a second
line search and stepping in the new adjusted direction.
Curve search. Due to the central path proximity checks, each backtracking line
search can be quite expensive. Instead of performing two line searches, we use a
single backtracking search along a particular quadratic curve of combinations of
the unadjusted and TOA directions.
Combined directions. Unlike SY, most conic PDIPMs do not use separate pre-
diction and centering phases. We compute the prediction and centering directions
and their associated TOA directions, then perform a backtracking search along a
quadratic curve of combinations of all four directions.

Our TOA approach is distinct from the techniques in [21, 41] that also use higher
order LHSCB information.3 Unlike these techniques, we derive adjustments (using
the TOO) for both the prediction and centering directions. Our TOO has a simpler and
more symmetric structure than the third order term used in [21], and we leverage this
for fast and numerically stable evaluations.Whereas themethod of [41] only applies to
symmetric cones, and the technique in [21] is tested only for the standard exponential
cone, we implement and test our TOO for all of Hypatia’s 23 predefined cones. In
our experience, requiring a tractable TOO is only as restrictive as requiring tractable
gradient and Hessian oracles. We show that the time complexity of the TOO is no
higher than that of the other required oracles for each of our cones. To illustrate, we
describe efficient and numerically stable TOO procedures for several cones that can
be characterized as intersections of slices of the PSD cone.

Although this paper is mainly concerned with the stepping procedures, we also
outline our implementations of other key algorithmic components. These include pre-
processing of problem data, finding an initial iterate, the solution of structured linear
systems for search directions, and efficient backtracking searches with central path
proximity checks. We note that Hypatia has a variety of algorithmic options for these
components; these different options can have a dramatic impact on overall solve time
and memory usage, but in most cases they have minimal effect on the iteration count.

3 To avoid confusion, we do not use the term ‘corrector’ in this paper. In the terminology of [21, 41] our
TOA approach is a type of ‘higher order corrector’ technique, but also our unadjusted centering direction
is referred to by [56, 64] as the ‘corrector’ direction.

123

Performance enhancements for a generic… 57

For the purposes of this paper, we only describe and test one set of (default) options
for these components.

1.4 Benchmark instances and computational testing

We implement and briefly describe 37 applied examples (available in Hypatia’s exam-
ples folder), each of which has options for creating formulations of different types
and sizes. From these examples, we generate 379 problem instances of a wide range
of sizes. Since there is currently no conic benchmark storage format that recognizes
more than a handful of cone types, we generate all instances on the fly using JuMP or
Hypatia’s native interface. All of Hypatia’s predefined cones are represented in these
instances, so we believe this is the most diverse conic benchmark set available.

On this benchmark set, we run five different stepping procedures: the basic SY-like
procedure (similar to Alfonso) and the sequence of four cumulative enhancements
to this procedure. Our results show that each enhancement tends to improve Hypa-
tia’s iteration count and solve time, with minimal impact on the number of instances
solved. We do not enforce time or iteration limits, but we note that under strict limits
the enhancements would greatly improve the number of instances solved. The TOA
enhancement alone leads to a particularly consistent improvement of around 45% for
iteration counts. Overall, the enhancements together reduce the iterations and solve
time by more than 80% and 70% respectively. For instances that take more iterations
or solve time, the enhancements tend to yield greater relative improvements in these
measures.

1.5 Overview

In Sect. 2, we define our mathematical notation. In Sect. 3, we define exotic cones,
LHSCBs, and our required cone oracles (including the TOO). In Sect. 4, we describe
Hypatia’s general primal-dual conic form, associated conic certificates, and theHSDE.
In Sect. 5, we define the central path of theHSDE and central path proximitymeasures,
and we outline Hypatia’s high level algorithm. We also derive the prediction and
centering directions and our newTOAdirections, andwe describe the SY-like stepping
procedure and our series of four enhancements to this procedure. In Appendices A to
B, we discuss advanced procedures for preprocessing and initial point finding, solving
structured linear systems for directions, andperforming efficient backtracking searches
and proximity checks. In Sect. 6, we briefly introduce Hypatia’s predefined exotic
cones and show that our TOO is relatively cheap to compute, and in Appendix C we
describe some TOO implementations. In Sect. 7, we summarize our applied examples
and exotic conic benchmark instances, and finallywe present our computational results
demonstrating the practical efficacy of our stepping enhancements.

123

58 C. Coey et al.

2 Notation

For a natural number d, we define the index set �d� := {1, 2, . . . , d}. Often we con-
struct vectors with round parentheses, e.g. (a, b, c), andmatrices with square brackets,
e.g. a b

c d . For a set C, cl(C) and int(C) denote the closure and interior of C, respectively.
R denotes the space of reals, and R≥, R>, R≤, R< denote the nonnegative, pos-

itive, nonpositive, and negative reals. Rd is the space of d-dimensional real vectors,
and R

d1×d2 is the d1-by-d2-dimensional real matrices. The vectorization operator
vec : Rd1×d2 → R

d1d2 maps matrices to vectors by stacking columns, and its inverse
operator is matd1,d2 : Rd1d2 → R

d1×d2 .
S
d is the space of symmetric matrices with side dimension d, and Sd� and Sd� denote

the positive semidefinite and positive definite symmetric matrices. The inequality
S � Z is equivalent to S − Z ∈ S

d� (and similarly for the strict inequality � and
S
d�). We let sd(d) := d(d + 1)/2 be the dimension of the vectorized upper triangle

of Sd . We overload the vectorization operator vec : Sd → R
sd(d) to perform an svec

transformation, which rescales off-diagonal elements by
√
2 and stacks columns of the

upper triangle (or equivalently, rows of the lower triangle). For example, for S ∈ S
3 we

have sd(3) = 6 and vec(S) = (S1,1,
√
2S1,2, S2,2,

√
2S1,3,

√
2S2,3, S3,3) ∈ R

sd(3).
The inverse mapping mat : Rsd(d) → S

d is well-defined.
For a vector ormatrix A, the transpose is A′ and the trace is tr(A). I (d) is the identity

matrix in R
d×d . We use the standard inner product on R

d , i.e. s′z = ∑
i∈�d�si zi for

s, z ∈ R
d , which equips R

d with the standard norm ‖s‖ = (s′s)1/2. The linear
operators vec and mat preserve inner products, e.g. vec(S)′ vec(Z) = tr(S′Z) for
S, Z ∈ R

d1×d2 or S, Z ∈ S
d . Diag : R

d → S
d is the diagonal matrix of a given

vector, and diag : S
d → R

d is the vector of the diagonal of a given matrix. For
dimensions implied by context, e is a vector of 1s, ei is the i th unit vector, and 0 is a
vector or matrix of 0s.

|x | is the absolute value of x ∈ R and log(x) is the natural logarithm of x > 0.
det(X) is the determinant of X ∈ S

d , and logdet(X) is the log-determinant of X � 0.
For a vector x ∈ R

d , ‖x‖∞ = maxi∈�d�|xi | is the �∞ norm and ‖x‖1 = ∑
i∈�d�|xi | is

the �1 norm.
Suppose the function f : int(C) → R is strictly convex and three times continuously

differentiable on the interior of a set C ⊂ R
d . For a point p ∈ int(C), we denote the

gradient and Hessian of f at p as ∇ f (p) ∈ R
d and ∇2 f (p) ∈ S

d�. Given an h ∈ R
d ,

the first, second, and third order directional derivatives of f at p in direction h are
∇ f (p)[h] ∈ R, ∇2 f (p)[h, h] ∈ R≥, and ∇3 f (p)[h, h, h] ∈ R.

3 Exotic cones and oracles

LetK be a proper cone in Rq , i.e. a conic subset of Rq that is closed, convex, pointed,
and full-dimensional (see [64]). Note that requiring K to be a subset of Rq simplifies
our notation but is not restrictive, e.g. for the PSD cone, we use the standard svec
vectorization (see Sect. 2). The dual cone of K is K∗, which is also a proper cone in
R
q :

123

Performance enhancements for a generic… 59

K∗ := {z ∈ R
q : s′z ≥ 0,∀s ∈ K}. (1)

Following [49, Sections 2.3.1 and 2.3.3], f : int(K) → R is a ν-LHSCB for K,
where ν ≥ 1 is the LHSCB parameter, if it is three times continuously differentiable,
strictly convex, satisfies f (si) → ∞ along every sequence si ∈ int(K) converging to
the boundary of K, and:

∣
∣∇3 f (s)[h, h, h]∣∣ ≤ 2

(∇2 f (s)[h, h])3/2 ∀s ∈ int(K), h ∈ R
q , (2a)

f (θs) = f (s) − ν log(θ) ∀s ∈ int(K), θ ∈ R>. (2b)

Following [61, Section 3.3], we define the conjugate of f , f ∗ : int(K∗) → R, as:

f ∗(z) := − infs∈int(K){s′z + f (s)}, (3)

which is a ν-LHSCB for K∗.
A Cartesian product K = K1 × · · · × KK of K proper cones is a proper cone, and

its dual cone is K∗ = K∗
1 × · · · × K∗

K . In this case, if fk is a νk-LHSCB for Kk , then∑
k∈�K � fk is an LHSCB forKwith parameter

∑
k∈�K � νk [49, Proposition 2.3.3]. We

call K a primitive cone if it cannot be written as a Cartesian product of two or more
lower-dimensional cones (i.e. K must equal 1). Note K∗ is primitive if and only if
K is primitive. Primitive proper cones are the fundamental building blocks of conic
formulations.

We call a proper cone K an exotic cone if we can implement a particular set of
tractable oracles for either K or K∗. Suppose we have tractable oracles for K ⊂ R

q

and let f : int(K) → R denote the ν-LHSCB forK. The oracles forK that we require
in this paper are as follows.

Feasibility check.The strict feasibility oracle checkswhether a given point s ∈ R
q

satisfies s ∈ int(K).
Gradient and Hessian evaluations.Given a point s ∈ int(K), the gradient oracle
g and Hessian oracle H evaluated at s are:

g(s) := ∇ f (s) ∈ R
q , (4a)

H(s) := ∇2 f (s) ∈ S
q�. (4b)

Third order directional derivative. Given a point s ∈ int(K) and a direction
δs ∈ R

q , our new third order oracle (TOO), denoted by T, is a rescaled third order
directional derivative vector:

T(s, δs) := − 1
2∇3 f (s)[δs, δs] ∈ R

q . (5)

Initial interior point. The initial interior point t ∈ int(K) is an arbitrary point in
the interior of K (which is nonempty since K is proper).

In Sect. 6, we introduceHypatia’s predefined cones and discuss the time complexity
of computing the feasibility check, gradient, Hessian, and TOO oracles. In Appendix

123

60 C. Coey et al.

C, we describe efficient and numerically stable techniques for computing these oracles
for a handful of our cones.AlthoughHypatia’s generic cone interface allows specifying
additional oracles that can improve speed and numerical performance (e.g. a dual cone
feasibility check,Hessian product, and inverseHessian product), these optional oracles
are outside the scope of this paper.

For the initial interior point (which Hypatia only calls once, when finding an initial
iterate), we prefer to use the central point of K. This is the unique point satisfying
t ∈ int(K) ∩ int(K∗) and t = −g(t) [21]. For the nonnegative cone K = R≥,
f (s) = − log(s) is an LHSCB with ν = 1, and we have g(s) = −s−1 and the central
point t = 1 = −g(1). For some of Hypatia’s cones, we are not aware of a simple
analytic expression for the central point, in which case we typically use a non-central
interior point.

4 General conic form and certificates

Hypatia uses the following primal conic form over variable x ∈ R
n :

infx c′x : (6a)

b − Ax = 0, (6b)

h − Gx ∈ K, (6c)

where c ∈ R
n , b ∈ R

p, and h ∈ R
q are vectors, A : Rn → R

p and G : Rn → R
q are

linear maps, andK ⊂ R
q is a Cartesian product K = K1 × · · · ×KK of exotic cones.

For k ∈ �K �, we let qk = dim(Kk), so
∑

k∈�K � qk = q = dim(K). Henceforth we use
n, p, q to denote respectively the variable, equality, and conic constraint dimensions
of a conic problem.

Once a proper cone Kk is defined through Hypatia’s generic cone interface, both
Kk and K∗

k may be used in any combination with other cones recognized by Hypatia
to construct the Cartesian product coneK in (6c). The primal form (6) matches CVX-
OPT’s form, however CVXOPT only recognizes symmetric cones [66]. Unlike the
conic form used in [59, 64], which recognizes conic constraints of the form x ∈ K,
our form does not require introducing slack variables to represent a more general
constraint h − Gx ∈ K.

The conic dual problem of (6), over variables y ∈ R
p and z ∈ R

q associated with
(6b) and (6c), is:

supy,z −b′y − h′z : (7a)

c + A′y + G ′z = 0, (7b)

z ∈ K∗, (7c)

where (7b) is associated with the primal variable x ∈ R
n .

Under certain conditions, there exists a simple conic certificate providing an easily
verifiable proof of infeasibility of the primal (6) or dual (7) problem (via the conic

123

Performance enhancements for a generic… 61

generalization of Farkas’ lemma) or optimality of a given primal-dual solution (via
conic weak duality).

A primal improving ray x is a feasible direction for the primal along which the
objective improves (hence it certifies dual infeasibility):

c′x < 0, −Ax = 0, −Gx ∈ K. (8)

A dual improving ray (y, z) is a feasible direction for the dual along which the
objective improves (hence it certifies primal infeasibility):

− b′y − h′z > 0, A′y + G ′z = 0, z ∈ K∗. (9)

A complementary solution (x, y, z) satisfies the primal-dual feasibility condi-
tions (6b), (6c), (7b) and (7c), and has equal and attained primal and dual objective
values:

c′x = −b′y − h′z. (10)

One of these certificates exists if neither the primal nor the dual is ill-posed. Intuitively,
according to [42, Section 7.2], a conic problem is ill-posed if a small perturbation of
the problem data can change the feasibility status of the problem or cause arbitrarily
large perturbations to the optimal solution (see [60] for more details).

The homogeneous self-dual embedding (HSDE) is a self-dual conic feasibility prob-
lem in variables x ∈ R

n, y ∈ R
p, z ∈ R

q , τ ∈ R, s ∈ R
q , κ ∈ R (see [66, Section 6]),

derived from a homogenization of the primal-dual optimality conditions (6b), (6c),
(7b), (7c) and (10):

⎡

⎢
⎢
⎣

0
0
s
κ

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0 A′ G ′ c
−A 0 0 b
−G 0 0 h
−c′ −b′ −h′ 0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x
y
z
τ

⎤

⎥
⎥
⎦ , (11a)

(z, τ, s, κ) ∈ (K∗ × R≥ × K × R≥
)
. (11b)

For convenience we let ω := (x, y, z, τ, s, κ) ∈ R
n+p+2q+2 represent a point. We

define the structured 4 × 6 block matrix E ∈ R
(n+p+q+1)×dim(ω) such that (11a)

is equivalent to Eω = 0. Here we assume E has full row rank; in Appendix A we
discuss preprocessing techniques that handle linearly dependent rows. Note thatω = 0
satisfies (11), so the HSDE is always feasible. A point ω is called an interior point if
it is strictly feasible for (11b), i.e. (z, τ, s, κ) ∈ int

(K∗ × R≥ × K × R≥
)
.

Suppose a pointω is feasible for the HSDE (11). From skew symmetry of the square
4 × 4 block matrix in (11a), we have s′z + κτ = 0. From (11b) and the dual cone
inequality (1), we have s′z ≥ 0 and κτ ≥ 0. Hence s′z = κτ = 0. We consider an
exhaustive list of cases below [66, Section 6.1].

