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Abstract
We rest on the edge computing paradigm where pushing processing and inference to the edge of the Internet of Things (IoT) 
allows the complexity of predictive analytics to be distributed into smaller pieces physically located at the source of the 
contextual information. This enables a huge amount of rich contextual data to be processed in real time that would be pro-
hibitively complex and costly to deliver on a traditional centralized Cloud. We propose a lightweight, distributed, predictive 
intelligence mechanism that supports communication efficient aggregation and predictive modeling within the edge network. 
Our idea is based on the capability of the edge nodes to (1) monitor the evolution of the sensed time series contextual data, 
(2) locally determine (through prediction) whether to disseminate contextual data in the edge network or not, and (3) locally 
re-construct undelivered contextual data in light of minimizing the required communication interaction at the expense of 
accurate analytics tasks. Based on this on-line decision making, we eliminate data transfer at the edge of the network, thus 
saving network resources by exploiting the evolving nature of the captured contextual data. We provide comprehensive ana-
lytical, experimental and comparative evaluation of the proposed mechanism with other mechanisms found in the literature 
over real contextual datasets and show the benefits stemmed from its adoption in edge computing environments.

Keywords Edge analytics · Predictive intelligence · Evolving data streams · Communication efficiency · Context 
prediction · Exponential smoothing

1 Introduction

Edge analytics (Satyanarayanan et al. 2015) is an approach 
to efficient contextual data analysis in which computation 
is performed on sensing devices (sensors, actuators, con-
trollers, concentrators), network switches or other devices 
(concentrators) instead of transmitting the whole data to a 
centralized computing environment/Cloud. By sending all 

the data from billions of IoT devices to the cloud can over-
whelm the existing infrastructure. To overcome these issues, 
Edge Computing (EC) (The mobile-edge computing initia-
tive 2016; Stojmenovic and Wen 2014) is emerging bring-
ing contextual data processing, networking, and analytics 
closer to the IoT devices and applications. EC represents a 
shift in which intelligence is pushed from the cloud to the 
edge, localizing certain kinds of analysis, e.g., aggregation 
operators over data streams, regression analyses, information 
inference and reasoning, and local decision-making (Yi et al. 
2015). This enables quicker response times, unencumbered 
by network latency, as well as reduced traffic, by intelli-
gently processing and relaying the appropriate analyzed 
data. Pushing analytics algorithms to IoT devices alleviates 
the processing strain on enterprise data management as the 
number of connected devices and the amount of data gener-
ated and collected increases (Vulimiri et al. 2015; Cheng 
et al. 2016).
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1.1  Motivation

In IoT environments contextual information sources are 
considered as continuous/evolving data streams (multi-
variate time series), where analytics tasks are applied to 
extract statistical dependencies, aggregate analyics, and 
infer new knowledge. Context-aware applications, crowd-
sensing applications (Ganti et al. 2011; Lane et al. 2010), 
environmental monitoring (Oliveira and Rodrigues 2011), 
forest monitoring (Awang and Suhaimi 2007; Zervas et al. 
2011; Kang et  al. 2013; Anagnostopoulos et  al. 2016) 
(through unnamed vehicles), agriculture monitoring (Nittel 
2009), road traffic monitoring, surveillance, video analytics 
(Simoens et al. 2013), marine environment monitoring (Xu 
et al. 2014), watershed monitoring systems (Eidson et al. 
2009; Nguyen et al. 2010) over large-scale data streams 
require efficient, accurate and timely data analysis in order 
to facilitate (near) real-time decision-making, data stream 
mining, and situational context awareness (Kolomvatsos 
et al. 2016).

We abstract an edge network architecture through edge 
nodes forming a layer between sensing/actuator nodes and 
the cloud. Several Sensing and Actuator Nodes (SAN) are 
connected to each Edge Node (EN), e.g., cloudlet, sink 
node. Since ENs are located close to the SANs, contextual 
data should be intelligently transferred to them in real-time 
and in an energy efficient manner. Each SAN performs 
measurements and locally determines whether to transfer 
these measurements to the ENs or not in light of minimiz-
ing the required communication interaction (overhead) at 
the expense of accurate analytics tasks performed on the 
ENs. Based on this context, our idea rests on locally pre-
dict whether to disseminate sensed data or not within an 
edge network to achieve quality analytics by being com-
munication efficient by exploiting the evolving nature of the 
captured contextual data and its reconstruction. However, 
this comes at the expense of the quality of analytics tasks. 
The fundamental requirement to materialize such predic-
tive intelligence at the edge network is: (1) the autonomous 
nature of SANs to locally perform sensing and disseminate 
data under analytics quality-driven rules and (2) the capa-
bility of the ENs to locally perform lightweight data recon-
struction and robust analytics tasks.

1.2  Literature review

A baseline approach for materializing analytics tasks on 
the cloud is simply all IoT devices to transmit the con-
textual data from all sensing nodes to certain sink nodes 
(back-end system). This has been realized in many previ-
ous studies (McConnell and Skillicorn 2005; Tulone and 
Madden 2006; Goel and Imielinski 2001; Anagnostopoulos 

and Triantafillou 2014, 2015, 2017a, b). In this case, ana-
lytics tasks are carried out by the back-end system on the 
cloud only, and not by the SANs or ENs at the edge of 
the network, despite their increasing computing capacity. 
Evidently, this solution, while practical, has many disad-
vantages, such as a high energy consumption incurred by 
transmitting the raw data to the cloud, the need for wire-
less link bandwidth, and high latency (Stojmenovic and 
Wen 2014). In the era of EC, instead, the desiderata are:

– push the analytics tasks close to the contextual data 
sources, i.e., to the ENs, which have to follow the evo-
lution of the contextual data streams;

– push intelligence to SANs and ENs to collaboratively 
support edge analytics. ENs have to intelligently com-
municate with the SANs in an energy-efficient way, 
since communication efficiency is crucial to the pro-
longed lifetime of the edge network to support edge 
analytics.

We have distinguished two basic methodologies for edge 
analytics.

– Distributed analytics This methodology is based on 
the observation that the SANs and ENs create the pos-
sibility of analyzing and building (training) predictive 
analytics models in a distributed way. In this class of 
edge analytics, e.g., Simonetto and Leus (2014), Kejela 
et al. (2014) and Gemulla et al. (2011), contextual data 
and/or model’s meta-data are circulated within the edge 
network, which evidently requires energy for data and 
meta-data dissemination adding extra communication 
overhead.

– Group-based centralized analytics This methodol-
ogy refers to a group-based communication and single 
localized computation/processing scheme e.g., Anag-
nostopoulos et al. (2012, 2014, 2016); Anagnostopou-
los and Hadjiefthymiades (2014); McConnell and Skil-
licorn (2005); Papithasri and Babu (2016); Manjeshwar 
and Agrawal (2001). Specifically, an EN is responsible 
for a group of SANs and maintains a set of historical 
contextual data of each SAN within the group. Such 
localized method is communication efficient due to the 
reduced length of routing path from SANs to the cloud. 
To support such type of edge analytics, energy is con-
sumed on communication, i.e., sending and receiving 
data from SANs to the EN, and computation, i.e., ENs 
are processing local data. However, since the cost of 
local processing and analytics tasks is nontrivial, we 
should take into account the trade-off between intra-
edge-network communication and localized computa-
tion (Jiang et al. 2011).
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Both above mentioned basic methodologies are required to 
be efficient to support edge analytics in terms of computa-
tion and communication. The computational efficiency of 
the analytics tasks is a challenging research area, where 
recently distributed and large-scale statistical and machine 
learning algorithms emerge, e.g., Bottou et al. (2017); this 
is beyond the scope of this paper.

In this work, we depart from the mechanism of the selec-
tive data delivery (Jiang et al. 2011) and provide a gener-
alization of this mechanism to be adopted on EC environ-
ments with the aim to support communication-efficient edge 
analytics. Our generalized mechanism relies on the principle 
of bounded-loss approximation at the ENs by the context 
prediction at the SANs. SANs locally decide on delivering 
contextual data to ENs based on local predictions, while ENs 
locally re-construct the contextual data given an approxi-
mation (re-construction) error bound. This error bound is 
controlled by the SANs.

Evidently, there is a trade-off, that we should pay atten-
tion, between contextual data communication and accu-
racy of analytics due to approximation/re-construction. On 
the one hand, by selectively transmitting contextual data 
increases the edge network life time and the available band-
width, since less data are circulated. On the other hand, this 
comes at the expense of the quality of the predictive analyt-
ics tasks, due to local data re-construction at the ENs.

1.3  Research objectives and contribution

The research objectives of our generalized mechanism are: 
(1) ENs employ a mechanism to re-construct the undelivered 
contextual data by following the evolving nature of the data 
streams; (2) SANs are equipped with real-time context pre-
diction (time series forecast) and data delivery decision. To 
secure an upper bound on the re-construction error at ENs 
(which plays a significant role in the quality of the aggrega-
tion and predictive analytics tasks), SANs control their local 
prediction/forecast error based on the principle of selective 
data delivery. This is achieved by splitting this predictive 
intelligence to SANs and ENs: the former nodes locally pre-
dict the expected data and locally decide on their delivery 
given a prediction error bound; the latter nodes locally re-
construct the undelivered given a controlled re-construction 
error bound by the SANs. The mechanism is applied when 
SANs need to communicate with ENs and when ENs need 
to re-construct the un-delivered data before proceeding with 
the scheduled analytics task. Should the IoT applications 
tolerate certain quality in the derived analytics tasks, e.g., 
prediction accuracy, model fitting approximation error and 
misclassification error, our mechanism is proved to be com-
munication efficient as shown in our Sect. 5.

To the best of our knowledge this is the first generalized 
mechanism that explores the potentials of predictive intel-
ligence on the EC paradigm over evolving data streams. The 
key contributions in this paper are:

– We present a distributed, communication efficient predic-
tive intelligence mechanism for local prediction and local 
re-construction within an edge network;

– We provide the theoretical prediction and re-construction 
error boundaries and their relationship;

– We provide a comprehensive sensitivity analysis of the 
basic parameters of our model and showcase the trade-off 
between accuracy (quality) of edge analytics (focusing 
on aggregation and multivariate linear regression) with 
communication overhead;

– We provide a comparative theoretical and experimental 
assessment with the selective data delivery mechanism 
(Manjeshwar and Agrawal 2001) where the EN neighbor-
hood’s formation is adopted from Papithasri and Babu 
(2016) in light of re-construction, aggregation, data pre-
diction errors and communication overhead.

– We provide computational complexity analysis of our 
mechanism, which is higly computational efficient with 
O(d) prediction and re-construction time over d-dimen-
sional contextual data streams, and its relationship to the 
Autoregressive Integrated moving Average model (Muth 
1960).

– We experiment with real contextual data from sensors 
and actuators networks.

1.4  Organization

The paper is organized as follows: in Sect. 2 we present 
our rationale and basic concept of the edge predictive intel-
ligence formulated by certain definitions, preliminaries, 
and the fundamental metrics for evaluating our mechanism. 
Section 3 reports on the predictive intelligence split to the 
SAN and EN perspectives elaborating on certain policies 
for data delivery and re-construction. In Sect. 4 we provide 
a theoretical analysis of the prediction and re-construction 
error boundaries, the computational complexity of our 
mechanism and its relation to the linear forecasting model 
Autoregressive Integrated moving Average model (Muth 
1960). In Sect. 5 we provide a sensitivity analysis of our 
mechanism with the basic model parameters, a theoretical 
and experimental comparative assessment with the selective 
data delivery mechanism (Manjeshwar and Agrawal 2001) 
and showcase the performance of the proposed mechanism 
with two real contextual datasets. Finally, Sect. 6 concludes 
the paper with future research agenda on edge analytics.
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2  Edge predictive intelligence

2.1  Rationale

We consider an edge network with connected ENs forming 
an arbitrary topology. Each EN j is connected with nj SANs 
in a tree-like topology with root the EN and leaves its SANs 
as shown in Fig. 1. A SAN i is connected with its unique 
EN j and j = {1,… , nj} denotes the SAN set of the EN j, 
i.e., i ∈ j.

A SAN i at every time instance t = 1, 2,… senses a 
d-dimensional row vector �t = [x1t,… , xdt] ∈ ℝ

d of con-
textual parameters, like temperature, humidity, sound, wind 
speed, air pollutant chemical compounds, etc. Hereinafter, 
we refer to � as context vector. The SAN i can communicate 
with its EN j in the edge network by transferring context 
vectors. To materialize the proposed predictive intelligence, 
the SAN i is equipped with a context vector prediction (time 
series forecasting) algorithm fi(�t−1,… , �t−N) , which uses 
the recent past N ≥ 1 sensed context vectors stored in a slid-
ing window  of size N to predict the context vector �̂t at 
time instance t. That is:

and window  = (�t−N ,… , �t−1) . The SAN i, after sensing 
the context vector �t at time t, locally predicts the predicted 
context vector �̂t , thus, the local prediction error is:

where ����� =
�∑d

k=1
x2
k

�1∕2

 is the Euclidean norm of � and 

d−1∕2 is a normalization factor to ensure that et ∈ [0, 1] , 
given that the context vector � ∈ [0, 1]d is scaled in the 
d-dimensional unit cube, i.e., each dimension xk, k = 1,… , d 

(1)�̂t = fi(�t−1,… , �t−N) = fi()

(2)et = d
−

1

2 ||�t − �̂t||

is normalized (ranges) in [0, 1]. Such prediction capability 
yields the SAN able to decide whether to send context vec-
tors � to its EN j or not for further processing. SAN i relies 
on a �-based context vector delivery decision rule:

– Case 1 If the predicted �̂t differs from the actual sensed 
�t with respect to a decision threshold � ∈ [0, 1], i.e., 
et > 𝜃 , then the SAN i sends the actual �t to the EN j.

– Case 2 Otherwise, i.e., et ≤ � , the SAN i does not send 
�t to the EN j. In this case, the EN j is responsible for 
reconstructing a context vector locally for further pro-
cessing.

In Case 1, the EN j receives the transmitted context vec-
tor �t from SAN i. In Case 2, the EN j is equipped with a 
re-construction function

of the recent M ≥ 1 context vectors � from a sliding win-
dow  = (�t−M ,… , �t−1) to locally predict (reconstruct) the 
undelivered vector �t , notated by �̃t through historical con-
text vectors. Specifically, the context vectors � in the EN’s 
sliding window j correspond to either the actual received 
context vectors � from the SAN i (Case 1) or the past locally 
re-constructed context vectors �̃ from gj (Case 2), i.e.,

The re-construction error (difference) at the EN j is then:

The sliding window at SAN i contains only actual (sensed) 
context vectors � , while the sliding window at EN j contains 
either actual context vectors � (received from SAN i) or re-
constructed context vectors �̃ locally generated by EN j. The 
difference (norm) between the predicted context vector �̂ 
on SAN i and the reconstructed context vector �̃ at EN j is 
||�̂ − �̃|| = ||� − �|| , with � = �̃ − � and � = �̂ − �. This dif-
ference is zero when both the predictor and the re-construc-
tor on SAN i and EN j, respectively, result in the same error. 
Overall, when et > 𝜃 , the reconstruction difference at = 0 , 
while when et ≤ � , the reconstruction difference at ≥ 0 . For 
an analysis on the reconstruction error and prediction error, 
please refer to Sect. 4.

Given a decision threshold � ∈ (0, 1) at SAN i, we study 
the performance of certain predictive analytics tasks on 
EN j. We qualitatively derive sufficient conditions for 
this and reveal that the decision is a function of both the 
desired error bound and the correlation among the sensed 

(3)�̃t = gj(�t−1,… , �t−M) = gj()

�t =

{
�t if et > 𝜃 (Case 1)

�̃t = gj(), otherwise; (Case 2)

(4)at =

{
0 Case 1,

||�t − �̃t|| Case 2.

SAN i

EN j

EN
EN

Cloud

Cloud

SAN

SAN

Predictive analytics

Aggregation analytics

IoT Sensors & Actuators

IoT Edge network

Fig. 1  The edge network with the ENs and the corresponding SANs 
provide communication efficient predictive modeling and analytics to 
end-users, analysts, and to IoT applications
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contextual data values. When the decision threshold is 
very tight or the correlation is not significant, the SAN i 
always has to send its context vectors to the EN j. Due to 
the characteristics and inherent dynamics of the SANs’ 
contextual data, when the underlying data streams distri-
bution evolves over time, prediction / forecasting tech-
niques may not work efficiently for a set of less predictable 
contextual data. Moreover, there might be correlations 
among contextual data from neighboring SANs (data 
locality in j), thus, the EN j is capable of learning those 
statistical correlations in a communication-efficient way, 
as will be shown later. We provide certain definitions and 
preliminaries before elaborating on our distributed intel-
ligence mechanism.

2.2  Definitions and preliminaries

Definition 1 (Sliding window) A sliding window  is 
specified by a fixed-size temporal extent N > 0 (‘horizon’) 
by appending new context vectors and discarding older ones 
on the basis of their appearance.

For instance, at time t, a sliding window  is a sequence 
of all context vectors observed from t − N  to t − 1 , i.e., 
 = (�t−N , �t−N+1,… , �t−1) . As an example, an analytics 
query over  could be: ‘continuously return all context vec-
tors of the past hour, i.e., N=60 min’. The sliding window is 
the most widely used in continuous aggregation and fusion 
analytics functions (Dallachiesa et al. 2015; Patroumpas and 
Sellis 2011; Abadi et al. 2003, 2005).

The aggregation analytics tasks are evaluated over the 
contents of a window  . The aggregated results change 
over time as the window slides. We use the classification 
from Gray and Chaudhuri (1997) that divides aggregation 
functions into three categories: distributive, algebraic, and 
holistic. Let  , 1 , and 2 be windows. An aggregation 
analytics function h ∶  → ℝ

d is distributive if h(1 ∪2) 
can be computed from h(1) and h(1) for all 1 , 2. An 
aggregation analytics function h is algebraic if there exists 
a ‘synopsis function’ � such that for all  , 1 , and 2 : (1) 
h() can be computed from �() ; (2) �() can be stored 
in constant memory; and (3) �(1 ∪2) can be computed 
from �(1) and �(2) . An aggregation analytics function 
h is holistic if it is not algebraic. Among the standard aggre-
gates, MAX and MIN are distributive, AVG is algebraic, since 
it can be computed from a synopsis containing SUM and 
COUNT, and QUANTILE, MEDIAN are holistic.

Example 1 We can define the AVG  and MAX  ana-
l y t i c s  f u n c t i o n s :  havg() =

1

N

∑t

k=t−N
�k  a n d 

hmax() = [max{x1k},… , max{xdk}]
t
k=t−N

 , respectively.

In our case, the aggregation analytics function h is run-
ning on EN j for each sliding window  containing M 
received and/or re-constructed context vectors from the 
SAN i ∈ j depending on Case 1 and Case 2. Note that such 
functions are built-in constructs in IoT-application specific 
continuous analytics queries.

Example 2 The aggregation analytics query ‘every minute 
find the average temperature and the maximum humidity 
over context streams ‘temperature’ and ‘humidity’ collected 
during the past hour’ in Continuous Query Language (Arasu 
et al. 2006) involving AVG and MAX operators in a sliding 
window  ,N = 60min can be expressed as follows:

SELECT AVG(temperature), MAX(humidity) 
FROM Context Streams [RANGE 60 MINUTES 
SLIDE 1 MINUTE]

Note, typical progressive aggregates like SUM, MIN and 
AVG requires constant time O(1) per value since there is 
no need to scan the entire window (Patroumpas and Sellis 
2006, 2010). However, more advanced aggregation analyt-
ics functions like outliers detection or concept drift detec-
tion in a sliding window  require multiple scanning of the 
 . Aggregation analytics functions can be also combined 
on a EN to infer certain events that might trigger decision 
making.

Example 3 Consider the evaluation of a situational context 
(localized event stream processing) for the past 10 min as the 
activation of the following rule with conjunctive predicates 
associated with AVG and MAX aggregation analytics func-
tions over ‘temperature’ and ‘wind-speed’ sliding windows 
from two corresponding SANs:

EVENT := IF AVG(temperature) ≥ 90 AND 
MAX(wind-speed) ∈ [10,20] WITHIN 10 min-
utes THEN ACTION is ‘warning’

Definition 2 (Aggregation analytics difference) Consider 
an EN j and its SAN i ∈ j . The aggregation analytics dif-
ference �i between the analytics result on EN j derived from 
aggregation function h over the window  in the EN j and 
the actual analytics result derived from h over the window 
∗ , which contains only the actual context vectors from 
SAN i to EN j (ground truth) is:

The aggregation analytics difference �i denotes how 
much the aggregation results over the window  on ED j 
with context vectors � differ from the aggregation results 
over the window ∗ with context vectors � , should SAN 
i have sent all context vectors to ED j. Obviously, if we 
encounter only the Case 1, then �i = 0,∀i ∈ j . Now, 

(5)�i =||h() − h(∗)||.
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since we allow SAN i to decide on sensing context vec-
tors w.r.t. � and EN j being able to re-construct undelivered 
context vectors, then �i ≥ 0 . The concept is how much an 
IoT application tolerates this difference in analytics results 
in light of communication efficiency in the edge network.

One of the most important predictive models for predic-
tive analytics is the multivariate linear regression approxi-
mation (Kuhn and Johnson 2013). Consider an EN j and 
its SAN i, i ∈ j . The SAN i generates context vectors 
�t = [�in

t
, yout

t
] ∈ ℝ

d , represented as input–output pairs 
(�in

1
, yout

1
),… , (�in

T
, yout

T
) ∈ ℝ

d−1 ×ℝ , T > 0 . The EN j either 
receives or re-constructs context vectors from SAN i, i.e., 
�t = [�in

t
, zout

t
] ∈ ℝ

d . The objective of a linear regression 
analytics task on EN i is to estimate a coefficient vector 
�i ∈ ℝ

d , which interprets the statistical dependency of 
input �in with output zout which minimizes the objective 
function:

where � is a regularization parameter. In our mechanism, 
the coefficient vector �i approximates the actual coefficient 
vector �∗

i
 , which refers to the statistical dependency of the 

actual context vectors � in SAN i, due to Case 2 w.r.t. � . 
Obviously, if Case 2 never occurs, then �i ≡ �

∗
i
 , but then 

SAN i sends all context vectors to EN j, where the latter 
trains the linear regression model. In other words, the actual 
coefficient vector �∗

i
 minimizes the objective function:

Example 4 Consider SAN i with context vector � = [x1, x2, x3] 
referring to the contextual parameters humidity, wind speed 
and temperature. The corresponding EN j is responsible for 
learning the statistical dependency �i between temperature 
(dependent variable yout = x3) with humidity and wind speed 
(independent variables �in = [x1, x2]).

Moreover, the regression analytics task on EN j is 
applied from context vectors coming from different SANs.

Example 5 Consider the SAN i and SAN � with i,� ∈ j 
sensing context vectors �i = [xi1, xi2] and �� = [x�1, x�2, x�3], 
respectively. The EN j is responsible, e.g., for learning the 
linear dependency yout = xi2 and �in = [x�1, x�2] between the 
contextual parameters from those SANs in j.

Given a set of M actual context vectors �m = [�in
m
, yout

m
], 

m = 1,… ,M , the predicted outputs ẑout
m

 provided by the 
approximated regression model at EN j is ẑout

m
= (�in

m
)⊤�i, 

(6) (�i) = min
�i∈ℝ

d

1

T

T∑

t=1

(
zout
t

− (�in
t
)⊤�i

)2
+ 𝜆||�i||2

(7) (�∗
i
) = min

�
∗
i
∈ℝd

1

T

T∑

t=1

(
yout
t

− (�in
t
)⊤�∗

i

)2
+ 𝜆||�∗

i
||2

thus, and the corresponding root mean squared error 
(RMSE) is:

Similarly, the predicted outputs ŷout
m

 provided by the actual 
regression model �∗

i
 , i.e., trained by the actual context vec-

tors � , is ŷout
m

= (�in
m
)⊤�∗

i
 and the corresponding RMSE is:

Definition 3 (Regression analytics difference) Consider an 
EN j and its SAN i ∈ j.The regression analytics differ-
ence �i is defined as the absolute difference of the RMSE �i 
derived from the approximated regression line (coefficient 
vector �i ) and the RMSE �∗

i
 derived from the actual regres-

sion line (actual coefficient vector �∗
i
 ) trained by the actual 

SAN i’s context vectors:

The RMSE �∗
i
 is the linear regression error we obtain 

over the actual training pairs (�in, yout) since �∗
i
 is the 

actual regression coefficient. However, since EN j may 
not receive the actual pairs all the time due to Case 2, then 
the derived regression coefficient �i results to a RMSE 
�i ≠ �∗

i
 . We require to tolerate a low �i difference by being 

communication-efficient in the edge network.
Statistical learning analytics, like the discussed linear 

regression analytics, that have local computation are suited 
for the EC paradigm. Therefore, the regression learning 
task should be iterative in nature, which processes a single 
training pair at a time. Since the computation is carried out 
on the EN, the training algorithm should be lightweight 
and robust. The optimization algorithm suitable for these 
cases are based on the method of online learning (Bot-
tou 2010) and the Stochastic Gradient Descent (SGD) 
is the most prominent among them. In this context, the 
EN j incrementally updates the coefficient vector �i,t at 
time instance t by moving a small step size (learning rate) 
� ∈ (0, 1) along the negative gradient of the minimization 
function in Eq. (6) as shown in Algorithm 1. The training 
algorithm converges when there is no significant improve-
ment of the �t coefficient, i.e., when ||Δ�i,t|| ≤ � , given a 
convergence threshold 𝛿 > 0.

(8)𝜖i =

(
1

M

M∑

m=1

(
yout
m

− ẑout
m

)2
)1∕2

(9)𝜖∗
i
=

(
1

M

M∑

m=1

(yout
m

− ŷout
m
)2

)1∕2

(10)�i =|�i − �∗
i
|.
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Input: Learning rate η, convergence threshold δ
Output: Regression coefficient wi

while ‖∆wt‖ > δ do
Get either actual context vector xt from SAN i or locally re-construct x̃t;
Set the training pair ut = (uin

t , zoutt );
Update wi,t+1 = wi,t − η ∂J

∂wi,t

end
Algorithm 1: Stochastic Gradient Descent Algorithm in EN j for SAN i.

Hence, given a decision threshold 𝜃 > 0 , our aim is to 
examine the impact of our predictive intelligence mechanism 
on (1) the re-construction difference a, (2) the aggregation 
analytics difference � , and (3) the regression analytics dif-
ference � in light of communication efficiency by saving 
significant network bandwidth.

3  Distributed predictive intelligence

The intelligence of the proposed mechanism is split into two 
parts: (1) the SAN’s intelligence with respect to the local 
prediction algorithm fi following the evolving nature of the 
data streams and (2) the EN’s intelligence with respect to the 
local re-construction algorithm gj that supports the analytics 
tasks introduced in Sect. 2.2.

3.1  Sensor–actuator node intelligence

Consider a SAN i and let us elaborate on the first part. Very 
complex prediction models are not practical in the discussed 
EC paradigm due to the limited (energy-constrained) com-
putational capacity of the SANs. Fortunately, simple linear 
predictors are sufficient to capture the temporal correlation 
of realistic contextual data as shown by previous studies 
(Chu et al. 2006; Chowdappa et al. 2015; Anagnostopoulos 
et al. 2010). A sliding window-based linear predictor is one 
of popular approaches to predicting the future based on past 
N measurements.

In this work, we are seeking to reduce the computa-
tional power for prediction and to use a small fraction 
of the SAN’s computing power by adopting a predictive 
function with low complexity and computational effort. 
Multivariate exponential smoothing, used for time series 
forecast, is an ideal predictor adopted in our case, as its 
computational complexity is O(d) in a d-dimensional space 
(elaborated in Sect. 4). A simple exponential smoothing 
weighs the current sensed context vector �t and the historic 
context vectors (Durbin and Koopman 2012). This simple 
smoothing function is adopted as the prediction function 
fi for the �-based decision making.1

1 Double exponential smoothing (Holt–Winters time series smooth-
ing) could be adopted dealing with the same computational complexity.

At each time t, a smoothed context vector �t is calcu-
lated by using the current sensed context vector �t and the 
previous smoothed vector �t−1 , i.e.,

initializing with �0 = �0 . The relationship between the his-
tory of the measured data and the current data is represented 
by � ∈ [0, 1] . A higher � denotes more importance to the 
current values and less importance to the historic values. 
Normally, � = 0.7 (Durbin and Koopman 2012). The calcu-
lated smoothed vector �t−1 = [s1,t−1,… , sd,t−1] refers to the 
predicted context vector �̂t , that is:

with the window  = (�t−1) at SAN i containing only the 
recent smoothed context vector. Hence, the complexity of fi 
is O(d); we require d computations for smoothing the �t in 
Eq. (11) at time instance t. The forwarding decision of the 
actual �t to the EN j depends whether the prediction error 
et = ||�t−1 − �t|| exceeds the threshold �.

3.2  Edge node intelligence

On the other side, the EN j, at time instance t either 
receives �t (Case 1) or nothing (Case 2). In Case 1, the 
EN j simply inserts the delivered �t into its correspond-
ing window  (which is associated with the SAN i ∈ j ) 
discarding the oldest context vector, i.e., �t = �t . In Case 2, 
the EN j encounters an undelivered vector problem, since 
there is nothing to push in the sliding window  . Such 
undelivered context vectors must be re-constructed with 
the available context vectors � reside currently in the  
at EN j. In order to achieve this, we propose three re-
construction policies, i.e., variants of the re-construction 
function gj() . We should stress that, we require a compu-
tationally efficient re-construction function on EN j, thus, 
being relatively a small overhead compared to the analyt-
ics tasks. Those policies are introduced below.

Policy 1 This policy, in Case 2, uses the most recent con-
text vector from  at EN j, i.e., the first element of the slid-
ing window, as the re-constructed context vector. Therefore, 
the re-constructed context vector is inserted into the  and 
the oldest context vector from the window is discarded. Note 

(11)�t = ��t + (1 − �)�t−1

(12)�̂t = fi() = �t−1,
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that, after this insertion, there are two duplicates of the most 
recent context vector in the window. There might be also 
the case where the entire window (of length N) would have 
contained the same context vector if the SAN i had not sent 
a context vector in the last N time instances. This denotes 
that, during this recent history of N time instances, the maxi-
mum difference of the sequentially sensed context vectors 
measured on SAN i is less that � . In this case, it is redundant 
to send similar context vectors to EN j given a threshold � . 
In Case 1, the EN j simply inserts the delivered �t into the 
window and discards the oldest context vector. Policy 1 at 
EN j is provided by the Algorithm 2.

Policy 3 This policy applies the exponential smoothing 
algorithm (discussed above) for re-constructing the undeliv-
ered context vector in the EN j. In Case 1, the EN j simply 
inserts the delivered �t into the window and discards the 
oldest context vector. Moreover, after this insertion, the EN 
j calculates the smoothing context vector �′

t
 based on the 

delivered �t and the previously calculated smoothed context 
vector, i.e.,

In Case 2, this policy re-constructs the �̃t with the recently 
smoothed context vector ��

t−1
 (exploiting the context vector 

�
�
t
= ��t + (1 − �)��

t−1
.

Data: Sliding windows Wij at EN j for each connected SAN i.
Result: Reconstruction context vectors at EN j for each connected SAN i
for SAN i ∈ Nj do

if ei,t > θi then
SAN i sends xi to EN j;
ut = xt ;

else
/* reconstruction by using the last context vector */
ut = ut−1;

end
/*wodniwgnidilsehtetadpu*/

Wij = Wij \ {ut−N} ;
Wij = Wij ∪ {ut} ;

end
Algorithm 2: Algorithm of Policy 1.

delivery in Case 1) and discards the oldest context vector 
from the window. Note that, the series of the smoothed vec-
tors �′

t
 in EN j is not the same with the series of the smoothed 

vectors �t in SAN, since the vectors ��
t−1

, ��
t−2

,… are calcu-
lated by the �t−1, �t−2,… vectors from the window i on 
EN j. Moreover, in Case 2, after the re-construction of �̃t 
with ��

t−1
 , the smoothed context vector for time instance t is 

��
t
= 𝛼�̃t + (1 − 𝛼)��

t−1
= �

�
t−1

 . Overall, Policy 3 at the EN j 
has as follows:

Policy 2 This policy, in Case 2, re-constructs the unde-
livered context vector �̃t as the average vector of the cur-
rent context vectors in the window  , i.e.,

This re-constructed value is then inserted into the window 
discarding the oldest one. In Case 1, the EN j simply inserts 
the delivered �t into the window and discards the oldest con-
text vector. Policy 2 at EN j is provided by the Algorithm 3.

�̃t = gj() =
1

N

t−1∑

k=t−N

�k.

Data: Sliding windows Wij at EN j for each connected SAN i.
Result: Reconstruction context vectors at EN j for each connected SAN i
for SAN i ∈ Nj do

if ei,t > θi then
SAN i sends xi to EN j;
ut = xt ;

else
/* reconstruction based on the local current average (centroid)

/*rotcevtxetnoc

ut = 1
N

∑t−1
k=t−N uk;

end
/*wodniwgnidilsehtetadpu*/

Wij = Wij \ {ut−N} ;
Wij = Wij ∪ {ut} ;

end
Algorithm 3: Algorithm of Policy 2.
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Policy 3 at EN j is provided by the Algorithm 4.
 

(13)
{

��
t
= 𝛼�t + (1 − 𝛼)��

t−1
, Case 1

�̃t = �
�
t−1

and ��
t
= �

�
t−1

, Case 2.

the evolution of the difference of the predicted context 
vector �̂t at SAN i with the reconstructed context vector 
�̃t at EN j based on Case 2; this depends on the decision 
threshold � . Then, we obtain that:

Based on the definition of this time series, we identify two 
cases corresponding to the predicted and reconstructed vec-
tors conditioned on the event {et ≤ �}:

1. Case A: �̂t = �̃t . In this case, the predicted context vec-
tor at SAN i is the same as the reconstructed context 
vector at EN j, e.g., SAN and EN are adopting the same 
algorithms for prediction and reconstruction.

2. Case B: �̂t = �̃t + �t , where �t is the vector discrep-
ancy of the predicted context vector and the recon-
structed context vector, given that et ≤ � at SAN i, with 
�[||�||] < ∞.

Consider the Case A.

Proposition 1 The expected reconstruction difference �[a] 
at ENs is bounded by the expected prediction error �[e] at 
SANs, i.e., �[a] ≤ �[e].

Proof The expected reconstruction difference �[a] of the 
reconstruction difference in Eq. (4) is analyzed as follows:

where P(e ≤ �) is the probability of Case 2, where no con-
text vector is delivered from SAN i to EN j, w.r.t., � , pi(e) is 

(14)𝜉t =

{
0, et > 𝜃

||�̂t − �̃t||, et ≤ 𝜃

(15)

�[a] =�[||� − �̃|||e ≤ 𝜃]P(e ≤ 𝜃) = �[||� − �̂|||e ≤ 𝜃]P(e ≤ 𝜃)

=�[e|e ≤ 𝜃]P(e ≤ 𝜃) = �
𝜃

0

epi(e)de ≤ �[e]

Data: Sliding windows Wij at EN j for each connected SAN i.
Result: Reconstruction context vectors at EN j for each connected SAN i
for SAN i ∈ Nj do

if ei,t > θi then
SAN i sends xi to EN j;
/* updating the local smoothed context vector with the received

/*rotcevtxetnoc
s′t = αxt + (1− α)s′t−1;

else
/* reconstruction by one-step ahead forecasting */
ut = s′t−1;

/*rotcevdehtoomslacolehtetadpu*/
s′t = s′t−1;

end
/*wodniwgnidilsehtetadpu*/

Wij = Wij \ {ut−N} ;
Wij = Wij ∪ {ut} ;

end
Algorithm 4: Algorithm of Policy 3.

4  Theoretical analyses

4.1  Prediction error and reconstruction difference 
analysis

In this section, we analyze the relation of the local predic-
tion error et at SAN i and its corresponding re-construction 
difference at at EN j provided by a re-construction algorithm 
(policy) gj() . The aim of this analysis is to demonstrate the 
evolving feature of our distributed mechanism to follow the 
contextual data streams on the SANs and then to decide on 
their delivery or not to their corresponding ENs. Specifically, 
we analyze the evolution of the local conditional expecta-
tion of the prediction error �[et|et ≤ �] conditioned on the 
event (Case 2): {et ≤ �} and its relation with the expected 
reconstruction difference �[at] . The idea is that our mecha-
nism ‘remotely’ monitors the evolution of the reconstruction 
difference in EN j by experiencing a local prediction error 
at SAN i. This provides us with further insight on the upper 
bound of the reconstruction difference, based on the local 
prediction (forecasting) error. The derived knowledge of this 
relation provides us further insights on the adopted policy 
(Policy 1, 2, or 3) at the EN j, thus, being able to adapt to 
different policies based on the evolution of the data streams.

Let us focus on the pair of nodes: SAN i and EN j, where 
SAN i is adopting a prediction algorithm �̂ = fi(i) and 
EN j is adopting a reconstruction algorithm �̃ = gj(j) . 
Furthermore, consider the time series �t , which monitors 
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the probability distribution of the local prediction error at 
SAN i.   □

In Case A, where the predicted vector at SAN i is the 
same as the reconstruction vector at EN j, the expected 
reconstruction difference is bounded by the expected pre-
diction error. Hence, the evolution of the reconstructed 
context vectors at the EN j are known to the SAN i, where 
the latter produces those vectors from its local predictor 
fi . This means that the SAN i knows the upper bound of 
the expected reconstruction error that the EN j will experi-
ence, thus, can adjust the decision threshold � to satisfy the 
accuracy needs of the launched IoT analytics application.

Note that, the expected prediction error �[e] can be 
incrementally approximated at the SAN i by adopt-
ing the recursive approximation of the error mean ẽt as: 
ẽt = ẽt−1 +

1

t
(et − ẽt−1) for a large t > 0 . Consider now the 

Case B.

Proposition 2 The expected reconstruction difference �[a] 
at ENs is bounded by the expected prediction error �[e] at 
SANs and the expectation of � , i.e., �[a] ≤ �[e] + �[�].

Proof The expected reconstruction difference �[a] of the 
reconstruction difference in (4) is:

In this case, the expected reconstruction difference is 
bounded at least by the expected prediction error, known 
at SAN i and the conditional expectation discrepancy 
�[||�||||e ≤ �]P(e ≤ �) derived by the intrinsic difference 
of the reconstructed and predicted vectors. This conditional 
expectation refers to the expected value �[�] of the time 
series �t defined in Eq. (14). That is:

  □

The evolution of the times series �t can be monitored in 
a training phase where the EN j sends the reconstructed 
vectors �̃t to the SAN i. After this training phase, the SAN i 
is aware of the expected discrepancy by approximating the 
mean of the time series 𝜉t = 𝜉t−1 +

1

t
(𝜉t − 𝜉t−1) . Based on 

this learned evolution of the time series � , the SAN i knows 
the upper bound of the expected reconstruction error that 

(16)

�[a] = �[||� − �̃|||e ≤ 𝜃]P(e ≤ 𝜃) = �[||(� − �̂) + (�̂ − �̃)|||e
≤ 𝜃]P(e ≤ 𝜃) ≤ �[||� − �̂|||e ≤ 𝜃]P(e ≤ 𝜃) + �[||�||||e

≤ 𝜃]P(e ≤ 𝜃) =

𝜃

�
0

epi(e)de + �[||�||||e ≤ 𝜃]P(e ≤ 𝜃)

≤ �[e] + �[||�||||e ≤ 𝜃]P(e ≤ 𝜃)

�[𝜉] = �[||�̂ − �̃|||e ≤ 𝜃]P(e ≤ 𝜃) = �[||�||||e ≤ 𝜃]P(e ≤ 𝜃).

the EN j will experience, thus, can adjust the application 
specific decision threshold � . Moreover, during this train-
ing phase, the SAN i can send the pairs (�t, �̂t) to the EN j 
to locally approximate both the expected prediction error 
and the expected discrepancy. In this context, the EN j can 
adjust the current reconstruction policy (Policy 1, 2, or 3) by 
selecting the policy that corresponds to the minimum �[a] . 
In Sect. 5, we experiment with the proposed policies adopted 
by EN j to demonstrate the applicability of our model.

4.2  Predictability analysis and computational 
complexity

The adopted prediction and reconstruction algorithms ( fi 
and gj ) are based on the Exponentially Weighted Moving 
Average (EWMA) for one-step ahead prediction and recon-
struction vectors �̂t+1 and �̃t+1 , respectively (at SAN i and EN 
j). That is, given a multivariate contextual vector time series 
�t, �t−1,… , the forecast on SAN i (and the reconstruction in 
EN j) has as follows:

The recursion in Eq. (17) requires O(d) space, i.e., only the 
d-dimensional context vector �̂t is stored for predictions, 
while the prediction requires O(d) time. Now, we could re-
write Eq. (17) to demonstrate its strong relation with the 
linear Auto-Regression model (AR) and its prevalence in 
terms of predictability and computational complexity. It will 
be shown that the adopted EWMA consists of two parts: 
the AR model and the Moving Average (MA) model (Box 
and Jenkins 1990). Specifically, let us denote the one-step 
ahead forecast/prediction error vector �t = �t − �̂t. Note, we 
analyze here the forecast error in the SAN i. Similar reason-
ing proceeds with the reconstruction difference in the EN 
j, where, as proved by Propositions 1 and 2, the expected 
reconstruction difference is bounded by the expected pre-
diction error. Hence, we proceed with the dynamics of the 
forecasting on the SAN i.

By substituting in Eq. (17) the prediction error, we obtain:

thus, the change in times series is expressed by

By taking �t to be a time series of independent  (�, �2
e
�) 

variables, we observe that we deduce from the adopted 
EWMA recursion in Eq. (17) the simple Autoregressive 
Integrated Moving Average model (ARIMA) in Eq. (18). 
ARIMA model (Box and Jenkins 1990) is a generalization of 
an autoregressive moving average model fitted to the �t time 

(17)�̂t+1 = (1 − 𝛼)

∞∑

𝜏=0

𝛼𝜏
�t−𝜏 = (1 − 𝛼)�t + 𝛼�̂t

�t − �t = (1 − �)�t−1 + �(�t−1 − �t−1),

(18)Δ�t =�t − ��t−1.
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series to predict future context vectors in the series, where 
vectors show evidence of non-stationarity.

The derived ARIMA model in our case, consists of two 
parts: the linear autoregressive (AR) part and the moving 
average (MA) part. The AR part involves regressing the vari-
able on its own lagged/past contextual vector. In our case, 
the lag p = 1 . The MA part involves modeling the error 
term as a linear combination of error terms occurring con-
temporaneously and at one time instance in the past. The 
predictions adopted by the EWMA (i.e., ARIMA with only 
one past context vector; p = 1 ) produced by the recursion 
in Eq. (17) are the minimum mean square error predictions 
(Muth 1960) by minimizing the expected squared prediction 
error: �

[
||�t − �̂t||2

]
 . Moreover, by adopting the multivari-

ate AR(p) with lag p > 1 , i.e., storing more than one past 
context vectors �t−1,… , �t−p to proceed with �̂t forecasting, 
then the space complexity is O(dp). In this case, in terms of 
prediction on SAN i, the computational time for calculat-
ing the linear autoregressive coefficients is O(d2p) based on 
the ordinary least squares (OLS) auto-regressive estimation. 
Given some evidence of non-stationarity, those coefficients 
should be re-estimated regularly, which implies huge com-
plexity not only on the SAN but also on the EN, where the 
latter node has to maintain n multivariate AR(p) models; 
one for each connected SAN. In that case, the computational 
complexity for reconstruction is O(npd2) at the EN. For 
those reasons of predictability, computational complexity, 
and scalability performances we chose the EWMA in SAN 
and in EN for prediction and reconstruction (as provided in 
Policy 3).

5  Performance evaluation

5.1  Datasets and experimental setup

In our experiments, we used two real datasets for assessing 
the performance of the proposed edge prediction intelligence 
mechanism. The first contextual dataset (DS1) was adopted 
by UCI (Vito et al. 2008). This dataset contains twelve SANs 
of chemical compounds and environmental parameters: CO, 
PT08.S1 (tin oxide), Non Metanic HydroCarbons, Benzene, 
PT08.S2 (titania), NOx, PT08.S3 (tungsten oxide),  NO2, 
PT08.S4, PT08.S5 (indium oxide), temperature, relative 
humidity, and absolute humidity. All these contextual 
parameters are required to measure the air pollution of a 
specific area. These data are collected every hour and refer 
to T = 9357 12-dimensional measurements with n = 12 
SANs and one EN. Inside this dataset missing values occur. 
For each SAN, we impute those missing values by adopting 
the missing value imputation method of linear interpolation. 
This method exploits two data points (x0, y0) and (x1, y1) to 

reconstruct a linear function to find for a specific x value the 
missing value y as follows: y = y0 +

y1−y0

x1−x0
(x − x0).

The second contextual dataset (DS2) refers to 4-dimen-
sional contextual data collected by Raspberry Pi SANs 
deployed at the School of Computing Science, University of 
Glasgow (Hentschel et al. 2016). We used four different 
SANs’ that measured: two different room temperatures 
(room F121 and room S123), humidity and sound (room 
F121). This data is collected by an interval of 10 min and 
refer to T = 1000 4-dimensional measurements with n = 4 
SANs and one EN. For comparison and reproduction, both 
datasets are normalised and scaled, i.e., each contextual 
parameter x ∈ ℝ is mapped to x−�

�
 with mean value � and 

variance �2 , and scaled in [0,1] using max{x}−x

max{x}−min{x}
 . That is, 

each context vector � is normalized and scaled in the 
d-dimensional unit cube � ∈ [0, 1]d , with d ∈ (12, 4) for DS1 
and DS2, respectively, and � ∈ [0, 1].

Based on our sensitivity analysis of our mecha-
nism in Sect. 5.4, the experimental assessment was car-
ried out with different values of the decision threshold 
� ∈ {10−5, 10−3, 10−2, 0.05, 0.06, 0.1, 0.2} . Using the nor-
malized and scaled datasets DS1 and DS2, the physical 
meaning of � is interpreted as the percentage change of a 
measured/sensed time series value xt by: 0.0002, 0.02, 2, 10, 
12, 20 and 40% respectively for the chosen � values, respec-
tively. Those � values derived from our sensitivity analy-
sis which examines the impact of � on the local prediction 
error et in Eq. (2) in SAN and the reconstruction error on 
the EN in our mechanism. The local predictor/exponential 
smoother in the SAN, in our experiment, uses � ∈ {0.5, 0.7} 
as suggested in Durbin and Koopman (2012). Moreover, in 
Policy 3, the reconstruction smoother function in EN adopts 
� = 0.7 . The sliding window size is set to N = 10 . This 
selected size represents for DS1 a history of the last 10 h 
and for DS2 a history of the last 100 min. Our experimental 
set up includes seven � values and two � values over three 
different policies (Policy 1, 2, and 3) for reconstruction on 
the EN. This leads to an overall of 42 experiments for each 
of the aggregation analytics function h() : i.e., AVG, MAX 
and MIN, the linear regression analytics function and the re-
construction difference for evaluation. In order to objectively 
assess the performance of our mechanism, we implemented 
the baseline mechanism and also compare our mechanism 
with the TEEN model (Manjeshwar and Agrawal 2001). 
Which leads to an overall of 315 experimental results and 
one baseline solution. The baseline mechanism is produced 
by capturing the continuous contextual data and transmit-
ting them from all SANs to an EN, without any predictive 
intelligence on SAN or EN. The TEEN model along with a 
theoretical comparative assessment is provided in Sect. 5.3, 
while in Sect. 5.4 we provide the comparative assessment of 
our model and TEEN.
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5.2  Performance metrics

We firstly define the performance metrics of counter of 
communications, i.e., the number of sensed values are 
sent from a SAN i to its EN j. By adopting the baseline 
mechanism, for DS1, the number of communications is 
allocated with 12 ⋅ 9357 = 112, 284 and, for DS2, the total 
number of communications is 4 ⋅ 1000 = 4000 . To better 
illustrate and compare our mechanism with the baseline, 
the counter of communications is indicated as 100%. 
Using our mechanism, the counter is only increasing if � 
is exceed and values are transmitted from the SANs to the 
EN. The overall communication of n SANs over T sensing 
values, in our method is then:

with Ii,t = 1 if SAN i sends its sensed value to the EN; oth-
erwise Ii,t = 0 . Evidently, the overall communication of n 
SANs over T sensing values, in the baseline method is T ⋅ n, 
since Ii,t = 1,∀i, t . The percentage of communication is then 
c(T)

Tn
.
The re-construction difference a in Eq. (4), and the 

aggregation analytics difference � in Eq. (5) is evalu-
ated using the symmetric mean absolute percentage error 
(SMAPE). During the experiments, we calculated the aver-
age SMAPE per SAN for each time instance t ∈ {1,… , T} . 
This metric is used to represent a percentage error of 
SMAPE ∈ [0, 100] because of its unbiased properties 
(Tofallis 0000). SMAPE is defined for reconstruction dif-
ference a and aggregation analytics difference � as:

For the regression analytics difference, we simply illustrate 
the metric �t per SAN as defined in Eq. (10). Our major 
aim is to demonstrate the trade-off between communica-
tion and re-construction difference/aggregation analytics/
regression analytics difference. That is, we can tolerate 
some slight increase in the analytics error by gaining a sig-
nificant decrease in the number of communications, thus, 
being communication efficient and prolonging the edge 
network lifetime. It is evaluated how the aggregated ana-
lytics functions h() , regression analytics function, and 
re-construction inside an EN behave with decreasing the 
number of communications towards the EN. This decrease 
of communications is produced by increasing the value of 
� and changing the value of � inside the SAN (exponential 
smoother). The behaviour of SMAPE and � depends on the 

(19)c(T) =

T∑

t=1

n∑

i=1

Ii,t,

(20)SMAPE =

�
100

T

∑T

t=1

at

���t��+���̃t��
, ���t�� + ���̃t�� > 0 for a,

100

T

∑T

t=1

𝛽t

��h()��+��h(∗)�� , ��h()�� + ��h(∗)�� > 0 for 𝛽.

the reconstruction policies inside the EN as will be shown 
in the remainder.

5.3  Model comparison

In order to demonstrate the fact that our generalized mecha-
nism departs from the selective data delivery mechanism in 
distributed environments, we compare with the well known 
TEEN model (Manjeshwar and Agrawal 2001). Specifically, 
the TEEN model focuses only on the prediction mechanism 
on the SAN i and there is no focus on how the EN j recon-
structs the conditionally received context vector. Based on 
this limited functionality, the TEEN model assumes that the 
context vector series �t has no trend, which means that it 
forecasts zero change in the level from one time instance 
to the next. To proceed with a theoretical and experimen-
tal comparative assessment of our generalized mechanism 
with the TEEN mechanism, the SAN i is adopting the TEEN 
model for forecasting and the corresponding EN j is adopt-
ing the TEEN model for re-constructing the undelivered 
contextual vectors, which corresponds to Policy 1. The fore-
cast (prediction) of a SAN i, which adopts the TEEN model 
(hereinafter it is referred to as TEENSAN), at t + 1 is the 
time series vector at time t:

which is different with our SAN i predictor, where it esti-
mates a local mean before turning around and using it as a 
forecast for the next time instance. This indicates that our 
SAN i’s next forecast is computed by interpolating between 
the last observed context vector �t and the forecast that had 
been made for it �̂t , i.e., �̂t+1 = 𝛼�t + (1 − 𝛼)�̂t . It is clear 

that TEENSAN i is adopting the random walk model, that 
is � = 1 . Based on the fact that the constant-forecast model 
is adopted when � = 0 , our SAN i predictor is an interpola-
tion between the mean model and the TEENSAN (random 
walk) model w.r.t. the way it adapts to new context vectors. 
This is expected to performs more accurately (in terms of 
forecasting as will be proved in Proposition 3) than either of 
the situations where the random walk model over-responds 
and the mean model under-responds to new context vectors. 
Moreover, we can write the forecast formula of our SAN i as:

with error vector �t = �t − �̂t , to demonstrate the qualitative 
difference with the TEENSAN i model. This version pro-
vides a nice interpretation of the meaning of � in our SAN 
compared to the TEENSAN, which indicates the fraction of 

(21)�̂t+1 = �t,

�̂t+1 = �̂t + 𝛼�t,
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the forecast error that is believed to be due to an unexpected 
change in the level of the series rather than an unexpected 
one-time event. In the limit of � = 1 , which is the TEEN 
model, all of the variation from one period to the next is 
believed to be due to a change in the fundamental level 
rather than just a temporary deviation. While, for � ∈ (0, 1), 
our SAN i predictor adapts to significant changes in the fun-
damental level of the series from one period to the next.

From an error analysis perspective, let us denote with �̃t and 
�t the prediction error of the TEENSAN i predictor and our 
SAN i predictor, respectively.

Proposition 3 For � ∈ (0, 1) , the expected prediction 
error of SANs is bounded by the expected prediction error 
of TEENSANs, i.e.,

Proof In the SAN, based on the exponential smoothing, we 
obtain the recursion:

Hence, we obtain the following relation between the predic-
tion error of the TEENSAN and SAN, i.e.,

where the factor �t is defined as:

Obviously, for � = 1 , i.e., TEENSAN, we obtain that 
�t = �,∀t , thus, �̃t = �t . In the case where � ∈ (0, 1) then 
the norm of the prediction errors of TEENSAN and SAN 
are as follows:

Now, let us take the expectation �[||(1 − �)�t − �t||]. Given 
that 1 − 𝛼 < 1 and considering the unconditional expectation 
�[||�||] = 𝜇 < ∞ (weakly stationary), we obtain that:

s ince 
∑t−1

k=1
(1 − �)k =

1−�

�
(1 − (1 − �)t−1) .  For  large 

t  we obtain the limit:  limt→∞

∑∞

k=1
(1 − �)k =

1−�

�
. 

Hence,  the l imit  of  the expectat ion is  then 

�[||�||] ≤ 𝛼�[||�̃||] < �[||�̃||].

(22)�̂t+1 =

t−1∑

k=0

𝛼(1 − 𝛼)k�t−k + (1 − 𝛼)t�0.

(23)�t+1 = (1 − 𝛼)�t − �t + 𝛼�̃t+1,

(24)�t =

t−1∑

k=1

�(1 − �)k�t−k + (1 − �)t�0.

(25)||�t+1|| ≤ ||(1 − 𝛼)�t − �t|| + 𝛼||�̃t+1||

�[||(1 − �)�t − �t||] = (1 − �)� − ��

t−1∑

k=1

(1 − �)k − (1 − �)t�

= (1 − �)� − (1 − �)�[1 − (1 − �)t−1] − (1 − �)t�,

limt→∞ �[||(1 − �)�t − �t||] = (1 − �)� − (1 − �)� = 0. 
This means that for � ∈ (0, 1):

  □

Based on Proposition 3, the SAN predictor performs bet-
ter than the TEENSAN in terms of context vector prediction. 
Section 5.4 reports on the experimental comparative assess-
ment and sensitivity analysis of our mechanism and the TEEN 
model.

5.4  Sensitivity analysis and comparative 
assessment

In this section we provide a sensitivity analysis of our mecha-
nism, especially focused on the decision threshold � . Based 
on this analysis, we demonstrate the impact of � on the data 
reconstruction quality given a certain pair: SAN i and EN j. 
The outcome of this analysis is to provide useful insight on 
the appropriate range of the � values to ensure highly qual-
ity reconstructed data. In order to investigate this impact, we 
assess the sensitivity of our mechanism based on the follow-
ing metrics adopted in signal processing for time series data 
reconstruction: (1) Kullback–Leibler (KL) divergence, (2) sum 
of squared residuals, (3) variance of the actual and the recon-
structed time series, (4) coefficient of variation of the actual 
and reconstructed time series. For the sake of readability, we 
suppress the subscript of dimension k from the variable xkt for 
k ∈ (1, d) and focus on the communication pair (SAN i, EN j).

The first baseline sensitivity metric is the sum of squared 
residuals (SSR). SSR, or the sum of squared errors of time 
series reconstruction, is the sum of the squares of residuals; 
deviations of the reconstructed x̃t time series from the actual 
values of the time series xt , i.e.,

SSR measures the discrepancy between the time series 
reconstructed at EN j due to the applied Policy 1, 2, or 3 and 
decision threshold � and the actual time series xt observed 
at SAN i. A small RSS value indicates a tight fit of the EN 
reconstruction model to the actual time series at SAN.

A more advanced metric for the sensitivity analysis is the 
Coefficient of Variation (CV). CV (also known as relative 
standard deviation), is a standardized measure of dispersion 
of the probability distribution p(xt) of the time series xt . It 
is expressed as the ratio of the standard deviation �x to the 
absolute mean value |�x| , i.e.,

�[||�||] ≤ 𝛼�[||�̃||] < �[||�̃||].

(26)SSRt =

t∑

𝜏=1

(x𝜏 − x̃𝜏)
2.
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We adopt CV(x) for our sensitivity analysis because the 
standard deviation �x of the time series xt must be under-
stood in the context of the mean of the time series compared 
with the CV(x̃) of the reconstructed time series at the EN, 
i.e., 𝜎x̃

|𝜇x̃|
 . We use CV for comparing both the mean and the 

variance of the reconstructed time series in EN j with the 

(27)CV(x) =
�x

|�x|
.

actual time series in SAN i data. Note that the value of the 
CV is independent of the unit, i.e., it is a dimensionless num-
ber. The rationale behind investigating the sensitivity of our 
mechanisms w.r.t. the CV is that many natural processes 
indeed show a correlation between the average value and the 
amount of variation around it. By observing the coefficients 
of variation CV(x̃) and CV(x) of the reconstructed and actual 
time series, respectively, we can assess the discrepancy of 
the reconstructed time series at EN j w.r.t. the actual time 
series at SAN i due to the adoption of certain Policy 1, 2, or 
3 and decision threshold � . Ideally, we would desire the 
reconstructed mean and variance of the times series in EN j 
to ‘follow’ the actual mean and variance of the actual time 
series in SAN i. However, due to the applied threshold � , the 
variance of the reconstructed signal decreases thus the CV(x̃) 
deviates significantly from the CV(x) with high values of �.

Departing from the SSR and the CV, we further investi-
gate the sensitivity of our model by examining the probability 
distribution of the time series p(x), which is observed at the 
SAN i and reconstructed probability distribution p(x̃) at the 
EN j. This provides a holistic insight of the discrepancy of the 
statistics based on the applied Policies 1, 2, or 3 and the impact 
of the decision threshold � . For this investigation, we adopt 
the Kullback-Leibler (KL) divergence. KL divergence from 
p(x) to p(x̃) denotes the information loss when we attempt to 
reconstruct time series x̃ for the actual time series x provided 
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that p(x̃) and p(x) are the probability distribution functions, 
respectively. KL is defined as:

In our case, KL indicates is the amount of information lost 
when EN j approximates the actual time series at SAN i 
based on our Policies 1, 2 or 3. Ideally, we would like p(x̃) 
to be as close to the real/actual p(x) given certain policies 
and for given � values. We are examining the impact of � and 
the applicability of TEEN w.r.t. our proposed mechanism in 
terms of approximating the actual probability distribution of 
the time series reconstructed in EN.

By performing the introduced sensitivity analysis metrics 
in Eqs. (26), (27) and (28), we obtain the Figs. 2, 3, 4, 5 and 
6. The purpose of analyzing these metrics is to identify the 
upper bound of � for selecting one dimensional time series 
from DS1; similar sensitivity results are obtained using 
DS2. Not only the sensitivity metrics are important for the 
appropriate and reasonable � values, but also to consider 
the relationship between increase of � and the percentage 
of communication overhead occur between SAN and EN 
(please refer to Fig. 7 top left,which shows this relationship). 
By combining Fig. 7 with Fig. 2, it is clearly applicable 

(28)KL(p(x̃)||p(x)) = ∫
1

0

p(x̃) log
p(x̃)

p(x)
dx.

that given a small � value, the reconstructed time series x̃ 
follows the actual time series x. This is caused by the fact 
that still high communication occur between SAN and EN. 
By increasing the values of � , it leads to less communica-
tion overhead, while with a 𝜃 > 0.2 one can observe that 
only a couple of values are sent from SAN to EN. This is 
represented by the green lines in Fig. 2. It should also be 
mentioned that the number of communication is highly 
depending on the chosen � value in the SAN. Looking at 
Fig. 2 with � = 1 , which is equivalent to the TEEN model 
in SAN, it leads to the fact that only one value is sent from 
SAN to EN with � = 0.3 . Whereas for the same � value and 
� = 0.5 , more measurements are sent in between. Closely 
related to the number of communication between SAN and 
EN as well as the comparison of the reconstructed time 
series with the actual time series, is the probability density 
function p(x) for indicators of the behavior of high � values. 
Figure 3 shows the probability density functions (shown as 
histograms) of the actual and the reconstructed time series 
with fixed � = 0.5 for different � ∈ (0.05, 0.1, 0.3, 0.7) . We 
can observe that an increase of � decreases the possibility to 
reconstruct the actual distribution in the EN, i.e., the recon-
structed time series follows a significantly different prob-
ability density function with that of the actual time series, 
especially when 𝜃 > 0.2.
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The aforementioned relationship between small � values 
and tight-fitting of the distribution is undermined with the 
analysis of the sensitivity metrics. Not only is it impossible 
to follow the probability density function of the actual time 
series with increase of � , further the sensitivity metric of 
SSR clearly identifies in Fig. 4 that using 𝜃 > 0.2 causes a 
loose-fitting of the EN reconstruction model to the actual 
SAN model. While � ≤ 0.2 , the SSR is increasing over time 
but still in a reasonable range which is applicable as SSR 
growing in an exponential way. Besides the SSR metric, 
the coefficient of variation (CV) metric indicates the devel-
opment of � and its impact on the probability distribution. 
Figures 5 (right) and 6 and show that by using 𝜃 > 0.5 pro-
duces an CV value of 0, which holds true for all policies 
and aggregation methods as well for the reconstruction case. 
From CV in Eq. (27) it can be seen that either the mean or 
the variance has to be zero if the CV is zero. This can clearly 
been observed in Fig. 5 (left) where variance is zero for 
𝜃 > 0.5 . This finding and the CV effect can be explained by 
the knowledge and insights we gained from the sensitivity 
metrics KL and SSR. After 𝜃 > 0.5 limited communication 
between SAN and EN occurs and, therefore, a low or zero 
variance time series is reconstructed in the EN. Moreover, 
from the behavior of the CV metric, we can observe that 
a reconstruction of the actual CV depends on (1) the pol-
icy adopted for reconstruction, (2)exponential smoothing 
or TEEN adopted on SAN. A comprehensive comparison 
between those cases is provided in Sect. 5.5.

Lastly, by evaluating the KL divergence of the recon-
structed probability distribution in Fig.  4 (right), it is 
observed that, depending on � , the KL is only slightly 
increasing up to a � value of approximately 0.1. After hav-
ing 𝜃 > 0.1 , the loss of information is growing linearly. By 
adopting the TEEN in the SAN, it is applicable that the loss 
of information is higher for a lower value of � than using 
exponential smoothing with � = 0.5 . It can be observed that 
the maximum loss of information is 3.5, which indicates a 
loss of 350% of communication. This maximum is reached 
for TEEN with 𝜃 > 0.3 , and � = 0.5 for 𝜃 > 0.5 . In order to 
obtain information loss of less than 100%, then � should be 
less than 0.2.

After analyzing a range of sensitivity metrics for different 
policies, � values and the TEEN, we draw our conclusion 
that the range for � ∈ (0.2, 1] is not useful for achieving high 
quality data and, therefore, in the experimental and compara-
tive assessment we adopt the range of � ∈ (0, 0.2].

5.5  Performance assessment

Based on the results obtained from our sensitivity analysis of 
our model in Sect. 5.4, in this section we evaluate the perfor-
mance of our proposed method over elucidated datasets DS1 
and DS2 and the defined performance metrics to illustrate 

the trade-off between communication and error for the re-
construction, aggregation analytics and regression analytics 
differences. Independent of the specific differences, our aim 
is to reduce the percentage of communication only with a 
slight increase of the error.

Generally, over all evaluated differences, increasing the 
value of � is decreasing the number of communications 
towards the EN which is applicable from Fig. 7. The rea-
son behind this is that � is demonstrating the tolerance for 
a change of the expected value and the actual/sensed one. 
Therefore high values of � are indicating that values can 
vary between a larger range before they are sent towards 
the EN (refer also to sensitivity analysis in Sect. 5.4). Fur-
thermore, it is worth noting that the number of communi-
cations is highly dependent on the exponential smoother 
parameter � . Given the same � value, the number of com-
munications is decreasing with higher values for � at which 
� = 1 is equivalent to the TEEN model under comparison. 
Increasing � means reducing the influence of previous/his-
torical measured data. Having � = 1 denotes that the cur-
rent measured value is compared only against the previous 
for a forwarding decision inside the SAN. The following 
assessments are achieved by adopting the three reconstruc-
tion Policies in the EN with values for � ∈ {0.5, 0.7, 1} and 
� values up to the upper bound of 0.2 resulted from Sect. 5.4, 
i.e., � ∈ {10−5, 10−3, 10−2, 0.05, 0.06, 0.1, 0.2} . In further 
evaluation the shown figures represent only some results of 
our evaluation of the proceed 315 experiments for each data-
set. They are representing the general outcome. Moreover, 
it should be note that the displayed dots inside the figures 
are values for � with the relation towards its difference and 
its communication.

5.5.1  Re‑construction difference assessment

Evaluating the re-construction difference for DS1 and DS2 it 
is applicable that the re-construction difference is depending 
on the chosen � value this is seen in Fig. 7 (top right). Gener-
ally using TEEN inside the SAN is creating a higher error for 
re-construction than using the exponential smoothing with 
� = 0.5 . However, the trade-off between communication and 
re-construction difference is of importance for evaluating 
the efficiency of our model. Evaluating this trade-off we use 
the three proposed policies and values for � ∈ {0.5, 0.7} and 
� ∈ {10−5, 10−4, 10−2, 0.05, 0.06, 0.1, 0.2} . Further we com-
pare our model using TEEN in SAN. Applicable from Fig. 8 
Policy 2 is creating the highest re-construction difference 
trade-off over both datasets. Whereas Policy 1 and 3 are 
nearly identical for DS1 but for DS2 Policy 1 is identified as 
best solution. This perception is applicable over all � values. 
Therefore, we can conclude that the chosen reconstruction 
policy in the EN is highly influencing the produced SMAPE 
and its efficiency towards the communication.
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Using policy 1 to identify the influence of the chosen � 
value it can be seen that in Fig. 9 that decreasing the com-
munication the re-construction difference in all � values 
is increasing up to around 20%. The maximum of 20% is 
explained by the sensitivity assessment previously where 
it was shown that after a certain value of � only some val-
ues are send and the distribution p(x) is mostly around the 

mean. This is leading to a maximum difference of around 
20%. Besides this realisation, it is applicable that all chosen 
� values are producing a similar trade-off between SMAPE 
and percentage of communication. However, for DS1 TEEN 
in SAN is producing a slightly lower error with less com-
munication that � = 0.5 or � = 0.7 . For DS2 this holds only 
for communication savings up to 40% whereas decreasing 
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Fig. 8  Re-construction difference trade-off for Policy 1,2,3; percentage of communication against SMAPE with top left DS1 with � = 0.5 , top 
right DS1 with TEEN, lower left DS2 with � = 0.5 , lower right DS2 with TEEN
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Fig. 9  Re-construction difference trade-off for Policy 1; percentage of communication against SMAPE with left DS1 and right DS2
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the communication further using our proposed model with 
� ∈ (0.5, 0.7) is significantly better than TEEN in SAN.

It is worth noting that, as shown in Figs. 8 and 9, using 
our proposed predictive intelligence for edge analytics on 
DS1, a communication overhead of 30% can be saved by 
tolerating an re-construction error of less than 1%. If IoT 
applications can tolerate up to 2% error in their analytics 
accuracy, it is possible to save between 50 and 60% of com-
munication. Saving this amount of communication with a 
given tolerated error would increase the lifetime of an edge 
network between 30 and 50%. Moreover, in Fig. 9, it is appli-
cable that for DS2 an even extreme trade-off is performed. 
Depending on the chosen value for � , without any error pro-
duced, up to 50% communication can be saved. Tolerating a 
relatively slight 2.5% error, it is possible to save even up to 
70% of communication. This phenomenon can be explained 
by considering that DS2 is measuring every 10 min, which 
is causing similar or even identical measurements because 
of slightly changes in the indoor environment of the School 
of Computing Science. In the contrary, DS1 is measuring 
every hour, thus, the surrounding environment could change 
significantly towards the previous measure.

5.5.2  Aggregation analytics assessment

Besides the re-construction difference, the aggregation 
analytics difference produced by our method is an impor-
tant metric by many analytics IoT applications. The intro-
duced figures in 8 for the re-construction difference are 
similar to the comparison of the policies for the aggre-
gation analytics differences. Therefore no further figure 
is shown in this assessment. From our experiments it is 
applicable for both datasets and all three aggregation func-
tions, AVG, MIN and MAX, that Policy 2 is producing the 
highest SMAPE for the aggregation analytics difference. 
Similar to the re-construction difference, Policy 1 and 3 
are generating the lowest average error per SAN over the 
entire time frame T. However it should be note that in our 
experiments a value of � = 0.5 is producing the lowest 
error over all three aggregation functions by employing 
the re-construction Policy 3. Comparing Policy 1 over all 
three aggregation functions, Fig. 10 shows this for DS1 
and Fig. 11 for DS2. Specifically, one can observe from 
Figs. 10 and 11 that, similar to the re-construction differ-
ence, the aggregation analytics difference depends on � . 
Higher values of � producing a better trade-off. In both 

Fig. 10  Aggregation analytics difference trade-off for DS1 with Policy 1; percentage of communication against SMAPE for DS1 left top AVG, 
right top MIN, lower MAX
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datasets for MIN and MAX this reverses after a SMAPE of 
around 1.5%. AVG in DS1 continuously produces a better 
trade-off for high � but for DS2 a reverse order appears too 
after 1.5% SMAPE.

For DS1, it is observed in Fig. 10, that a reduction of 
20% by communication for MIN, MAX and 30% for AVG is 
only generating an error of 0.5%. Therefore, it is possible to 
increase the lifetime of a network up to 30% with tolerating 
a slightly difference towards the true result. For IoT applica-
tions that can tolerate a higher discrepancy for this kind of 
aggregation functions, they can save up to 50% with an error 
of 1.5–2%. In comparison with DS2, as illustrated in Fig. 11 
for all three aggregation functions, it is possible to use only 
60% of the communication without any difference towards 
the aggregation analytics output. A further 20% can be saved 
by tolerating an accuracy difference of maximum 0.5%.

5.5.3  Predictive analytics assessment

The Regression Analytics Difference is evaluated by using 
the Air Quality chemical compounds SANs: PT08.S1 (CO) 
and PT08.S5  (O3) for DS1. For the DS2, both temperature 
SANs from rooms F121 and S123 are chosen for perform-
ing the linear regression analytics function. For DS1 the 
first 6000 data points are used for on-line training the linear 
regression coefficient whereas the last 3357 measured values 
are used for testing the prediction accuracy derived from the 
linear approximation. DS2 was split into 700 training and 
300 testing pairs. The testing pairs were used to calculate 
the Regression Analytics Difference � . In both cases, the EN 
trains the linear regression model in an on-line/incremental 
mode (through SGD) provided in Algorithm 1, with learning 
rate � = 0.1 (Bottou 2010). The idea is to demonstrate that 
even by not forwarding all sensed values from the SANs to 
the ENs, we can extract the same linear regression models 
with the baseline mechanism. And, more interestingly, the 
prediction accuracy of the regression models based on our 

Fig. 11  Aggregation analytics difference trade-off for DS2 with Policy 1; percentage of communication against SMAPE for DS2 left top AVG, 
right top MIN, lower MAX
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mechanism is very close to that of the regression models 
based on the baseline mechanism. In this case, IoT applica-
tion and predictive analytics services can proceed with the 
same quality of analytics in a communication efficient way.

Figure 12 is representing the Regression Analytics Differ-
ence � for � ∈ {0.5, 1} over all three different reconstruction 
policies inside the EN for DS1. Respectively, in Fig. 13 � is 

shown for DS2 and � ∈ {0.5, 0.7} . For DS2 it is not possible 
to illustrate TEEN as no change in � occur with increasing 
� . For better illustration the figures showing the Regression 
Analytics Difference only showing the � values up to 0.06. 
Increasing � over this threshold is increasing the error and 
decreasing the communication. For better readability of 
smaller values this is hidden in the figures above.

However, applicable from both Figures Policy 3 is creat-
ing the best trade-off between communication saving and 
regression analytics quality. This is independent on the cho-
sen � value in the SAN as seen when comparing the left and 
right figures of each dataset. Moreover, it is applicable for 
DS1 that using our mechanism the same linear regression 
model is produced even with only 80% of the communica-
tion. Considering a communication saving of 50% around 
0.0002 for � needs to be tolerated from the IoT applications 
site for DS1 using � = 0.5 . For DS2 an identical regression 
can be produced by using only 15–20% of the complete com-
munication, which is shown in Fig. 13. Considering these 

Fig. 12  Regression analytics difference for DS1; percentage of communication against difference in RMSE (i.e., � metric) for left � = 0.5 , right 
TEEN

Fig. 13  Regression analytics difference for DS2; percentage of communication against difference in RMSE (i.e., � metric) for left � = 0.5 , right 
� = 0.7

Table 1  Overall performance of Policy 1, 2, 3 and Policy 1 with 
TEEN in SAN for re-construction, aggregation, and predictive analyt-
ics

Re-construction Aggregation 
analytics

Regres-
sion 
analytics

Policy 1 + ++ +
Policy 1 (TEEN) + + – –
Policy 2 – – – − – –
Policy 3 ++ ++ +++
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both outputs, our proposed mechanism is increasing the life-
time of an edge network for predictive analytics tasks.

Overall, Table 1 summarizes the performance of our 
mechanism in re-construction, aggregation, and predictive 
analytics tasks and TEEN model adopted in SAN for Policy 
1. We can conclude that Policy 3 is preferable to be adopted 
for predictive/regression analytics due to the smoothing 
component on the EN. That is, by adopting an exponential 
smoother in EN, the re-constructed values decreases the 
induced variance on the EN site. Hence, the linear regression 
approximation deals with less variance training pairs, which 
leads to a better representative of the regression plane. On 
the other hand, Policy 1 is recommended for re-construction 
or aggregation analytics since it retains the variance of the 
delivered contextual data stream, which plays significant role 
for aggregation functions. However, in the case of TEEN 
adopted in SAN for Policy 1, the reconstruction error is 
higher than the adoption of the exponential smoothing in 
SAN. Finally, Policy 2 exhibits poor performance in all ana-
lytics tasks due to the extreme generalization property of the 
average of the most recent values, especially, in the cases we 
encounter a significant number of undelivered values.

6  Conclusions and future work

We focus on the edge computing paradigm where push-
ing aggregation and predictive analytics to the edge of the 
IoT network allows the complexity of analytics tasks to be 
distributed into many smaller and more manageable pieces 
and to be physically located at the source of the contextual 
information. We introduce a lightweight, distributed, predic-
tive intelligence mechanism that supports communication 
efficient aggregation and predictive modeling within the 
edge network of SANs and ENs. The mechanism is follow-
ing the evolving nature of the multivariate time series (con-
text vectors) based on the idea of locally deciding whether 
to deliver contextual data or not in light of minimizing the 
induced communication overhead and providing high qual-
ity analytics tasks. Based on splitting this intelligence into: 
prediction (through exponential smoothing) and decision 
making at the SANs and context re-instruction at ENs (by 
proposing three policies), we eliminate data transfer at the 
edge of the network, by exploiting the predictability of the 
captured contextual data. We provide fundamental theoreti-
cal analyses of the upper bounds of the reconstructed data 
quality and a comprehensive sensitivity analysis with the 
most important model parameter. We provide comprehen-
sive comparative (theoretical and experimental) assessment 
with baseline solutions found in the literature and experi-
mental evaluation of the proposed mechanism over two 
real multidimensional contextual datasets for aggregation 
and linear regression analytics tasks. We show the benefits 

stemmed from its adoption in edge computing environments 
and experiment with the trade-off between accuracy (qual-
ity) of edge analytics tasks and communication overhead. 
Our mechanism demonstrated its efficiency in supporting 
high quality of edge analytics by tolerating a relatively low 
error in light of decreasing significantly the communication 
overhead in an edge network.

Our future agenda includes investigating intelligent delay 
tolerant mechanisms for further minimizing the induced 
analytics errors in favor of saving communication. Moreo-
ver, future work is focused on certain modifications of our 
mechanism to support advanced analytics tasks including 
outliers detection, non-linear predictive models, and concept 
drifts in multidimensional contextual data streams in edge 
computing environments.
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