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Abstract
In recent years, deep learning techniques have been widely used to diagnose diseases. However, in some tasks, such as the 
diagnosis of COVID-19 disease, due to insufficient data, the model is not properly trained and as a result, the generalizability 
of the model decreases. For example, if the model is trained on a CT scan dataset and tested on another CT scan dataset, it 
predicts near-random results. To address this, data from several different sources can be combined using transfer learning, 
taking into account the intrinsic and natural differences in existing datasets obtained with different medical imaging tools 
and approaches. In this paper, to improve the transfer learning technique and better generalizability between multiple data 
sources, we propose a multi-source adversarial transfer learning model, namely AMTLDC. In AMTLDC, representations 
are learned that are similar among the sources. In other words, extracted representations are general and not dependent on 
the particular dataset domain. We apply the AMTLDC to predict Covid-19 from medical images using a convolutional 
neural network. We show that accuracy can be improved using the AMTLDC framework, and surpass the results of current 
successful transfer learning approaches. In particular, we show that the AMTLDC works well when using different dataset 
domains, or when there is insufficient data.

Keywords  Diagnose diseases · COVID-19 diagnosis · Deep learning · Multi-source adversarial domain adaptation · 
Coronavirus pneumonia

1  Introduction

Nearly 251 million people worldwide officially have been 
infected with COVID-19, and more than 5 million death 
tolls until November 2021 (Worldometer 2021; Ghaderza-
deh et al. 2021a) as of epidemic declaration in March 2020, 
signifies the rapid diagnosis of the COVID-19 with high 
reliability in the early stages; Not only to save human lives 
but also to reduce the social and economic burden on the 
communities involved. Although the RT-PCR (Real-time 
polymerase chain reaction) test is the standard reference for 

confirming COVID-19, some studies show that this labori-
ous method cannot diagnose the disease in the early stages 
(Ai et al. 2020; Alshazly et al. 2021; Jokandan et al. 2007), 
and some studies report a high false-negative rate (Long 
et al. 2020; Ghaderzadeh and Aria 2020).

One standard way to identify morphological patterns of 
lung lesions associated with COVID-19 is to use chest scan 
images. There are two common techniques for scanning the 
chest: X-rays and computer tomography (CT). Detection of 
COVID-19 from chest images by a radiologist is time-con-
suming, and the accuracy of COVID-19 diagnosis depends 
strongly on the radiologist's opinion (Ng et al. 2020; Ghad-
erzadeh et al. 2021b). Also, manually checking every image 
might not be feasible in emergency cases. Recently, deep 
learning-based methods (Ghaderzadeh et al. 2021a; Hem-
dan et al. 2003; Farooq and Hafeez 2003; Luz et al. 2021; 
Li et al. 2020c; Wang et al. 2020a) have been applied to 
help the medical community diagnose COVID-19 quickly, 
accurately, and automatically.

The use of deep learning in various fields of machine 
vision has shown promising results. In particular, deep 
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learning is widely used in medical imaging (e.g. for the 
diagnosis of diabetic retinopathy (Gulshan et al. 2016), skin 
cancer (Esteva et al. 2017), breast cancer (Wang et al. 2016), 
and other tasks (Bayani et al. 2022; Bayani et al. 2022; Aria 
et al. 2022a). However, deep learning faces many challenges. 
Some of these challenges are related to the intrinsic of deep 
models; for example, a lot of data is needed for the success 
of deep learning models. The reason for medical applica-
tions' success based on deep learning is the data that has 
been collected over the years. However, in most other appli-
cations, it is difficult to collect sufficient medical data to 
train the model. This is because of the cost of labeling them, 
which requires an expert in this field (Wang et al. 2019). The 
lack of a sufficient dataset is also a major challenge in the 
Covid-19 diagnostic task with medical imaging. To solve 
this problem, various methods have been proposed, such as 
(Altae-Tran et al. 2017; Christodoulidis et al. 2017; Dhun-
gel et al. 2017; Bar et al. 2015). One of these methods is 
data augmentation. In this method, data can be increased by 
using some data transformation techniques, such as zoom-
ing, image rotation, horizontal or vertical shifting, and hori-
zontal or vertical flipping (Dhungel et al. 2017). In some 
other methods, such as few-shot learning, data efficiency 
can be increased (Altae-Tran et al. 2017). Some other meth-
ods instill the knowledge learned on sufficient data into tar-
get deep models. The purpose of this approach is to train 
the model with insufficient data. This knowledge can be 
obtained by training the model on a semi-related dataset and 
then fine-tuning it with the target dataset (Bar et al. 2015). 
This technique is known as transfer learning.

The transfer learning technique is very appropriate due 
to the variety of medical datasets available. For example, 
we can transfer knowledge between different datasets. 
Also, multi-source transfer learning can be used to com-
bine multiple sources and extract knowledge from them 
(Christodoulidis et al. 2016). Knowledge transfer between 
these datasets and learning common features can improve 
model generalizability. The advantage of using multi-source 
transfer learning is that it allows the use of several differ-
ent datasets, each of which may not be sufficient to train 
and generalize the model alone. However, the nature of the 
source datasets can be very different, and the transmission 
efficiency strongly depends on the similarity between the 
source tasks and the target task. So in some cases, transfer 
learning hurts the model instead of helping it to train better. 
There is also a risk that the model will learn the specific fea-
tures of each dataset instead of learning the common features 
between the datasets. Therefore, it harms the generalization 
of the learned model. This is especially true in the case of 
COVID-19 detection. Because medical datasets are often 
collected with different medical imaging tools and methods.

Problem statement: Most existing methods for classify-
ing COVID-19 are trained and evaluated with images from 

the same dataset. Using only a dataset reduces the gener-
alizability of these methods. So the results of training and 
testing the network on the same dataset are much better than 
the results of training and testing the network on different 
datasets. In other words, in the feature extraction stage, most 
of the proposed models are very dependent on the domain 
of the training dataset and do not perform well in the face 
of unseen datasets. For this reason, they are not trusted in 
real-world applications where the data used is new and inde-
pendent of training data. Numerous studies demonstrate that 
the most recent approaches in the literature are unreliable 
(Tartaglione et al. 2020; Tabik et al. 2020). For example, two 
well-known studies (Wang et al. 2020a; Afshar et al. 2020) 
in this field show a performance close to random classifica-
tion facing unseen data (i.e., datasets on which the model 
has not been trained). The classification accuracy in research 
(Silva et al. 2020) decreases from 98.5% on the test set to 
59.12% on unseen datasets. The structural and inherent dif-
ferences in the images from the available datasets, which 
arise from different tools and medical imaging methods, are 
the cause of this issue.

Method: To solve the above problem, in this research, 
we propose the Adversarial Multi-source Transfer Learn-
ing Framework framework for COVID-19 diagnosis from 
CT (Computed Tomography) images, namely AMTLDC. 
We use two separate datasets to learn common representa-
tions that are independent of the domain of each dataset. 
The source dataset is used for network training and the target 
dataset is used to increase the transferability and generaliz-
ability. Deep models used traditionally in transfer learning 
(e.g., convolutional neural networks) generally implement 
two modules: a feature extractor that extracts knowledge 
from the inputs, and a predictor that uses the knowledge to 
make the predictions. In the AMTLDC setting, a new mod-
ule infers the source of the input data based on its extracted 
features. By making the features extractor compete against 
this objective, the learned feature representation generalizes 
better across the sources. Our hypothesis is that the feature 
representation, being more general, will then transfer better 
to an unknown target. This idea is particularly well suited for 
COVID-19 diagnosis because of the structural and inherent 
differences in the images from the available datasets, which 
arise from different tools and medical imaging methods. 
AMTLDC can perform the correct classification regard-
less of the specific features of each input data domain. In 
other words, the representations learned are shared among 
both data domains and do not depend on a particular dataset 
domain.

Contribution: The contributions of this research are 
threefold:

1.	 The effect of intrinsic and natural differences in existing 
datasets obtained with different medical imaging tools 
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and approaches is minimized as a result of the proposed 
adversarial multi-source transfer learning framework.

2.	 An efficient deep framework is developed to make 
Covid-19 detection more accurate.

3.	 Extensive experiments show that the AMTLDC has high 
generalizability on unseen data.

In the remainder of the paper: the related works are 
reviewed in Sect. 2; the proposed AMTLDC framework is 
introduced in Sect. 3; experiments performed are explained 
in Sects. 4 and 5; and in the last section, the conclusion is 
presented.

2 � Related work

Various deep learning methods have been introduced to 
detect Covid 19. These methods can be divided into three 
general categories. The first category includes methods 
that have developed customized architectures for COVID-
19 detection, such as COVID-Net (Wang et  al. 2020a) 
and CVR-Net (Hasan et al. 2020). The second category 
includes methods that use common architectures [such as 
ResNet (Residual Network) (He et al. 2016)] and transfer 
learning. The last category includes very few studies that 
have employed handcrafted feature extraction approaches 
and conventional classifiers. In the following, each of these 
categories is reviewed.

2.1 � Customized models

Some methods introduced a customized architecture for 
COVID-19 detection. COVID-Net (Wang et al. 2020a) is 
one of the pioneering methods that has introduced a new 
convolutional architecture for identifying COVID-19. This 
architecture is trained and evaluated on X-ray images. An 
improved version of the COVID-Net method has been 
developed in Wang et al. (2020b). The authors developed 
a novel joint learning model to detect COVID-19 by effec-
tively learning with heterogeneous datasets with distribution 
discrepancies. In this model, the generated representations 
and the network performance are computationally improved.

In Hasan et al. (2020), a robust CNN (Convolutional Neu-
ral Network) based network, called CVR-Net was proposed. 
In this framework, both CT and X-ray images are used to 
train and test the model. The proposed end-to-end CVR-Net 
is a multi-scale multi-encoder ensemble model.

To increase the efficiency of coronavirus detection based 
on CT images, the authors proposed a set of deep models 
called CovidCTNet (Javaheri et al. 2005) that successfully 
detect Covid-19 from other lung diseases. CovidCTNet is 
designed to work with small sample sizes and heterogene-
ous datasets.

In Amyar et al. (2020) Multitask deep learning-based 
model was proposed. The proposed model can improve the 
state-of-the-art U-NET model by leveraging useful informa-
tion contained in multiple related tasks. The main aim of this 
approach is on the one hand to leverage useful information 
contained in multiple related tasks to improve both segmen-
tation and classification performances, and on the other hand 
to deal with the problems of small datasets.

2.2 � Pre‑trained models based on transfer learning

Various methods based on transfer learning are proposed 
to detect coronavirus from medical images. In Singh et al. 
(2020a), the authors used convolutional networks to detect 
negative and positive cases of coronavirus on CT scan sam-
ples. In Apostolopoulos and Mpesiana (2020), common 
convolutional architectures, such as VGG19, MobileNet 
v2, Inception, Xception, and Inception ResNet v2 have been 
used along with transfer learning to classify samples into 
three categories: normal, bacterial pneumonia, and COVID-
19. A common transfer learning technique with fine-tuning 
is used in Minaee et al. (2020) to identify COVID-19. The 
authors used some convolutional neural network architec-
tures, such as DenseNet-121, ResNet50, SqueezeNet, and 
ResNet18. These models were tested on a dataset of 5000 
X-ray images. In Hasan et al. (2020), as in the methods 
mentioned, transfer learning on a trained VGG-16 model is 
used to diagnose COVID-19. In Brunese et al. (2020), like 
other similar methods, the pre-trained VGG-16 network is 
used to detect COVID-19. In Li (2020), an efficient 3D deep 
learning framework called CONVNet is introduced. CON-
VNet uses the pre-trained Resnet architecture to extract two-
dimensional and three-dimensional features. In Song (2021), 
the authors have developed a new method called DeepPneu-
monia for the diagnosis of bacterial pneumonia, COVID-19, 
and healthy cases. This model has achieved 86.5% and 94% 
accuracy for detecting COVID-19 with bacterial pneumonia 
and healthy cases, respectively. Other similar methods are 
introduced in Zhou et al. (2020), Jaiswal et al. (2020).

2.3 � Methods based on handcrafted feature 
extraction

Some COVID-19 detection methods used handcrafted fea-
ture extraction approaches. In Pereira et al. (2020), first, 
different texture features are extracted from the images by 
popular texture descriptors, and then these texture features 
are combined with the extracted features from the pre-
trained InceptionV3 (Szegedy et al. 2016) model. In Al-
Karawi et al. (2020a), a method for classifying the positive 
and negative cases of COVID-19 based on CT scan images 
was proposed. Different texture features were extracted 
from CT images using the Gabor filter, and then the SVM 
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method was used to classify these images. In Hasan et al. 
(2020), to reduce intensity variations between CT slices, a 
preprocessing step was applied on CT slices. Then a long 
short-term memory (LSTM) classifier is used to discriminate 
between COVID-19, pneumonia, and healthy cases. Other 
related methods based on the combination of feature extrac-
tion approaches and deep learning models are introduced in 
Farid et al. (2020a).

Recently, some new methods for the segmentation or 
classification of Corona images have been introduced. In 
Abd Elaziz et al. (2021), the goal is to present an efficient 
image segmentation method for COVID-19 CT images. This 
method depends on improving the density peaks clustering 
(DPC) using generalized extreme value (GEV) distribution. 
The DPC is faster than other clustering methods, and it pro-
vides more stable results. However, it is difficult to deter-
mine the optimal number of clustering centers automati-
cally without visualization. So, GEV is used to determine 
the suitable threshold value to find the optimal number of 
clustering centers that lead to improving the segmentation 
process. The proposed model is applied to a set of twelve 
COVID-19 CT images.

In Elaziz et al. (2020), the authors proposed a hybrid 
swarm intelligence (SI) based approach that combines the 
features of two SI methods, marine predators algorithm 
(MPA) and moth-flame optimization (MFO). This approach 
was called MPAMFO, in which, the MFO was utilized as 
a local search method for MPA to avoid trapping at local 
optima. The MPAMFO was proposed as an MLT approach 
for image segmentation, which showed excellent perfor-
mance in all experiments. the authors tested the MPAMFO 
for a real-world application, such as CT images of COVID-
19. Thirteen CT images were used to test the performance 
of MPAMFO.

To determine the COVID-19 case from other normal 
and abnormal cases, the authors in Yousri et al. (2021) 
proposed a method that extracted the informative features 
from X-ray images, leveraging on a new feature selection 
method to determine the relevant features. in this method, 

an enhanced cuckoo search optimization algorithm (CS) was 
proposed using fractional-order calculus (FO) and four dif-
ferent heavy-tailed distributions in place of the Lévy flight 
to strengthen the algorithm performance during dealing with 
the COVID-19 multi-class classification optimization task. 
The classification process included three classes, called nor-
mal patients, COVID-19 infected patients, and pneumonia 
patients. The distributions used are Mittag–Leffler distribu-
tion, Cauchy distribution, Pareto distribution, and Weibull 
distribution. Two datasets for COVID-19 X-ray images were 
considered for testing the proposed method.

Most of the mentioned methods are highly dependent on 
the image domain of datasets on which they were trained. 
If the test set is from the same domain of the training set, 
the model performance will be acceptable. However, when 
the domain of the evaluation dataset is different, model per-
formance is significantly reduced. However, in real-world 
applications, the domain of the inference image is not always 
the same as the training set. In other words, unseen data is 
often independent of the training set, so the results would 
not be reliable.

3 � Proposed framework for COVID‑19 
detection

The steps of the AMTLDC framework are shown graphically 
in Fig. 1. As shown in this figure, the COVID-19 detec-
tion model uses two separate datasets to learn common 
representations that are independent of the domain of each 
dataset. The source dataset is used for network training and 
the target dataset is used to increase the transferability and 
generalizability. The next step is the preprocessing step. In 
this step, the input data is decoded, resized, normalized, and 
finally transformed by data augmentation techniques. The 
next step is the AMTLDC architecture, which consists of 
three parts: CNN-based Feature Extractor, classifier, and 
discriminator. These blocks are responsible for extracting 

Fig. 1   AMTLDC framework
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features, classifying data into two classes COVID-19 or 
Non-COVID-19, and distinguishing source data from target 
data, respectively.

The purpose of the AMTLDC is to learn general features 
that are useful for both datasets so that the correct classifi-
cation can be done regardless of the input source and the 
specific aspects of each input distribution.

3.1 � Preprocessing

The preprocessing steps are described below:
Step1: Decode: CT images are often saved in DICOM 

format. These files must be converted to the common image 
format. In this research, images are converted to png format.

Step2: Resize: CT images are collected from different 
sources, which may not be in the same size. Therefore, all 
images should be resized to be suitable for the proposed 
network input layer.

Step3: Normalize: These images are often in the range of 
0 to 255, which should be normalized for network training. 
So we normalized these images in the [0, 1] range.

Step4: Data Augmentation: Due to insufficient data for 
network training, we use the data augmentation technique 
to generate new data. The transformations used on the 
images are brightness, contrast, rotation, and noise, which 
are applied in the range/type of 0.2, 0.2, [− 20°, + 20°], and 
horizontal respectively.

Some images after preprocessing step are shown in Fig. 2.

3.2 � AMTLDC framework

The AMTLDC architecture consists of three parts: CNN-
based Feature Extractor, classifier, and discriminator. Fig-
ure 3 shows these modules. As shown in this figure, in the 
feature extraction block, common convolutional architec-
tures such as VGG16, and Resnet with transfer learning tech-
niques can be used. In AMTLDC, we use the pre-trained 
ResNet50 (He et al. 2016) architecture on the imagenet 
dataset. To classify data into two classes, COVID-19 and 
Non_COVID-19, we pass the extracted representations 
from the feature extraction block into two consecutive mod-
ules consisting of Dense, Batch-normalization, Relu, and 
Dropout layers. Then, on top of these two blocks, apply 
the sigmoid activation function. The output of this model 
determines the probability of assigning each sample to each 
class. The domain classifier is responsible for identifying 
and distinguishing source data from target data. The goal is 
to learn representations that are common among datasets. In 
other words, representations specific to one dataset are not 
learned, which may have some structural and inherent dif-
ferences from other datasets. The architecture of this block 
is the same as the classification block, except that the output Fig. 2   Some images after preprocessing step

Fig. 3   CNN-based Feature Extractor, Classification, and Discrimination Blocks
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estimates the probability of assigning each image to each 
dataset (source and target). The purpose of this AMTLDC 
architecture is to increase the model transferability and gen-
eralizability, simultaneously. So that the learned represen-
tations are independent of the input domain and general, 
i.e. they are suitable for both source and target datasets; 
therefore, the representations learned are based on general 
features, independent of the specific domain and dataset.

3.3 � Training phase

To solve the issue of over-specialization of the trained model 
on multiple datasets, and increase the generalizability and 
transferability of the model inspired by Bois et al. (2021), 
we train the model with two loss functions. Figure 4 shows 
a graphical view of the training approach. This model is 
trained by an efficient adversarial training approach in a 
multi-source transfer learning environment. The classifica-
tion and discrimination blocks use the features extracted 
by the feature extraction block to classify the input data 
and the domain the data come from, respectively. Both of 
these blocks are trained by backpropagating their respective 
losses. The binary cross-entropy loss function is used to cal-
culate the losses of both blocks. When arriving at the feature 
extractor block, the loss related to the discrimination block 
is reversed by the inverse gradient layer. Thus, the feature 
extractor block learns common and general representations 
of both sources that are useful for classifying input, at the 
same time, these learned representations are indiscriminative 
of the domain the data come from.

AMTLDC is trained simultaneously with two loss func-
tions: classification loss and discrimination loss. Equa-
tion (1) shows the used loss function in this method. This 

loss combines a classification loss ( Lc ) and a discrimination 
loss ( Ld ). λc and λd are coefficients, controlling the bias-vs-
variance tradeoff of the generalization.

We use the cross-entropy loss function to calculate the 
discriminator domain loss and the classification loss. The 
classification loss ( Lc ) in this algorithm is defined by Eq. (2)

where y indicates the correct class, ŷ indicates the model 
prediction.

The discrimination domain loss (Ld) in this algorithm is 
defined in Eq. (3).

where y indicates the correct domain class, ŷ indicates 
the model prediction.

4 � Experiments

In this section, the efficiency of the AMTLDC method 
is evaluated and compared with the following groups of 
methods:

1.	 Methods based on customized network
2.	 Methods based on pre-trained networks and transfer 

learning

For the AMTLDC, the parameters and their values 
are described in Table 1. In the proposed method, the two 

(1)L = λcLc + λdLd

(2)Lc = −ylog(̂y)

(3)Ld = −ylog(̂y)

Fig. 4   Efficient adversarial 
training approach in a multi-
source transfer learning environ-
ment
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parameters that have a significant effect on the results are the 
λd and λc coefficients. We tested these parameters in the range 
of Worldometer (2021), Hemdan et al. (2003). According to 
this test, the best results were obtained with the values of 1 and 
4 for λd and λc coefficients, respectively.

In the proposed method and conventional architecture (the 
second group of compared methods), such as VGG-16 and 
ResNet, all common parameters such as learning rate and 
batch size are considered the same. Also, the number of lay-
ers and neurons in the classification module are similar. So 
the comparisons are quite fair. In the methods whose source 
code is not available or have their parameters, the best results 
are reported directly from the relevant papers. Most of these 
methods often introduce a customized architecture for Covid 
classification tasks.

4.1 � Evaluation criteria

In the experiments, such as (Luz et al. 2021; Yousri et al. 2021; 
Hashemzadeh et al. 2019; Golzari Oskouei et al. 2021a, 2021b, 
2022; Aria et al. 2022b; Golzari Oskouei and Hashemzadeh 
2022; Wang et al. 2021; Ghaderzadeh et al. 2022), we use 
Accuracy, Precision, Recall, F1, and Specificity criteria to 
evaluate the algorithms. These evaluation criteria are shown 
in Eqs. (4–8), where TP, FN, TN, and FN represent True 
Positive, False Positive, True Negative, and False Negative, 
respectively.

(4)Accuracy =
TN + TP

TN + TP + FN + FP

(5)Precision =
TP

Tp + FP
× 100

(6)Recall =
TP

TP + FN
× 100

(7)F1 = 2 ×
Recall × Precision

Recall + Precision
× 100

4.2 � Dataset

In recent research, three datasets, SARS-CoV-2 CT 
(Angelov and Almeida Soares 2020), COVID19-CT (He 
et al. 2020), and COVID19-CT_v2 (Zhao et al. 2020) are 
often used to evaluate model performance. We also test the 
performance of the AMTLDC method on these datasets. The 
SARS-CoV-2 dataset contains 1252 corona images and 1230 
non-corona images. The COVID19-CT dataset contains 349 
corona images and 397 non-corona images. The COVID19-
CT_v2 dataset contains 349 corona images and 463 non-
corona images.

5 � Results

Tables 2, 3, 4, 5, 6, 7 show the results of different evaluation 
criteria. The results of other methods are reported directly 
from the relevant articles.

5.1 � Experiment 1: evaluation of the SARS‑CoV‑2 
dataset

In this section, we evaluate the AMTLDC method on the 
SARS-CoV-2 dataset and compare it with other successful 
methods. The results of the AMTLDC and other methods 
are stated in Table 2.

Table 2 shows the performance of our method, compared 
to other methods, is the best. The results indicate the higher 
performance of our method compared to other advanced 
methods in this research field. After our method, Efficient-
NetB0, and xDNN methods have the best performance, 
respectively and the Decision Tree method has the worst 
result among all the methods. Also, for the AMTLDC, the 
confusion matrix of evaluation on the test set of the SARS-
CoV-2 dataset is shown in Fig. 5. From Table 2 and Fig. 5, 
it is evident that AMTLDC performs better than the other 
methods. The average Accuracy, Precision, Recall, and F1 
metrics of AMTLDC are 99.8%, 99.8%, 99.7%, and 99.7%, 
respectively. Recall 99.7% indicates that, on average, only 
two COVID-19 images is incorrectly predicted as non-
COVID-19. Moreover, the AMTLDC correctly diagnoses 
all non-COVID-19 cases with only two false positive. After 
AMTLDC, the EfficientNetB0, xDNN, DenseNet201-
Based, and ShuffleNet methods have relatively good per-
formance, respectively. In EfficientNetB0 architecture, on 
average, three COVID-19 images are incorrectly predicted 
as non-COVID-19.

(8)Specif icity =
TN

TN + FP
× 100

Table 1   AMTLDC parameters

Parameter Value

dropout rate 0.5

Coefficients λ
d

1
Coefficients λ

c
4

Batch size 32
maximum number of iterations 2 × 10

4

Learning rate (Adam optimizer) 10
−2
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Table 2   Performance 
comparison of different models 
on the SARS-CoV-2 dataset

The best performace for the used dataset and methods are in bold

Model/method Evaluation metrics

Accuracy Precision Recall F1

Decision tree 79.4 76.8 83.1 79.8
GoogleNet 91.7 90.2 93.5 91.8
AlexNet 93.7 94.9 92.2 93.6
ResNet50V2 94.2 92.8 96.7 94.1
ResNet50 94.9 93.0 97.1 95.0
VGG-16 94.9 94.0 95.4 94.9
AdaBoost 95.1 93.6 96.7 95.1
SqueezeNet 95.1 94.2 96.2 95.2
ShuffleNet 97.5 96.1 99.0 97.5
EfficientNetB0 98.9 99.1 98.9 99.0
Xception 98.8 99.0 98.6 98.8
COVID CT-Net (Yazdani et al. 2020) 90.7 88.5 85.0 90.0
Contrastive learning (Wang et al. 2020b) 90.8 95.7 85.8 90.8
Modified VGG19 (Panwar et al. 2020) 95.0 95.3 94.0 94.3
DenseNet201-based (Jaiswal et al. 2020) 96.2 96.2 96.2 96.2
xDNN (Soares et al. 2020) 97.3 99.1 95.5 97.3
AMTLDC 99.8 99.8 99.7 99.7

Table 3   Performance 
comparison of different models 
on the COVID19-CT dataset

The best performace for the used dataset and methods are in bold

Model/method Evaluation metrics

Accuracy Recall Specificity F1

AlexNet 74.5 70.4 79.0 75.0
SqueezeNet 78.5 86.5 63.8 82.0
VGG-16 78.5 74.6 82.8 76.0
GoogleNet 78.9 75.9 82.3 79.0
VGG-19 83.2 90.7 74.7 85.0
NasNet-mobile 83.4 84.8 81.9 85.0
NasNet-large 85.2 79.3 91.9 84.0
Xception 85.6 88.3 80.6 87.7
ShuffleNet 86.1 83.5 89.0 86.0
Inception-ResNet-v2 86.3 88.1 84.2 87.0
MobileNet-v2 87.2 93.2 77.6 89.0
DenseNet-121 88.9 88.8 88.9 88.2
Inception-v3 89.4 90.0 88.9 88.8
ResNet-101 89.7 82.2 89.2 89.0
ResNet-18 90.1 89.4 90.9 91.0
ResNeXt-50 90.6 93.4 88.2 90.3
ResNeXt-101 90.9 93.1 88.9 90.6
DenseNet-169 91.2 93.3 88.9 90.8
DenseNet-201 91.7 88.6 94.1 91.9
Contrastive learning (Wang et al. 2020b) 78.6 78.0 77.0 78.8
ResNet-101-based (Saqib et al. 2020) 80.3 85.7 86.0 81.8
DenseNet-169-based (He et al. 2020) 83.0 84.8 85.5 81.0
DenseNet-121 + SVM (Jokandan et al. 2007) 85.9 84.9 86.8 86.2
DenseNet-169-based (Martinez 2009) 87.7 85.6 86.9 87.8
Decision function (Mishra et al. 2020) 88.3 87.0 87.9 86.7
AMTLDC 95.1 94.6 95.8 94.1
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Comparing AMTLDC with other ResNet-based methods, 
it can be seen that the AMTLDC, while having a smaller net-
work, has much better results than other versions. So that the 
Accuracy, Precision, Recall, and F1 rates of the AMTLDC 
approach with comparing other ResNet-based methods are 
improved by an average of 5.04%, 6.27%, 3.24%, and 5.90%, 
respectively.

5.2 � Experiment 2: evaluation of the COVID19‑CT 
dataset

In this section, we evaluate the AMTLDC on the COVID19-
CT dataset and compare it with other successful methods. 
The results of the AMTLDC and other methods are stated 
in Table 3.

As Table 3 shows, the performance of AMTLDC—is the 
best among all methods. The results indicate the higher per-
formance of AMTLDC compared to other successful meth-
ods in this field. After our method, ResNet-based methods 
have relatively good performance and the AlexNet method 
has the worst result among all the methods.

For AMTLDC, the average Accuracy, Recall, Specificity, 
and F1 metrics are 95.1%, 94.6%, 95.8%, and 94.1%, respec-
tively. Also, after AMTLDC, the ResNet-based methods 
have relatively good performance. The average Accuracy, 
Recall, Specificity, and F1 metrics on second best method 
(DenseNet-169) are 91.2%, 93.3%, 88.9%, and 90.8%, 
respectively. In DenseNet-169, the average Recall of 93.3% 
indicates that, on average, eight images of COVID-19 are 
incorrectly predicted as non-COVID-19. Also, the average 
specificity of 88.9 indicates that all non-COVID-19 cases 

are detected with more than ten false-positive samples. In 
AMTLDC, the average Recall of 94.6% indicates that, on 
average, seven COVID-19 images are incorrectly predicted 
as non-COVID-19. Also, the average of Specificity 95.8% 
indicates that it detects all cases of non-COVID-19 with only 
six false-positive samples.

Comparing the AMTLDC with the other ResNet-based 
methods, such as ResNeXt-50, ResNeXt-101, and ResNet-50 
models, it can be seen that the AMTLDC has much better 
results than these methods. The Accuracy, Recall, Specific-
ity, and F1 rates of the proposed approach with comparing 
ResNeXt-101 architecture are improved by an average of 
5.28%, 1.82%, 7.98%, and 4.85%, respectively. Similarly, 
the Accuracy, Recall, Specificity, and F1 rates of the pro-
posed approach with comparing ResNeXt-50 architecture 
are improved by an average of 5.62%, 1.49%, 8.84%, and 
5.20%, respectively.

5.3 � Experiment 3: cross‑dataset evaluation

In this section, we evaluate the transferability and gener-
alizability of our AMTLDC. To investigate whether the 
AMTLDC prevents negative transfer or not, we test our 
AMTLDC once with proposed multi-source transfer learn-
ing and once without it. In both modes, we train the net-
work once on the SARS-CoV-2 dataset and evaluate it on 
the COVID19-CT and COVID19-CT–v2 datasets, and 
vice versa. Table 4 shows the results of this evaluation. 
According to this table, it can be seen that the results of the 
AMTLDC have been improved by about 30% compared to 
without using the multi-source transfer technique. As can be 

Table 4   Cross-dataset 
evaluation

The best performace for the used dataset and methods are in bold

Method Training dataset Test dataset Evaluation metrics

Accuracy Recall Precision

Without multi-
source trans-
fer learning

SARS-CoV-2 COVID19-CT (train set) 64.11 65.05 64.10
SARS-CoV-2 COVID19-CT (test set) 62.01 63.21 61.89
SARS-CoV-2 COVID19-CT (all data) 64.21 66.45 65.04
COVID19-CT SARS-CoV-2 56.92 59.28 56.47
SARS-CoV-2 COVID19-CT-v2 (train set) 60.34 61.15 60.10
SARS-CoV-2 COVID19-CT-v2 (test set) 58.78 59.41 57.23
SARS-CoV-2 COVID19-CT-v2 (all data) 60.13 62.91 61.16
COVID19-CT-v2 SARS-CoV-2 52.87 55.41 52.32

With multi-
source trans-
fer learning

SARS-CoV-2 COVID19-CT (train set) 91.00 92.55 92.01
SARS-CoV-2 COVID19-CT (test set) 90.44 90.89 91.81
SARS-CoV-2 COVID19-CT (all data) 92.37 93.42 92.37
COVID19-CT SARS-CoV-2 82.97 87.37 84.09
SARS-CoV-2 COVID19-CT-v2 (train set) 89.32 90.50 90.35
SARS-CoV-2 COVID19-CT-v2 (test set) 88.12 88.10 89.68
SARS-CoV-2 COVID19-CT-v2 (all data) 90.41 91.42 90.75
COVID19-CT-v2 SARS-CoV-2 80.64 85.74 82.42
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seen in this table, the AMTLDC improves generalizability. 
A closer look reveals that network training on COVID19-CT 
and COVID19-CT datasets are less generalizable than net-
work training on SARS-CoV-2 datasets. The reason for this 
is quite clear, the SARS-CoV-2 dataset is richer (size, variety 
of data collected) than the two other datasets. Also, the data 
collected in this dataset are from different sources, in differ-
ent contrasts, and with different visual features. Therefore, 
it is not a suitable dataset for model training.

The Accuracy, Recall, and Precision rates of the proposed 
approach (with the proposed multi-source transfer learning 
mode) with comparing without it are improved by an average 
of 42.37%, 41.15%, and 43.24%, respectively.

5.4 � Experiment 4: AMTLDC vs. pre‑trained models

We test the AMTLDC method with methods in which the 
models are pre-trained on the ImageNet dataset. As shown 
in Table 5, the results show that the proposed algorithm 
has a higher performance than other successful methods in 
this field. The critical point is that the proposed method is 
trained on the small SARS-CoV-2 CT-scan dataset, while 
the other methods are often trained on a large dataset. 
Therefore, apart from the qualitative contributions and 
the proposed innovations that offer a low-cost and practi-
cal solution to overcome the shortcut learning problem 
(Geirhos et al. 2020), the proposed method achieves sig-
nificant improvements using only a few sets of training 
samples without suffering from overfitting problem.

Table 5   AMTLDC vs. pre-trained models

The best performace for the used dataset and methods are in bold

References Data sources No. of samples Model Performance

Ardakani et al. (2020b) Real-time data from the hospital environ-
ment

Total: 1,020
COVID-19: 510
Non-COVID-19: 510

AlexNet, VGG-16,
VGG-19, …

Accuracy: 99.51,
Recall: 100,
Specificity: 99.02

Chen et al. (2020) Renmin Hospital of Wuhan University Total: 35,355 UNet +  +  Accuracy: 98.85,
Recall: 94.34,
Specificity: 99.16

Cifci (2022) Kaggle benchmark dataset (Kaggle 2020) Total: 5,800 AlexNet, Inception-V4 Accuracy: 94.74,
Recall: 87.37,
Specificity: 87.45

Javaheri et al. (2005) Five medical centers in Iran, SPIE-AAPM-
NCI (Armato et al. 2015), LUNGx 
(Armato et al. 2016)

Total: 89,145
COVID-19: 32,230
Non-COVID-19: 56,915

BCDU-Net (U-Net) Accuracy: 91.66,
Recall: 87.5,
Specificity: 94

Jin et al. (2020) Wuhan Union Hospital,
LIDC-IDRI (Armato et al. 2011), ILD-HUG 

(Depeursinge et al. 2012)

Total: 1881
COVID-19: 496
Non-COVID-19: 1385

ResNet152 Accuracy: 94.98,
Recall: 94.06,
Specificity: 95.47,
F1: 92.78

Jin et al. (2020) Five different hospitals of China Total: 1,391
COVID-19: 850
Non-COVID-19: 541

DPN-92, Inception-v3,
ResNet-50

Recall: 97.04,
Specificity: 92.2

Dadário et al. (2020)) Multiple hospitals environment Total: 4536
COVID-19: 1296
Non-COVID-19: 1325

ResNet50 Recall: 90,
Specificity: 96

Wu et al. (2020) China Medical University,
Beijing Youan Hospital

Total: 495
COVID-19: 368
Non-COVID-19: 127

ResNet50 Accuracy: 76,
Recall: 81.1,
Specificity: 61.5

Xu et al. (2019) Zhejiang University, Hospital of Wenzhou, 
Hospital of Wenling

Total: 618
COVID-19: 219
Non-COVID-19: 399

ResNet18 Accuracy: 86.7,
Recall: 81.5,
F1: 81.1

Yousefzadeh et al. (2020) Real-time data from the hospital environ-
ment

Total: 2124
COVID-19: 706
Non-COVID-19: 1418

DenseNet, ResNet,
Xception, EcientNetB0

Accuracy: 96.4,
Recall: 92.4,
Specificity: 98.3,
F1: 95.3

AMTLDC SARS-CoV-2 CT-scan dataset Total: 2482
COVID-19: 1252
Non-COVID-19: 1229

ResNet50 Accuracy: 99.96,
Recall: 99.80,
Specificity: 99.80,
F1: 99.90
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Table 6   AMTLDC vs. customized models

The best performace for the used dataset and methods are in bold

Reference Data Sources No. of samples Model Performance

Liu et al. (2020) Ten designated COVID-19 hospitals in China Total: 1993
COVID-19: 920
Non-COVID-19: 1073

Modified
DenseNet-264

Accuracy: 94.3,
Recall: 93.1,
Specificity: 95.1

Amyar et al. (2020) COVID-CT (Zhao et al. 2020), COVID-19 CT seg-
mentation dataset (2020), Henri Becquerel Center

Total: 1044
COVID-19: 449
Non-COVID-19: 595

Encoder-Decoder with
multi-layer perceptron

Accuracy: 86.0,
Recall: 94.0,
Specificity: 79.0

Elghamrawy and 
Hassanien. (2020)

COVID-19 Database (Italian Society of Medical and 
Interventional Radiology : COVID-19 Database 
2020),

COVID-CT (Zhao et al. 2020)

Total: 583
COVID-19: 432
Non-COVID-19: 151

WOA-CNN Accuracy: 96.40,
Recall: 97.25,
Precision: 97.3

Farid et al. (2020b) Kaggle benchmark dataset (Kaggle Benchmark 
dataset 2020)

Total: 102
COVID-19: 51
Non-COVID-19: 51

CNN Accuracy: 94.11,
Precision: 99.4,
F1: 94.0

Hasan et al. (2020) COVID-19 (2020), SPIE-AAPM-NCI Lung Nodule 
Classification Challenge Dataset (Armato et al. 
2015)

Total: 321
COVID-19: 118
Non-COVID-19: 203

QDE–DF Accuracy: 99.68

Singh et al. (2020b) COVID-19 patient chest CT images (Li et al. 2020a) Total: 150
COVID-19: 75
Non-COVID-19: 75

MODE-CNN Accuracy: 93.25,
Recall: 90.70,
Specificity: 90.72

Wang et al. (2020c) Xi'an Jiaotong University, Nanchang University, 
Xi'anMedical College

Total: 1,065
COVID-19: 740
Non-COVID-19: 325

Modified Inception Accuracy: 79.3,
Recall: 83.0,
Specificity: 67.0

Song et al. (2020) Hospital of Wuhan University, Third Affiliated 
Hospital

Total: 1990
COVID-19: 777
Non-COVID-19: 1213

DRE-Net Accuracy: 94.3,
Recall: 93.0,
Precision: 96.0

Zheng et al. (2020) Union Hospital, Tongji Medical College, Huazhong 
University of Science and Technology