Optimality. If τ > 0, κ = 0, then (x, y, z)/τ is a complementary solution.
Infeasibility. If τ = 0, κ > 0, then c′x + b′y + h′z < 0.

123

62 C. Coey et al.

Of dual. If c′x < 0, then x is a primal improving ray.
Of primal. If b′y + h′z < 0, then (y, z) is a dual improving ray.

No information. If τ = κ = 0, thenω provides no information about the feasibility
or optimal values of the primal or dual.

According to Skajaa and Ye [64, Section 2], if the primal and dual problems are
feasible and have zero duality gap, SY (their algorithm) finds an HSDE solution
with τ > 0 (yielding a complementary solution), and if the primal or dual (possibly
both) is infeasible, SY finds an HSDE solution with κ > 0 (yielding an infeasibility
certificate). This implies that if SY finds a solution with κ = τ = 0, then κ = τ = 0
for all solutions to the HSDE; in this case, no complementary solution or improving
ray exists, and the primal or dual (possibly both) is ill-posed [60]. The algorithm we
describe in Sect. 5 is an extension of SY that inherits these properties.

5 Central path following algorithm

In Sect. 5.1, we describe the central path of the HSDE, and in Sect. 5.2 we define
central path proximity measures. In Sect. 5.3, we outline a high level PDIPM that
maintains iterates close to the central path, and we give numerical convergence criteria
for detecting approximate conic certificates. In Sect. 5.4, we derive prediction and
centering directions and our corresponding TOA directions using the TOO. Finally in
Sect. 5.5, we summarize an SY-like stepping procedure and describe our sequence of
four enhancements to this procedure.

5.1 Central path of the HSDE

We define the HSDE in (11). Recall thatK in our primal conic form (6) is a Cartesian
product K = K1 × · · · × KK of K exotic cones. We partition the exotic cone indices
�K � into two sets: Kpr for cones with primal oracles (i.e. for Kk) and Kdu for cones
with dual oracles (i.e. forK∗

k). For convenience, we append the τ and κ variables onto
the s and z variables. Letting K̄ = K + 1, we define for k ∈ �K̄ �:

K̄k :=

⎧
⎪⎨

⎪⎩

Kk k ∈ Kpr,

K∗
k k ∈ Kdu,

R≥ k = K̄ ,

(12a)

(z̄k, s̄k) :=

⎧
⎪⎨

⎪⎩

(zk, sk) k ∈ Kpr,

(sk, zk) k ∈ Kdu,

(κ, τ) k = K̄ .

(12b)

For a given initial interior point ω0 = (x0, y0, z0, τ 0, s0, κ0), the central path of
the HSDE is the trajectory of solutions ωμ = (xμ, yμ, zμ, τμ, sμ, κμ), parameterized

123

Performance enhancements for a generic… 63

by μ > 0, satisfying:

Eωμ = μEω0, (13a)

z̄μ,k + μgk(s̄μ,k) = 0 ∀k ∈ �K̄ �, (13b)

(z̄μ, s̄μ) ∈ int(K̄∗ × K̄). (13c)

When all exotic cones have primal oracles (i.e. Kdu is empty), our definition (13)
exactly matches the central path defined in [66, Equation 32], and only differs from
the definition in [64, Equations 7-8] in the affine form (i.e. the variable names and
affine constraint structure). Unlike SY, our central path condition (13b) allows cones
with dual oracles (Kdu may be nonempty).

To obtain an initial point ω0, we first let:

(
z̄0k , s̄

0
k

) = (−gk(tk), tk) ∀k ∈ �K̄ �, (14)

where tk ∈ int
(K̄k

)
is the initial interior point oracle (note that τ 0 = κ0 = 1).Although

x0 and y0 can be chosen arbitrarily, we let x0 be the solution of:

minx∈Rn ‖x‖ : (15a)

−Ax + bτ 0 = 0, (15b)

−Gx + hτ 0 − s0 = 0, (15c)

and we let y0 be the solution of:

miny∈Rp ‖y‖ : (16a)

A′y + G ′z0 + cτ 0 = 0. (16b)

In Appendix A, we outline a QR-factorization-based procedure for preprocessing the
affine data of the conic model and solving for ω0.

Like [64, Section 4.1], we define the complementarity gap function:

μ(ω) := s̄′ z̄/
∑

k∈�K̄ �νk, (17)

where νk is the LHSCB parameter of the LHSCB fk for K̄k (see (2b)). Note that
μ(ω) > 0 if (z̄, s̄) ∈ int(K̄∗) × int(K̄), by a strict version of the dual cone inequality
(1). From (14), μ(ω0) = 1, since in (17) we have (s̄0)′ z̄0 = ∑

k∈�K̄ �t
′
k(−gk(tk)), and

t ′k(−gk(tk)) = νk by logarithmic homogeneity of fk [49, Proposition 2.3.4]. Hence
ω0 satisfies the central path conditions (13) for parameter value μ = 1. The central
path is therefore a trajectory that starts at ω0 with complementarity gap μ = 1 and
approaches a solution for the HSDE as μ decreases to zero.

123

64 C. Coey et al.

5.2 Central path proximity

Given a point ω, we define the central path proximity πk for exotic cone k ∈ �K̄ � as:

πk(ω) :=
{∥

∥(Hk(s̄k))−1/2(z̄k/μ(ω) + gk(s̄k))
∥
∥ if μ(ω) > 0, s̄k ∈ int

(K̄k
)
,

∞ otherwise.
(18)

Hence πk is a measure of the distance from s̄k and z̄k to the surface defined by the
central path condition (13b) (compare to [64, Equation 9] and [52, Section 4]).

In Lemma 1, we show that for exotic cone k ∈ �K̄ �, if πk(ω) < 1, then s̄k ∈
int

(K̄k
)
and z̄k ∈ int

(K̄∗
k

)
. This condition is sufficient but not necessary for strict

cone feasibility. If it holds for all k ∈ �K̄ �, then ω is an interior point (by definition)
and (13c) is satisfied. From (18), πk(ω) can be computed by evaluating the feasibility
check, gradient, and Hessian oracles for K̄k at s̄k .

Lemma 1 Given a point ω, for each k ∈ �K̄ �, πk(ω) < 1 implies s̄k ∈ int
(K̄k

)
and

z̄k ∈ int
(K̄∗

k

)
.

Proof We adapt the proof of [56, Lemma 15]. Fix μ = μ(ω) for convenience, and
suppose πk(ω) < 1 for exotic cone k ∈ �K̄ �. Then by (18), μ > 0 and s̄k ∈ int

(K̄k
)
.

By [56, Theorem 8], s̄k ∈ int
(K̄k

)
implies −gk(s̄k) ∈ int

(K̄∗
k

)
. Let fk be the LHSCB

for K̄k , and let H∗
k := ∇2 f ∗

k denote the Hessian operator for the conjugate f ∗
k (see

(3)) of fk . By [56, Equation 13], H∗
k (−gk(s̄k)) = (Hk(s̄k))−1, so:

∥
∥(H∗

k (−gk(s̄k)))
1/2(z̄k/μ + gk(s̄k))

∥
∥ (19a)

= ∥
∥(Hk(s̄k))

−1/2(z̄k/μ + gk(s̄k))
∥
∥ (19b)

= πk(ω) < 1. (19c)

So by [56, Definition 1], z̄k/μ ∈ int
(K̄∗

k

)
, hence z̄k ∈ int

(K̄∗
k

)
. ��

We now define a proximity function that aggregates the exotic cone central path
proximity values πk(ω) ≥ 0,∀k ∈ �K̄ �. SY aggregates by taking the �2 norm:

π�2(ω) := ∥
∥(πk(ω))k∈�K̄ �

∥
∥. (20)

An alternative aggregated proximity uses the �∞ norm (maximum):

π�∞(ω) := ∥
∥(πk(ω))k∈�K̄ �

∥
∥∞. (21)

Clearly, 0 ≤ πk(ω) ≤ π�∞(ω) ≤ π�2(ω),∀k ∈ �K̄ �. Both conditions π�2(ω) < 1
and π�∞(ω) < 1 guarantee by Lemma 1 that ω is an interior point, however using π�2

leads to a more restrictive condition on ω.

123

Performance enhancements for a generic… 65

5.3 High level algorithm

We describe a high level algorithm for approximately solving the HSDE. The method
starts at the initial interior pointω0 with complementarity gapμ(ω0) = 1 and approxi-
mately tracks the central path trajectory (13) through a series of iterations. It maintains
feasibility for the linear equality conditions (13a) and strict cone feasibility conditions
(13c), but allows violation of the nonlinear equality conditions (13b). On the i th iter-
ation, the current interior point is ωi−1 satisfying πk(ω

i−1) < 1,∀k ∈ �K̄ �, and
the complementarity gap is μ(ωi−1). The method searches for a new point ωi that
maintains the proximity condition πk(ω

i) < 1,∀k ∈ �K̄ � (and hence is an interior
point) and either has a smaller complementarity gap μ(ωi) < μ(ωi−1) or a smaller
aggregate proximity value π(ωi) < π(ωi−1) (where π is π�2 or π�∞), or both. As the
complementarity gap decreases towards zero, the RHS of (13a) approaches the origin,
so the iterates approach a solution of the HSDE (11).

To detect an approximate conic certificate and terminate the iterations, we check
whether the current iterate ω satisfies any of the following numerical convergence
criteria. These conditions use positive tolerance values for feasibility ε f , infeasibility
εi , absolute gap εa , relative gap εr , and ill-posedness εp. The criteria and default
tolerance values are similar to those described by MOSEK in [43, Section 13.3.2] and
CVXOPT in [44], and implemented in Alfonso [58]. In Sect. 7.2, we describe the
tolerance values we use for computational testing in this paper.

Optimality. We terminate with a complementary solution (x, y, z)/τ approxi-
mately satisfying the primal-dual optimality conditions (6b), (6c), (7b), (7c) and
(10) if:

max

(‖A′y + G ′z + cτ‖∞
1 + ‖c‖∞

,
‖−Ax + bτ‖∞

1 + ‖b‖∞
,
‖−Gx + hτ − s‖∞

1 + ‖h‖∞

)

≤ ε f τ,

(22a)

and at least one of the following two conditions holds:

s′z ≤ εa, (22b)

min(s′z/τ, |c′x + b′y + h′z|) ≤ εr max(τ,min(|c′x |, |b′y + h′z|)). (22c)

Note that (22b) and (22c) are absolute and relative optimality gap conditions
respectively.
Primal infeasibility.We terminate with a dual improving ray (y, z) approximately
satisfying (9) if:

b′y + h′z < 0, ‖A′y + G ′z‖∞ ≤ −εi (b
′y + h′z). (23)

Dual infeasibility. We terminate with a primal improving ray x approximately
satisfying (8) if:

c′x < 0, max(‖Ax‖∞, ‖Gx + s‖∞) ≤ −εi c
′x . (24)

123

66 C. Coey et al.

Ill-posed primal or dual. If τ and κ are approximately 0, the primal and dual
problem statuses cannot be determined. We terminate with an ill-posed status if:

μ(ω) ≤ εp, τ ≤ εp min(1, κ). (25)

The high level path following algorithm below computes an approximate solution
to the HSDE. In Sect. 5.5, we describe specific stepping procedures for Line 5.
1: procedure SolveHSDE
2: compute initial interior point ω0

3: i ← 1
4: while ωi−1 does not satisfy any of the convergence conditions (22) to (25) do
5: ωi ← Step(ωi−1)
6: i ← i + 1
7: end while
8: return ωi

9: end procedure

5.4 Search directions

At a given iteration of the path followingmethod, letω be the current interior point and
fix μ = μ(ω) for convenience. The stepping procedures we describe in Sect. 5.5 first
compute one or more search directions, which depend on ω. We derive the centering
direction in Sect. 5.4.1 and the prediction direction in Sect. 5.4.2. The goal of centering
is to step to a point with a smaller aggregate central path proximity than the current
point, i.e. to step towards the central path. The goal of prediction is to step to a point
with a smaller complementarity gap, i.e. to step closer to a solution of the HSDE. The
centering and prediction directions match those used by SY. We associate with each
of these directions a new third order adjustment (TOA) direction, which depends on
the TOO and helps to correct the corresponding unadjusted direction (which must be
computed before the TOA direction). Hence we derive four types of directions here.

Each direction is computed as the solution to a linear system with a structured
square block matrix left hand side (LHS) and a particular right hand side (RHS)
vector. The LHS, which depends only on ω and the problem data, is the same for all
four directions at a given iteration. We let r := (rE , r1, . . . , rK̄) ∈ R

dim(ω) represent
an RHS, where rE ∈ R

n+p+q+1 corresponds to the linear equalities (13a) and rk ∈
R
qk ,∀k ∈ �K̄ � corresponds to the nonlinear equalities (13b). The direction δ :=

(δx , δy, δz, δτ , δs, δκ) ∈ R
dim(ω) corresponding to r is the solution to:

Eδ = rE , (26a)

δz̄,k + μHk(s̄k)δs̄,k = rk ∀k ∈ �K̄ �. (26b)

Since E is assumed to have full row rank and each Hk is positive definite, this square
system is nonsingular and hence has a unique solution. In Appendix A, we describe a
particular method for solving (26).

123

Performance enhancements for a generic… 67

5.4.1 Centering

The centering direction δc is analogous to the definition of [64, Section 3.2]. It reduces
the violation on the central path nonlinear equality condition (13b) (and can be inter-
preted as a Newton step), while keeping the complementarity gap μ (approximately)
constant. We denote the centering TOA direction δct . To maintain feasibility for the
linear equality condition (13a), we ensure Eδc = Eδct = 0 in (26a).

Dropping the index k ∈ �K̄ � for conciseness, recall that (13b) expresses z̄+μg(s̄) =
0. A first order approximation of this condition gives:

z̄ + δz̄ + μ(g(s̄) + H(s̄)δs̄) = 0 (27a)

⇒ δz̄ + μH(s̄)δs̄ = −z̄ − μg(s̄), (27b)

which matches the form of (26b). Hence we let the centering direction δc be the
solution to:

Eδ = 0, (28a)

δz̄,k + μHk(s̄k)δs̄,k = −z̄k − μgk(s̄k) ∀k ∈ �K̄ �. (28b)

Similarly, a second order approximation of z̄ + μg(s̄) = 0 gives:

z̄ + δz̄ + μ
(
g(s̄) + H(s̄)δs̄ + 1

2∇3 f (s̄)[δs̄, δs̄]
) = 0 (29a)

⇒ δz̄ + μH(s̄)δs̄ = −z̄ − μg(s̄) + μT(s̄, δs̄), (29b)

where (29b) uses the definition of the TOO in (5). Note that the RHSs of (27b) and
(29b) differ only by μT(s̄, δs̄), which depends on δs̄ . To remove this dependency,
we substitute the centering direction δc, which we assume is already computed, into
the RHS of (29b). Hence we let the centering TOA direction δct , which adjusts the
centering direction, be the solution to:

Eδ = 0, (30a)

δz̄,k + μHk(s̄k)δs̄,k = μTk
(
s̄k, δ

c
s̄,k

) ∀k ∈ �K̄ �. (30b)

We note that for a rescaling factor α ∈ (0, 1), the TOA direction corresponding to
αδc (a rescaling of the centering direction) is α2δct (a rescaling of the centering TOA
direction).

5.4.2 Prediction

The prediction direction δ p reduces the complementarity gap and is analogous to the
definition of [64, Section 3.1]. We derive δ p and its corresponding TOA direction δ pt

by considering the central path conditions (13) as a dynamical system parametrized
by μ > 0, and differentiating the linear and nonlinear equalities (13a) and (13b).

123

68 C. Coey et al.

Differentiating (13a) once gives:

Eω̇μ = Eω0. (31)

Rescaling (31) by −μ and substituting (13a) gives:

E(−μω̇μ) = −μEω0 = −Eωμ. (32)

Dropping the index k ∈ �K̄ � for conciseness, we differentiate z̄μ + μg(s̄μ) = 0 from
(13b) once to get:

˙̄zμ + g(s̄μ) + μH(s̄μ) ˙̄sμ = 0. (33)

Rescaling (33) by −μ and substituting z̄μ = −μg(s̄μ) from (13b) gives:

−μ ˙̄zμ + μH(s̄μ)(−μ ˙̄sμ) = −z̄μ. (34)

The direction ω̇μ is tangent to the central path. Like SY, we interpret the prediction
direction as δ p = −μω̇μ, so (32) and (34) become:

Eδ p = −Eωμ, (35a)

δ
p
z̄ + μH(s̄μ)δ

p
s̄ = −z̄μ, (35b)

which matches the form (26). So we let δ p be the solution to:

Eδ = −Eω, (36a)

δz̄,k + μHk(s̄k)δs̄,k = −z̄k ∀k ∈ �K̄ �. (36b)

Differentiating (13a) twice and rescaling by 1
2μ

2 gives:

E
(1
2μ

2ω̈μ

) = 0. (37)

Differentiating z̄μ + μg(s̄μ) = 0 twice gives:

¨̄zμ + 2H(s̄μ) ˙̄sμ + μ∇3 f (s̄μ)[˙̄sμ, ˙̄sμ] + μH(s̄μ) ¨̄sμ = 0. (38)

Rescaling (38) by 1
2μ

2 and substituting the TOO definition (5), we have:

1
2μ

2 ¨̄zμ + μH(s̄μ)
(1
2μ

2 ¨̄sμ

) = μH(s̄μ)(−μ ˙̄sμ) − 1
2μ∇3 f (s̄μ)[−μ ˙̄sμ,−μ ˙̄sμ]

(39a)

= μH(s̄μ)(−μ ˙̄sμ) + μT(s̄μ,−μ ˙̄sμ). (39b)

We interpret the prediction TOA direction, which adjusts the prediction direction,
as δ pt = 1

2μ
2ω̈. The RHS of (39b) depends on ˙̄sμ, so we remove this dependency

123

Performance enhancements for a generic… 69

by substituting the prediction direction δ p = −μω̇μ, which we assume is already
computed. Hence using (37) and (39b), we let δ pt be the solution to:

Eδ = 0, (40a)

δz̄,k + μHk(s̄k)δs̄,k = μHk(s̄k)δ
p
s̄,k + μTk

(
s̄k, δ

p
s̄,k

) ∀k ∈ �K̄ �. (40b)

We note that the RHS in (40b) differs from the ‘higher order corrector’ RHS of Dahl
and Andersen [21, Equation 16], which has the form 1

2∇3 fk
[
δ
p
s̄,k, (Hk(s̄k))−1δ

p
z̄,k

]
.

For example, our form does not satisfy all of the properties in [21, Lemmas 3 and 4].

5.5 Stepping procedures

A stepping procedure computes one or more directions from Sect. 5.4 and uses the
directions to search for a new interior point. Recall from Line 5 of the high level
PDIPM in Sect. 5.3 that on iteration i with current iterate ωi−1, Step computes ωi

satisfying π(ωi) < 1 and either μ(ωi) < μ(ωi−1) (prediction) or π(ωi) < π(ωi−1)

(centering) or both. In Sect. 5.5.1, we describe a baseline stepping procedure mirror-
ing that of Alfonso, which is an implementation of the SY algorithm with worst-case
polynomial time iteration complexity. This procedure, which we call basic, alternates
between prediction and centering steps and does not use the TOA directions. In Sects.
5.5.2 to 5.5.5, we describe a sequence of four cumulative enhancements to the basic
procedure. The goal is to improve iteration counts or per-iteration computational effi-
ciency in practice, without regard for theoretical iteration complexity guarantees. Our
computational testing in Sect. 7 assesses the value of these enhancements on a diverse
set of benchmark instances.

5.5.1 Basic stepping procedure

First, we decide whether to perform a centering step or a prediction step. If the current
iterate ωi−1 (at the i th iteration) is very close to the central path, i.e. if the sum
proximity (20) does not exceed η = 0.0332, or if the most recent N = 4 steps have
all been centering steps, then we compute the prediction direction δ p (note these
parameter values are taken directly from Alfonso and are based on the theoretical
analysis of [56]). Otherwise, we compute the centering direction δc from (28). Letting
j be the number of consecutive centering steps taken immediately before the current
i th iteration, the search direction is:

δ :=
{

δ p if π�2(ω
i−1) ≤ η or j ≥ N ,

δc otherwise.
(41)

Next, we perform a backtracking line search in the direction δ. The search finds
a step length α̂ ∈ (0, 1) from a fixed schedule of decreasing values A = {αl}l∈�L�,

where L = 18, α1 = 0.9999, and αL = 0.0005. The next iterate ωi = ωi−1 + α̂δ

becomes the first point in the backtracking line search that satisfies π�2(ω
i) ≤ β1 for

123

70 C. Coey et al.

β1 = 0.2844, which guarantees interiority by Lemma 1 (note β1 is again taken directly
from Alfonso and is based on the theoretical analysis of [56]). If the backtracking
search terminates without a step length satisfying the proximity condition (i.e. αL is
too large), the PDIPM algorithm terminates without a solution. In Appendix B we
discuss our implementation of the proximity check that we run for each candidate
point in the backtracking search.

The basic stepping procedure is summarized as follows. Note the centering step
count j is initialized to zero before the first iteration i = 1. Since ω0 is exactly on the
central path (i.e. the proximity is zero), the first iteration uses a prediction step.

1: procedure BasicStep(ωi−1, j)
2: if π�2(ω

i−1) ≤ η or j ≥ N then � choose predict or center
3: δ ← δ p from (36) � compute prediction direction
4: j ← 0
5: else
6: δ ← δc from (28) � compute centering direction
7: j ← j + 1
8: end if
9: α̂ ← max{α ∈ A : π�2(ω

i−1 + αδ) ≤ β1} � compute step length by
backtracking search

10: ωi ← ωi−1 + α̂δ � update current iterate
11: end procedure

5.5.2 Less restrictive proximity

The basic stepping procedure in Sect. 5.5.1 requires iterates to remain in close prox-
imity to the central path and usually only takes prediction steps from iterates that are
very close to the central path. Although conservative proximity conditions are used
to prove polynomial iteration complexity in [56], they may be too restrictive from the
perspective of practical performance. To allow prediction steps from a larger neigh-
borhood of the central path, we use the π�∞ proximity measure from (21) instead of
π�2 to compute the proximity of ωi−1, though we do not change the proximity bound
η. To allow the step length to be as large as possible, we use π�∞ instead of π�2 for
the backtracking search proximity checks and we replace β1 from Sect. 5.5.1 by a
larger proximity bound β2 = 0.99. By Lemma 1, β2 < 1 guarantees interiority, and
our offline sensitivity analysis on β2 suggests that 0.99 is a reasonable choice.4

The prox stepping procedure, which enhances the basic stepping procedure by
relaxing the proximity conditions somewhat, is summarized as follows.

1: procedure ProxStep(ωi−1, j)
2: if π�∞(ωi−1) ≤ η or j ≥ N then � use less restrictive proximity measure π�∞
3: δ ← δ p from (36)
4: j ← 0
5: else

4 These results are available from the Hypatia wiki at https://raw.githubusercontent.com/wiki/chriscoey/
Hypatia.jl/files/betas.pdf, and are run on our benchmark set from Sect. 7.

123

https://raw.githubusercontent.com/wiki/chriscoey/Hypatia.jl/files/betas.pdf
https://raw.githubusercontent.com/wiki/chriscoey/Hypatia.jl/files/betas.pdf

Performance enhancements for a generic… 71

6: δ ← δc from (28)
7: j ← j + 1
8: end if
9: α̂ ← max{α ∈ A : π�∞(ωi−1 + αδ) ≤ β2} � use π�∞ and larger proximity

bound β2
10: ωi ← ωi−1 + α̂δ

11: end procedure

5.5.3 Third order adjustments

We modify the prox stepping procedure in Sect. 5.5.2 to incorporate the new TOA
directions associated with the prediction and centering directions. In symmetric conic
IPMs, it is common to compute a step length in the unadjusted prediction direction,
use this step length to compute an adjusted direction, and then compute a step length
in this final direction (see e.g. [66, Section 5.1] for CVXOPT’s approach using the
Mehrotra correction). Our approach is similar.

After deciding whether to predict or center (using the same criteria as prox), we
compute the unadjusted direction δu (i.e. δ p or δc) and its associated TOA direction δt

(i.e. δ pt or δct). We perform a backtracking line search in direction δu (like prox) and
use this unadjusted step length α̂u ∈ (0, 1) to scale down the TOA direction, letting
the adjusted direction be δu + α̂uδt . We perform a second backtracking line search in
this final direction to compute the final step length α̂, using the same techniques and
proximity condition as the first line search. If we think of α̂u as an approximation of
α̂, then essentially the final step applies an adjustment of α̂2δt to α̂δu . Our derivations
of the adjustment directions in Sect. 5.4 (particularly the centering direction) suggest
that this is a reasonable heuristic for adjustment.

TheTOA stepping procedure, which enhances the prox stepping procedure by incor-
porating the TOA directions, is summarized as follows.

1: procedure TOAStep(ωi−1, j)
2: if π�∞(ωi−1) ≤ η or j ≥ N then
3: δu ← δ p from (36)
4: δt ← δ pt from (40) � compute prediction TOA direction
5: j ← 0
6: else
7: δu ← δc from (28)
8: δt ← δct from (30) � compute centering TOA direction
9: j ← j + 1
10: end if
11: α̂u ← max{α ∈ A : π�∞(ωi−1 + αδu) ≤ β2} � perform line search for

unadjusted direction
12: δ ← δu + α̂uδt � compute final direction
13: α̂ ← max{α ∈ A : π�∞(ωi−1 + αδ) ≤ β2}
14: ωi ← ωi−1 + α̂δ

15: end procedure

123

72 C. Coey et al.

5.5.4 Curve search

The TOA stepping procedure in Sect. 5.5.3 performs two backtracking line searches,
which can be quite expensive. We propose using a single backtracking search along a
curve that is quadratic in the step parameter α and linear in the unadjusted and TOA
directions. Recall from Line 12 of the TOA procedure that we compute a direction δ

as a linear function of the step parameter from the first line search. Substituting this δ

function into the usual linear trajectory gives the curved trajectory ωi−1+α(δu +αδt)

for α ∈ (0, 1), where δu and δt are the unadjusted and TOA directions (as in the
TOA procedure). Intuitively, a backtracking search along this curve achieves a more
dynamic rescaling of the TOA direction.

The curve stepping procedure, which enhances the TOA stepping procedure by
using a search on a curve instead of two line searches, is summarized as follows.

1: procedure CurveStep(ωi−1, j)
2: if π�∞(ωi−1) ≤ η or j ≥ N then
3: δu ← δ p from (36)
4: δt ← δ pt from (40)
5: j ← 0
6: else
7: δu ← δc from (28)
8: δt ← δct from (30)
9: j ← j + 1
10: end if
11: let ω̂(α) := ωi−1 + α(δu + αδt) � use curved trajectory
12: α̂ ← max{α ∈ A : π�∞(ω̂(α)) ≤ β2}
13: ωi ← ω̂(α̂)

14: end procedure

5.5.5 Combined directions

Unlike [59, 64], most conic PDIPMs combine the prediction and centering phases
(e.g. [21, 66]). We propose using a single search on a curve that is quadratic in the step
parameterα and linear in all four directions δc, δct , δ p, δ pt fromSect. 5.5.3. Intuitively,
we can step further in a convex combination of the prediction and centering directions
than we can in just the prediction direction. In practice, a step length of one is usually
ideal for the centering phase, so we can imagine performing a backtracking search
from the point obtained from a pure prediction step (with step length one) towards the
point obtained from a pure centering step, terminating when we are close enough to
the centering point to satisfy the proximity condition. This approach fundamentally
differs from the previous procedures we have described because the search trajectory
does not finish at the current iterate ωi−1. If ω̂p(α) and ω̂c(α) are the prediction and
centering curve search trajectories fromLine 11 of the curve procedure, thenwe define
the combined trajectory as ω̂(α) = ω̂p(α) + ω̂c(1− α). Note that α = 1 corresponds
to a full step in the adjusted prediction direction δ p + δ pt , and α = 0 corresponds to
a full step in the adjusted centering direction δc + δct .

123

Performance enhancements for a generic… 73

The comb stepping procedure, which enhances the curve stepping procedure by
combining the prediction and centering phases, is summarized as follows. Note that
unlike the previous procedures, there is no parameter j counting consecutive centering
steps. Occasionally in practice, the backtracking search on Line 4 below fails to find a
positive step value, in which case we perform a centering step according to Lines 11
to 13 of the curve procedure.

1: procedure CombStep(ωi−1)
2: compute δc, δct , δ p, δ pt from (28), (30), (36) and (40) � use four directions

instead of two
3: let ω̂(α) := ωi−1 + α(δ p + αδ pt) + (1 − α)(δc + (1 − α)δct) � use combined

trajectory
4: α̂ ← max{α ∈ A : π�∞(ω̂(α)) ≤ β2}
5: ωi ← ω̂(α̂)

6: end procedure

6 Oracles for predefined exotic cones

Below we list 23 exotic cone types that we have predefined through Hypatia’s generic
cone interface (see Sect. 3). Each of these cones is represented in the benchmark set
of conic instances that we introduce in Sect. 7.1. Recall that we write any exotic cone
K in vectorized form, i.e. as a subset of Rq , where q = dim(K) ≥ 1 is the cone
dimension. For cones typically defined using symmetric matrices, we use the standard
svec vectorization (see Sect. 2) to ensure the vectorized cone is proper, to preserve
inner products, and to simplify the dual cone definition. Each cone is parametrized by
at least one dimension and several cones have additional parameters such as numerical
data; for convenience, we drop these parameters from the symbols we use to represent
cone types. For each cone, we define the LHSCB Hypatia uses below, and we list the
associated barrier parameter ν in Table 1. For several cones, we have implemented
additional variants over complex numbers (for example, a Hermitian PSD cone), but
we omit these definitions here for simplicity.

Nonnegative cone.K≥ := R
d≥ is the (self-dual) nonnegative real vectors (note for

d > 1, K≥ is not a primitive cone). We use the LHSCB f (w) = − log(w) [51,
Section 2.1].
PSD cone. K� := {

w ∈ R
sd(d) : mat(w) ∈ S

d�
}
is the (self-dual) PSD matrices

of side dimension d. We use the LHSCB f (w) = − logdet(mat(w)) [51, Section
2.2].
Doubly nonnegative cone. KDNN := K≥ ∩ K� is the PSD matrices with
all nonnegative entries of side dimension d. We use the LHSCB f (w) =
− logdet(mat(w)) − ∑

j∈�d�,i∈� j−1� log(mat(w)i, j).
Sparse PSD cone. KsPSD is the PSD matrices of side dimension s with a fixed
sparsity pattern S containing d ≥ s nonzeros (including all diagonal elements);
see Appendix C.4. The dual cone K∗

sPSD is the symmetric matrices with pattern S
for which there exists a PSD completion, i.e. an assignment of the elements not in
S such that the full matrix is PSD. For simplicity, the complexity estimates in Table

123

74 C. Coey et al.

1 assume the nonzeros are grouped under J ≥ 1 supernodes, each containing at
most l nodes, and the monotone degree of each node is no greater than a constant
D [4]. We use the LHSCB in Appendix C.4.
Linear matrix inequality cone. KLMI := {

w ∈ R
d : ∑

i∈�d�wi Pi ∈ S
s�
}
are the

vectors for which the matrix pencil of d matrices Pi ∈ S
s,∀i ∈ �d� is PSD. We

assume P1 � 0 so that we can use the initial interior point e1. We use the LHSCB
in Appendix C.2.
Infinity norm cone. K�∞ := {(u, w) ∈ R≥ ×R

d : u ≥ ‖w‖∞} is the epigraph of
the �∞ norm on R

d . The dual cone K∗
�∞ is the epigraph of the �1 norm. We use

the LHSCB f (u, w) = (d − 1) log(u) − ∑
i∈�d� log(u

2 − w2
i) [32, Section 7.5].

Euclidean norm cone. K�2 := {(u, w) ∈ R≥ × R
d : u ≥ ‖w‖} is the (self-dual)

epigraph of the �2 norm on R
d (AKA second-order cone). We use the LHSCB

f (u, w) = − log(u2 − ‖w‖2) [51, Section 2.3].
Euclidean norm square cone. Ksqr := {(u, v, w) ∈ R≥ × R≥ × R

d : 2uv ≥
‖w‖2} is the (self-dual) epigraph of the perspective of the square of the �2 norm
on R

d (AKA rotated second-order cone). We use the LHSCB f (u, v, w) =
− log(2uv − ‖w‖2) [51, Section 2.3].
Spectral norm cone. K�spec := {(u, w) ∈ R≥ × R

rs : u ≥ σ1(W)}, where
W := mat(w) and σ1 is the largest singular value function, is the epigraph of the
spectral norm onRr×s , assuming r ≤ s without loss of generality. Similarly,K∗

�spec

is the epigraph of the matrix nuclear norm (i.e. the sum of singular values). We
use the LHSCB f (u, w) = (r − 1) log(u) − logdet(u2 I (r) − WW ′) [49, Section
5.4.6].
Matrix square cone. Kmatsqr := {

(u, v, w) ∈ R
sd(r) × R≥ × R

rs : U ∈
S
r�, 2Uv � WW ′}, where U := mat(u) and W := mat(w) ∈ R

r×s , is the
homogenized symmetric matrix epigraph of the symmetric outer product, assum-
ing r ≤ s without loss of generality [33]. We use the LHSCB f (u, v, w) =
(r − 1) log(v) − logdet(2vU − WW ′) [5].
Generalized power cone. Kgpow := {

(u, w) ∈ R
r≥ × R

s : ∏
i∈�r�u

αi
i ≥ ‖w‖},

parametrized by exponents α ∈ R
r
> with e′α = 1, is the generalized power cone

[16, Section 3.1.2]. We use the LHSCB f (u, w) = − log
(∏

i∈�r�u
2αi
i − ‖w‖2) −

∑
i∈�r�(1 − αi) log(ui) [62].

Power mean cone. Kpow := {
(u, w) ∈ R × R

d≥ : u ≤ ∏
i∈�d�w

αi
i

}
, parametrized

by exponents α ∈ R
d
> with e′α = 1, is the hypograph of the power mean on R

d≥.
We use the LHSCB f (u, w) = − log

(∏
i∈�d�w

αi
i − u

) − ∑
i∈�d� log(wi) [48,

Section 5.4.7].
Geometric mean cone. Kgeo is the hypograph of the geometric mean on R

d≥, a
special case of Kpow with equal exponents.
Root-determinant cone. Krtdet := {

(u, w) ∈ R × R
sd(d) : W ∈ S

d�, u ≤
(det(W))1/d

}
, whereW := mat(w), is the hypograph of the dth-root-determinant

on Sd�. We use the LHSCB f (u, w) = − log((det(W))1/d − u) − logdet(W) [18,
Proposition 7.1].

123

Performance enhancements for a generic… 75

Logarithm cone. Klog := cl
{
(u, v, w) ∈ R × R> × R

d
> : u ≤ ∑

i∈�d�v log(wi/

v)
}
is the hypograph of the perspective of the sum of logarithms onRd

>. We use the
LHSCB f (u, v, w) = − log

(∑
i∈�d�v log(wi/v)−u

)− log(v)−∑
i∈�d� log(wi)

[18, Proposition 6.1].
Log-determinant cone. Klogdet := cl

{
(u, v, w) ∈ R × R> × R

sd(d) : W ∈
S
d�, u ≤ v logdet(W/v)

}
, where W := mat(w), is the hypograph of the

perspective of the log-determinant on S
d�. We use the LHSCB f (u, v, w) =

− log(v logdet(W/v) − u) − log(v) − logdet(W) [18, Proposition 6.1].
Separable spectral function cone.Ksepspec := cl{(u, v, w) ∈ R×R> × int(Q) :
u ≥ vϕ(w/v)}, whereQ isK≥ orK� (a cone of squares of a Jordan algebra), is the
epigraph of the perspective of a convex separable spectral function ϕ : int(Q) →
R, such as the sum or trace of the negative logarithm, negative entropy, or power in
(1, 2] (see [18] for more details). The complexity estimates in Table 1 depend on
whetherQ isK≥ orK�. We use the LHSCB f (u, v, w) = − log(u−vϕ(w/v))−
log(v) − logdet(w) [18, Proposition 6.1].
Relative entropy cone. Krelent := cl

{
(u, v, w) ∈ R × R

d
> × R

d
> : u ≥∑

i∈�d�wi log(wi/vi)
}
is the epigraph of vector relative entropy. We use the

LHSCB f (u, v, w) = − log
(
u − ∑

i∈�d�wi log(wi/vi)
) − ∑

i∈�d�(log(vi) +
log(wi)) [36, Appendix E].
Matrix relative entropy cone. Kmatrelent := cl

{
(u, v, w) ∈ R×R

sd(d) ×R
sd(d) :

V ∈ S
d�,W ∈ S

d�, u ≥ tr(W (log(W) − log(V)))
}
, where V := mat(v) and

W := mat(w), is the epigraph of matrix relative entropy. We use the LHSCB
f (u, v, w) = − log(u− tr(W (log(W)− log(V))))− logdet(V)− logdet(W) [27,
Theorem 1.5].
Weighted sum-of-squares (WSOS) cones.An interpolant basis represents a poly-
nomial implicitly by its evaluations at a fixed set of d points. Given a basic
semialgebraic domain defined by r polynomial inequalities, the four WSOS cones
below are parameterized by matrices Pl ∈ R

d×sl for l ∈ �r�. Each Pl is con-
structed by evaluating sl independent polynomials (columns) at the d points
(rows), following [57]. For simplicity, the complexity estimates in Table 1 assume
sl = s,∀l ∈ �r�. Note that s < d ≤ s2. We define KSOS and KmatSOS in [20], and
K�1SOS and K�2SOS in [35, Equations 2.7 and 4.9].

We use LHSCBs for the dual cones of these WSOS cones. For K∗
SOS and K∗

matSOS,
we discuss theLHSCBs inAppendixC.3. ForK∗

�1SOS
andK∗

�2SOS
, theLHSCBs require

more complex notation, so we refer the reader to [35].

Scalar WSOS cone. KSOS is a cone of polynomials that are guaranteed to be
nonnegative pointwise on the domain.
Symmetric matrix WSOS cone. KmatSOS is a cone of polynomial symmetric
matrices (in an svec-like format) of side dimension t that are guaranteed to belong
to S� pointwise on the domain. We let m := st + d in Table 1 for succinctness.
�1 epigraph WSOS cone. K�1SOS is a cone of polynomial vectors of length 1+ t
that are guaranteed to belong to K∗

�∞ pointwise on the domain.
�2 epigraph WSOS cone. K�2SOS is a cone of polynomial vectors of length 1+ t
that are guaranteed to belong to K�2 pointwise on the domain.

123

76 C. Coey et al.

Table 1 Cone dimension dim(K), LHSCB parameter ν, and time complexity estimates (ignoring constants)
for our feasibility check, gradient, Hessian, and TOO implementations, for the exotic cones defined in Sect.
6

Cone dim(K) ν Feasibility Gradient Hessian TOO

K≥ d d d d d d

K� sd(d) d d3 d3 d4 d3

KDNN sd(d) sd(d) d3 d3 d4 d3

KsPSD d s J D2l J D2l d J D2l J D2l

KLMI d s ds2 + s3 ds3 d2s2 ds2 + s3

K�∞ 1 + d 1 + d d d d d

K�2 , Ksqr 1 + d 2 d d d2 d

K�spec 1 + rs 1 + r r2s + r3 r2s + r3 r2s2 rs2

Kmatsqr sd(r) + 1 + rs 1 + r r2s + r3 r2s + r3 r2s2 rs2

Kgpow r + s 1 + r r + s r + s r2 + s2 r + s

Kpow, Kgeo 1 + d 1 + d d d d2 d

Krtdet 1 + sd(d) 1 + d d3 d3 d4 d3

Klog 2 + d 2 + d d d d2 d

Klogdet 2 + sd(d) 2 + d d3 d3 d4 d3

Ksepspec-K≥ 2 + d 2 + d d d d2 d

Ksepspec-K� 2 + sd(d) 2 + d d3 d3 d5 d3

Krelent 1 + 2d 1 + 2d d d d2 d

Kmatrelent 1 + 2 sd(d) 1 + 2d d3 d3 d5 d4

K∗
SOS d sr ds2r ds2r d2sr ds2r

K∗
matSOS d sd(t) str ms2t2r ds2t2r d2st3r ms2t2r

K∗
�1SOS

d(1 + t) str ds2tr ds2tr d2str ds2tr

K∗
�2SOS

d(1 + t) 2sr ds2tr ds2tr d2st2r ds2t2r

For each cone, we have an analytic form for the feasibility check, gradient, Hessian,
and TOO oracles defined in Sect. 3. That is, we always avoid iterative numerical
procedures such as optimization, which are typically slow, numerically unstable, and
require tuning. Hypatia’s algorithm always evaluates the feasibility check before the
gradient, Hessian, and TOO (which are only defined at strictly feasible points), and
the gradient is evaluated before the Hessian and TOO. For most of these cones, the
feasibility check and gradient oracles compute values and factorizations that are also
useful for computing the Hessian and TOO, so this data is cached in the cone data
structures and reused where possible. In Table 1, we estimate the time complexities
(ignoring constants) of these four oracles for each cone, counting the cost of cached
values and factorizations only once (for the oracle that actually computes them). Table
1 shows that the TOO is never more expensive than the feasibility check, gradient, and
Hessian oracles (i.e. the oracles needed by SY). Indeed, our computational results in
Sect. 7.3 demonstrate that the TOO is very rarely an algorithmic bottleneck in practice.

123

Performance enhancements for a generic… 77

Our TOO in (5) is distinct from the ‘higher order corrector’ terms proposed by
Mehrotra [41] or Dahl and Andersen [21]. The method of [41] only applies to sym-
metric cones, and the technique in [21] is tested only for the standard exponential
cone. Compared to the third order term proposed by Dahl and Andersen [21], our
TOO has a simpler and more symmetric structure, as it relies on only one direction
δs̄ rather than two. Like the gradient and Hessian oracles, our TOO is additive for
sums of LHSCBs, which can be useful for cones (such as KDNN and K∗

SOS) that are
defined as intersections of other cones. We leverage these properties to obtain fast and
numerically stable TOO implementations.

To illustrate, in Appendix C.1 we define LHSCBs and derive efficient TOO proce-
dures for a class of cones that can be characterized as intersections of slices of the PSD
cone K�. We consider KLMI in Appendix C.2 and K∗

SOS and K∗
matSOS in Appendix

C.3. In Appendix C.4, we handle KsPSD by differentiating a procedure from [4] for
computing Hessian products. In Appendix C.5 we also show how to compute the TOO
for K�2 and Ksqr. In [18], we derive efficient TOO procedures for a class of spectral
function cones on positive domains (Ksepspec, Klog, Klogdet, Kgeo, Krtdet).

7 Computational testing

In Sect. 7.1, we introduce a diverse set of exotic conic benchmark instances generated
from a variety of applied examples. In Sect. 7.2, we describe our methodology for
comparing the stepping procedures from Sect. 5.5, and in Sect. 7.3 we examine our
computational results.

7.1 Exotic conic benchmark set

We generate 379 instances (in our primal general form (6)) from 37 applied examples
in Hypatia’s examples folder. All instances are primal-dual feasible except for 12 that
are primal infeasible and one that is dual infeasible. For most examples, we construct
multiple formulations using different predefined exotic cones from the list in Sect. 6.
Each cone from this list appears in at least one instance, so we consider our benchmark
set to be the most diverse collection of conic instances available.

Wegeneratemost instances using JuMP, but for someweuseHypatia’s nativemodel
interface. Due to the size of some instances and the lack of a standard instance storage
format recognizing our cone types, we generate all instances on the fly in Julia. For
instances that use random data, we set random seeds to ensure reproducibility. Figure
1 shows the distributions of instance dimensions and exotic cone counts. All instances
have at least one cone (note anyK≥ cones are concatenated together, soK≥ is counted
at most once) and take at least one iteration to solve with Hypatia.

Below we briefly introduce each example. In Table 2, we summarize for each
example the number of corresponding instances and the cone types represented in at
least one of the instances. We do not distinguish dual cones and primal cones in this
summary (for example, instances that useK∗

�∞ are only listed as usingK�∞). For some
examples, we describe a subset of formulations in [18, 20, 35]. Our benchmark set

123

78 C. Coey et al.

100 101 102 103 104 105
0

20

40

instance size (n + p + q)

100 101 102 103
0

50

100

exotic cone count (K)

Fig. 1 Histograms summarizing the benchmark instances in the primal conic form (6). Instance size (log
scale) is the sum of the primal variable, equality, and conic constraint dimensions. Exotic cone count (log
scale) is the number of exotic cones comprising the Cartesian product cone

Table 2 For each example, the count of instances and list of exotic cones (defined in Sect. 6) used in at
least one instance

Example # Cones in at least one instance

CBLIB 10 K≥ K� K�2 Ksqr Klog Kgpow

Central polynomial matrix 24 K≥ K� Ksqr Kgpow Krtdet Klog Ksepspec

Classical-quantum capacity 9 K≥ K� Klog Ksepspec

Condition number 6 K≥ K� KLMI

Contraction analysis 8 K� KmatSOS

Convexity parameter 7 K� KmatSOS

Covariance estimation 13 K≥ K� Ksqr Kgpow Krtdet Klog Ksepspec

Density estimation 16 K≥ K� Ksqr Kgeo Klog KSOS

Discrete maximum likelihood 7 K≥ Kpow Klog Ksepspec

D-optimal design 16 K≥ K� K�∞ K�2 Ksqr Kgeo Krtdet Klog Klogdet

Entanglement-assisted capacity 3 K� Ksepspec Kmatrelent

Experiment design 13 K≥ K� Ksqr Kgpow Krtdet Klog Ksepspec

Linear program 3 K≥
Lotka-Volterra 3 K�
Lyapunov stability 10 K� Kmatsqr

Matrix completion 11 K≥ K� Ksqr K� spec Kgpow Kgeo Klog

Matrix quadratic 8 K� Kmatsqr

Matrix regression 11 K≥ K� K�∞ K�2 Ksqr K�spec

Maximum volume hypercube 15 K≥ K�∞ K�2 Ksqr Kgeo

Nearest correlation matrix 3 Kmatrelent

Nearest polynomial matrix 8 K� KSOS KmatSOS

Nearest PSD matrix 28 K� KsPSD

Nonparametric distribution 10 K≥ Ksqr Kgeo Klog Ksepspec

123

Performance enhancements for a generic… 79

Table 2 continued

Example # Cones in at least one instance

Norm cone polynomial 10 K�1SOS K�2SOS

Polynomial envelope 7 KSOS

Polynomial minimization 15 K� KSOS

Polynomial norm 10 KSOS KmatSOS K�1SOS K�2SOS

Portfolio 9 K≥ K�∞ K�2

Region of attraction 6 K� KSOS

Relative entropy of entanglement 6 K� Kmatrelent

Robust geometric programming 6 K≥ K�∞ Klog Krelent

Semidefinite polynomial matrix 18 K� K�2 KmatSOS

Shape constrained regression 11 K≥ K� K�∞ K�2 KSOS KmatSOS

Signomial minimization 13 K≥ Klog Krelent

Sparse LMI 15 K� KsPSD KLMI

Sparse principal components 6 K≥ K� K�∞
Stability number 6 K≥ K� KDNN

includes ten instances from CBLIB (a conic benchmark instance library, see [30]).
We chose to avoid running a larger sample of instances from CBLIB so that the
relatively few cone types supported by CBLIB version 3 are not over-represented in
our benchmark set.

Central polynomial matrix. Minimize a spectral function of a gram matrix of a
polynomial.
Classical-quantum capacity. Compute the capacity of a classical-to-quantum
channel (adapted from [26, Section 3.1]).
Condition number.Minimize the condition number of a matrix pencil subject to
a linear matrix inequality (adapted from [10, Section 3.2]).
Contraction analysis. Find a contraction metric that guarantees global stability
of a dynamical system (adapted from [6, Section 5.3]). Six instances are primal
infeasible.
Convexity parameter. Find the strong convexity parameter of a polynomial func-
tion over a domain.
Covariance estimation. Estimate a covariance matrix that satisfies some given
prior information and minimizes a given convex spectral function.
Density estimation. Find a valid polynomial density function maximizing the
likelihood of a set of observations (compare to [55, Section 4.3]; see [20, Section
5.6]).
Discrete maximum likelihood.Maximize the likelihood of some observations at
discrete points, subject to the probability vector being close to a uniform prior.
D-optimal design. Solve a D-optimal experiment design problem, i.e. maximize
the determinant of the informationmatrix subject to side constraints (adapted from
[11, Section 7.5]; see [20, Section 5.4]).

123

80 C. Coey et al.

Entanglement-assisted capacity. Compute the entanglement-assisted classical
capacity of a quantum channel (adapted from [26, Section 3.2]).
Experiment design. Solve a general experiment design problem that minimizes a
given convex spectral function of the informationmatrix subject to side constraints
(adapted from [11, Section 7.5]).
Linear program. Solve a simple linear program.
Lotka-Volterra. Find an optimal controller for a Lotka-Volterra model of popu-
lation dynamics (adapted from [38, Section 7.2]).
Lyapunov stability.Minimize an upper bound on the root mean square gain of a
dynamical system (adapted from [10, Section 6.3.2] and [9, Page 6]).
Matrix completion. Complete a rectangular matrix by minimizing the nuclear
norm and constraining the missing entries (compare to [1, Equation 8]; see [20,
Section 5.2]).
Matrix quadratic. Find a rectangular matrix that minimizes a linear function and
satisfies a constraint on the outer product of the matrix.
Matrix regression. Solve a multiple-output (or matrix) regression problem with
regularization terms, such as �1, �2, or nuclear norm (see [20, Section 5.3]).
Maximum volume hypercube. Find a maximum volume hypercube (with edges
parallel to the axes) inside a given polyhedron or ellipsoid (adapted from [42,
Section 4.3.2]).
Nearest correlation matrix. Compute the nearest correlation matrix in the quan-
tum relative entropy sense (adapted from [28]).
Nearest polynomial matrix. Given a symmetric matrix of polynomials H , find a
polynomial matrix Q that minimizes the sum of the integrals of its elements over
the unit box and guarantees Q − H is pointwise PSD on the unit box.
Nearest PSD matrix. Find a sparse PSD matrix or a PSD-completable matrix
(with a given sparsity pattern) with constant trace that maximizes a linear function
(adapted from [65]).
Nonparametric distribution. Given a random variable taking values in a finite
set, compute the distribution minimizing a given convex spectral function over all
distributions satisfying some prior information.
Norm cone polynomial. Given a vector of polynomials, check a sufficient condi-
tion for pointwise membership in K∗

�∞ . Four instances are primal infeasible.
Polynomial envelope. Find a polynomial that closely approximates, over the unit
box, the lower envelope of a given list of polynomials (see [57, Section 7.2.1]).
Polynomial minimization. Compute a lower bound for a given polynomial over
a given semialgebraic set (see [57, Section 7.3.1] and [20, Section 5.5]). Some
instances use polynomials with known optimal values from [13].
Polynomial norm. Find a polynomial that, over the unit box, has minimal inte-
gral and belongs pointwise to the epigraph of the �1 or �2 norm of other given
polynomials (see [35]).
Portfolio. Maximize the expected returns of a stock portfolio and satisfy various
risk constraints (see [20, Section 5.1]).
Region of attraction. Find the region of attraction of a polynomial control system
(see [34, Section 9.1]).

123

Performance enhancements for a generic… 81

Relative entropy of entanglement. Compute a lower bound on relative entropy
of entanglement with a positive partial transpose relaxation (adapted from [26,
Section 4]).
Robust geometric programming. Bound the worst-case optimal value of an
uncertain signomial function with a given coefficient uncertainty set (adapted from
[15, Equation 39]).
Semidefinite polynomial matrix. Check a sufficient condition for global convex-
ity of a given polynomial. Two instances are primal infeasible and one is dual
infeasible.
Shape constrained regression. Given a dataset, fit a polynomial function that
satisfies shape constraints such as monotonicity or convexity over a domain (see
[20, Section 5.7]). Several instances use real datasets from [40].
Signomial minimization. Compute a global lower bound for a given signomial
function (see [45]). Several instances use signomials with known optimal values
from [14, 45].
Sparse LMI. Optimize over a simple linear matrix inequality with sparse data.
Sparse principal components. Solve a convex relaxation of the problem of
approximating a symmetric matrix by a rank-one matrix with a cardinality-
constrained eigenvector (see [22, Section 2]).
Stability number. Given a graph, solve for a particular strengthening of the theta
function towards the stability number (adapted from [39, Equation 2.4]).

7.2 Methodology

We can assess the practical performance of a stepping procedure on a given benchmark
instance according to several metrics: whether the correct conic certificate (satisfying
our numerical tolerances, discussed below) is found, and if so, the PDIPM iteration
count and solve time. Across the benchmark set, we compare performance between
consecutive pairs of the five stepping procedures outlined in Sect. 5.5.

basic. The basic prediction or centering stepping procedure without any enhance-
ments; described in Sect. 5.5.1, this is similar to the method in Alfonso solver [59],
which is a practical implementation of the algorithm in [56, 64].
prox. The basic procedure modified to use a less restrictive central path proximity
condition; described in Sect. 5.5.2.
TOA. The prox procedure with the TOA enhancement to incorporate third order
LHSCB information; described in Sect. 5.5.3.
curve. The TOA procedure adapted for a single backtracking search on a curve
instead of two backtracking line searches; described in Sect. 5.5.4.
comb. The curve procedure modified to search along a curve of combinations of
both the prediction and centering directions and their corresponding adjustment
directions; described in Sect. 5.5.5.

Weperformall instance generation, computational experiments, and results analysis
using double precision floating point format, withUbuntu 21.04, Julia 1.7, andHypatia
0.5.2-patch (with default options), on dedicated hardware with an AMD Ryzen 9
3950X 16-core processor (32 threads) and 128GB of RAM. InAppendix A, we outline

123

82 C. Coey et al.

the default procedures Hypatia uses for preprocessing, initial point finding, and linear
system solving for search directions. Simple scripts and instructions for reproducing
all results are available in Hypatia’s benchmarks/stepper folder. The benchmark script
runs all solves twice and uses results from the second run, to exclude Julia compilation
overhead. A CSV file containing raw results is available at the Hypatia wiki page.

When Hypatia converges for an instance, i.e. claims it has found a certificate of
optimality, primal infeasibility, or dual infeasibility, our scripts verify that this is the
correct type of certificate for that instance. For some instances, our scripts also check
additional conditions, for example that the objective value of an optimality certificate
approximately equals the known true optimal value. We do not set restrictive time or
iteration limits. All failures to converge are caused by Hypatia ‘stalling’ during the
stepping iterations: either the backtracking search cannot step a distance of at least the
minimal value in the α schedule, or across several prediction steps or combined direc-
tions steps, Hypatia fails to make sufficient progress towards meeting the convergence
conditions in Sect. 5.3.

Since some instances are more numerically challenging than others, we set the
termination tolerances (described in Sect. 5.3) separately for each instance. Let ε ≈
2.22×10−16 be the machine epsilon. For most instances, we use ε f = εr = 10ε1/2 ≈
1.49 × 10−7 for the feasibility and relative gap tolerances, εi = εa = 10ε3/4 ≈
1.82 × 10−11 for the infeasibility and absolute gap tolerances, and εp = 0.1ε3/4 ≈
1.82 × 10−13 for the ill-posedness tolerance. For 50 instances that are particularly
numerically challenging, we loosen all of these tolerances by a factor of either 10 or
100, and for two challenging primal infeasible instances of the contraction analysis
example, we set εi = 10−9. This ensures that for every benchmark instance, at least
one of the five stepping procedures converges.

Following [29], we define the shifted geometric mean with shift s ≥ 0, for d values
v ∈ R

d
>, as:

M(v, s) := ∏
i∈�d�(vi + s)1/d − s. (42)

We always apply a shift of one for iteration counts. Since different stepping procedures
converge on different subsets of instances, in tables we show three types of shifted
geometric means, each computed from a vector of values (v in (42)) obtained using
one of the following approaches.

every.Values for the 353 instances on which every stepping procedure converged.
this. Values for instances on which this stepping procedure (corresponding to the
row of the table) converged.
all.Values for all instances, but for any instances for which this stepping procedure
(corresponding to the row of the table) failed to converge, the value is replaced
with two times themaximumvalue for that instance across the stepping procedures
that converged.

The shifted geometric means for the every approach are the most directly compa-
rable because they are computed on a fixed subset of instances, so we usually quote
the every results in our discussion in Sect. 7.3.

123

Performance enhancements for a generic… 83

Table 3 For each stepping procedure, the number of converged instances and shifted geometric means of
iterations and solve times (in milliseconds)

Step Conv Iterations Solve time
every this all every this all

basic 371 101.34 100.93 102.39 2130.98 2207.10 2282.19

prox 369 64.73 65.28 67.23 1316.50 1390.14 1451.24

TOA 374 34.98 35.31 36.08 1014.26 1062.66 1103.01

curve 372 29.67 30.01 30.99 742.49 780.95 820.16

comb 367 18.31 18.55 20.02 623.82 655.71 706.49

100 101 102 103
0

50

100

iteration count

basic
comb

10−4 10−2 100 102 104
0

10

20

30

40

solve time (seconds)

basic
comb

Fig. 2 Overlayed histograms of iteration count (left, log scale) and solve time (right, log scale, in seconds)
for the basic and comb stepping procedures, excluding instances that fail to converge

Table 3 shows counts of converged instances and shifted geometric means of itera-
tion count and total solve time (in milliseconds), for the five stepping procedures. We
use a shift of one millisecond for the solve times in Table 3, as some instances solve
very quickly (see Fig. 2).

Table 4 shows shifted geometricmeans of the time (inmilliseconds) Hypatia spends
performing each of the following key algorithmic components, for the five stepping
procedures.

init. Performed once during an entire solve run, independently of the stepping
iterations. Includes rescaling and preprocessing of model data, initial interior point
finding, and linear system solver setup (see Appendix A).
LHS. Performed at the start of each iteration. Includes updating data that the linear
system solver (which has a fixed LHS in each iteration) uses to efficiently compute
at least one direction (such as updating and factorizing the positive definite matrix
in Appendix A).
RHS. Performed between one and four times per iteration, depending on the step-
ping procedure. Includes updating an RHS vector (see (26)) for the linear system
for search directions. Note that the TOO is only evaluated while computing the
centering TOA RHS (30b) and the prediction TOA RHS (40b).

123

84 C. Coey et al.

Table 4 For each stepping procedure, the shifted geometric means of subtimings (in milliseconds) for the
key algorithmic components

Set Step init Total Per iteration

LHS RHS direc search LHS RHS direc search

every basic 29.49 741.38 1.45 75.59 125.64 7.73 0.02 0.81 1.29

prox 29.45 486.34 1.11 50.33 67.74 7.88 0.02 0.84 1.10

TOA 29.42 284.68 10.96 52.21 73.33 8.28 0.32 1.53 2.14

curve 29.55 244.38 9.24 44.60 33.43 8.33 0.32 1.53 1.15

comb 29.31 159.94 10.51 57.57 35.23 8.74 0.58 3.14 1.94

this basic 30.33 784.33 1.48 78.82 131.78 8.20 0.02 0.85 1.36

prox 30.07 519.48 1.12 53.43 72.60 8.35 0.02 0.88 1.16

TOA 30.16 301.54 11.97 55.44 78.34 8.70 0.35 1.61 2.26

curve 30.52 260.67 9.99 47.30 35.10 8.80 0.34 1.60 1.20

comb 30.46 171.04 11.03 60.72 36.40 9.23 0.60 3.27 1.98

all basic 31.13 814.44 1.62 82.65 134.65 8.52 0.02 0.91 1.40

prox 31.29 549.29 1.25 56.22 75.09 8.74 0.02 0.94 1.20

TOA 31.16 316.91 12.23 57.52 79.71 9.04 0.36 1.66 2.28

curve 31.38 275.95 10.40 49.63 37.34 9.17 0.36 1.68 1.26

comb 31.36 188.07 11.88 64.18 40.02 9.66 0.63 3.35 2.10

direc. Performed for each RHS vector. Includes solving the linear system for a
search direction (see (26)) using the data computed during LHS and a single RHS
vector computed during RHS, and performing iterative refinement on the direction
(see Appendix A).
search. Performed once or twice per iteration (occasionally more if the step length
is near zero), depending on the stepping procedure. Includes searching using back-
tracking along a line or curve to find an interior point satisfying the proximity
conditions (see Appendix B).

For some instances that solve extremely quickly, these subtimings sum to only around
half of the total solve time due to extraneous overhead. However for slower instances,
these components account for almost the entire solve time. In Table 4, total is the time
over all iterations, and per iteration is the average time per iteration (the arithmetic
means are computed before the shifted geometric mean).We use a shift of 0.1millisec-
onds for the init and total subtimings (left columns) and a shift of 0.01 milliseconds
for the per iteration subtimings (right columns).

Finally, in Figs. 4 and 7 we use performance profiles [23, 31] to compare itera-
tion counts and solve times between pairs of stepping procedures. These should be
interpreted as follows. The performance ratio for procedure i and instance j is the
value (iterations or solve time) attained by procedure i on instance j divided by the
better/smaller value attained by the two procedures on instance j . Hence a perfor-
mance ratio is at least one, and smaller values indicate better relative performance.
For a point (x, y) on a performance profile curve for a particular procedure, x is the
logarithm (base 2) of performance ratio and y is the proportion of instances for which

123

Performance enhancements for a generic… 85

100 101 102 103 104

0

200

400

600

barrier parameter (ν)

it
er
at
io
n
co

un
t

basic

100 101 102 103 104

0

50

100

barrier parameter (ν)

comb

Fig. 3 Iteration count against instance barrier parameter for the basic (left) and comb (right) stepping
procedures, excluding instances that fail to converge

the procedure attains that performance ratio or better/smaller. For example, a curve
crosses the vertical axis at the proportion of instances on which the corresponding pro-
cedure performed at least as well as the alternative procedure.We use the Julia package
BenchmarkProfiles.jl [53] to compute coordinates for the performance profile curves.

7.3 Results

Table 3 and Fig. 7 demonstrate that each of the four cumulative stepping enhancements
tends to improve Hypatia’s iteration count and solve time. The enhancements do not
have a significant impact on the number of instancesHypatia converges on.However, if
we had enforced time or iteration limits, the enhancements would have also improved
the number of instances solved. This is clear from Fig. 2, which shows the distributions
of iteration counts and solve times for the basic and comb stepping procedures.

We note that Fig. 5 (left) supports the intuition that formulation size is strongly
positively correlated with solve time for comb. Furthermore, Fig. 3 shows a positive
correlation between iteration count and instance barrier parameter ν, for both the basic
and comb steppers. This is expected for the basic stepper, as the theoretical worst-case
iteration complexity for the SY algorithm is proportional to

√
ν [56, 64]. However we

note that on our benchmark set, ν is also correlated with the instance size (particularly
the cone dimension q) and exotic cone count K , which may also affect iteration counts
in practice.

Overall, Table 3 shows that on the subset of instances solved by every stepping
procedure (every), the enhancements together reduce the shifted geometric means of
iterations and solve time bymore than 80%and 70% respectively (i.e. comparing comb
to basic). Figure 4 shows that the iteration count and solve time improve on nearly
every instance solved by both basic and comb, and the horizontal axis scale shows
that the magnitude of these improvements is large on most instances. Figure 6 shows

123

86 C. Coey et al.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1
iteration count

basic
comb

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1
solve time

basic
comb

Fig. 4 Performance profiles (see Sect. 7.2) of iteration count (left) and solve time (right) for the four stepping
enhancements overall

101 102 103 104 105
10−4

10−2

100

102

instance size (n + p + q)

so
lv
e
ti
m
e
(s
ec
on

ds
)

0 0.2 0.4
10−4

10−2

100

102

proportion of time in RHS

Fig. 5 Solve time (log scale, in seconds) for the comb stepping procedure against (left) instance size (log
scale) and (right) the proportion of solve time spent in RHS, excluding instances that fail to converge

that for instances that take more iterations or solve time, the enhancements tend to
yield a greater improvement in these measures. On every instance, the enhancements
improve the iteration count by at least 33%. The few instances for which solve time
regressed with the enhancements all solve relatively quickly.

Each enhancement, by design, changes one modular component or aspect of the
stepping procedure. Below, we examine the impact of our algorithmic choices by
discussing pairwise comparisons of consecutive stepping procedures.

7.3.1 Less restrictive proximity

We compare basic and prox to evaluate the central path proximity enhancement intro-
duced in Sect. 5.5.2. Figure 7 (first row) shows that the iteration count and solve time
improve for nearly all instances. FromTable 3, the shifted geometricmeans of iteration
count and solve time improve by over 35%.

123

Performance enhancements for a generic… 87

0 20 40 60 80

0.4

0.6

0.8

1

iteration count

re
la
ti
ve

im
pr

ov
em

en
t

10−4 10−2 100 102

−1

−0.5

0

0.5

1

solve time (seconds)

Fig. 6 Relative improvement, from basic to comb, in iteration count (left) or solve time (right) against
iteration count or solve time (in seconds) respectively for comb, over the 356 instances on which both basic
and comb converge

The similarity between the iteration count and solve time performance profiles
in Fig. 7 and also between the per iteration subtimings in Table 4 suggests that the
solve time improvement is driven mainly by the reduction in iteration count. The per
iteration search time decreases slightly, since on average fewer backtracking search
steps are needed per iteration for prox (because it tends to step further in the prediction
directions, as evidenced by the smaller iteration counts). These results suggest that the
central path proximity restrictions in the algorithms in [59, 64] are too conservative
from the perspective of practical performance, and that we need not restrict iterates to
a very small neighborhood of the central path in order to obtain high quality prediction
directions in practice.

7.3.2 Third order adjustments

We compare prox and TOA to evaluate the TOA enhancement introduced in Sect.
5.5.3. Figure 7 (second row) shows that the iteration count improves for all instances
and by a fairly consistent magnitude, and the solve time improves for nearly 80% of
instances. From Table 3, the shifted geometric means of iteration count and solve time
improve by over 45% and over 20% respectively.

Since TOA computes an additional direction and performs an additional backtrack-
ing search every iteration, the per iteration times for direc and search in Table 4 nearly
double. The RHS time increases substantially, because the TOO is evaluated for the
second RHS vector (used to compute the TOA direction), but RHS is still much faster
than the other components. Per iteration, direc and search also remain fast compared
to LHS. We see an overall solve time improvement because the reduction in iteration
count usually outweighs the additional cost at each iteration. This suggests that the
TOO is generally relatively cheap to compute, and our TOA approach very reliably
improves the quality of the search directions.

123

88 C. Coey et al.

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

iteration count

basic
prox

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

solve time

basic
prox

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

prox
TOA

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

prox
TOA

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

TOA
curve

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

TOA
curve

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

curve
comb

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

curve
comb

Fig. 7 Performance profiles (see Sect. 7.2) of iteration count (left column) and solve time (right column)
for the four stepping enhancements (rows)

123

Performance enhancements for a generic… 89

7.3.3 Curve search

We compare TOA and curve to evaluate the curve search enhancement introduced in
Sect. 5.5.4. Figure 7 (third row) shows that the iteration count and solve time improve
for most instances, with larger and more consistent improvements for the solve time.
From Table 3, the shifted geometric means of iteration count and solve time improve
by over 15% and over 25% respectively.

Since curve performs one backtracking search along a curve instead of the two
backtracking line searches needed by TOA, the per iteration search time in Table 4
nearly halves. The other subtimings are unaffected, so curve improves the speed of each
iteration. The improvement in iteration count may stem from the more dynamic nature
of the curve search compared to TOA’s approach of computing a fixed combination of
the unadjusted and TOA directions as a function of the step distance in the unadjusted
direction.
7.3.4 Combined directions

Finally, we compare curve and comb to evaluate the combined directions enhancement
introduced in Sect. 5.5.5. Figure 7 (fourth row) shows that the iteration count and solve
time improve on around 90% and 70% of instances respectively. From Table 3, the
shifted geometric means of iteration count and solve time improve by nearly 40% and
over 15% respectively.

Since comb computes four directions per iteration (unadjusted and TOA directions
for both prediction and centering) instead of two, the per iteration times for RHS and
direc approximately double in Table 4. The search time increases because on average
more backtracking curve search steps are needed per iteration (for curve, the center-
ing phase typically does not require multiple backtracking steps). Per iteration, LHS
remains slower than the other components combined. Hence combining the prediction
and centering phases generally improves practical performance, and should be more
helpful when LHS is particularly expensive (such as when n − p, the side dimension
of the PSD matrix we factorize during LHS, is large; see Appendix A). Furthermore,
Figure 5 (right) shows that for most instances, RHS accounts for a small proportion
of the overall solve time for comb, especially for instances that take longer to solve.
This suggests that the TOO is rarely a bottleneck for our comb stepping procedure.

Acknowledgements The authors thank the anonymous referees for their comments and suggestions.

Funding Open Access funding provided by the MIT Libraries. This work has been partially funded by
the National Science Foundation under grant OAC-1835443 and the Office of Naval Research under grant
N00014-18-1-2079.

Data Availability Statement This manuscript has associated data in a data respiratory. All data analyzed
are publicly available. URLs are included in this published article.

Code Availability The full code was made available for review. Specific references are included in this
published article.

123

90 C. Coey et al.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Preprocessing and solving for search directions

We discuss preprocessing and initial point finding procedures and solving structured
linear systems for directions. Although Hypatia has various alternative options for
these procedures, we only describe the set of options we fix in our computational
experiments in Sect. 7, to give context for these results. These techniques are likely to
be useful for other conic PDIPM implementations.

Given a conic model specified in the general primal conic form (6), we first rescale
the primal and dual equality constraints (6b) and (7b) to improve the conditioning
of the affine data. Next, we perform a QR factorization of A′ and check whether
any primal equalities are inconsistent (terminating if so). We use this factorization
to modify c,G, h and eliminate all p primal equalities (removing dual variable y),
reducing the dimension of the primal variable x from n to n − p. Next, we perform
a QR factorization of the modified G. We use this factorization to check whether any
dual equalities are inconsistent (terminating if so) and to remove any redundant dual
equalities, further reducing the dimension of x . This factorization also allows us to
cheaply compute an initial x0 satisfying (15c). Since y is eliminated, we do not need
to solve (16b) for y0.

Starting from the initial interior point ω0 defined in Sect. 5.1, we perform PDIPM
iterations until the convergence conditions in Sect. 5.3 (in the preprocessed space)
are met. Finally, we reuse the two QR factorizations to lift the approximate certificate
for the preprocessed model to one for the original model. The residual norms for the
lifted certificate could violate the convergence tolerances, but we have not found such
violations to be significant on our benchmark instances.

During each PDIPM iteration, we solve the linear system (26) for a single LHS
matrix and between one and four RHS vectors, to obtain directions vectors needed for
one of the stepping procedures described in Sect. 5.5. Instead of factorizing the large
square nonsymmetric block-sparse LHS matrix, we utilize its structure to reduce the
size of the factorization needed. Some of these techniques are adapted from methods
in CVXOPT (see [66, Section 10.3]).

First we eliminate s and κ , yielding a square nonsymmetric system, then we elim-
inate τ to get a symmetric indefinite system in x and z. Most interior point solvers
use a sparse LDL factorization (with precomputed symbolic factorization) to solve
this system. Although Hypatia can optionally do the same, we see improved perfor-

123

http://creativecommons.org/licenses/by/4.0/

Performance enhancements for a generic… 91

mance on our benchmark instances by further reducing the system. After eliminating
z, we have a (generally dense) positive definite system, which we solve via a dense
Cholesky factorization. In terms of the original dimensions of the model before pre-
processing (assuming no redundant equalities), the side dimension of this system is
n − p. Finally, after finding a solution to (26), we apply several rounds of iterative
refinement in working precision to improve the solution quality.

We note that this Cholesky-based system solver method does not require explicit
Hessian oracles, only oracles for left-multiplication by the Hessian or inverse Hessian.
As we discuss in Appendix C and [18], these optional oracles can bemore efficient and
numerically stable to compute for many exotic cones. For cones without these oracles,
Hypatia calls the explicit Hessian matrix oracle, performing a Cholesky factorization
of the Hessian if necessary. A deeper discussion of Hypatia’s linear system solving
techniques and optional cone oracles is outside the scope of this paper.

B Efficient proximity checks

Recall that each stepping procedure in Sect. 5.5 uses at least one backtracking search
(on a line or a curve) to find a point ω satisfying an aggregate proximity condition:
π�2(ω) ≤ β1 for the basic procedure in Sect. 5.5.1 or π�∞(ω) ≤ β2 for the procedures
in Sects. 5.5.2 to 5.5.5. In Sect. 5.2, we define π�2 and π�∞ in (20) and (21). For
each primitive cone k ∈ �K̄ �, 0 ≤ πk(ω) ≤ π�∞(ω) ≤ π�2(ω), and by Lemma 1,
πk(ω) < 1 implies s̄k ∈ int

(K̄k
)
and z̄k ∈ int

(K̄∗
k

)
. We use a schedule of decreasing

trial values for the step parameter α and accept the first value that yields a candidate
point satisfying the aggregate proximity condition.

Suppose at a particular iteration of the backtracking search, we have the candidate
point ω. We check a sequence of increasingly expensive conditions that are necessary
for the proximity condition to hold for ω. First, we verify that s̄′

k z̄k > 0,∀k ∈ �K̄ �,
which is necessary for interiority (by a strict version of the dual cone inequality (1)).
Note that this condition impliesμ(ω) > 0. Next, we verify that ρk(ω) < β,∀k ∈ �K̄ �,
where ρk(ω) is:

ρk(ω) := ν
−1/2
k |s̄′

k z̄k/μ − νk | ≥ 0. (43)

In Lemma 2 below, we show that ρk(ω) is a lower bound on πk(ω), so if ρk(ω) > β

then then πk(ω) > β. Computing ρk is much cheaper than computing πk(ω) as it does
not require evaluating any cone oracles.

Next, we iterate over k ∈ �K̄ � to check first the primal feasibility oracle, then the
optional dual feasibility oracle if implemented, and finally the proximity condition
πk(ω) < β. Before computing πk(ω), we check that the gradient and Hessian ora-
cle evaluations approximately satisfy two logarithmic homogeneity conditions [49,
Proposition 2.3.4]:

(gk(s̄k))
′(Hk(s̄k))

−1gk(s̄k) = −s̄′
kgk(s̄k) = νk . (44)

123

92 C. Coey et al.

This allows us to reject ω if the cone oracles and the proximity value πk(ω) are likely
to be numerically inaccurate.

Lemma 2 Givenapointω forwhichμ(ω) > 0, for each k ∈ �K̄ �,0 ≤ ρk(ω) ≤ πk(ω).

Proof We fixμ = μ(ω) > 0 for convenience. Let fk be the νk-LHSCB for K̄k , and let
the conjugate of fk be f ∗

k (see (3)), which is a νk-LHSCB for K̄∗
k . Let g

∗
k := ∇ f ∗

k and
H∗
k := ∇2 f ∗

k denote the gradient and Hessian operators for f ∗
k . Using the logarithmic

homogeneity properties from [49, Proposition 2.3.4], and from the definition of πk(ω)

in (18), we have:

(πk(ω))2 = (z̄k/μ + gk(s̄k))
′(Hk(s̄k))

−1(z̄k/μ + gk(s̄k)) (45a)

= μ−2 z̄′k(Hk(s̄k))
−1 z̄k + 2μ−1 z̄′k(Hk(s̄k))

−1gk(s̄k)

+ (gk(s̄k))
′(Hk(s̄k))

−1gk(s̄k) (45b)

= μ−2 z̄′k(Hk(s̄k))
−1 z̄k − 2μ−1 z̄′k s̄k + νk . (45c)

By [56, Equation 13], (Hk(s̄k))−1 = H∗
k (−gk(s̄k)). Since f ∗

k is a self-concordant
barrier with parameter νk , by [48, Equation 5.3.6] we have: (z̄′kg∗

k (−gk(s̄k)))2 ≤
νk z̄′k H∗

k (−gk(s̄k))z̄k . Furthermore, g∗
k (−gk(s̄k)) = s̄k . Using these facts, from (45)

we have ρk(ω) ≥ 0 and:

(πk(ω))2 = μ−2 z̄′k H∗
k (−gk(s̄k))z̄k − 2μ−1 z̄′k s̄k + νk (46a)

≥ ν−1
k μ−2(z̄′k s̄k)2 − 2μ−1 z̄′k s̄k + νk (46b)

= ν−1
k (s̄′

k z̄k/μ − νk) (46c)

= (ρk(ω))2. (46d)

Therefore, πk(ω) ≥ ρk(ω) ≥ 0 for all k ∈ �K̄ �. ��

As an aside, we can use similar arguments to Lemma 2 to show that ρk(ω) also
symmetrically bounds a conjugate proximity measure π∗

k (ω), which we define as:

π∗
k (ω) := ∥

∥(H∗
k (z̄k))

−1/2(s̄k/μ + g∗
k (z̄k))

∥
∥ ≥ ν

−1/2
k |z̄′k(s̄k/μ + g∗

k (z̄k))| = ρk(ω).

(47)

In general, we cannot check whether π∗
k (ω) < β because as we discuss in Sect. 1.3

we do not have access to fast and numerically stable conjugate barrier oracles (g∗
k and

H∗
k).

123

Performance enhancements for a generic… 93

C Computing the TOO for some exotic cones

C.1 Intersections of slices of the PSD cone

First, we consider a proper cone K ⊂ R
q that is an inverse linear image (or slice) of

the PSD cone Sj
� of side dimension j . Suppose:

K := {s ∈ R
q : Λ(s) � 0}, (48)

where Λ : Rq → S
j is a linear operator, with adjoint linear operator Λ∗ : Sj → R

q .
Then the dual cone can be characterized as:

K∗ := {s ∈ R
q : ∃S � 0, s = Λ∗(S)}. (49)

We note that for K� (the self-dual vectorized PSD cone), we can let q = sd(j),
Λ(s) = mat(s), and Λ∗(S) = vec(S). Given a point s ∈ R

q , strict feasibility for K
can be checked, for example, by attempting a Cholesky factorization Λ(s) = LL ′,
where L is lower triangular.

For K we have the LHSCB f (s) = − logdet(Λ(s)) with parameter ν = j . Given
a point s ∈ int(K), we have Λ(s) ∈ S

j� and its inverse Λ−1(s) ∈ S
j�. For a direction

δ ∈ R
q , for f at s we can write the gradient, and the Hessian and TOO applied to δ,

as (compare to [57, Section 3]):

g(s) = −Λ∗(Λ−1(s)), (50a)

H(s)δ = Λ∗(Λ−1(s)Λ(δ)Λ−1(s)), (50b)

T(s, δ) = Λ∗(Λ−1(s)Λ(δ)Λ−1(s)Λ(δ)Λ−1(s)). (50c)

If we have, for example, a Cholesky factorization Λ(s) = LL ′ (computed during the
feasibility check), then the oracles in (50) are easy to compute if Λ and Λ∗ are easy
to apply. We can compute the TOO (50c) using the following steps:

Y := L−1Λ(δ)Λ−1(s), (51a)

Z := Y ′Y = Λ−1(s)Λ(δ)Λ−1(s)Λ(δ)Λ−1(s), (51b)

T(s, δ) = Λ∗(Z). (51c)

We note (51a) can be computed using back-substitutions with L , and (51b) is a simple
symmetric outer product. We use this approach to derive simple TOO procedures for
KLMI in Appendix C.2 and for K∗

SOS and K∗
matSOS in Appendix C.3 when r = 1.

Now we consider the more general case of a cone K that can be characterized as
an intersection of slices of PSD cones, for example K∗

SOS and K∗
matSOS when r > 1.

Suppose:

K := {s ∈ R
q : Λl(s) � 0,∀l ∈ �r�}, (52)

123

94 C. Coey et al.

where Λl : Rq → S
jl , for l ∈ �r�. Then the dual cone can be characterized as:

K∗ := {
s ∈ R

q : ∃S1, . . . , Sr � 0, s = ∑
l∈�r�Λ

∗
l (Sl)

}
. (53)

Feasibility for K can be checked by performing r Cholesky factorizations. If we let
fl(s) = − logdet(Λl(s)),∀l ∈ �r�, then f (s) = ∑

l∈�r� fl(s) is an LHSCB for K
with parameter ν = ∑

l∈�r� jl . Clearly, g(s), H(s)δ (and the explicit Hessian matrix),
and T(s, δ) can all be computed as sums over l ∈ �r� of the terms in (50c).

C.2 LMI cone

We denote the inner product of X ,Y ∈ S
s as 〈X ,Y 〉 = tr(XY) ∈ R, computable in

order of s2 time. For KLMI parametrized by Pi ∈ S
s,∀i ∈ �d�, we define for w ∈ R

d

and W ∈ S
s :

Λ(w) := ∑
i∈�d�wi Pi ∈ S

s, (54a)

Λ∗(W) := (〈Pi ,W 〉)i∈�d� ∈ R
d . (54b)

Our implementation uses specializations of (50) and (51) for KLMI. For w ∈
int(KLMI) and direction δ ∈ R

d , using the Cholesky factorization Λ(w) = LL ′,
we compute:

Qi := L−1Pi (L
−1)′ ∈ S

s ∀i ∈ �d�, (55a)

g(w) = (− tr(Qi))i∈�d�, (55b)

R := ∑
j∈�d�δ j Q j ∈ S

s, (55c)

H(w)δ = (〈Qi , R〉)i∈�d�, (55d)

T(w, δ) = (〈Qi , R
′R〉)i∈�d�, (55e)

and we compute the explicit Hessian oracle as:

(H(w))i, j = 〈Qi , Q j 〉 ∀i, j ∈ �d�. (56)

The symmetric form of Qi and the use of a symmetric outer product R′R in (55e) are
beneficial for efficiency and numerical performance.

C.3 Matrix and scalarWSOS dual cones

Recall that Hypatia uses LHSCBs for K∗
SOS,K∗

matSOS, because LHSCBs for KSOS,

KmatSOS with tractable oracles are not known (see [35]). Since the scalar WSOS dual
cone K∗

SOS is a special case of the matrix WSOS dual cone K∗
matSOS with t = 1, we

only consider K∗
matSOS here. In general, K∗

matSOS is an intersection of r slices of K�
(see (52)), so the gradient, Hessian, and TOO oracles are all additive; for simplicity,
we only consider r = 1 (and s1 = s, P1 = P) below.

123

Performance enhancements for a generic… 95

To enable convenient vectorization, we define ρi, j for indices i, j ≥ 1 as:

ρi, j :=
{
1 if i = j,√
2 otherwise.

(57)

For K∗
matSOS parametrized by P ∈ R

d×s and t ≥ 1, we define for w ∈ R
sd(t)d and

W ∈ S
st :

Λ(w) := [
P ′ Diag

(
ρ−1
i, j wmax(i, j),min(i, j),:

)
P

]
i, j∈�t� ∈ S

st , (58a)

Λ∗(W) := (ρi, j diag(P(W)i, j P
′))i∈�t�, j∈�i� ∈ R

sd(t)d , (58b)

where w = (wi, j,:)i∈�t�, j∈�i� and wi, j,: ∈ R
d is the contiguous slice of w corre-

sponding to the interpolant basis values in the (i, j)th (lower triangle) position, matrix
(S)i, j is the (i, j)th block in a block matrix S (with blocks of equal dimension), and
[Si, j]i, j∈�t� is the symmetric block matrix with matrix Si, j in the (i, j)th block.

We implement efficient and numerically stable specializations of the oracles in
(50) and (51). Suppose we have w ∈ int(K∗

matSOS) and direction δ ∈ R
sd(t)d , and a

Cholesky factorization Λ(w) = LL ′. For each i, j ∈ �t� : i ≥ j and p ∈ �d�, we
implicitly compute oracles according to:

(Q)i, j,p := ((L−1)i, j P
′)ep ∈ R

s, (59a)

(g(w))i, j,p = −ρi, j Q
′
i,:,pQ:, j,p, (59b)

(R)i, j,p := (L−1Λ(δ)(L−1)′Q)i, j ep ∈ R
s, (59c)

(H(w)δ)i, j,p = ρi, j Q
′
i,:,p R:, j,p, (59d)

(T(w, δ))i, j,p = ρi, j R
′
i,:,p R:, j,p. (59e)

Letting Q2
i, j := (Q′Q)i, j ∈ S

d , we compute the Hessian oracle according to:

(H(w))(i, j,:),(k,l,:) = 1
2ρi, jρk,l

(
Q2

i,k ◦ Q2
j,l + Q2

i,l ◦ Q2
j,k

) ∈ S
d ∀i, j, k, l ∈ �t�,

(60)

where X ◦ Y ∈ S
d denotes the Hadamard (elementwise) product of X ,Y ∈ S

d .

C.4 Sparse PSD cone

Let S = ((il , jl))l∈�d� be a collection of row-column index pairs defining the sparsity
pattern of the lower triangle of a symmetric matrix of side dimension s (including all
diagonal elements).Wedo not requireS to be a chordal sparsity pattern (unlike [4, 12]),
as this restriction is not necessary for the oracles Hypatia uses. Note s ≤ d ≤ sd(s).
ForKsPSD parametrized byS, we defineΛ : Rd → S

s as the linear operator satisfying,

123

96 C. Coey et al.

for all i, j ∈ �s� : i ≥ j :

(Λ(w))i, j :=
{

ρ−1
i, j wl if i = il = j = jl ,

0 otherwise,
(61)

where ρi, j is given by (57). Then Λ∗ is the vectorized projection onto S, i.e. for
W ∈ S

s :

Λ∗(W) := (ρi, jWi, j)(i, j)∈S ∈ R
d . (62)

Consider w ∈ int(KsPSD) and direction δ ∈ R
d . The gradient (50a) and Hessian

product (50b) forKsPSD can be computed using [4, Algorithms 4.1 and 5.1]. To derive
the TOO, we use the fact that:

− 2T(w, δ) = ∇3 f (w)[δ, δ] = d2

dt2
∇ f (w + tδ)

∣
∣
t=0. (63)

In order to succinctly describe our TOO approach as an extension of the proce-
dures in [4], we describe an approach based on a sparse LDL factorization of Λ(w).
However, our current implementation in Hypatia uses a sparse Cholesky (LL ′) fac-
torization, which is very similar to the LDL-based approach here. We compute the
sparse Cholesky factors using Julia’s SuiteSparse wrapper of CHOLMOD [17]. We
note that Hypatia implements a supernodal generalization (see [4, Section 7]) of the
TOO procedure we describe below. Before we describe the TOO procedure, we repeat
useful definitions from [4], define higher order derivative terms, and differentiate sev-
eral equations that are used for the gradient and Hessian oracles. As discussed in Sect.
6, Hypatia computes the feasibility check and gradient oracles before the TOO, and
our TOO procedure reuses cached values computed for these oracles.

We define:

R := Λ(∇ f (w + tδ)). (64)

Let LDL ′ = Λ(w) be a sparse LDL factorization, i.e. L is a sparse unit lower trian-
gular matrix and D is a positive definite diagonal matrix. The sparsity pattern of L is
associated with an elimination tree [4, Section 2], and each column of L corresponds
to a node of this tree. Let Ik be the ordered row indices of nonzeros below the diagonal
in column k of L , and let Jk = Ik ∪ {k}. Let ch(i) denote the children of node i in
the tree. For an index set I let I(i) denote the i th element. For index sets J ⊂ I, we
define EI,J ∈ R

|I|×|J | satisfying, i ∈ �|I|�, j ∈ �|J |�:

(EI,J)i, j :=
{
1 if I(i) = J (j),

0 otherwise.
(65)

Let Ui be the update matrix for node i (see [4, Equation 14]):

Ui := −∑
k∈ch(i)∪{i}Dk,k LIi ,k L

′
Ii ,k . (66)

123

Performance enhancements for a generic… 97

Let Ḋ, L̇ , U̇ , Ṙ and D̈, L̈ , Ü , R̈ denote the first and second derivatives of D, L , U , R
with respect to the linearization variable t in (63). For convenience, we let:

L̄ j :=
[

1 0
−LI j , j I (d)

]

. (67)

Suppose we have computed Ḋ, L̇ , U̇ according to [4, Equation 30]. Differentiating
[4, Equation 30] once with respect to t gives:

[
D̈ j, j P ′

j
Pj 2Dj, j L̇I j , j L̇

′
I j , j

+ Ü j

]

= L̄ j
(∑

i∈ch(j)EJ j ,Ii Üi E
′
J j ,Ii

)
L̄ ′
j , (68)

where Pj := 2Ḋ j, j L̇I j , j + Dj, j L̈I j , j for convenience. This allows us to compute D̈,

L̈ , Ü . [4, Equations 21 and 22] show that:

RI j , j = −RI j ,I j LI j , j , (69a)
[
R j, j R′

I j , j

RI j , j RI j ,I j

] [
1

LI j , j

]

=
[
D−1

j, j
0

]

, (69b)

for each node j . Differentiating (69a) once with respect to t gives:

ṘI j , j = −RI j ,Ii L̇I j , j − ṘI j ,I j LI j , j . (70)

Differentiating (69b) twice and substituting (69a) and (70), we have:

[
R̈ j, j R̈′

I j , j

R̈I j , j R̈I j ,I j

]

= L̄ ′
j

[
2Ḋ2

j, j D
−3
j, j − D̈ j, j D

−2
j, j + 2L̇ ′

I j , j
RI j ,I j L̇I j , j Q′

j

Q j R̈I j ,I j

]

L̄ j , (71)

where Q j := −RI j ,I j L̈I j , j − 2ṘI j ,I j L̇I j , j for convenience. This allows us to com-

pute R̈. Finally, by (63) and (64), we can compute the TOO as:

− 2T(w, δ) = Λ∗(R̈
)
. (72)

We now write the high-level TOO procedure. For convenience, we let:

Δ = Λ(δ) ∈ S
s . (73)

Following [2], we define K and M as sparse matrices with the same structure as L ,
satisfying for all j ∈ �s�:

K j, j = Ḋ j, j , (74a)

KI j , j = Dj, j L̇I j , j , (74b)

Mj, j = D−2
j, j K j, j , (74c)

123

98 C. Coey et al.

MI j , j = D−1
j, j RI j ,I j KI j , j . (74d)

The first three steps in the TOO procedure below compute Ḋ, L̇ , U̇ , and Ṙ and are
identical to steps in [4, Algorithm 5.1].

1. Iterate over j ∈ �s� in topological order, computing KJ j , j and U̇ j according to:

[
K j, j K ′

I j , j

KI j , j U ′
j

]

= L̄ j

([
Δ j, j Δ′

I j , j

ΔI j , j 0

]

+ ∑
i∈ch(j)EJ j ,Ii U

′
i E

′
J j ,Ii

)

L̄ ′
j .

(75)

2. For j ∈ �s�, store Ḋ j, j and L̇I j , j from (74a) and (74b), and compute MJ j , j from
(74c) and (74d).

3. Iterate over j ∈ �s� in reverse topological order, computing ṘJ j , j according to:

[
Ṙ j, j Ṙ′

I j , j

ṘI j , j ṘI j ,I j

]

= L̄ ′
j

[
Mj, j M ′

I j , j

MI j , j ṘI j ,I j

]

L̄ j , (76)

and updating matrices ṘI j ,I j for each child i ∈ ch(j) of vertex j according to:

ṘIi ,Ii = E ′
J j ,Ii

[
Ṙ j, j Ṙ′

I j , j

ṘI j , j ṘI j ,I j

]

EJ j ,Ii . (77)

4. Iterate over j ∈ �s� in topological order, computing D̈ j, j , L̈I j , j , Ü j from (68).

5. Iterate over j ∈ �s� in reverse topological order, computing R̈ j, j , R̈I j , j , R̈I j ,I j

from (71).
6. Compute T(w, δ) using R̈ and (72).

C.5 Euclidean norm cone and Euclidean norm square cone

Although K�2 ,Ksqr ⊂ R
q are inverse linear images of Sq� and hence admit LHSCBs

with parameter ν = q, we use the standard LHSCBs with parameter ν = 2, which
have a different form (see [66, Section 2.2]). For K�2 ,Ksqr, the LHSCB is f (s) =
− log(s′ Js), where J ∈ S

q is defined according to, for i, j ∈ �q� : i ≥ j :

Ji, j :=

⎧
⎪⎨

⎪⎩

1 if j = 1 and
(
i = 1 for K�2 or i = 2 for Ksqr

)
,

−1 if i = j and
(
i > 1 for K�2 or i > 2 for Ksqr

)
,

0 otherwise.

(78)

Consider s ∈ int(K) and direction δ ∈ R
q , and let J̄ = (s′ Js)−1 > 0. The gradient,

Hessian product, and TOO oracles for K are:

g(s) = −2 J̄ J s, (79a)

123

Performance enhancements for a generic… 99

H(s)δ = 2 J̄ (2 J̄ J ss′ Jδ − Jδ), (79b)

T(s, δ) = J̄ (Jsδ′Hδ + Hδs′ Jδ − s′Hδ Jδ). (79c)

These oracles are computed in order of q time. The Hessian oracle is computed in
order of q2 time as:

H(s) = 2 J̄ (2 J̄ J ss′ J − J). (80)

References

1. Agrawal, A., Diamond, S., Boyd, S.: Disciplined geometric programming. Optimization Letters 13(5),
961–976 (2019)

2. Andersen, E.D., Roos, C., Terlaky, T.: On implementing a primal-dual interior-point method for conic
quadratic optimization. Math. Program. 95(2), 249–277 (2003)

3. Andersen, M., Dahl, J., Liu, Z., Vandenberghe, L., Sra, S., Nowozin, S., Wright, S.: Interior-point
methods for large-scale cone programming. In: Sra, S., Wright, S.J., Nowozin, S. (eds.) Optimization
for Machine Learning, vol. 5583. MIT Press Cambridge, MA (2011)

4. Andersen,M.S., Dahl, J., Vandenberghe, L.: Logarithmic barriers for sparsematrix cones.Optimization
Methods and Software 28(3), 396–423 (2013)

5. Anh Truong, V., Tunçel, L.: Geometry of homogeneous convex cones, duality mapping, and optimal
self-concordant barriers. Math. Program. 100(2), 295–316 (2004)

6. Aylward, E.M., Parrilo, P.A., Slotine, J.J.E.: Stability and robustness analysis of nonlinear systems via
contraction metrics and SOS programming. Automatica 44(8), 2163–2170 (2008)

7. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: A fresh approach to numerical computing.
SIAM Rev. 59(1), 65–98 (2017)

8. Borchers, B.: CSDP, a C library for semidefinite programming. Optimization Methods and Software
11(1–4), 613–623 (1999)

9. Boyd, S.: EE363 review session 4: Linear matrix inequalities. University Lecture (2009). https://
stanford.edu/class/ee363/sessions/s4notes.pdf. Online, accessed 30-July-2022

10. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control
Theory. Studies in Applied and Numerical Mathematics, vol. 15. SIAM (1994)

11. Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge University Press (2004)
12. Burer, S.: Semidefinite programming in the space of partial positive semidefinite matrices. SIAM J.

Optim. 14(1), 139–172 (2003)
13. Burkardt, J.: Polynomials for global optimization tests (2016). https://people.sc.fsu.edu/~jburkardt/

py_src/polynomials/polynomials.html. Online, accessed 30-July-2022
14. Chandrasekaran, V., Shah, P.: Relative entropy relaxations for signomial optimization. SIAM J. Optim.

26(2), 1147–1173 (2016)
15. Chandrasekaran, V., Shah, P.: Relative entropy optimization and its applications. Math. Program.

161(1–2), 1–32 (2017)
16. Chares, R.: Cones and interior-point algorithms for structured convex optimization involving powers

and exponentials. Ph.D. thesis, Université Catholique de Louvain (2009)
17. Chen,Y.,Davis, T.A.,Hager,W.W.,Rajamanickam, S.:Algorithm887:CHOLMOD, supernodal sparse

Cholesky factorization and update/downdate. ACM Transactions on Mathematical Software (TOMS)
35(3), 1–14 (2008)

18. Coey, C., Kapelevich, L., Vielma, J.P.: Conic optimization with spectral functions on Euclidean Jordan
algebras. arXiv:2103.04104 (2021)

19. Coey, C., Kapelevich, L., Vielma, J.P.: Hypatia documentation (2022). https://chriscoey.github.io/
Hypatia.jl/dev/. Online, accessed 30-July-2022

20. Coey, C., Kapelevich, L., Vielma, J.P.: Solving natural conic formulations with Hypatia. jl. INFORMS
Journal on Computing (2022). https://doi.org/10.1287/ijoc.2022.1202

21. Dahl, J., Andersen, E.D.: A primal-dual interior-point algorithm for nonsymmetric exponential-cone
optimization. Math. Program. 194(1–2), 341–370 (2022)

123

https://stanford.edu/class/ee363/sessions/s4notes.pdf
https://stanford.edu/class/ee363/sessions/s4notes.pdf
https://people.sc.fsu.edu/~jburkardt/py_src/polynomials/polynomials.html
https://people.sc.fsu.edu/~jburkardt/py_src/polynomials/polynomials.html
http://arxiv.org/abs/2103.04104
https://chriscoey.github.io/Hypatia.jl/dev/
https://chriscoey.github.io/Hypatia.jl/dev/
https://doi.org/10.1287/ijoc.2022.1202

100 C. Coey et al.

22. d’Aspremont, A., El Ghaoui, L., Jordan, M.I., Lanckriet, G.R.: A direct formulation for sparse PCA
using semidefinite programming. SIAM Rev. 49(3), 434–448 (2007)

23. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Pro-
gram. 91(2), 201–213 (2002)

24. Domahidi, A., Chu, E., Boyd, S.: ECOS: an SOCP solver for embedded systems. In: 2013 European
Control Conference (ECC), pp. 3071–3076. IEEE (2013)

25. Dunning, I., Huchette, J., Lubin,M.: JuMP: amodeling language formathematical optimization. SIAM
Rev. 59(2), 295–320 (2017)

26. Fawzi, H., Fawzi, O.: Efficient optimization of the quantum relative entropy. J. Phys. A: Math. Theor.
51(15), 154003 (2018)

27. Fawzi, H., Saunderson, J.: Optimal self-concordant barriers for quantum relative entropies.
arXiv:2205.04581 (2022)

28. Fawzi, H., Saunderson, J., Parrilo, P.A.: Semidefinite approximations of the matrix logarithm. Found.
Comput. Math. 19(2), 259–296 (2019)

29. Fleming, P.J., Wallace, J.J.: How not to lie with statistics: the correct way to summarize benchmark
results. Commun. ACM 29(3), 218–221 (1986)

30. Friberg,H.A.: CBLIB2014:Abenchmark library for conicmixed-integer and continuous optimization.
Math. Program. Comput. 8(2), 191–214 (2016)

31. Gould, N., Scott, J.: A note on performance profiles for benchmarking software. ACM Transactions
on Mathematical Software (TOMS) 43(2), 1–5 (2016)

32. Güler, O.: Barrier functions in interior point methods. Math. Oper. Res. 21(4), 860–885 (1996)
33. Güler, O., Tunçel, L.: Characterization of the barrier parameter of homogeneous convex cones. Math.

Program. 81(1), 55–76 (1998)
34. Henrion, D., Korda, M.: Convex computation of the region of attraction of polynomial control systems.

IEEE Trans. Autom. Control 59(2), 297–312 (2013)
35. Kapelevich, L., Coey, C., Vielma, J.P.: Sum of squares generalizations for conic sets. Math. Program.

(2022). https://doi.org/10.1007/s10107-022-01831-6
36. Karimi,M., Tunçel, L.: Domain-Driven Solver (DDS) version 2.0: aMATLAB-based software package

for convex optimization problems in domain-driven form. arXiv:1908.03075 (2020)
37. Karimi, M., Tunçel, L.: Primal-dual interior-point methods for domain-driven formulations. Math.

Oper. Res. 45(2), 591–621 (2020)
38. Korda, M., Henrion, D., Jones, C.N.: Controller design and value function approximation for nonlinear

dynamical systems. Automatica 67, 54–66 (2016)
39. Laurent, M., Piovesan, T.: Conic approach to quantum graph parameters using linear optimization over

the completely positive semidefinite cone. SIAM J. Optim. 25(4), 2461–2493 (2015)
40. Mazumder, R., Choudhury, A., Iyengar, G., Sen, B.: A computational framework for multivariate

convex regression and its variants. J. Am. Stat. Assoc. 114(525), 318–331 (2019)
41. Mehrotra, S.: On the implementation of a primal-dual interior point method. SIAM J. Optim. 2(4),

575–601 (1992)
42. MOSEK ApS: Modeling Cookbook Release 3.3.0 (2022). https://docs.mosek.com/modeling-

cookbook/index.html. Online, accessed 30-July-2022
43. MOSEK ApS: MOSEK Optimizer API for Java 9.3.20 (2022). https://docs.mosek.com/latest/javaapi/

index.html. Online, accessed 30-July-2022
44. M.S. Andersen and J. Dahl and L. Vandenberghe: CVXOPTUser’s Guide - Cone Programming - Algo-

rithm Parameters (2021). https://cvxopt.org/userguide/coneprog.html#algorithm-parameters. Online,
accessed 30-July-2022

45. Murray, R., Chandrasekaran, V., Wierman, A.: Signomial and polynomial optimization via relative
entropy and partial dualization. Math. Program. Comput. 13, 257–295 (2021)

46. Myklebust, T., Tunçel, L.: Interior-point algorithms for convex optimization based on primal-dual
metrics. arXiv:1411.2129 (2014)

47. Nesterov, Y.: Towards non-symmetric conic optimization. Optimization Methods and Software 27(4–
5), 893–917 (2012)

48. Nesterov, Y.: Lectures on Convex Optimization. Springer Optimization and Its Applications, vol. 137.
Springer Cham (2018). https://doi.org/10.1007/978-3-319-91578-4

49. Nesterov, Y., Nemirovskii, A.: Interior-point polynomial algorithms in convex programming. Studies
in Applied Mathematics. Society for Industrial and Applied Mathematics (1994)

123

http://arxiv.org/abs/2205.04581
https://doi.org/10.1007/s10107-022-01831-6
http://arxiv.org/abs/1908.03075
https://docs.mosek.com/modeling-cookbook/index.html
https://docs.mosek.com/modeling-cookbook/index.html
https://docs.mosek.com/latest/javaapi/index.html
https://docs.mosek.com/latest/javaapi/index.html
https://cvxopt.org/userguide/coneprog.html#algorithm-parameters
http://arxiv.org/abs/1411.2129
https://doi.org/10.1007/978-3-319-91578-4

Performance enhancements for a generic… 101

50. Nesterov, Y., Todd, M.J., Ye, Y.: Infeasible-start primal-dual methods and infeasibility detectors for
nonlinear programming problems. Math. Program. 84(2), 227–267 (1999)

51. Nesterov, Y.E., Todd, M.J.: Self-scaled barriers and interior-point methods for convex programming.
Math. Oper. Res. 22(1), 1–42 (1997)

52. Nesterov, Y.E., Todd, M.J.: Primal-dual interior-point methods for self-scaled cones. SIAM J. Optim.
8(2), 324–364 (1998)

53. Orban, D.: BenchmarkProfiles.jl (2019). https://doi.org/10.5281/zenodo.4630955
54. O’Donoghue, B., Chu, E., Parikh, N., Boyd, S.: Conic optimization via operator splitting and homo-

geneous self-dual embedding. J. Optim. Theory Appl. 169(3), 1042–1068 (2016)
55. Papp, D., Alizadeh, F.: Shape-constrained estimation using nonnegative splines. J. Comput. Graph.

Stat. 23(1), 211–231 (2014)
56. Papp, D., Yıldız, S.: On “a homogeneous interior-point algorithm for non-symmetric convex conic

optimization”. arxiv:1712.00492 (2018)
57. Papp, D., Yıldız, S.: Sum-of-squares optimization without semidefinite programming. SIAM J. Optim.

29(1), 822–851 (2019)
58. Papp, D., Yıldız, S.: alfonso: ALgorithm FOr Non-Symmetric Optimization (2020). https://github.

com/dpapp-github/alfonso
59. Papp, D., Yıldız, S.: Alfonso: Matlab package for nonsymmetric conic optimization. INFORMS J.

Comput. 34(1), 11–19 (2021)
60. Permenter, F., Friberg,H.A.,Andersen, E.D.: Solving conic optimization problemsvia self-dual embed-

ding and facial reduction: a unified approach. SIAM J. Optim. 27(3), 1257–1282 (2017)
61. Renegar, J.: Amathematical view of interior-point methods in convex optimization.MOS-SIAMSeries

on Optimization. SIAM (2001)
62. Roy, S., Xiao, L.: On self-concordant barriers for generalized power cones. Optimization Letters 16(2),

681–694 (2022)
63. Serrano, S.A.: Algorithms for unsymmetric cone optimization and an implementation for problems

with the exponential cone. Ph.D. thesis, Stanford University (2015)
64. Skajaa, A., Ye, Y.: A homogeneous interior-point algorithm for nonsymmetric convex conic optimiza-

tion. Math. Program. 150(2), 391–422 (2015)
65. Sun, Y., Vandenberghe, L.: Decomposition methods for sparse matrix nearness problems. SIAM J.

Matrix Anal. Appl. 36(4), 1691–1717 (2015)
66. Vandenberghe, L.: The CVXOPT linear and quadratic cone program solvers (2010). https://www.seas.

ucla.edu/~vandenbe/publications/coneprog.pdf. Online, accessed 30-July-2022
67. Xu, X., Hung, P.F., Ye, Y.: A simplified homogeneous and self-dual linear programming algorithm and

its implementation. Ann. Oper. Res. 62(1), 151–171 (1996)
68. Yamashita, M., Fujisawa, K., Kojima, M.: Implementation and evaluation of SDPA 6.0 (semidefinite

programming algorithm 6.0). Optimization Methods and Software 18(4), 491–505 (2003)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.5281/zenodo.4630955
http://arxiv.org/abs/1712.00492
https://github.com/dpapp-github/alfonso
https://github.com/dpapp-github/alfonso
https://www.seas.ucla.edu/~vandenbe/publications/coneprog.pdf
https://www.seas.ucla.edu/~vandenbe/publications/coneprog.pdf

	Performance enhancements for a generic conic interior point algorithm
	Abstract
	1 Introduction
	1.1 Conic optimization with Hypatia solver
	1.2 The Skajaa-Ye algorithm
	1.3 Practical algorithmic developments
	1.4 Benchmark instances and computational testing
	1.5 Overview

	2 Notation
	3 Exotic cones and oracles
	4 General conic form and certificates
	5 Central path following algorithm
	5.1 Central path of the HSDE
	5.2 Central path proximity
	5.3 High level algorithm
	5.4 Search directions
	5.4.1 Centering
	5.4.2 Prediction

	5.5 Stepping procedures
	5.5.1 Basic stepping procedure
	5.5.2 Less restrictive proximity
	5.5.3 Third order adjustments
	5.5.4 Curve search
	5.5.5 Combined directions

	6 Oracles for predefined exotic cones
	7 Computational testing
	7.1 Exotic conic benchmark set
	7.2 Methodology
	7.3 Results
	7.3.1 Less restrictive proximity
	7.3.2 Third order adjustments
	7.3.3 Curve search
	7.3.4 Combined directions

	Acknowledgements

	A Preprocessing and solving for search directions
	B Efficient proximity checks
	C Computing the TOO for some exotic cones
	C.1 Intersections of slices of the PSD cone
	C.2 LMI cone
	C.3 Matrix and scalar WSOS dual cones
	C.4 Sparse PSD cone
	C.5 Euclidean norm cone and Euclidean norm square cone

	References

