
Vol.:(0123456789)1 3

Evolving Systems (2018) 9:95–118
https://doi.org/10.1007/s12530-017-9190-z

ORIGINAL PAPER

Predictive intelligence to the edge: impact on edge analytics

Natascha Harth1 · Christos Anagnostopoulos1 · Dimitrios Pezaros1

Received: 22 December 2016 / Accepted: 29 May 2017 / Published online: 28 August 2017
© The Author(s) 2017. This article is an open access publication

Abstract
We rest on the edge computing paradigm where pushing processing and inference to the edge of the Internet of Things (IoT)
allows the complexity of predictive analytics to be distributed into smaller pieces physically located at the source of the
contextual information. This enables a huge amount of rich contextual data to be processed in real time that would be pro-
hibitively complex and costly to deliver on a traditional centralized Cloud. We propose a lightweight, distributed, predictive
intelligence mechanism that supports communication efficient aggregation and predictive modeling within the edge network.
Our idea is based on the capability of the edge nodes to (1) monitor the evolution of the sensed time series contextual data,
(2) locally determine (through prediction) whether to disseminate contextual data in the edge network or not, and (3) locally
re-construct undelivered contextual data in light of minimizing the required communication interaction at the expense of
accurate analytics tasks. Based on this on-line decision making, we eliminate data transfer at the edge of the network, thus
saving network resources by exploiting the evolving nature of the captured contextual data. We provide comprehensive ana-
lytical, experimental and comparative evaluation of the proposed mechanism with other mechanisms found in the literature
over real contextual datasets and show the benefits stemmed from its adoption in edge computing environments.

Keywords Edge analytics · Predictive intelligence · Evolving data streams · Communication efficiency · Context
prediction · Exponential smoothing

1 Introduction

Edge analytics (Satyanarayanan et al. 2015) is an approach
to efficient contextual data analysis in which computation
is performed on sensing devices (sensors, actuators, con-
trollers, concentrators), network switches or other devices
(concentrators) instead of transmitting the whole data to a
centralized computing environment/Cloud. By sending all

the data from billions of IoT devices to the cloud can over-
whelm the existing infrastructure. To overcome these issues,
Edge Computing (EC) (The mobile-edge computing initia-
tive 2016; Stojmenovic and Wen 2014) is emerging bring-
ing contextual data processing, networking, and analytics
closer to the IoT devices and applications. EC represents a
shift in which intelligence is pushed from the cloud to the
edge, localizing certain kinds of analysis, e.g., aggregation
operators over data streams, regression analyses, information
inference and reasoning, and local decision-making (Yi et al.
2015). This enables quicker response times, unencumbered
by network latency, as well as reduced traffic, by intelli-
gently processing and relaying the appropriate analyzed
data. Pushing analytics algorithms to IoT devices alleviates
the processing strain on enterprise data management as the
number of connected devices and the amount of data gener-
ated and collected increases (Vulimiri et al. 2015; Cheng
et al. 2016).

The original version of this article was revised. The article was
published without Open Choice. The author(s) decided to opt
for Open Choice. The copyright of the article has been changed
to The Author(s) [2017] and the article is forthwith distributed
under the terms of the Creative Commons Attribution.

 * Christos Anagnostopoulos
 christos.anagnostopoulos@glasgow.ac.uk

 Natascha Harth
 n.harth.1@research.gla.ac.uk

 Dimitrios Pezaros
 dimitrios.pezaros@glasgow.ac.uk

1 School of Computing Science, University of Glasgow,
Glasgow G12 8QQ, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s12530-017-9190-z&domain=pdf

96 Evolving Systems (2018) 9:95–118

1 3

1.1 Motivation

In IoT environments contextual information sources are
considered as continuous/evolving data streams (multi-
variate time series), where analytics tasks are applied to
extract statistical dependencies, aggregate analyics, and
infer new knowledge. Context-aware applications, crowd-
sensing applications (Ganti et al. 2011; Lane et al. 2010),
environmental monitoring (Oliveira and Rodrigues 2011),
forest monitoring (Awang and Suhaimi 2007; Zervas et al.
2011; Kang et al. 2013; Anagnostopoulos et al. 2016)
(through unnamed vehicles), agriculture monitoring (Nittel
2009), road traffic monitoring, surveillance, video analytics
(Simoens et al. 2013), marine environment monitoring (Xu
et al. 2014), watershed monitoring systems (Eidson et al.
2009; Nguyen et al. 2010) over large-scale data streams
require efficient, accurate and timely data analysis in order
to facilitate (near) real-time decision-making, data stream
mining, and situational context awareness (Kolomvatsos
et al. 2016).

We abstract an edge network architecture through edge
nodes forming a layer between sensing/actuator nodes and
the cloud. Several Sensing and Actuator Nodes (SAN) are
connected to each Edge Node (EN), e.g., cloudlet, sink
node. Since ENs are located close to the SANs, contextual
data should be intelligently transferred to them in real-time
and in an energy efficient manner. Each SAN performs
measurements and locally determines whether to transfer
these measurements to the ENs or not in light of minimiz-
ing the required communication interaction (overhead) at
the expense of accurate analytics tasks performed on the
ENs. Based on this context, our idea rests on locally pre-
dict whether to disseminate sensed data or not within an
edge network to achieve quality analytics by being com-
munication efficient by exploiting the evolving nature of the
captured contextual data and its reconstruction. However,
this comes at the expense of the quality of analytics tasks.
The fundamental requirement to materialize such predic-
tive intelligence at the edge network is: (1) the autonomous
nature of SANs to locally perform sensing and disseminate
data under analytics quality-driven rules and (2) the capa-
bility of the ENs to locally perform lightweight data recon-
struction and robust analytics tasks.

1.2 Literature review

A baseline approach for materializing analytics tasks on
the cloud is simply all IoT devices to transmit the con-
textual data from all sensing nodes to certain sink nodes
(back-end system). This has been realized in many previ-
ous studies (McConnell and Skillicorn 2005; Tulone and
Madden 2006; Goel and Imielinski 2001; Anagnostopoulos

and Triantafillou 2014, 2015, 2017a, b). In this case, ana-
lytics tasks are carried out by the back-end system on the
cloud only, and not by the SANs or ENs at the edge of
the network, despite their increasing computing capacity.
Evidently, this solution, while practical, has many disad-
vantages, such as a high energy consumption incurred by
transmitting the raw data to the cloud, the need for wire-
less link bandwidth, and high latency (Stojmenovic and
Wen 2014). In the era of EC, instead, the desiderata are:

– push the analytics tasks close to the contextual data
sources, i.e., to the ENs, which have to follow the evo-
lution of the contextual data streams;

– push intelligence to SANs and ENs to collaboratively
support edge analytics. ENs have to intelligently com-
municate with the SANs in an energy-efficient way,
since communication efficiency is crucial to the pro-
longed lifetime of the edge network to support edge
analytics.

We have distinguished two basic methodologies for edge
analytics.

– Distributed analytics This methodology is based on
the observation that the SANs and ENs create the pos-
sibility of analyzing and building (training) predictive
analytics models in a distributed way. In this class of
edge analytics, e.g., Simonetto and Leus (2014), Kejela
et al. (2014) and Gemulla et al. (2011), contextual data
and/or model’s meta-data are circulated within the edge
network, which evidently requires energy for data and
meta-data dissemination adding extra communication
overhead.

– Group-based centralized analytics This methodol-
ogy refers to a group-based communication and single
localized computation/processing scheme e.g., Anag-
nostopoulos et al. (2012, 2014, 2016); Anagnostopou-
los and Hadjiefthymiades (2014); McConnell and Skil-
licorn (2005); Papithasri and Babu (2016); Manjeshwar
and Agrawal (2001). Specifically, an EN is responsible
for a group of SANs and maintains a set of historical
contextual data of each SAN within the group. Such
localized method is communication efficient due to the
reduced length of routing path from SANs to the cloud.
To support such type of edge analytics, energy is con-
sumed on communication, i.e., sending and receiving
data from SANs to the EN, and computation, i.e., ENs
are processing local data. However, since the cost of
local processing and analytics tasks is nontrivial, we
should take into account the trade-off between intra-
edge-network communication and localized computa-
tion (Jiang et al. 2011).

97Evolving Systems (2018) 9:95–118

1 3

Both above mentioned basic methodologies are required to
be efficient to support edge analytics in terms of computa-
tion and communication. The computational efficiency of
the analytics tasks is a challenging research area, where
recently distributed and large-scale statistical and machine
learning algorithms emerge, e.g., Bottou et al. (2017); this
is beyond the scope of this paper.

In this work, we depart from the mechanism of the selec-
tive data delivery (Jiang et al. 2011) and provide a gener-
alization of this mechanism to be adopted on EC environ-
ments with the aim to support communication-efficient edge
analytics. Our generalized mechanism relies on the principle
of bounded-loss approximation at the ENs by the context
prediction at the SANs. SANs locally decide on delivering
contextual data to ENs based on local predictions, while ENs
locally re-construct the contextual data given an approxi-
mation (re-construction) error bound. This error bound is
controlled by the SANs.

Evidently, there is a trade-off, that we should pay atten-
tion, between contextual data communication and accu-
racy of analytics due to approximation/re-construction. On
the one hand, by selectively transmitting contextual data
increases the edge network life time and the available band-
width, since less data are circulated. On the other hand, this
comes at the expense of the quality of the predictive analyt-
ics tasks, due to local data re-construction at the ENs.

1.3 Research objectives and contribution

The research objectives of our generalized mechanism are:
(1) ENs employ a mechanism to re-construct the undelivered
contextual data by following the evolving nature of the data
streams; (2) SANs are equipped with real-time context pre-
diction (time series forecast) and data delivery decision. To
secure an upper bound on the re-construction error at ENs
(which plays a significant role in the quality of the aggrega-
tion and predictive analytics tasks), SANs control their local
prediction/forecast error based on the principle of selective
data delivery. This is achieved by splitting this predictive
intelligence to SANs and ENs: the former nodes locally pre-
dict the expected data and locally decide on their delivery
given a prediction error bound; the latter nodes locally re-
construct the undelivered given a controlled re-construction
error bound by the SANs. The mechanism is applied when
SANs need to communicate with ENs and when ENs need
to re-construct the un-delivered data before proceeding with
the scheduled analytics task. Should the IoT applications
tolerate certain quality in the derived analytics tasks, e.g.,
prediction accuracy, model fitting approximation error and
misclassification error, our mechanism is proved to be com-
munication efficient as shown in our Sect. 5.

To the best of our knowledge this is the first generalized
mechanism that explores the potentials of predictive intel-
ligence on the EC paradigm over evolving data streams. The
key contributions in this paper are:

– We present a distributed, communication efficient predic-
tive intelligence mechanism for local prediction and local
re-construction within an edge network;

– We provide the theoretical prediction and re-construction
error boundaries and their relationship;

– We provide a comprehensive sensitivity analysis of the
basic parameters of our model and showcase the trade-off
between accuracy (quality) of edge analytics (focusing
on aggregation and multivariate linear regression) with
communication overhead;

– We provide a comparative theoretical and experimental
assessment with the selective data delivery mechanism
(Manjeshwar and Agrawal 2001) where the EN neighbor-
hood’s formation is adopted from Papithasri and Babu
(2016) in light of re-construction, aggregation, data pre-
diction errors and communication overhead.

– We provide computational complexity analysis of our
mechanism, which is higly computational efficient with
O(d) prediction and re-construction time over d-dimen-
sional contextual data streams, and its relationship to the
Autoregressive Integrated moving Average model (Muth
1960).

– We experiment with real contextual data from sensors
and actuators networks.

1.4 Organization

The paper is organized as follows: in Sect. 2 we present
our rationale and basic concept of the edge predictive intel-
ligence formulated by certain definitions, preliminaries,
and the fundamental metrics for evaluating our mechanism.
Section 3 reports on the predictive intelligence split to the
SAN and EN perspectives elaborating on certain policies
for data delivery and re-construction. In Sect. 4 we provide
a theoretical analysis of the prediction and re-construction
error boundaries, the computational complexity of our
mechanism and its relation to the linear forecasting model
Autoregressive Integrated moving Average model (Muth
1960). In Sect. 5 we provide a sensitivity analysis of our
mechanism with the basic model parameters, a theoretical
and experimental comparative assessment with the selective
data delivery mechanism (Manjeshwar and Agrawal 2001)
and showcase the performance of the proposed mechanism
with two real contextual datasets. Finally, Sect. 6 concludes
the paper with future research agenda on edge analytics.

98 Evolving Systems (2018) 9:95–118

1 3

2 Edge predictive intelligence

2.1 Rationale

We consider an edge network with connected ENs forming
an arbitrary topology. Each EN j is connected with nj SANs
in a tree-like topology with root the EN and leaves its SANs
as shown in Fig. 1. A SAN i is connected with its unique
EN j and j = {1,… , nj} denotes the SAN set of the EN j,
i.e., i ∈ j.

A SAN i at every time instance t = 1, 2,… senses a
d-dimensional row vector �t = [x1t,… , xdt] ∈ ℝ

d of con-
textual parameters, like temperature, humidity, sound, wind
speed, air pollutant chemical compounds, etc. Hereinafter,
we refer to � as context vector. The SAN i can communicate
with its EN j in the edge network by transferring context
vectors. To materialize the proposed predictive intelligence,
the SAN i is equipped with a context vector prediction (time
series forecasting) algorithm fi(�t−1,… , �t−N) , which uses
the recent past N ≥ 1 sensed context vectors stored in a slid-
ing window of size N to predict the context vector �̂t at
time instance t. That is:

and window = (�t−N ,… , �t−1) . The SAN i, after sensing
the context vector �t at time t, locally predicts the predicted
context vector �̂t , thus, the local prediction error is:

where ����� =
�∑d

k=1
x2
k

�1∕2

 is the Euclidean norm of � and

d−1∕2 is a normalization factor to ensure that et ∈ [0, 1] ,
given that the context vector � ∈ [0, 1]d is scaled in the
d-dimensional unit cube, i.e., each dimension xk, k = 1,… , d

(1)�̂t = fi(�t−1,… , �t−N) = fi()

(2)et = d
−

1

2 ||�t − �̂t||

is normalized (ranges) in [0, 1]. Such prediction capability
yields the SAN able to decide whether to send context vec-
tors � to its EN j or not for further processing. SAN i relies
on a �-based context vector delivery decision rule:

– Case 1 If the predicted �̂t differs from the actual sensed
�t with respect to a decision threshold � ∈ [0, 1], i.e.,
et > 𝜃 , then the SAN i sends the actual �t to the EN j.

– Case 2 Otherwise, i.e., et ≤ � , the SAN i does not send
�t to the EN j. In this case, the EN j is responsible for
reconstructing a context vector locally for further pro-
cessing.

In Case 1, the EN j receives the transmitted context vec-
tor �t from SAN i. In Case 2, the EN j is equipped with a
re-construction function

of the recent M ≥ 1 context vectors � from a sliding win-
dow = (�t−M ,… , �t−1) to locally predict (reconstruct) the
undelivered vector �t , notated by �̃t through historical con-
text vectors. Specifically, the context vectors � in the EN’s
sliding window j correspond to either the actual received
context vectors � from the SAN i (Case 1) or the past locally
re-constructed context vectors �̃ from gj (Case 2), i.e.,

The re-construction error (difference) at the EN j is then:

The sliding window at SAN i contains only actual (sensed)
context vectors � , while the sliding window at EN j contains
either actual context vectors � (received from SAN i) or re-
constructed context vectors �̃ locally generated by EN j. The
difference (norm) between the predicted context vector �̂
on SAN i and the reconstructed context vector �̃ at EN j is
||�̂ − �̃|| = ||� − �|| , with � = �̃ − � and � = �̂ − �. This dif-
ference is zero when both the predictor and the re-construc-
tor on SAN i and EN j, respectively, result in the same error.
Overall, when et > 𝜃 , the reconstruction difference at = 0 ,
while when et ≤ � , the reconstruction difference at ≥ 0 . For
an analysis on the reconstruction error and prediction error,
please refer to Sect. 4.

Given a decision threshold � ∈ (0, 1) at SAN i, we study
the performance of certain predictive analytics tasks on
EN j. We qualitatively derive sufficient conditions for
this and reveal that the decision is a function of both the
desired error bound and the correlation among the sensed

(3)�̃t = gj(�t−1,… , �t−M) = gj()

�t =

{
�t if et > 𝜃 (Case 1)

�̃t = gj(), otherwise; (Case 2)

(4)at =

{
0 Case 1,

||�t − �̃t|| Case 2.

SAN i

EN j

EN
EN

Cloud

Cloud

SAN

SAN

Predictive analytics

Aggregation analytics

IoT Sensors & Actuators

IoT Edge network

Fig. 1 The edge network with the ENs and the corresponding SANs
provide communication efficient predictive modeling and analytics to
end-users, analysts, and to IoT applications

99Evolving Systems (2018) 9:95–118

1 3

contextual data values. When the decision threshold is
very tight or the correlation is not significant, the SAN i
always has to send its context vectors to the EN j. Due to
the characteristics and inherent dynamics of the SANs’
contextual data, when the underlying data streams distri-
bution evolves over time, prediction / forecasting tech-
niques may not work efficiently for a set of less predictable
contextual data. Moreover, there might be correlations
among contextual data from neighboring SANs (data
locality in j), thus, the EN j is capable of learning those
statistical correlations in a communication-efficient way,
as will be shown later. We provide certain definitions and
preliminaries before elaborating on our distributed intel-
ligence mechanism.

2.2 Definitions and preliminaries

Definition 1 (Sliding window) A sliding window is
specified by a fixed-size temporal extent N > 0 (‘horizon’)
by appending new context vectors and discarding older ones
on the basis of their appearance.

For instance, at time t, a sliding window is a sequence
of all context vectors observed from t − N to t − 1 , i.e.,
 = (�t−N , �t−N+1,… , �t−1) . As an example, an analytics
query over could be: ‘continuously return all context vec-
tors of the past hour, i.e., N=60 min’. The sliding window is
the most widely used in continuous aggregation and fusion
analytics functions (Dallachiesa et al. 2015; Patroumpas and
Sellis 2011; Abadi et al. 2003, 2005).

The aggregation analytics tasks are evaluated over the
contents of a window . The aggregated results change
over time as the window slides. We use the classification
from Gray and Chaudhuri (1997) that divides aggregation
functions into three categories: distributive, algebraic, and
holistic. Let , 1 , and 2 be windows. An aggregation
analytics function h ∶ → ℝ

d is distributive if h(1 ∪2)
can be computed from h(1) and h(1) for all 1 , 2. An
aggregation analytics function h is algebraic if there exists
a ‘synopsis function’ � such that for all , 1 , and 2 : (1)
h() can be computed from �() ; (2) �() can be stored
in constant memory; and (3) �(1 ∪2) can be computed
from �(1) and �(2) . An aggregation analytics function
h is holistic if it is not algebraic. Among the standard aggre-
gates, MAX and MIN are distributive, AVG is algebraic, since
it can be computed from a synopsis containing SUM and
COUNT, and QUANTILE, MEDIAN are holistic.

Example 1 We can define the AVG and MAX ana-
l y t i c s f u n c t i o n s : havg() =

1

N

∑t

k=t−N
�k a n d

hmax() = [max{x1k},… , max{xdk}]
t
k=t−N

 , respectively.

In our case, the aggregation analytics function h is run-
ning on EN j for each sliding window containing M
received and/or re-constructed context vectors from the
SAN i ∈ j depending on Case 1 and Case 2. Note that such
functions are built-in constructs in IoT-application specific
continuous analytics queries.

Example 2 The aggregation analytics query ‘every minute
find the average temperature and the maximum humidity
over context streams ‘temperature’ and ‘humidity’ collected
during the past hour’ in Continuous Query Language (Arasu
et al. 2006) involving AVG and MAX operators in a sliding
window ,N = 60min can be expressed as follows:

SELECT AVG(temperature), MAX(humidity)
FROM Context Streams [RANGE 60 MINUTES
SLIDE 1 MINUTE]

Note, typical progressive aggregates like SUM, MIN and
AVG requires constant time O(1) per value since there is
no need to scan the entire window (Patroumpas and Sellis
2006, 2010). However, more advanced aggregation analyt-
ics functions like outliers detection or concept drift detec-
tion in a sliding window require multiple scanning of the
 . Aggregation analytics functions can be also combined
on a EN to infer certain events that might trigger decision
making.

Example 3 Consider the evaluation of a situational context
(localized event stream processing) for the past 10 min as the
activation of the following rule with conjunctive predicates
associated with AVG and MAX aggregation analytics func-
tions over ‘temperature’ and ‘wind-speed’ sliding windows
from two corresponding SANs:

EVENT := IF AVG(temperature) ≥ 90 AND
MAX(wind-speed) ∈ [10,20] WITHIN 10 min-
utes THEN ACTION is ‘warning’

Definition 2 (Aggregation analytics difference) Consider
an EN j and its SAN i ∈ j . The aggregation analytics dif-
ference �i between the analytics result on EN j derived from
aggregation function h over the window in the EN j and
the actual analytics result derived from h over the window
∗ , which contains only the actual context vectors from
SAN i to EN j (ground truth) is:

The aggregation analytics difference �i denotes how
much the aggregation results over the window on ED j
with context vectors � differ from the aggregation results
over the window ∗ with context vectors � , should SAN
i have sent all context vectors to ED j. Obviously, if we
encounter only the Case 1, then �i = 0,∀i ∈ j . Now,

(5)�i =||h() − h(∗)||.

100 Evolving Systems (2018) 9:95–118

1 3

since we allow SAN i to decide on sensing context vec-
tors w.r.t. � and EN j being able to re-construct undelivered
context vectors, then �i ≥ 0 . The concept is how much an
IoT application tolerates this difference in analytics results
in light of communication efficiency in the edge network.

One of the most important predictive models for predic-
tive analytics is the multivariate linear regression approxi-
mation (Kuhn and Johnson 2013). Consider an EN j and
its SAN i, i ∈ j . The SAN i generates context vectors
�t = [�in

t
, yout

t
] ∈ ℝ

d , represented as input–output pairs
(�in

1
, yout

1
),… , (�in

T
, yout

T
) ∈ ℝ

d−1 ×ℝ , T > 0 . The EN j either
receives or re-constructs context vectors from SAN i, i.e.,
�t = [�in

t
, zout

t
] ∈ ℝ

d . The objective of a linear regression
analytics task on EN i is to estimate a coefficient vector
�i ∈ ℝ

d , which interprets the statistical dependency of
input �in with output zout which minimizes the objective
function:

where � is a regularization parameter. In our mechanism,
the coefficient vector �i approximates the actual coefficient
vector �∗

i
 , which refers to the statistical dependency of the

actual context vectors � in SAN i, due to Case 2 w.r.t. � .
Obviously, if Case 2 never occurs, then �i ≡ �

∗
i
 , but then

SAN i sends all context vectors to EN j, where the latter
trains the linear regression model. In other words, the actual
coefficient vector �∗

i
 minimizes the objective function:

Example 4 Consider SAN i with context vector � = [x1, x2, x3]
referring to the contextual parameters humidity, wind speed
and temperature. The corresponding EN j is responsible for
learning the statistical dependency �i between temperature
(dependent variable yout = x3) with humidity and wind speed
(independent variables �in = [x1, x2]).

Moreover, the regression analytics task on EN j is
applied from context vectors coming from different SANs.

Example 5 Consider the SAN i and SAN � with i,� ∈ j
sensing context vectors �i = [xi1, xi2] and �� = [x�1, x�2, x�3],
respectively. The EN j is responsible, e.g., for learning the
linear dependency yout = xi2 and �in = [x�1, x�2] between the
contextual parameters from those SANs in j.

Given a set of M actual context vectors �m = [�in
m
, yout

m
],

m = 1,… ,M , the predicted outputs ẑout
m

 provided by the
approximated regression model at EN j is ẑout

m
= (�in

m
)⊤�i,

(6) (�i) = min
�i∈ℝ

d

1

T

T∑

t=1

(
zout
t

− (�in
t
)⊤�i

)2
+ 𝜆||�i||2

(7) (�∗
i
) = min

�
∗
i
∈ℝd

1

T

T∑

t=1

(
yout
t

− (�in
t
)⊤�∗

i

)2
+ 𝜆||�∗

i
||2

thus, and the corresponding root mean squared error
(RMSE) is:

Similarly, the predicted outputs ŷout
m

 provided by the actual
regression model �∗

i
 , i.e., trained by the actual context vec-

tors � , is ŷout
m

= (�in
m
)⊤�∗

i
 and the corresponding RMSE is:

Definition 3 (Regression analytics difference) Consider an
EN j and its SAN i ∈ j.The regression analytics differ-
ence �i is defined as the absolute difference of the RMSE �i
derived from the approximated regression line (coefficient
vector �i) and the RMSE �∗

i
 derived from the actual regres-

sion line (actual coefficient vector �∗
i
) trained by the actual

SAN i’s context vectors:

The RMSE �∗
i
 is the linear regression error we obtain

over the actual training pairs (�in, yout) since �∗
i
 is the

actual regression coefficient. However, since EN j may
not receive the actual pairs all the time due to Case 2, then
the derived regression coefficient �i results to a RMSE
�i ≠ �∗

i
 . We require to tolerate a low �i difference by being

communication-efficient in the edge network.
Statistical learning analytics, like the discussed linear

regression analytics, that have local computation are suited
for the EC paradigm. Therefore, the regression learning
task should be iterative in nature, which processes a single
training pair at a time. Since the computation is carried out
on the EN, the training algorithm should be lightweight
and robust. The optimization algorithm suitable for these
cases are based on the method of online learning (Bot-
tou 2010) and the Stochastic Gradient Descent (SGD)
is the most prominent among them. In this context, the
EN j incrementally updates the coefficient vector �i,t at
time instance t by moving a small step size (learning rate)
� ∈ (0, 1) along the negative gradient of the minimization
function in Eq. (6) as shown in Algorithm 1. The training
algorithm converges when there is no significant improve-
ment of the �t coefficient, i.e., when ||Δ�i,t|| ≤ � , given a
convergence threshold 𝛿 > 0.

(8)𝜖i =

(
1

M

M∑

m=1

(
yout
m

− ẑout
m

)2
)1∕2

(9)𝜖∗
i
=

(
1

M

M∑

m=1

(yout
m

− ŷout
m
)2

)1∕2

(10)�i =|�i − �∗
i
|.

101Evolving Systems (2018) 9:95–118

1 3

Input: Learning rate η, convergence threshold δ
Output: Regression coefficient wi

while ‖∆wt‖ > δ do
Get either actual context vector xt from SAN i or locally re-construct x̃t;
Set the training pair ut = (uin

t , zoutt);
Update wi,t+1 = wi,t − η ∂J

∂wi,t

end
Algorithm 1: Stochastic Gradient Descent Algorithm in EN j for SAN i.

Hence, given a decision threshold 𝜃 > 0 , our aim is to
examine the impact of our predictive intelligence mechanism
on (1) the re-construction difference a, (2) the aggregation
analytics difference � , and (3) the regression analytics dif-
ference � in light of communication efficiency by saving
significant network bandwidth.

3 Distributed predictive intelligence

The intelligence of the proposed mechanism is split into two
parts: (1) the SAN’s intelligence with respect to the local
prediction algorithm fi following the evolving nature of the
data streams and (2) the EN’s intelligence with respect to the
local re-construction algorithm gj that supports the analytics
tasks introduced in Sect. 2.2.

3.1 Sensor–actuator node intelligence

Consider a SAN i and let us elaborate on the first part. Very
complex prediction models are not practical in the discussed
EC paradigm due to the limited (energy-constrained) com-
putational capacity of the SANs. Fortunately, simple linear
predictors are sufficient to capture the temporal correlation
of realistic contextual data as shown by previous studies
(Chu et al. 2006; Chowdappa et al. 2015; Anagnostopoulos
et al. 2010). A sliding window-based linear predictor is one
of popular approaches to predicting the future based on past
N measurements.

In this work, we are seeking to reduce the computa-
tional power for prediction and to use a small fraction
of the SAN’s computing power by adopting a predictive
function with low complexity and computational effort.
Multivariate exponential smoothing, used for time series
forecast, is an ideal predictor adopted in our case, as its
computational complexity is O(d) in a d-dimensional space
(elaborated in Sect. 4). A simple exponential smoothing
weighs the current sensed context vector �t and the historic
context vectors (Durbin and Koopman 2012). This simple
smoothing function is adopted as the prediction function
fi for the �-based decision making.1

1 Double exponential smoothing (Holt–Winters time series smooth-
ing) could be adopted dealing with the same computational complexity.

At each time t, a smoothed context vector �t is calcu-
lated by using the current sensed context vector �t and the
previous smoothed vector �t−1 , i.e.,

initializing with �0 = �0 . The relationship between the his-
tory of the measured data and the current data is represented
by � ∈ [0, 1] . A higher � denotes more importance to the
current values and less importance to the historic values.
Normally, � = 0.7 (Durbin and Koopman 2012). The calcu-
lated smoothed vector �t−1 = [s1,t−1,… , sd,t−1] refers to the
predicted context vector �̂t , that is:

with the window = (�t−1) at SAN i containing only the
recent smoothed context vector. Hence, the complexity of fi
is O(d); we require d computations for smoothing the �t in
Eq. (11) at time instance t. The forwarding decision of the
actual �t to the EN j depends whether the prediction error
et = ||�t−1 − �t|| exceeds the threshold �.

3.2 Edge node intelligence

On the other side, the EN j, at time instance t either
receives �t (Case 1) or nothing (Case 2). In Case 1, the
EN j simply inserts the delivered �t into its correspond-
ing window (which is associated with the SAN i ∈ j)
discarding the oldest context vector, i.e., �t = �t . In Case 2,
the EN j encounters an undelivered vector problem, since
there is nothing to push in the sliding window . Such
undelivered context vectors must be re-constructed with
the available context vectors � reside currently in the
at EN j. In order to achieve this, we propose three re-
construction policies, i.e., variants of the re-construction
function gj() . We should stress that, we require a compu-
tationally efficient re-construction function on EN j, thus,
being relatively a small overhead compared to the analyt-
ics tasks. Those policies are introduced below.

Policy 1 This policy, in Case 2, uses the most recent con-
text vector from at EN j, i.e., the first element of the slid-
ing window, as the re-constructed context vector. Therefore,
the re-constructed context vector is inserted into the and
the oldest context vector from the window is discarded. Note

(11)�t = ��t + (1 − �)�t−1

(12)�̂t = fi() = �t−1,

102 Evolving Systems (2018) 9:95–118

1 3

that, after this insertion, there are two duplicates of the most
recent context vector in the window. There might be also
the case where the entire window (of length N) would have
contained the same context vector if the SAN i had not sent
a context vector in the last N time instances. This denotes
that, during this recent history of N time instances, the maxi-
mum difference of the sequentially sensed context vectors
measured on SAN i is less that � . In this case, it is redundant
to send similar context vectors to EN j given a threshold � .
In Case 1, the EN j simply inserts the delivered �t into the
window and discards the oldest context vector. Policy 1 at
EN j is provided by the Algorithm 2.

Policy 3 This policy applies the exponential smoothing
algorithm (discussed above) for re-constructing the undeliv-
ered context vector in the EN j. In Case 1, the EN j simply
inserts the delivered �t into the window and discards the
oldest context vector. Moreover, after this insertion, the EN
j calculates the smoothing context vector �′

t
 based on the

delivered �t and the previously calculated smoothed context
vector, i.e.,

In Case 2, this policy re-constructs the �̃t with the recently
smoothed context vector ��

t−1
 (exploiting the context vector

�
�
t
= ��t + (1 − �)��

t−1
.

Data: Sliding windows Wij at EN j for each connected SAN i.
Result: Reconstruction context vectors at EN j for each connected SAN i
for SAN i ∈ Nj do

if ei,t > θi then
SAN i sends xi to EN j;
ut = xt ;

else
/* reconstruction by using the last context vector */
ut = ut−1;

end
/*wodniwgnidilsehtetadpu*/

Wij = Wij \ {ut−N} ;
Wij = Wij ∪ {ut} ;

end
Algorithm 2: Algorithm of Policy 1.

delivery in Case 1) and discards the oldest context vector
from the window. Note that, the series of the smoothed vec-
tors �′

t
 in EN j is not the same with the series of the smoothed

vectors �t in SAN, since the vectors ��
t−1

, ��
t−2

,… are calcu-
lated by the �t−1, �t−2,… vectors from the window i on
EN j. Moreover, in Case 2, after the re-construction of �̃t
with ��

t−1
 , the smoothed context vector for time instance t is

��
t
= 𝛼�̃t + (1 − 𝛼)��

t−1
= �

�
t−1

 . Overall, Policy 3 at the EN j
has as follows:

Policy 2 This policy, in Case 2, re-constructs the unde-
livered context vector �̃t as the average vector of the cur-
rent context vectors in the window , i.e.,

This re-constructed value is then inserted into the window
discarding the oldest one. In Case 1, the EN j simply inserts
the delivered �t into the window and discards the oldest con-
text vector. Policy 2 at EN j is provided by the Algorithm 3.

�̃t = gj() =
1

N

t−1∑

k=t−N

�k.

Data: Sliding windows Wij at EN j for each connected SAN i.
Result: Reconstruction context vectors at EN j for each connected SAN i
for SAN i ∈ Nj do

if ei,t > θi then
SAN i sends xi to EN j;
ut = xt ;

else
/* reconstruction based on the local current average (centroid)

/*rotcevtxetnoc

ut = 1
N

∑t−1
k=t−N uk;

end
/*wodniwgnidilsehtetadpu*/

Wij = Wij \ {ut−N} ;
Wij = Wij ∪ {ut} ;

end
Algorithm 3: Algorithm of Policy 2.

103Evolving Systems (2018) 9:95–118

1 3

Policy 3 at EN j is provided by the Algorithm 4.

(13)
{

��
t
= 𝛼�t + (1 − 𝛼)��

t−1
, Case 1

�̃t = �
�
t−1

and ��
t
= �

�
t−1

, Case 2.

the evolution of the difference of the predicted context
vector �̂t at SAN i with the reconstructed context vector
�̃t at EN j based on Case 2; this depends on the decision
threshold � . Then, we obtain that:

Based on the definition of this time series, we identify two
cases corresponding to the predicted and reconstructed vec-
tors conditioned on the event {et ≤ �}:

1. Case A: �̂t = �̃t . In this case, the predicted context vec-
tor at SAN i is the same as the reconstructed context
vector at EN j, e.g., SAN and EN are adopting the same
algorithms for prediction and reconstruction.

2. Case B: �̂t = �̃t + �t , where �t is the vector discrep-
ancy of the predicted context vector and the recon-
structed context vector, given that et ≤ � at SAN i, with
�[||�||] < ∞.

Consider the Case A.

Proposition 1 The expected reconstruction difference �[a]
at ENs is bounded by the expected prediction error �[e] at
SANs, i.e., �[a] ≤ �[e].

Proof The expected reconstruction difference �[a] of the
reconstruction difference in Eq. (4) is analyzed as follows:

where P(e ≤ �) is the probability of Case 2, where no con-
text vector is delivered from SAN i to EN j, w.r.t., � , pi(e) is

(14)𝜉t =

{
0, et > 𝜃

||�̂t − �̃t||, et ≤ 𝜃

(15)

�[a] =�[||� − �̃|||e ≤ 𝜃]P(e ≤ 𝜃) = �[||� − �̂|||e ≤ 𝜃]P(e ≤ 𝜃)

=�[e|e ≤ 𝜃]P(e ≤ 𝜃) = �
𝜃

0

epi(e)de ≤ �[e]

Data: Sliding windows Wij at EN j for each connected SAN i.
Result: Reconstruction context vectors at EN j for each connected SAN i
for SAN i ∈ Nj do

if ei,t > θi then
SAN i sends xi to EN j;
/* updating the local smoothed context vector with the received

/*rotcevtxetnoc
s′t = αxt + (1− α)s′t−1;

else
/* reconstruction by one-step ahead forecasting */
ut = s′t−1;

/*rotcevdehtoomslacolehtetadpu*/
s′t = s′t−1;

end
/*wodniwgnidilsehtetadpu*/

Wij = Wij \ {ut−N} ;
Wij = Wij ∪ {ut} ;

end
Algorithm 4: Algorithm of Policy 3.

4 Theoretical analyses

4.1 Prediction error and reconstruction difference
analysis

In this section, we analyze the relation of the local predic-
tion error et at SAN i and its corresponding re-construction
difference at at EN j provided by a re-construction algorithm
(policy) gj() . The aim of this analysis is to demonstrate the
evolving feature of our distributed mechanism to follow the
contextual data streams on the SANs and then to decide on
their delivery or not to their corresponding ENs. Specifically,
we analyze the evolution of the local conditional expecta-
tion of the prediction error �[et|et ≤ �] conditioned on the
event (Case 2): {et ≤ �} and its relation with the expected
reconstruction difference �[at] . The idea is that our mecha-
nism ‘remotely’ monitors the evolution of the reconstruction
difference in EN j by experiencing a local prediction error
at SAN i. This provides us with further insight on the upper
bound of the reconstruction difference, based on the local
prediction (forecasting) error. The derived knowledge of this
relation provides us further insights on the adopted policy
(Policy 1, 2, or 3) at the EN j, thus, being able to adapt to
different policies based on the evolution of the data streams.

Let us focus on the pair of nodes: SAN i and EN j, where
SAN i is adopting a prediction algorithm �̂ = fi(i) and
EN j is adopting a reconstruction algorithm �̃ = gj(j) .
Furthermore, consider the time series �t , which monitors

104 Evolving Systems (2018) 9:95–118

1 3

the probability distribution of the local prediction error at
SAN i. □

In Case A, where the predicted vector at SAN i is the
same as the reconstruction vector at EN j, the expected
reconstruction difference is bounded by the expected pre-
diction error. Hence, the evolution of the reconstructed
context vectors at the EN j are known to the SAN i, where
the latter produces those vectors from its local predictor
fi . This means that the SAN i knows the upper bound of
the expected reconstruction error that the EN j will experi-
ence, thus, can adjust the decision threshold � to satisfy the
accuracy needs of the launched IoT analytics application.

Note that, the expected prediction error �[e] can be
incrementally approximated at the SAN i by adopt-
ing the recursive approximation of the error mean ẽt as:
ẽt = ẽt−1 +

1

t
(et − ẽt−1) for a large t > 0 . Consider now the

Case B.

Proposition 2 The expected reconstruction difference �[a]
at ENs is bounded by the expected prediction error �[e] at
SANs and the expectation of � , i.e., �[a] ≤ �[e] + �[�].

Proof The expected reconstruction difference �[a] of the
reconstruction difference in (4) is:

In this case, the expected reconstruction difference is
bounded at least by the expected prediction error, known
at SAN i and the conditional expectation discrepancy
�[||�||||e ≤ �]P(e ≤ �) derived by the intrinsic difference
of the reconstructed and predicted vectors. This conditional
expectation refers to the expected value �[�] of the time
series �t defined in Eq. (14). That is:

 □

The evolution of the times series �t can be monitored in
a training phase where the EN j sends the reconstructed
vectors �̃t to the SAN i. After this training phase, the SAN i
is aware of the expected discrepancy by approximating the
mean of the time series 𝜉t = 𝜉t−1 +

1

t
(𝜉t − 𝜉t−1) . Based on

this learned evolution of the time series � , the SAN i knows
the upper bound of the expected reconstruction error that

(16)

�[a] = �[||� − �̃|||e ≤ 𝜃]P(e ≤ 𝜃) = �[||(� − �̂) + (�̂ − �̃)|||e
≤ 𝜃]P(e ≤ 𝜃) ≤ �[||� − �̂|||e ≤ 𝜃]P(e ≤ 𝜃) + �[||�||||e

≤ 𝜃]P(e ≤ 𝜃) =

𝜃

�
0

epi(e)de + �[||�||||e ≤ 𝜃]P(e ≤ 𝜃)

≤ �[e] + �[||�||||e ≤ 𝜃]P(e ≤ 𝜃)

�[𝜉] = �[||�̂ − �̃|||e ≤ 𝜃]P(e ≤ 𝜃) = �[||�||||e ≤ 𝜃]P(e ≤ 𝜃).

the EN j will experience, thus, can adjust the application
specific decision threshold � . Moreover, during this train-
ing phase, the SAN i can send the pairs (�t, �̂t) to the EN j
to locally approximate both the expected prediction error
and the expected discrepancy. In this context, the EN j can
adjust the current reconstruction policy (Policy 1, 2, or 3) by
selecting the policy that corresponds to the minimum �[a] .
In Sect. 5, we experiment with the proposed policies adopted
by EN j to demonstrate the applicability of our model.

4.2 Predictability analysis and computational
complexity

The adopted prediction and reconstruction algorithms (fi
and gj) are based on the Exponentially Weighted Moving
Average (EWMA) for one-step ahead prediction and recon-
struction vectors �̂t+1 and �̃t+1 , respectively (at SAN i and EN
j). That is, given a multivariate contextual vector time series
�t, �t−1,… , the forecast on SAN i (and the reconstruction in
EN j) has as follows:

The recursion in Eq. (17) requires O(d) space, i.e., only the
d-dimensional context vector �̂t is stored for predictions,
while the prediction requires O(d) time. Now, we could re-
write Eq. (17) to demonstrate its strong relation with the
linear Auto-Regression model (AR) and its prevalence in
terms of predictability and computational complexity. It will
be shown that the adopted EWMA consists of two parts:
the AR model and the Moving Average (MA) model (Box
and Jenkins 1990). Specifically, let us denote the one-step
ahead forecast/prediction error vector �t = �t − �̂t. Note, we
analyze here the forecast error in the SAN i. Similar reason-
ing proceeds with the reconstruction difference in the EN
j, where, as proved by Propositions 1 and 2, the expected
reconstruction difference is bounded by the expected pre-
diction error. Hence, we proceed with the dynamics of the
forecasting on the SAN i.

By substituting in Eq. (17) the prediction error, we obtain:

thus, the change in times series is expressed by

By taking �t to be a time series of independent (�, �2
e
�)

variables, we observe that we deduce from the adopted
EWMA recursion in Eq. (17) the simple Autoregressive
Integrated Moving Average model (ARIMA) in Eq. (18).
ARIMA model (Box and Jenkins 1990) is a generalization of
an autoregressive moving average model fitted to the �t time

(17)�̂t+1 = (1 − 𝛼)

∞∑

𝜏=0

𝛼𝜏
�t−𝜏 = (1 − 𝛼)�t + 𝛼�̂t

�t − �t = (1 − �)�t−1 + �(�t−1 − �t−1),

(18)Δ�t =�t − ��t−1.

105Evolving Systems (2018) 9:95–118

1 3

series to predict future context vectors in the series, where
vectors show evidence of non-stationarity.

The derived ARIMA model in our case, consists of two
parts: the linear autoregressive (AR) part and the moving
average (MA) part. The AR part involves regressing the vari-
able on its own lagged/past contextual vector. In our case,
the lag p = 1 . The MA part involves modeling the error
term as a linear combination of error terms occurring con-
temporaneously and at one time instance in the past. The
predictions adopted by the EWMA (i.e., ARIMA with only
one past context vector; p = 1) produced by the recursion
in Eq. (17) are the minimum mean square error predictions
(Muth 1960) by minimizing the expected squared prediction
error: �

[
||�t − �̂t||2

]
 . Moreover, by adopting the multivari-

ate AR(p) with lag p > 1 , i.e., storing more than one past
context vectors �t−1,… , �t−p to proceed with �̂t forecasting,
then the space complexity is O(dp). In this case, in terms of
prediction on SAN i, the computational time for calculat-
ing the linear autoregressive coefficients is O(d2p) based on
the ordinary least squares (OLS) auto-regressive estimation.
Given some evidence of non-stationarity, those coefficients
should be re-estimated regularly, which implies huge com-
plexity not only on the SAN but also on the EN, where the
latter node has to maintain n multivariate AR(p) models;
one for each connected SAN. In that case, the computational
complexity for reconstruction is O(npd2) at the EN. For
those reasons of predictability, computational complexity,
and scalability performances we chose the EWMA in SAN
and in EN for prediction and reconstruction (as provided in
Policy 3).

5 Performance evaluation

5.1 Datasets and experimental setup

In our experiments, we used two real datasets for assessing
the performance of the proposed edge prediction intelligence
mechanism. The first contextual dataset (DS1) was adopted
by UCI (Vito et al. 2008). This dataset contains twelve SANs
of chemical compounds and environmental parameters: CO,
PT08.S1 (tin oxide), Non Metanic HydroCarbons, Benzene,
PT08.S2 (titania), NOx, PT08.S3 (tungsten oxide), NO2,
PT08.S4, PT08.S5 (indium oxide), temperature, relative
humidity, and absolute humidity. All these contextual
parameters are required to measure the air pollution of a
specific area. These data are collected every hour and refer
to T = 9357 12-dimensional measurements with n = 12
SANs and one EN. Inside this dataset missing values occur.
For each SAN, we impute those missing values by adopting
the missing value imputation method of linear interpolation.
This method exploits two data points (x0, y0) and (x1, y1) to

reconstruct a linear function to find for a specific x value the
missing value y as follows: y = y0 +

y1−y0

x1−x0
(x − x0).

The second contextual dataset (DS2) refers to 4-dimen-
sional contextual data collected by Raspberry Pi SANs
deployed at the School of Computing Science, University of
Glasgow (Hentschel et al. 2016). We used four different
SANs’ that measured: two different room temperatures
(room F121 and room S123), humidity and sound (room
F121). This data is collected by an interval of 10 min and
refer to T = 1000 4-dimensional measurements with n = 4
SANs and one EN. For comparison and reproduction, both
datasets are normalised and scaled, i.e., each contextual
parameter x ∈ ℝ is mapped to x−�

�
 with mean value � and

variance �2 , and scaled in [0,1] using max{x}−x

max{x}−min{x}
 . That is,

each context vector � is normalized and scaled in the
d-dimensional unit cube � ∈ [0, 1]d , with d ∈ (12, 4) for DS1
and DS2, respectively, and � ∈ [0, 1].

Based on our sensitivity analysis of our mecha-
nism in Sect. 5.4, the experimental assessment was car-
ried out with different values of the decision threshold
� ∈ {10−5, 10−3, 10−2, 0.05, 0.06, 0.1, 0.2} . Using the nor-
malized and scaled datasets DS1 and DS2, the physical
meaning of � is interpreted as the percentage change of a
measured/sensed time series value xt by: 0.0002, 0.02, 2, 10,
12, 20 and 40% respectively for the chosen � values, respec-
tively. Those � values derived from our sensitivity analy-
sis which examines the impact of � on the local prediction
error et in Eq. (2) in SAN and the reconstruction error on
the EN in our mechanism. The local predictor/exponential
smoother in the SAN, in our experiment, uses � ∈ {0.5, 0.7}
as suggested in Durbin and Koopman (2012). Moreover, in
Policy 3, the reconstruction smoother function in EN adopts
� = 0.7 . The sliding window size is set to N = 10 . This
selected size represents for DS1 a history of the last 10 h
and for DS2 a history of the last 100 min. Our experimental
set up includes seven � values and two � values over three
different policies (Policy 1, 2, and 3) for reconstruction on
the EN. This leads to an overall of 42 experiments for each
of the aggregation analytics function h() : i.e., AVG, MAX
and MIN, the linear regression analytics function and the re-
construction difference for evaluation. In order to objectively
assess the performance of our mechanism, we implemented
the baseline mechanism and also compare our mechanism
with the TEEN model (Manjeshwar and Agrawal 2001).
Which leads to an overall of 315 experimental results and
one baseline solution. The baseline mechanism is produced
by capturing the continuous contextual data and transmit-
ting them from all SANs to an EN, without any predictive
intelligence on SAN or EN. The TEEN model along with a
theoretical comparative assessment is provided in Sect. 5.3,
while in Sect. 5.4 we provide the comparative assessment of
our model and TEEN.

106 Evolving Systems (2018) 9:95–118

1 3

5.2 Performance metrics

We firstly define the performance metrics of counter of
communications, i.e., the number of sensed values are
sent from a SAN i to its EN j. By adopting the baseline
mechanism, for DS1, the number of communications is
allocated with 12 ⋅ 9357 = 112, 284 and, for DS2, the total
number of communications is 4 ⋅ 1000 = 4000 . To better
illustrate and compare our mechanism with the baseline,
the counter of communications is indicated as 100%.
Using our mechanism, the counter is only increasing if �
is exceed and values are transmitted from the SANs to the
EN. The overall communication of n SANs over T sensing
values, in our method is then:

with Ii,t = 1 if SAN i sends its sensed value to the EN; oth-
erwise Ii,t = 0 . Evidently, the overall communication of n
SANs over T sensing values, in the baseline method is T ⋅ n,
since Ii,t = 1,∀i, t . The percentage of communication is then
c(T)

Tn
.
The re-construction difference a in Eq. (4), and the

aggregation analytics difference � in Eq. (5) is evalu-
ated using the symmetric mean absolute percentage error
(SMAPE). During the experiments, we calculated the aver-
age SMAPE per SAN for each time instance t ∈ {1,… , T} .
This metric is used to represent a percentage error of
SMAPE ∈ [0, 100] because of its unbiased properties
(Tofallis 0000). SMAPE is defined for reconstruction dif-
ference a and aggregation analytics difference � as:

For the regression analytics difference, we simply illustrate
the metric �t per SAN as defined in Eq. (10). Our major
aim is to demonstrate the trade-off between communica-
tion and re-construction difference/aggregation analytics/
regression analytics difference. That is, we can tolerate
some slight increase in the analytics error by gaining a sig-
nificant decrease in the number of communications, thus,
being communication efficient and prolonging the edge
network lifetime. It is evaluated how the aggregated ana-
lytics functions h() , regression analytics function, and
re-construction inside an EN behave with decreasing the
number of communications towards the EN. This decrease
of communications is produced by increasing the value of
� and changing the value of � inside the SAN (exponential
smoother). The behaviour of SMAPE and � depends on the

(19)c(T) =

T∑

t=1

n∑

i=1

Ii,t,

(20)SMAPE =

�
100

T

∑T

t=1

at

���t��+���̃t��
, ���t�� + ���̃t�� > 0 for a,

100

T

∑T

t=1

𝛽t

��h()��+��h(∗)�� , ��h()�� + ��h(∗)�� > 0 for 𝛽.

the reconstruction policies inside the EN as will be shown
in the remainder.

5.3 Model comparison

In order to demonstrate the fact that our generalized mecha-
nism departs from the selective data delivery mechanism in
distributed environments, we compare with the well known
TEEN model (Manjeshwar and Agrawal 2001). Specifically,
the TEEN model focuses only on the prediction mechanism
on the SAN i and there is no focus on how the EN j recon-
structs the conditionally received context vector. Based on
this limited functionality, the TEEN model assumes that the
context vector series �t has no trend, which means that it
forecasts zero change in the level from one time instance
to the next. To proceed with a theoretical and experimen-
tal comparative assessment of our generalized mechanism
with the TEEN mechanism, the SAN i is adopting the TEEN
model for forecasting and the corresponding EN j is adopt-
ing the TEEN model for re-constructing the undelivered
contextual vectors, which corresponds to Policy 1. The fore-
cast (prediction) of a SAN i, which adopts the TEEN model
(hereinafter it is referred to as TEENSAN), at t + 1 is the
time series vector at time t:

which is different with our SAN i predictor, where it esti-
mates a local mean before turning around and using it as a
forecast for the next time instance. This indicates that our
SAN i’s next forecast is computed by interpolating between
the last observed context vector �t and the forecast that had
been made for it �̂t , i.e., �̂t+1 = 𝛼�t + (1 − 𝛼)�̂t . It is clear

that TEENSAN i is adopting the random walk model, that
is � = 1 . Based on the fact that the constant-forecast model
is adopted when � = 0 , our SAN i predictor is an interpola-
tion between the mean model and the TEENSAN (random
walk) model w.r.t. the way it adapts to new context vectors.
This is expected to performs more accurately (in terms of
forecasting as will be proved in Proposition 3) than either of
the situations where the random walk model over-responds
and the mean model under-responds to new context vectors.
Moreover, we can write the forecast formula of our SAN i as:

with error vector �t = �t − �̂t , to demonstrate the qualitative
difference with the TEENSAN i model. This version pro-
vides a nice interpretation of the meaning of � in our SAN
compared to the TEENSAN, which indicates the fraction of

(21)�̂t+1 = �t,

�̂t+1 = �̂t + 𝛼�t,

107Evolving Systems (2018) 9:95–118

1 3

the forecast error that is believed to be due to an unexpected
change in the level of the series rather than an unexpected
one-time event. In the limit of � = 1 , which is the TEEN
model, all of the variation from one period to the next is
believed to be due to a change in the fundamental level
rather than just a temporary deviation. While, for � ∈ (0, 1),
our SAN i predictor adapts to significant changes in the fun-
damental level of the series from one period to the next.

From an error analysis perspective, let us denote with �̃t and
�t the prediction error of the TEENSAN i predictor and our
SAN i predictor, respectively.

Proposition 3 For � ∈ (0, 1) , the expected prediction
error of SANs is bounded by the expected prediction error
of TEENSANs, i.e.,

Proof In the SAN, based on the exponential smoothing, we
obtain the recursion:

Hence, we obtain the following relation between the predic-
tion error of the TEENSAN and SAN, i.e.,

where the factor �t is defined as:

Obviously, for � = 1 , i.e., TEENSAN, we obtain that
�t = �,∀t , thus, �̃t = �t . In the case where � ∈ (0, 1) then
the norm of the prediction errors of TEENSAN and SAN
are as follows:

Now, let us take the expectation �[||(1 − �)�t − �t||]. Given
that 1 − 𝛼 < 1 and considering the unconditional expectation
�[||�||] = 𝜇 < ∞ (weakly stationary), we obtain that:

s ince
∑t−1

k=1
(1 − �)k =

1−�

�
(1 − (1 − �)t−1) . For large

t we obtain the limit: limt→∞

∑∞

k=1
(1 − �)k =

1−�

�
.

Hence, the l imit of the expectat ion is then

�[||�||] ≤ 𝛼�[||�̃||] < �[||�̃||].

(22)�̂t+1 =

t−1∑

k=0

𝛼(1 − 𝛼)k�t−k + (1 − 𝛼)t�0.

(23)�t+1 = (1 − 𝛼)�t − �t + 𝛼�̃t+1,

(24)�t =

t−1∑

k=1

�(1 − �)k�t−k + (1 − �)t�0.

(25)||�t+1|| ≤ ||(1 − 𝛼)�t − �t|| + 𝛼||�̃t+1||

�[||(1 − �)�t − �t||] = (1 − �)� − ��

t−1∑

k=1

(1 − �)k − (1 − �)t�

= (1 − �)� − (1 − �)�[1 − (1 − �)t−1] − (1 − �)t�,

limt→∞ �[||(1 − �)�t − �t||] = (1 − �)� − (1 − �)� = 0.
This means that for � ∈ (0, 1):

 □

Based on Proposition 3, the SAN predictor performs bet-
ter than the TEENSAN in terms of context vector prediction.
Section 5.4 reports on the experimental comparative assess-
ment and sensitivity analysis of our mechanism and the TEEN
model.

5.4 Sensitivity analysis and comparative
assessment

In this section we provide a sensitivity analysis of our mecha-
nism, especially focused on the decision threshold � . Based
on this analysis, we demonstrate the impact of � on the data
reconstruction quality given a certain pair: SAN i and EN j.
The outcome of this analysis is to provide useful insight on
the appropriate range of the � values to ensure highly qual-
ity reconstructed data. In order to investigate this impact, we
assess the sensitivity of our mechanism based on the follow-
ing metrics adopted in signal processing for time series data
reconstruction: (1) Kullback–Leibler (KL) divergence, (2) sum
of squared residuals, (3) variance of the actual and the recon-
structed time series, (4) coefficient of variation of the actual
and reconstructed time series. For the sake of readability, we
suppress the subscript of dimension k from the variable xkt for
k ∈ (1, d) and focus on the communication pair (SAN i, EN j).

The first baseline sensitivity metric is the sum of squared
residuals (SSR). SSR, or the sum of squared errors of time
series reconstruction, is the sum of the squares of residuals;
deviations of the reconstructed x̃t time series from the actual
values of the time series xt , i.e.,

SSR measures the discrepancy between the time series
reconstructed at EN j due to the applied Policy 1, 2, or 3 and
decision threshold � and the actual time series xt observed
at SAN i. A small RSS value indicates a tight fit of the EN
reconstruction model to the actual time series at SAN.

A more advanced metric for the sensitivity analysis is the
Coefficient of Variation (CV). CV (also known as relative
standard deviation), is a standardized measure of dispersion
of the probability distribution p(xt) of the time series xt . It
is expressed as the ratio of the standard deviation �x to the
absolute mean value |�x| , i.e.,

�[||�||] ≤ 𝛼�[||�̃||] < �[||�̃||].

(26)SSRt =

t∑

𝜏=1

(x𝜏 − x̃𝜏)
2.

108 Evolving Systems (2018) 9:95–118

1 3

We adopt CV(x) for our sensitivity analysis because the
standard deviation �x of the time series xt must be under-
stood in the context of the mean of the time series compared
with the CV(x̃) of the reconstructed time series at the EN,
i.e., 𝜎x̃

|𝜇x̃|
 . We use CV for comparing both the mean and the

variance of the reconstructed time series in EN j with the

(27)CV(x) =
�x

|�x|
.

actual time series in SAN i data. Note that the value of the
CV is independent of the unit, i.e., it is a dimensionless num-
ber. The rationale behind investigating the sensitivity of our
mechanisms w.r.t. the CV is that many natural processes
indeed show a correlation between the average value and the
amount of variation around it. By observing the coefficients
of variation CV(x̃) and CV(x) of the reconstructed and actual
time series, respectively, we can assess the discrepancy of
the reconstructed time series at EN j w.r.t. the actual time
series at SAN i due to the adoption of certain Policy 1, 2, or
3 and decision threshold � . Ideally, we would desire the
reconstructed mean and variance of the times series in EN j
to ‘follow’ the actual mean and variance of the actual time
series in SAN i. However, due to the applied threshold � , the
variance of the reconstructed signal decreases thus the CV(x̃)
deviates significantly from the CV(x) with high values of �.

Departing from the SSR and the CV, we further investi-
gate the sensitivity of our model by examining the probability
distribution of the time series p(x), which is observed at the
SAN i and reconstructed probability distribution p(x̃) at the
EN j. This provides a holistic insight of the discrepancy of the
statistics based on the applied Policies 1, 2, or 3 and the impact
of the decision threshold � . For this investigation, we adopt
the Kullback-Leibler (KL) divergence. KL divergence from
p(x) to p(x̃) denotes the information loss when we attempt to
reconstruct time series x̃ for the actual time series x provided

Time t, α = 0.5
0 50 100 150 200 250 300

T
im

e
se
ri
es

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

xt

x̃t (θ = 0.05)
x̃t (θ = 0.3)

Time t, α = 1
0 50 100 150 200 250 300

T
im

e
se
ri
es

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2 Actual x and reconstructed x̃ time series at the EN for Policy 1
with � ∈ (0.05, 0.3) and left � = 0.5 in SAN, right � = 1 in SAN, i.e
TEEN

Values, α = 0.5
0.2 0.4 0.6 0.8 1

H
is
to
gr
am

0

1

2

3

4
p(x)
p(x̃) (θ = 0.05)

Values, α = 0.5
0.2 0.4 0.6 0.8 1

H
is
to
gr
am

0

1

2

3

4

5
p(x)
p(x̃) (θ = 0.1)

Values, α = 0.5
0.2 0.4 0.6 0.8 1

H
is
to
gr
am

0

2

4

6

8

10

12
p(x)
p(x̃) (θ = 0.3)

Values, α = 0.5
0 0.5 1 1.5

H
is
to
gr
am

0

5

10

15

20
p(x)
p(x̃) (θ = 0.7)

Fig. 3 Histograms for actual time series and reconstructed time series at EN for Policy 1 with � ∈ (0.05, 0.1, 0.3, 0.7) and � = 0.5

109Evolving Systems (2018) 9:95–118

1 3

Time t, α = 0.5
0 50 100 150 200 250 300

Su
m

of
re
si
du

al
s

0

5

10

15

20

25

x̃t (θ = 0.05)
x̃t (θ = 0.1)
x̃t (θ = 0.3)

θ
0 0.2 0.4 0.6 0.8 1

K
L
D
iv
er
ge
nc
e

0

0.5

1

1.5

2

2.5

3

3.5

4

α = 0.5
α = 1(TEEN)

Fig. 4 Left Cumulative sum of squared time series residuals
(x − x̃)2 for reconstructed x̃ time series at the EN for Policy 1 with
� ∈ (0.05, 0.1, 0.3) and � = 0.5 in SAN; right KL divergence of the

reconstructed probability distribution from the actual probability dis-
tribution for Policy 1 with � = 0.5 and TEEN (at SAN)

θ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

V
ar
ia
nc
e
σ
2

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

P1(α = 0.5)
P2(α = 0.5)
P3(α = 0.5)
Actual σ2

θ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
oe
ffi
ci
en
t
of

V
ar
ia
ti
on

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P1(α = 0.5)
P1(TEEN)
P2(α = 0.5)
P2(TEEN)
P3(α = 0.5)
P3(TEEN)
Actual

Fig. 5 Left Variance �2 of the actual and reconstructed time series at EN for Policy 1, 2, and 3 against � for � = 0.5 ; right coefficient of variation
(CV) of the actual and reconstructed time series at EN for Policy 1, 2, and 3 against � for � = 0.5 and TEEN (at SAN)

θ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
oe
ffi
ci
en
t
of

V
ar
ia
ti
on

(M
IN

)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P1(α = 0.5)
P2(α = 0.5)
P3(α = 0.5)
Actual CV

θ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
oe
ffi
ci
en
t
of

V
ar
ia
ti
on

(A
L
L
)

0

0.05

0.1

0.15

0.2

0.25

P3(MIN,α = 0.7)
P3(MAX,α = 0.7)
P3(AVG,α = 0.7)
P3(x̃,α = 0.7)
Actual (MIN)
Actual (MAX)
Actual (AVG)
Actual (x)

Fig. 6 Left Coefficient of variation (CV) of the actual and recon-
structed time series at EN for Policy 1, 2, and 3 against � for � = 0.5
for the MIN aggregation; right coefficient of variation (CV) of the

actual and reconstructed time series at EN for Policy 3 against � for
� = 0.7 for all the aggregation operators AVG, MIN, MAX, and the
reconstructed time series

110 Evolving Systems (2018) 9:95–118

1 3

that p(x̃) and p(x) are the probability distribution functions,
respectively. KL is defined as:

In our case, KL indicates is the amount of information lost
when EN j approximates the actual time series at SAN i
based on our Policies 1, 2 or 3. Ideally, we would like p(x̃)
to be as close to the real/actual p(x) given certain policies
and for given � values. We are examining the impact of � and
the applicability of TEEN w.r.t. our proposed mechanism in
terms of approximating the actual probability distribution of
the time series reconstructed in EN.

By performing the introduced sensitivity analysis metrics
in Eqs. (26), (27) and (28), we obtain the Figs. 2, 3, 4, 5 and
6. The purpose of analyzing these metrics is to identify the
upper bound of � for selecting one dimensional time series
from DS1; similar sensitivity results are obtained using
DS2. Not only the sensitivity metrics are important for the
appropriate and reasonable � values, but also to consider
the relationship between increase of � and the percentage
of communication overhead occur between SAN and EN
(please refer to Fig. 7 top left,which shows this relationship).
By combining Fig. 7 with Fig. 2, it is clearly applicable

(28)KL(p(x̃)||p(x)) = ∫
1

0

p(x̃) log
p(x̃)

p(x)
dx.

that given a small � value, the reconstructed time series x̃
follows the actual time series x. This is caused by the fact
that still high communication occur between SAN and EN.
By increasing the values of � , it leads to less communica-
tion overhead, while with a 𝜃 > 0.2 one can observe that
only a couple of values are sent from SAN to EN. This is
represented by the green lines in Fig. 2. It should also be
mentioned that the number of communication is highly
depending on the chosen � value in the SAN. Looking at
Fig. 2 with � = 1 , which is equivalent to the TEEN model
in SAN, it leads to the fact that only one value is sent from
SAN to EN with � = 0.3 . Whereas for the same � value and
� = 0.5 , more measurements are sent in between. Closely
related to the number of communication between SAN and
EN as well as the comparison of the reconstructed time
series with the actual time series, is the probability density
function p(x) for indicators of the behavior of high � values.
Figure 3 shows the probability density functions (shown as
histograms) of the actual and the reconstructed time series
with fixed � = 0.5 for different � ∈ (0.05, 0.1, 0.3, 0.7) . We
can observe that an increase of � decreases the possibility to
reconstruct the actual distribution in the EN, i.e., the recon-
structed time series follows a significantly different prob-
ability density function with that of the actual time series,
especially when 𝜃 > 0.2.

0

10

20

30

40

50

60

70

80

90

100

0 . 0 0 0 0 0 1 0 . 0 1 0 . 0 6 0 . 2 0 . 4 0 . 6 0 . 8 1

PE
RC

EN
TA

GE
 O

F
CO

M
M

U
N

IC
AT

IO
N

THETA

α=0.5
α=0.7
TEEN

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

14.0%

16.0%

18.0%

20.0%

0 . 0 0 0 0 0 1 0 . 0 0 0 1 0 . 0 1 0 . 0 5 0 . 0 6 0 . 1 0 . 2

SM
AP

E

THETA

α=0.5
α=0.7
TEEN

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

0 . 0 0 0 0 0 1 0 . 0 0 0 1 0 . 0 1 0 . 0 5 0 . 0 6 0 . 1 0 . 2

SM
AP

E

THETA

α=0.5
α=0.7
TEEN

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

12.0%

0 . 0 0 0 0 0 1 0 . 0 0 0 1 0 . 0 1 0 . 0 5 0 . 0 6 0 . 1 0 . 2

DI
FF

ER
EN

CE
 IN

 R
M

SE

THETA

α=0.5

α=0.7

TEEN

Fig. 7 For DS1: top left percentage of remaining communication
against � using � ∈ (0.5, 0.7) and TEEN; top right re-construction dif-
ference SMAPE against � for Policy 1 using � ∈ (0.5, 0.7) and TEEN;
lower left Aggregation Analytics Difference (AVG) SMAPE against

� for Policy 1 using � ∈ (0.5, 0.7) and TEEN; lower right Predictive
Analytics Difference against � for Policy 1 using � ∈ (0.5, 0.7) and
TEEN

111Evolving Systems (2018) 9:95–118

1 3

The aforementioned relationship between small � values
and tight-fitting of the distribution is undermined with the
analysis of the sensitivity metrics. Not only is it impossible
to follow the probability density function of the actual time
series with increase of � , further the sensitivity metric of
SSR clearly identifies in Fig. 4 that using 𝜃 > 0.2 causes a
loose-fitting of the EN reconstruction model to the actual
SAN model. While � ≤ 0.2 , the SSR is increasing over time
but still in a reasonable range which is applicable as SSR
growing in an exponential way. Besides the SSR metric,
the coefficient of variation (CV) metric indicates the devel-
opment of � and its impact on the probability distribution.
Figures 5 (right) and 6 and show that by using 𝜃 > 0.5 pro-
duces an CV value of 0, which holds true for all policies
and aggregation methods as well for the reconstruction case.
From CV in Eq. (27) it can be seen that either the mean or
the variance has to be zero if the CV is zero. This can clearly
been observed in Fig. 5 (left) where variance is zero for
𝜃 > 0.5 . This finding and the CV effect can be explained by
the knowledge and insights we gained from the sensitivity
metrics KL and SSR. After 𝜃 > 0.5 limited communication
between SAN and EN occurs and, therefore, a low or zero
variance time series is reconstructed in the EN. Moreover,
from the behavior of the CV metric, we can observe that
a reconstruction of the actual CV depends on (1) the pol-
icy adopted for reconstruction, (2)exponential smoothing
or TEEN adopted on SAN. A comprehensive comparison
between those cases is provided in Sect. 5.5.

Lastly, by evaluating the KL divergence of the recon-
structed probability distribution in Fig. 4 (right), it is
observed that, depending on � , the KL is only slightly
increasing up to a � value of approximately 0.1. After hav-
ing 𝜃 > 0.1 , the loss of information is growing linearly. By
adopting the TEEN in the SAN, it is applicable that the loss
of information is higher for a lower value of � than using
exponential smoothing with � = 0.5 . It can be observed that
the maximum loss of information is 3.5, which indicates a
loss of 350% of communication. This maximum is reached
for TEEN with 𝜃 > 0.3 , and � = 0.5 for 𝜃 > 0.5 . In order to
obtain information loss of less than 100%, then � should be
less than 0.2.

After analyzing a range of sensitivity metrics for different
policies, � values and the TEEN, we draw our conclusion
that the range for � ∈ (0.2, 1] is not useful for achieving high
quality data and, therefore, in the experimental and compara-
tive assessment we adopt the range of � ∈ (0, 0.2].

5.5 Performance assessment

Based on the results obtained from our sensitivity analysis of
our model in Sect. 5.4, in this section we evaluate the perfor-
mance of our proposed method over elucidated datasets DS1
and DS2 and the defined performance metrics to illustrate

the trade-off between communication and error for the re-
construction, aggregation analytics and regression analytics
differences. Independent of the specific differences, our aim
is to reduce the percentage of communication only with a
slight increase of the error.

Generally, over all evaluated differences, increasing the
value of � is decreasing the number of communications
towards the EN which is applicable from Fig. 7. The rea-
son behind this is that � is demonstrating the tolerance for
a change of the expected value and the actual/sensed one.
Therefore high values of � are indicating that values can
vary between a larger range before they are sent towards
the EN (refer also to sensitivity analysis in Sect. 5.4). Fur-
thermore, it is worth noting that the number of communi-
cations is highly dependent on the exponential smoother
parameter � . Given the same � value, the number of com-
munications is decreasing with higher values for � at which
� = 1 is equivalent to the TEEN model under comparison.
Increasing � means reducing the influence of previous/his-
torical measured data. Having � = 1 denotes that the cur-
rent measured value is compared only against the previous
for a forwarding decision inside the SAN. The following
assessments are achieved by adopting the three reconstruc-
tion Policies in the EN with values for � ∈ {0.5, 0.7, 1} and
� values up to the upper bound of 0.2 resulted from Sect. 5.4,
i.e., � ∈ {10−5, 10−3, 10−2, 0.05, 0.06, 0.1, 0.2} . In further
evaluation the shown figures represent only some results of
our evaluation of the proceed 315 experiments for each data-
set. They are representing the general outcome. Moreover,
it should be note that the displayed dots inside the figures
are values for � with the relation towards its difference and
its communication.

5.5.1 Re‑construction difference assessment

Evaluating the re-construction difference for DS1 and DS2 it
is applicable that the re-construction difference is depending
on the chosen � value this is seen in Fig. 7 (top right). Gener-
ally using TEEN inside the SAN is creating a higher error for
re-construction than using the exponential smoothing with
� = 0.5 . However, the trade-off between communication and
re-construction difference is of importance for evaluating
the efficiency of our model. Evaluating this trade-off we use
the three proposed policies and values for � ∈ {0.5, 0.7} and
� ∈ {10−5, 10−4, 10−2, 0.05, 0.06, 0.1, 0.2} . Further we com-
pare our model using TEEN in SAN. Applicable from Fig. 8
Policy 2 is creating the highest re-construction difference
trade-off over both datasets. Whereas Policy 1 and 3 are
nearly identical for DS1 but for DS2 Policy 1 is identified as
best solution. This perception is applicable over all � values.
Therefore, we can conclude that the chosen reconstruction
policy in the EN is highly influencing the produced SMAPE
and its efficiency towards the communication.

112 Evolving Systems (2018) 9:95–118

1 3

Using policy 1 to identify the influence of the chosen �
value it can be seen that in Fig. 9 that decreasing the com-
munication the re-construction difference in all � values
is increasing up to around 20%. The maximum of 20% is
explained by the sensitivity assessment previously where
it was shown that after a certain value of � only some val-
ues are send and the distribution p(x) is mostly around the

mean. This is leading to a maximum difference of around
20%. Besides this realisation, it is applicable that all chosen
� values are producing a similar trade-off between SMAPE
and percentage of communication. However, for DS1 TEEN
in SAN is producing a slightly lower error with less com-
munication that � = 0.5 or � = 0.7 . For DS2 this holds only
for communication savings up to 40% whereas decreasing

0

10

20

30

40

50

60

70

80

90

100

0.00% 2.00% 4.00% 6.00% 8.00% 10.00% 12.00% 14.00% 16.00% 18.00% 20.00%

PE
RC

EN
TA

GE
 O

F
CO

M
M

U
N

IC
AT

IO
N

S

SMAPE

Policy 1

Policy 2

Policy 3

0

10

20

30

40

50

60

70

80

90

100

0.00% 2.00% 4.00% 6.00% 8.00% 10.00% 12.00% 14.00% 16.00% 18.00%

PE
RC

EN
TA

GE
 O

F
CO

M
M

U
N

IC
AT

IO
N

S

SMAPE

Policy 1

Policy 2

Policy 3

0

10

20

30

40

50

60

70

80

90

100

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00% 35.00%

PE
RC

EN
TA

GE
 O

F
CO

M
M

U
N

IC
AT

IO
N

S

SMAPE

Policy 1
Policy 2
Policy 3

0

10

20

30

40

50

60

70

80

90

100

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00% 35.00%

PE
RC

EN
TA

GE
 O

F
CO

M
M

U
N

IC
AT

IO
N

S

SMAPE

Policy 1
Policy 2
Policy 3

Fig. 8 Re-construction difference trade-off for Policy 1,2,3; percentage of communication against SMAPE with top left DS1 with � = 0.5 , top
right DS1 with TEEN, lower left DS2 with � = 0.5 , lower right DS2 with TEEN

0

10

20

30

40

50

60

70

80

90

100

0.00% 2.00% 4.00% 6.00% 8.00% 10.00% 12.00% 14.00% 16.00% 18.00% 20.00%

PE
RC

EN
TA

G
E

O
F

CO
M

M
U

N
IC

A
TI

O
N

S

SMAPE

α=0.5

α=0.7

TEEN

0

10

20

30

40

50

60

70

80

90

100

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00% 35.00%

PE
RC

EN
TA

G
E

O
F

CO
M

M
U

N
IC

A
TI

O
N

S

SMAPE

α=0.5
α=0.7
TEEN

Fig. 9 Re-construction difference trade-off for Policy 1; percentage of communication against SMAPE with left DS1 and right DS2

113Evolving Systems (2018) 9:95–118

1 3

the communication further using our proposed model with
� ∈ (0.5, 0.7) is significantly better than TEEN in SAN.

It is worth noting that, as shown in Figs. 8 and 9, using
our proposed predictive intelligence for edge analytics on
DS1, a communication overhead of 30% can be saved by
tolerating an re-construction error of less than 1%. If IoT
applications can tolerate up to 2% error in their analytics
accuracy, it is possible to save between 50 and 60% of com-
munication. Saving this amount of communication with a
given tolerated error would increase the lifetime of an edge
network between 30 and 50%. Moreover, in Fig. 9, it is appli-
cable that for DS2 an even extreme trade-off is performed.
Depending on the chosen value for � , without any error pro-
duced, up to 50% communication can be saved. Tolerating a
relatively slight 2.5% error, it is possible to save even up to
70% of communication. This phenomenon can be explained
by considering that DS2 is measuring every 10 min, which
is causing similar or even identical measurements because
of slightly changes in the indoor environment of the School
of Computing Science. In the contrary, DS1 is measuring
every hour, thus, the surrounding environment could change
significantly towards the previous measure.

5.5.2 Aggregation analytics assessment

Besides the re-construction difference, the aggregation
analytics difference produced by our method is an impor-
tant metric by many analytics IoT applications. The intro-
duced figures in 8 for the re-construction difference are
similar to the comparison of the policies for the aggre-
gation analytics differences. Therefore no further figure
is shown in this assessment. From our experiments it is
applicable for both datasets and all three aggregation func-
tions, AVG, MIN and MAX, that Policy 2 is producing the
highest SMAPE for the aggregation analytics difference.
Similar to the re-construction difference, Policy 1 and 3
are generating the lowest average error per SAN over the
entire time frame T. However it should be note that in our
experiments a value of � = 0.5 is producing the lowest
error over all three aggregation functions by employing
the re-construction Policy 3. Comparing Policy 1 over all
three aggregation functions, Fig. 10 shows this for DS1
and Fig. 11 for DS2. Specifically, one can observe from
Figs. 10 and 11 that, similar to the re-construction differ-
ence, the aggregation analytics difference depends on � .
Higher values of � producing a better trade-off. In both

Fig. 10 Aggregation analytics difference trade-off for DS1 with Policy 1; percentage of communication against SMAPE for DS1 left top AVG,
right top MIN, lower MAX

114 Evolving Systems (2018) 9:95–118

1 3

datasets for MIN and MAX this reverses after a SMAPE of
around 1.5%. AVG in DS1 continuously produces a better
trade-off for high � but for DS2 a reverse order appears too
after 1.5% SMAPE.

For DS1, it is observed in Fig. 10, that a reduction of
20% by communication for MIN, MAX and 30% for AVG is
only generating an error of 0.5%. Therefore, it is possible to
increase the lifetime of a network up to 30% with tolerating
a slightly difference towards the true result. For IoT applica-
tions that can tolerate a higher discrepancy for this kind of
aggregation functions, they can save up to 50% with an error
of 1.5–2%. In comparison with DS2, as illustrated in Fig. 11
for all three aggregation functions, it is possible to use only
60% of the communication without any difference towards
the aggregation analytics output. A further 20% can be saved
by tolerating an accuracy difference of maximum 0.5%.

5.5.3 Predictive analytics assessment

The Regression Analytics Difference is evaluated by using
the Air Quality chemical compounds SANs: PT08.S1 (CO)
and PT08.S5 (O3) for DS1. For the DS2, both temperature
SANs from rooms F121 and S123 are chosen for perform-
ing the linear regression analytics function. For DS1 the
first 6000 data points are used for on-line training the linear
regression coefficient whereas the last 3357 measured values
are used for testing the prediction accuracy derived from the
linear approximation. DS2 was split into 700 training and
300 testing pairs. The testing pairs were used to calculate
the Regression Analytics Difference � . In both cases, the EN
trains the linear regression model in an on-line/incremental
mode (through SGD) provided in Algorithm 1, with learning
rate � = 0.1 (Bottou 2010). The idea is to demonstrate that
even by not forwarding all sensed values from the SANs to
the ENs, we can extract the same linear regression models
with the baseline mechanism. And, more interestingly, the
prediction accuracy of the regression models based on our

Fig. 11 Aggregation analytics difference trade-off for DS2 with Policy 1; percentage of communication against SMAPE for DS2 left top AVG,
right top MIN, lower MAX

115Evolving Systems (2018) 9:95–118

1 3

mechanism is very close to that of the regression models
based on the baseline mechanism. In this case, IoT applica-
tion and predictive analytics services can proceed with the
same quality of analytics in a communication efficient way.

Figure 12 is representing the Regression Analytics Differ-
ence � for � ∈ {0.5, 1} over all three different reconstruction
policies inside the EN for DS1. Respectively, in Fig. 13 � is

shown for DS2 and � ∈ {0.5, 0.7} . For DS2 it is not possible
to illustrate TEEN as no change in � occur with increasing
� . For better illustration the figures showing the Regression
Analytics Difference only showing the � values up to 0.06.
Increasing � over this threshold is increasing the error and
decreasing the communication. For better readability of
smaller values this is hidden in the figures above.

However, applicable from both Figures Policy 3 is creat-
ing the best trade-off between communication saving and
regression analytics quality. This is independent on the cho-
sen � value in the SAN as seen when comparing the left and
right figures of each dataset. Moreover, it is applicable for
DS1 that using our mechanism the same linear regression
model is produced even with only 80% of the communica-
tion. Considering a communication saving of 50% around
0.0002 for � needs to be tolerated from the IoT applications
site for DS1 using � = 0.5 . For DS2 an identical regression
can be produced by using only 15–20% of the complete com-
munication, which is shown in Fig. 13. Considering these

Fig. 12 Regression analytics difference for DS1; percentage of communication against difference in RMSE (i.e., � metric) for left � = 0.5 , right
TEEN

Fig. 13 Regression analytics difference for DS2; percentage of communication against difference in RMSE (i.e., � metric) for left � = 0.5 , right
� = 0.7

Table 1 Overall performance of Policy 1, 2, 3 and Policy 1 with
TEEN in SAN for re-construction, aggregation, and predictive analyt-
ics

Re-construction Aggregation
analytics

Regres-
sion
analytics

Policy 1 + ++ +
Policy 1 (TEEN) + + – –
Policy 2 – – – − – –
Policy 3 ++ ++ +++

116 Evolving Systems (2018) 9:95–118

1 3

both outputs, our proposed mechanism is increasing the life-
time of an edge network for predictive analytics tasks.

Overall, Table 1 summarizes the performance of our
mechanism in re-construction, aggregation, and predictive
analytics tasks and TEEN model adopted in SAN for Policy
1. We can conclude that Policy 3 is preferable to be adopted
for predictive/regression analytics due to the smoothing
component on the EN. That is, by adopting an exponential
smoother in EN, the re-constructed values decreases the
induced variance on the EN site. Hence, the linear regression
approximation deals with less variance training pairs, which
leads to a better representative of the regression plane. On
the other hand, Policy 1 is recommended for re-construction
or aggregation analytics since it retains the variance of the
delivered contextual data stream, which plays significant role
for aggregation functions. However, in the case of TEEN
adopted in SAN for Policy 1, the reconstruction error is
higher than the adoption of the exponential smoothing in
SAN. Finally, Policy 2 exhibits poor performance in all ana-
lytics tasks due to the extreme generalization property of the
average of the most recent values, especially, in the cases we
encounter a significant number of undelivered values.

6 Conclusions and future work

We focus on the edge computing paradigm where push-
ing aggregation and predictive analytics to the edge of the
IoT network allows the complexity of analytics tasks to be
distributed into many smaller and more manageable pieces
and to be physically located at the source of the contextual
information. We introduce a lightweight, distributed, predic-
tive intelligence mechanism that supports communication
efficient aggregation and predictive modeling within the
edge network of SANs and ENs. The mechanism is follow-
ing the evolving nature of the multivariate time series (con-
text vectors) based on the idea of locally deciding whether
to deliver contextual data or not in light of minimizing the
induced communication overhead and providing high qual-
ity analytics tasks. Based on splitting this intelligence into:
prediction (through exponential smoothing) and decision
making at the SANs and context re-instruction at ENs (by
proposing three policies), we eliminate data transfer at the
edge of the network, by exploiting the predictability of the
captured contextual data. We provide fundamental theoreti-
cal analyses of the upper bounds of the reconstructed data
quality and a comprehensive sensitivity analysis with the
most important model parameter. We provide comprehen-
sive comparative (theoretical and experimental) assessment
with baseline solutions found in the literature and experi-
mental evaluation of the proposed mechanism over two
real multidimensional contextual datasets for aggregation
and linear regression analytics tasks. We show the benefits

stemmed from its adoption in edge computing environments
and experiment with the trade-off between accuracy (qual-
ity) of edge analytics tasks and communication overhead.
Our mechanism demonstrated its efficiency in supporting
high quality of edge analytics by tolerating a relatively low
error in light of decreasing significantly the communication
overhead in an edge network.

Our future agenda includes investigating intelligent delay
tolerant mechanisms for further minimizing the induced
analytics errors in favor of saving communication. Moreo-
ver, future work is focused on certain modifications of our
mechanism to support advanced analytics tasks including
outliers detection, non-linear predictive models, and concept
drifts in multidimensional contextual data streams in edge
computing environments.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecom-
mons.org/licenses/by/4.0/), which permits use, duplication, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons license and indicate if changes were
made.

References

Abadi DJ, Carney D, Cetintemel U, Cherniack M, Convey C, Lee
S, Stonebraker M, Tatbul N, Zdonik S (2003) Aurora: a new
model and architecture for data stream management. VLDB J
12(2):120–139

Ahmad Y, Berg B, Cetintemel U, Humphrey M, Hwang J-H, Jhin-
gran A, Maskey A, Papaemmanouil O, Rasin A, Tatbul N,
Xing W, Xing Y, Zdonik S (2005) Distributed operation in the
Borealis stream processing engine. In: Proceedings of the 2005
ACM SIGMOD international conference on Management of
data (SIGMOD ’05). ACM, New York, NY, USA, pp 882–884.
doi:10.1145/1066157.1066274

Anagnostopoulos C, Hadjiefthymiades S, Georgas P (2012) PC3: prin-
cipal component-based context compression. J Parallel Distrib
Comput 72(2):155–170

Anagnostopoulos C, Hadjiefthymiades S, Katsikis A, Maglogiannis
I (2014) Autoregressive energy-efficient context forwarding in
wireless sensor networks for pervasive healthcare systems. Pers
Ubiquitous Comput 18(1):101–114

Anagnostopoulos, C, Triantafillou P (2014) Scaling out big data miss-
ing value imputations: Pythia vs. Godzilla’. In: 20th ACM SIG-
KDD international conference on knowledge discovery and data
mining (KDD ’14), New York, pp 651–660

Anagnostopoulos C, Hadjiefthymiades S, Kolomvatsos K (2016)
Accurate, dynamic, and distributed localization of phenomena
for mobile sensor networks. ACM Trans Sensor Netw 12(2).
doi:10.1145/2882966

Anagnostopoulos C, Hadjiefthymiades S (2014) Advanced principal
component-based compression schemes for wireless sensor net-
works. ACM Trans Sensor Netw 11(1). doi:10.1145/2629330

Anagnostopoulos C, Anagnostopoulos T, Hadjiefthymiades S (2010)
An adaptive data forwarding scheme for energy efficiency in wire-
less sensor networks. In: 5th IEEE international conference intel-
ligent systems, London, pp 396–401

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/1066157.1066274
https://doi.org/10.1145/2882966
https://doi.org/10.1145/2629330

117Evolving Systems (2018) 9:95–118

1 3

Anagnostopoulos C, Triantafillou P (2017a) Query-driven learning
for predictive analytics of data subspace cardinality. ACM Trans
Knowl Discov Data 11(4):46. doi:10.1145/3059177

Anagnostopoulos C, