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Abstract
A prediction model is an indispensable tool in business, helping to make decisions, whether in the short, medium, or long 
term. In this context, the implementation of machine learning techniques in time series forecasting models has a notorious 
relevance, as information processing and efficient and dynamic knowledge uncovering are increasingly demanded. This 
paper develops a model called Variable step-size evolving Participatory Learning with Kernel Recursive Least Squares, 
VS-ePL-KRLS, applied to the forecast of weekly prices for S500 and S10 diesel oil, at the Brazilian level, for biweekly and 
monthly horizons. The presented model demonstrates a better accuracy compared with analogous models in the literature, 
without loss of computational performance for all time series analyzed.
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1  Introduction

A prediction is an essential tool in business, where it helps 
in making decisions about operational (short term), tactical 
(medium term), and strategic (long term) planning (Hynd-
man and Athanasopoulos 2018). In a world that demands 
information processing and knowledge extraction in an 
increasingly efficient and dynamic way, the combination of 
Forecasting and Machine Learning techniques has gained 
notorious relevance in modeling real-world phenomena, 
which are characterized by complexity and uncertainties. 

Several authors have developed models to achieve the opti-
mal point at the trade-off between the quality of decisions 
and response times.

In recent years, a new family of methods emerged in the 
context of online machine learning and it became proemi-
nent in nonstationary time series prediction. It was stimu-
lated due to the increasing availability of data and the need 
to real-time predict their behavior to support decision-mak-
ing. Evolving fuzzy algorithms are an important segment of 
evolving systems because they allow a model to react to data 
changes by creating, merging, updating, and deleting fuzzy 
rules (Kasabov and Filev 2006). A wide variety of fuzzy 
algorithms and models can be found in the literature. The 
authors in Lughofer (2016) discussed recent advances that 
have improved stability, reliability, and useability as well as 
aspects related to grown-up interpretability for real-world 
applications such as on-line condition monitoring, visual 
inspection, human-machine interaction, smart sensors, pro-
duction systems and others. Another important contribution 
is presented by Škrjanc et al. (2019), a systematic survey 
on evolving intelligent systems with a focus on fuzzy and 
neuro-fuzzy methods for clustering, classification, regres-
sion and system identification in real-world applications 
as online trading, financial analysis, e-commerce and busi-
ness, smart home, health care, transportation systems, global 
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supply logistic chains, smart grids, industrial control, cyber-
security, and many other areas.

The evolving Takagi–Sugeno (eTS) model is considered 
the precursor (Angelov and Filev 2004). This model updates 
the system recursively, adding new rules, or updating exist-
ing rules. Antecedent terms of TS rules are determined 
through a subtractive clustering approach (Chiu 1994) based 
on the notion of potential function. Consequent parameters 
of TS rules are updated through Recursive Least Squares 
(Young 2012). Other models have modified the eTS, such 
as eTS+ (Angelov et al. 2010), which use concepts such as 
age, utility, local density, and zone of influence to update a 
rule base; and eTS-KRLS (Shafieezadeh-Abadeh and Kalhor 
2016) whose consequent TS parameters are updated through 
Kernel Recursive Least Squares (Engel et al. 2004).

Lima et al. (2010) proposed an algorithm, evolving Par-
ticipatory Learning (ePL), which uses an unsupervised 
dynamic fuzzy clustering algorithm that mimics human 
learning (Yager 2004). In this approach, updating the rule 
base is a function of existing rules and new information 
received. A similar process occurs with human learning, 
which is amplified if there exists prior knowledge on a given 
subject. Maciel et al. (2017) extended the initial ideas with 
the development of ePL+, which, similar to Angelov et al. 
(2010), uses criteria such as utility, age, area of influence, 
and local density to update the rule base. Both models, ePL 
and ePL+, uses the Recursive Least Squares method (RLS) 
to estimate consequent parameters.

Recently, (Vieira et al. 2018) proposed a new method 
called ePL-KRLS, inspired by Shafieezadeh-Abadeh and 
Kalhor (2016). The main difference between ePL-KRLS 
and ePL or (ePL+) is the way the consequent parameters 
are estimated. The former uses the Kernel Recursive Least 
Squares (KRLS). The advantage of using this approach is 
that Kernel-based methods are more sensitive to variations 
in the input data and are able to approximate nonlinear sys-
tems accurately and efficiently with moderate computational 
cost Vieira et al. (2018). Alves et al. (2020) introduced the 
methods called SM-ePL-KRLS and ESM-ePL-KRLS. These 
models work with the recursive adjustment of parameters 
according to the error based on the Set-Membership (SM) de 
Aguiar et al. (2017) and Enhanced Set-Membership (ESM) 
Alves et al. (2020) filtering.

The present paper proposes a forecasting model called 
Variable Step-Size evolving Participatory Learning with 
Kernel Recursive Least Squares (VS-ePL-KRLS). It expands 
the ePL-KRLS model with an error-based variable-step-
size (VS) parameter-updating method. The VS algorithm, 
discussed in Harris et al. (1986), is an extension of earlier 
ideas in stochastic approximation using changeable the step 
size in gradient methods. According to Evans et al. (1993), 
Variable Step-Size methods are an attempt to improve the 
convergence of the Least Mean Squares (LMS) algorithm 

while preserving the steady-state performance; the increase 
in the complexity of the implementation is relatively low. 
Compared to the SM-ePL-KRLS and ESM-ePL-KRLS 
models, it is easier to implement and, consequently, further 
computational complexity savings are expected as noted by 
de Aguiar et al. (2017).

The main contributions of this work are summarized as 
follows:

–	 We introduce a new forecasting model based on the Vari-
able Step-Size (Harris et al. 1986) to adjust the parameter 
that controls the rate of change of the arousal index.

–	 We approach an unexplored and important class of time 
series, which is the price of fuels, more specifically Bra-
zilian S500 and S10 diesel oil, with weekly data periodic-
ity for biweekly and monthly horizons.

–	 We evaluate the performance of the proposed model in 
terms of the average number of rules, error metrics, and 
percentage of system-wide CPU utilization. Additionally, 
we compare the performance with benchmarks evolving 
models like ePL-KRLS (Vieira et al. 2018), SM-ePL-
KRLS and ESM-ePL-KRLS (Alves et al. 2020).

Our major conclusions are as follows:

–	 The proposed model obtained the lowest errors (with the 
absence of significant outliers) in all simulations, sug-
gesting that the forecasting model can predict complex 
behaviors with high accuracy.

–	 The proposed model obtained a low percentage of sys-
tem-wide CPU utilization in all simulations, suggesting 
that it is appropriate to deal with Big Data.

–	 The forecast of fuel prices has applicability in the logisti-
cal context, for example. It can be used to optimize the 
delivery of a given cargo, defining the best days and 
places to fill up trucks in order to decrease the costs of 
delivery and therefore maximize profits.

This paper is organized as follows. Section 2 analyzes quan-
titatively and qualitatively historical S500 and S10 diesel oil 
prices and highlights their relevance in logistics. Section 3 
introduces the variable step-size evolving Participatory 
Learning with Kernel Recursive Least Squares algorithm. 
Section 4 evaluates the proposed model. Section 5 concludes 
the research.

2 � Problem formulation

Transport management is one of the main logistical pro-
cesses and is also responsible for integrating the links in a 
supply chain, that is, the supply of inputs and raw materials 
between suppliers and production and the distribution of 
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final products between production and customers, respec-
tively. Such management must be done efficiently and effec-
tively to minimize costs and maximize the level of service.

According to Fleury et al. (2000), transportation costs 
correspond to approximately 60% of a company’s logistical 
costs. Of these expenses, 40% represent fixed costs, such as 
depreciation and salaries for drivers, helpers, and mechanics. 
The remaining 60% represents variable costs, particularly 
maintenance, tolls, and fuel, in the case of a heavy truck 
used to transport cargo (Vilardaga 2007). Such research still 
estimates that the fuel is equivalent to about 58% of the vari-
able costs and, consequently, 35% of the total expenses. In 
a country of continental dimensions such as Brazil, which 
primarily uses road networks to transport cargo and people, 
a computational tool that allows reliable forecasts on the 
prices for S500 and S10 diesel oil becomes a competitive 
differential for the logistics operator.

The fuel price dataset used to evaluate the model was 
obtained from the website of the National Agency of Petro-
leum, Natural Gas, and Biofuels (ANP) website (Agência 
Nacional do Petróleo 2020). Weekly resale and distribution 
prices at S500 and S10 diesel oil from December 31st, 2012 
to May 30th, 2020 were considered. The main difference 
between diesel oils is related to the concentration of sulfur 
that each contains: S500 has 500 parts per million and S10 
has 10 parts per million. This directly affects engine and 
environment, in which the S10 diesel oil has better ignition 
and combustion functioning, suffers less from corrosion of 
parts, and is less polluting.

The diesel oil market in Brazil is regulated by the National 
Petroleum Agency (ANP) and Federal Law 9.478/97 known 
as Petroleum Law. The price of diesel oil is composed of: 
40% pure diesel, 11% biodiesel, 11% state taxes, 16% 
national taxes and 20% profit from distribution and resale 
(the final product must contain a mixture of 88% pure diesel 
and 12% biodiesel) according to Petrobras studies between 
May 24th, 2020 and May 30th, 2020 (Petrobras 2020).

A preliminary statistical analysis is presented in Table 1 
and the behavior of historical prices can be observed in 
Fig. 1, requiring some additional information for a better 

understanding. The first factor is the fuel price policy in 
Brazil. Until 2016, the price was controlled by Petrobras, 
which delayed the transfer of its international variations 
as a tool to control inflation. After several financial losses, 
the state-owned company changed this policy and the price 
started to be controlled by the barrel of oil in the interna-
tional market. As their prices are due to several political 
and economic factors on a global scale, which has dynamic 
characteristics, the oscillation is more noticeable since 
2017. The second factor is the successive increases in fuel 
prices, especially S500 diesel oil and S10 diesel oil which 
increased 8.383% and 7.755% in the first three weeks of 
May 2018, respectively. This resulted in the truckers strike 
(also called the diesel crisis) which lasted from May 21st, 
2018 to May 30th, 2018 throughout the Brazilian territory 
which had several claims, including a reduction in the price 
of diesel. The third factor is COVID-19 pandemic. The 
international price of a barrel of oil plummeted, coming 
to cost -US$ 37.63 on April 20th, 2020, an event unprec-
edented in history. Its dynamic characteristic justifies the 
use of evolving fuzzy models.

3 � Proposed model

The learning structure of variable step-size evolving Par-
ticipatory Learning with Kernel Recursive Least Squares is 
shown in Figure 2.

It is an evolving fuzzy model based on Takagi–Sug-
eno–Kang rules (Takagi and Sugeno 1985; Sugeno and 
Kang 1988) . The rules configuration is “IF<antecedent>, 
THEN<consequent>” shown on Eq. 1. The antecedent is 
expressed by a linguistic variable and the consequent is 
expressed by a mathematical function. The main advantage 
of using fuzzy systems is its universal approximator propri-
ety (Afravi and Kreinovich 2020). It is capable of approxi-
mating, with pre-specified precision, a general nonlinear 
continuous function on a compact set through the combina-
tion of local functions.

Table 1   Statistical analysis

S500 diesel oil S10 diesel oil

Data 386 386
Mean 3.008 3.124
Standard deviation 0.454 0.447
Minimum 2.152 2.202
First quartile 2.518 2.660
Median 3.014 3.155
Third quartile 3.391 3.504
Maximum 3.828 3.899

Fig. 1   Historical diesel oil prices
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where Ri is the ith rule, Ai is the antecedent fuzzy set of 
the i-th rule, x =

[
x1,… , xm

]T
∈ ℝ

m is the input vector, 
�i =

[
�i1,… , �ini

]T
∈ ℝ

ni is the consequent parameters vec-
tor of the ith rule, and ŷi ∶ ℝ

m
� ℝ

ni → ℝ is the local output 
of the ith rule.

The first stage of the model is the unsupervised fuzzy 
clustering algorithm proposed by Silva et  al. (2005). It 
proved to be as efficient as Gustafson–Kessel (GK) Gus-
tafson and Kessel (1979) and Modified Fuzzy K-Means 
(MFKM) (Gath et al. 1997), two major fuzzy clustering 
algorithms. The objective of this part is to adjust the num-
ber of fuzzy rules and their respective centers. The algorithm 
is initialized with a single rule (R = 1) whose center is the 
first input 

(
v1
1
= x1

)
 . During the computational procedure, 

new rules can be added and existing rules can be updated 
or merged.

The second stage of the model is the evolving participa-
tory learning proposed by Lima et al. (2010). It has a con-
vergent conception with human learning (Yager 2004). In 
humans, the greater the prior knowledge in a given sub-
ject, the more amplified the learning will be. The computer 
learns in the same way in which each new information will 
be related to the existing ones and the greater the similarity, 
the greater the learning. This stage is divided into two steps.

(1)Ri ∶ �� x �� Ai ���� ŷi = fi
(
x, 𝜃i

)

In the first step is calculated the compatibility index 
(
�k
i

)
 

and the arousal index 
(
ak
i

)
.

The compatibility index measures how well data and 
rules are compatible and it is represented by Eq. 2:

where �k
i
∈ [0, 1] is the compatibility index of the ith rule at 

kth step, xk ∈ ℝ
m is the m-dimensional input vector at kth 

step, and vk
i
∈ [0, 1]m is the center of the ith rule at kth step.

The arousal index evaluates whether a new rule must be 
added or an existing rule must be updated and it is repre-
sented by Eq. 3:

where ak
i
∈ [0, 1] is the arousal index of the ith rule at kth 

step and �k ∈ [0, 1] is parameter that controls the rate of 
change of arousal. The initialization values are a0

1
= 0 and 

�0 = 0.18.
The arousal index is compared with a parameter 

�k ∈ [0, 1] . If |||aki
||| > 𝜏k , a new rule is added. Otherwise, an 

existing rule with more compatibility is updated. At each 
step, the parameter is updated as �k = �k−1.

The center of the rule added 
(
vk+1
R

)
 is represented by 

Eq. 4:

The center of the rule updated 
(
vk+1
i

)
 is represented by Eq. 5:

where � ∈ [0, 1] is the learning rate parameter.
In the second step is calculated the compatibility index 

between rules 
(
�k
ij

)
 . It measures how redundant the rules are 

and evaluates whether an existing rule must be removed. It 
is represented by 6:

where �k
ij
∈ [0, 1] is the compatibility index between ith and 

jth rules at kth step for i ≠ j.
The compatibility index between rules is compared with 

a parameter �k ∈ [0, 1] . If 𝜌k
ij
> 𝛾k , the least compatibility 

rule is removed. At each step, the parameter is updated as 
�k = 1 − �k−1 . The center of the rule removed 

(
vk
j

)
 is merged 

with the most compatibility rule center 
(
vk
i

)
 and it is repre-

sented by Eq. 7:

(2)�k
i
= 1 −

‖‖‖xk − vk
i

‖‖‖
m

.

(3)ak
i
= ak−1

i
+ �k−1

(
1 − �k

i
− ak−1

i

)

(4)vk+1
R

= xk

(5)vk+1
i

= vk
i
+ �

(
vk
i

)1−ak+1
i
(
xk − vk

i

)

(6)�k
ij
= 1 −

1

m

m∑
l=1

|||v
k
il
− vk

jl

|||

Fig. 2   VS-ePL-KRLS model
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The third stage of the model presents the main innovation in 
relation to classic approaches. The � parameter, which con-
trols the rate of change of arousal, is updated with the con-
cept of Variable Step proposed by Harris et al. (1986). The 
normalized error is compared with a parameter 𝛾̄ ∈ [0, 1] . 
If ||ẽk|| > 𝛾̄ , � increases and arousal index increases. Other-
wise, � decreases and arousal index decreases. Equation 8 
represents this procedure and the values �VS1 , �VS2 and 𝛾̄ are 
determined by heuristic.

where �VS1 ∈ ]0, 1[ and �VS2 ∈ ]0, 1[ are the factors that 
increases or decreases parameter � , respectively.

The fourth stage of the model is the estimation of the � 
parameter proposed by Vieira et al. (2018). As shown on 
Eq. 1, each rule results in a local output 

(
ŷi
)
 and it is repre-

sented by Eq. 9:

where �k−1
ij

 are the consequent parameters of the ith and jth 
rules at kth step, �(⋅) is the Gaussian kernel function, dk

ij
 is 

the element of dictionary, and �k
ij
 is the kernel size.

The consequent parameters are estimated using an adap-
tive method known as Kernel Recursive Least Squares 
(KRLS). It is an extension of Recursive Least Squares 
(RLS), that increases the dimension of the input data space 
using a nonlinear function, generating simpler solutions. 
These values are calculated by determining the weight vector 
(�) with the minimization cost function (L(�)) . The optimi-
zation is represented by Eq. 10:

where � ∈
[
10−5, 10−2

]
 is the regularization parameter to 

avoid numerical instabilities at matrix (Haykin et al. 2009), 
�j is the high dimensional space at kth step, and yj is the 
output at kth step.

The solution to the optimization of Eq. 10 is represented 
by Eq. 11:

(7)vk
i
=

vk
i
+ vk

j

2

(8)𝛽k+1 =

{
𝛽k

𝛼VS1
, if ||ẽk|| > 𝛾̄

𝛽k 𝛼VS2, otherwise

(9)

ŷi =

ni�
j=1

𝜃k−1
ij

𝜅

�
dk
ij
, xk

�

ŷi =

ni�
j=1

𝜃k−1
ij

exp

⎛⎜⎜⎝
−

���dkij − xk
���√

2𝜈k
ij

⎞⎟⎟⎠

2

(10)min
�

L(�) =

k∑
j=1

|||y
j − �T�j|||

2

+ �||�||2

where � is the identity matrix, Φ =
[
�1,… ,�k

]
 is the high 

dimensional space vector, and Y =
[
y1,… , yk

]T is the output 
vector.

The kernel function can be used for generalizations of 
linear methods written in terms of internal products, rep-
resented by Eq. 12, in a Reproducing Kernel Hilbert Space 
(RKHS) (Scholkopf and Smola 2001), reducing its dimen-
sion and making it possible to solve Eq. 11.

w h e r e  �
k  i s  t h e  k e r n e l  m a t r i x  a n d 

gk =
[
Φk−1

]T
�k =

[
�
(
x1, xk

)
,… , �

(
xk−1, xk

)]T.
The calculation of matrix 

[
�� +�

k
]
 is computationally 

expensive. Thus, Qk variable is defined to recursively calcu-
late it and expressed by Eq. 13:

where zk = Qk−1gk , rk = � +
[
�k

]T
�k −

[
zk
]T
gk , and ẽk is 

the error, that is, the difference between real value ( yk ) and 
predicted value ( ̂yk).

The updated solution of consequent parameters is 
expressed by Eq. 14:

where �k is the consequent parameters at k-th step.
It is important to note that the size of the kernel matrix 

increases quadratically in relation to the amount of data and, 
consequently, Qk increases in the same way. This implies 
more and more expensive operations over time. To get 
around this situation was used a sparcification procedure as 
in Vieira et al. (2018) because it significantly decreases the 
required simulation time and memory, and also increases 

(11)

�k =

[
�� + Φk

(
Φk

)T]−1
ΦkYk

�k = Φk
[
�� +

(
Φk

)T
Φk

]−1
Yk

�k = Φk
[
�� +�

k
]−1

Yk

�k = ΦkQkYk

�k = Φk�k

(12)

�
k =

�
Φk

�T
Φk

�
k =

⎡⎢⎢⎣

�
�
x1, x1

�
… �

�
x1, xk

�
⋮ ⋱ ⋮

�
�
xk, x1

�
… �

�
xk, xk

�
⎤⎥⎥⎦

�
k =

�
�

k−1 gk�
gk
�T

1

�

(13)

Qk =
[
�� +�

k
]−1

Qk =
(
rk
)−1

[
Qk−1rk + zk

(
zk
)T

− zk

−
(
zk
)T

1

]

(14)
𝜃k = QkYk

𝜃k =

[
𝜃k−1 − zk[rk]−1ẽk

[rk]−1ẽk

]
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the generalization ability Scholkopf and Smola (2001). A 
local dictionary 

(
D

k
)
 is defined for each rule and the dic-

tionary belonging to the rule with the highest compatibility 
is altered which means that only the subset of the most rel-
evant samples are considered for the update kernel matrix 
and parameters vector.

In this model, the novelty criteria Richard et al. (2008) 
were used because it compactly represents knowledge in 
each local dictionary and presents computationally low cost 
at the same time. The technique consists of calculating the 
minimum distance (�) between input and each element at 
the dictionary with Eq. 15 and two error scenarios: one with 
the new sample at local dictionary (�) and other without the 
new sample at the local dictionary (�) . If 𝜓 < 𝛿 , the sample 
and all elements of the local dictionary are coherent and are 
not added to the local dictionary. Otherwise, the sample and 
all elements of the local dictionary are not coherent and are 
added to the local dictionary if 𝜀 < 𝜖 . The value of � =

vk
ij

10
 

was calculated by heuristic method Richard et al. (2008), 
where �k

ij
 is the kernel size for element dk

ij
 nearer xk.

where � is the minimum distance between input and each 
element in the dictionary.

The process for choosing an appropriate value of kernel 
size is complex because a value too large can result in all 
similar data and a value too small can result in all distinct 
data. In this model, the recursive Levenberg–Marquardt 
algorithm Ngia et al. (1998) is used. It is a non-linear opti-
mization method that is an intermediate version between 
gradient and Newton and it has the better convergence prop-
erties among the three algorithms. Each element �k

ij
 in the 

vector of kernel parameters 
(
�k
i
=

[
�k
i1
, ..., �k

ini

])
 is associated 

with an element dk
ij
 in the vector of local dictionary 

D
k
i
=

[
dk
i1
, ..., dk

ini

]
 with the final objective minimizing the 

local error function. This value is initialized with 0.5 for a 
new rule and Eq. 16 for a existing rule.

where Pk
i
=

[
Pk−1
i

−
Pk−1
i

∇k
i
[∇k

i
]TPk−1

i

1+[∇k
i
]TPk−1

i
∇k

i

]
,

∇k
i
= Λk

i

⎡⎢⎢⎢⎢⎣

�k−1
i1

−
‖xk−dki1‖2

(vk−1
i1

)3
k(xk, dk

i1
)

⋮

�k−1
in1

−

���xk−dkin1
���
2

(vk−1
in1

)3
k(xk, dk

in1
)

⎤⎥⎥⎥⎥⎦
 and

Λk
i
∈ [0, 1] is the normalized activation degree of the ith 

fuzzy rule.

(15)� = min
(∀dij∈D

k
i
)

‖‖‖x
k − dk

ij

‖‖‖

(16)𝜈k
i
= 𝜈k−1

i
+ Pk

i
∇k

i
ẽk
i
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The fifth stage of the model is the global output, that is, 
the forecast value is the weighted average of local outputs 
considering individual rules contributions, resulting in the 
non-linear nature of the model. This variable is represented 
by Eq. 17:

4 � Experimental results

To evaluate the effectiveness of the method proposed in this 
work, the models presented in previous sections are applied 
in the estimation of the S500 and S10 diesel oil, at the Bra-
zilian level, for biweekly and monthly horizons. The train-
ing data (from January 2013 to December 2018) and test 
data (January 2019 to May 2020) were divided into 80% and 
20%, respectively.

The parameters of ePL-KRLS, SM-ePL-KRLS, ESM-
ePL-KRLS and VS-ePL-KRLS are defined as in Vieira et al. 
(2018) Alves et al. (2020): � = 0.01 , �0 = 0.18 , �0 = 0.18 , 
�0 = 0.82 , � = 0.05 , � = 10−4 and v0 = 0.5 . The results are 
showed at Table 5.

The forecasting evaluation was measured with three error 
metrics: Root Mean Square Error (RMSE), Mean Absolute 
Error (MAE) and Non-Dimensional Index Error (NDEI). 
The biggest difference between them is that RMSE penal-
izes large errors and benefits small errors (between 0 and 
1). These metrics are expressed by Eqs. 18, 19 and 20, 
respectively.

where yk is the real value and ŷk is the predicted value

where yk is the real value and ŷk is the predicted value

where yk is the real value and ŷk is the predicted value.
The computational performance evaluation was measured 

with a float that represents the current system-wide CPU 
utilization as a percentage. The test was realized in a com-
puter with Intel(R) Core(TM) Processor i3-7020U CPU @ 
2.30GHz 2.30 GHz, 4.00 GB installed memory (RAM) (with 
3.87 GB usable) and 64-bit Operating System.

(17)ŷ =

R∑
i=1

ŷiΛi

(18)RMSE =

√√√√1

n

n∑
k=1

(
yk − ŷk

)2

(19)MAE =
1

n

n∑
k=1

|||y
k − ŷk

|||

(20)NDEI =
1

n

n∑
k=1

|||||
yk − ŷk

yk

|||||

This approach was statistically validated with Morgan 
Granger Newbold (MGN) Test Granger and Newbold 
(2014) to evaluate if the accuracy between models are 
equivalent or not. MGN test is represented by Equation 21 
and follows a student’s t distribution with n − 1 degrees of 
freedom.

where 𝜚̂ is the correlation coefficient (Pearson coefficient) 
between sum and difference of errors for a time series with 
a size equal to an n. The null hypothesis is that two forecast 
error variances are equivalent.

As can be seen on Table 5, the proposed model showed 
the best prediction accuracy among evolving models for 
all error metrics. This result was statistically validated on 
Tables  2, 3 and 4 through the rejection of the null hypoth-
esis for all comparisons between VS-ePL-KRLS and other 
models, indicating that two forecast error variances are not 
equivalent to a significance level of 5%. The computational 
performance, calculated through medium among 50 meas-
urements of the percentage of current system-wide CPU uti-
lization, has better results for VS-ePL-KRLS and ePL-KRLS 
models. The number of final rules of the proposed model 

(21)MGN =
𝜚̂√
1−𝜚̂

n−1

Table 2   Comparison between VS-ePL-KRLS and ePL-KRLS

Fuel Horizon MGN p value Observation

S500 Biweekly -3.225 1.89 ×10−3 H
0
 rejected

Monthly −5.894 1.08 ×10−7 H
0
 rejected

S10 Biweekly −3.595 5.85 ×10−4 H
0
 rejected

Monthly −7.094 6.97 ×10−10 H
0
 rejected

Table 3   Comparison between VS-ePL-KRLS and SM-ePL-KRLS

Fuel Horizon MGN p value Observation

S500 Biweekly −2.819 6.20 ×10−3 H
0
 rejected

Monthly −3.876 2.30 ×10−4 H
0
 rejected

S10 Biweekly −3.430 9.96 ×10−4 H
0
 rejected

Monthly −5.484 5.69 ×10−7 H
0
 rejected

Table 4   Comparison between VS-ePL-KRLS and ESM-ePL-KRLS

Fuel Horizon MGN p value Observation

S500 Biweekly −3.068 3.02 ×10−3 H
0
 rejected

Monthly −5.901 1.05 ×10−7 H
0
 rejected

S10 Biweekly −3.624 5.33 ×10−4 H
0
 rejected

Monthly −6.063 5.39 ×10−8 H
0
 rejected
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was satisfactory. Figs. 3, 4,  5 and 6 show the predictions and 
Figs. 7, 8, 9 and 10 show the rules evolution.

5 � Conclusions

In this paper, a new forecasting model is suggested to deal 
with the problem of fuel price forecasting: the Variable Step-
Size evolving Participatory Learning with Kernel Recursive 
Least Squares, VS-ePL-KRLS. This model was tested for 
prediction of S500 and S10 diesel oil weekly prices in the 
context of Brazil for biweekly and monthly horizons and 
it appears as a better choice to integrate a decision support 
tool to assist the operational, tactical, and strategic logistic 
planning.

The evaluation of this model was measured in terms of 
error, the average number of rules, and computational com-
plexity. The model proposed has better accuracy (supported 
by MGN test) and lower computational cost when compared 
to benchmarks evolving models suggested in the literature. 
Another benefit of the introduced models is that their struc-
ture makes the knowledge process continuous and more 
adaptable as the data changes than its evolving counterparts.

Fig. 3   S500 diesel oil forecast for the biweekly horizon

Fig. 4   S500 diesel oil forecast for the monthly horizon

Fig. 5   S10 diesel oil forecast for the biweekly horizon

Fig. 6   S10 diesel oil forecast for the monthly horizon

Fig. 7   S500 diesel oil rules evolution for the biweekly horizon

Fig. 8   S500 diesel oil rules evolution for the monthly horizon
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