Total: 630 DeCoVNet Accuracy: 90.1,
Recall: 90.7,
Specificity: 91.1

AMTLDC SARS-CoV-2 CT-scan dataset Total: 2482
COVID-19: 1252
Non-COVID-19: 1229

ResNet50 Accuracy: 99.86,
Recall: 99.80,
Specificity: 99.70,
F1: 99.70

Table 7   Number of parameters and runtime of different methods

Model No. of parameters Runtime 
(second)

MobileNet-v2 6,444,417 (~ 6 M) 4 s
DenseNet-121 10,253,057 (~ 10 M) 11 s
VGG-16 16,324,609 (~ 16 M) 22 s
DenseNet-169 17,865,473 (~ 17 M) 23 s
VGG-19 21,634,305 (~ 21 M) 30 s
DenseNet-201 24,347,393 (~ 24 M) 34 s
InceptionV3 25,083,873 (~ 25 M) 36 s
Xception 27,288,297 (~ 27 M) 39 s
ResNet50V2 29,991,617 (~ 30 M) 43 s
ResNet-50 30,014,529 (~ 30 M) 43 s
ResNet101V2 49,053,377 (~ 49 M) 71 s
ResNet-101 49,084,993 (~ 49 M) 71 s
InceptionResNetV2 56,798,625 (~ 57 M) 83 s
ResNet152V2 64,758,465 (~ 64 M) 90 s
ResNet152 64,797,761 (~ 65 M) 93 s
AMTLDC 36,441,346 (~ 36 M) 49 s Fig. 5   Confusion matrix of evaluation on the test set of the SARS-

CoV-2 dataset
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The method presented by Ardakani et al. (2020a) has 
almost higher performance than AMTLDC in terms of 
Recall metric; however, it suffers from low reliability. In 
other words, in the face of unseen data, network perfor-
mance decreases dramatically.

5.5 � Experiment 5: AMTLDC vs. customized models

This section compares the proposed method with methods 
that have developed customized architectures specifically to 
detect COVID-19. In these methods, transfer learning is not 
used, and the network is trained from scratch.

Table 6 shows the results for AMTLDC and other com-
pared approaches. As shown in this table, the AMTLDC 
method, for all metrics, has the best results. After AMTLDC, 
Elghamrawy and Hassanien (2020) has the second-best 
results. Moreover, Hasan et al. (2020) has relatively good 
performance. Among the reported results, Wang et  al. 
(2020c) has the worst performance.

5.6 � Experiment 6: AMTLDC runtime and comparison 
with the baseline method

In this section, the runtime of AMTLDC is compared with 
the baseline CNN-based models. The experiments are 
conducted on a computer with Intel corei7-4700HQ, CPU 
2.40 GHz, and 8 GB RAM. Table 7 shows a time complex-
ity analysis in terms of batch training time (secs). As shown 
in this table, the runtime time of the proposed method is 
less than the ResNet-based models, such as ResNet152, 
ResNet152V2, InceptionResNetV2, ResNet-101, and 
ResNet101V2. The lowest running time belongs to 
MobileNet-v2 and the highest running time belongs to 
ResNet152. The reason that the runtime time of the pro-
posed method is longer than some methods is that the pro-
posed method uses an additional (discriminator module) 
block for domain classification. Therefore, compared to a 
similar method such as ResNet-50, it has about 6 million 
more parameters. The discriminator block increases the 
training time by approximately 7 s. By analyzing and com-
paring the proposed method with methods that have a lower 
runtime, such as VGG-16, it can be seen that although the 
training time is not optimal in AMTLDC, the accuracy has 
improved significantly. So, in the AMTLDC, the accuracy 
has been improved by more than 15% on average compared 
to VGG-16. This claim is also true for other models with 
less runtime.

6 � Conclusion

In this research, we proposed a multi-source adversarial 
transfer learning model for the diagnosis of COVID-19 
disease, a task in which the generalizability of the model 
is greatly reduced due to a lack of data. Existing meth-
ods do not have good results in unseen data due to a lack 
of sufficient data. Therefore, they are not reliable in real-
world applications. Thanks to the use of two different 
sources in the proposed COVID-19 detection framework, 
the AMTLDC ensures that the representations learned 
are common among datasets and are not specific to the 
domain of a particular dataset. In other words, in the 
AMTLDC, the generalizability and transferability of the 
model are improved and it has brilliant results for unseen 
data. The performance of the AMTLDC was compared 
with many advanced models. The results showed that the 
AMTLDC has high generalizability and transferability 
and has improved up to 50% of the results compared to 
similar methods. Also, The obtained results indicate that 
AMTLDC achieves classification improvements of at least 
2%, 18%, 18%, and 9% in Accuracy, Precision, Recall, and 
F1, respectively, compared with the best results of com-
petitors, even without directly training on the same data.

Although many methods have been proposed in the 
field of diagnosing COVID-19 using medical images, and 
even some methods have reported 100% accuracy, they are 
not highly efficient in real-world applications. The main 
reason is that the datasets used to train the network are 
not from a specific imaging device. Positive samples were 
mostly collected from one imaging device and negative 
samples were collected from different devices. The pro-
posed methods learn the specific patterns of an imaging 
device, not the patterns and structures involved in corona 
images. Therefore, we believe that the main challenge in 
this field is still collecting quality and standardized data.

Common loss functions are used in the proposed 
method. As a future direction, it would be useful to 
improve AMTLDC by using efficient loss functions, such 
as triple loss or center loss. By using these loss functions 
for samples of a class, in the embedded space, the distance 
is reduced, and therefore better separating representations 
are learned for classification.
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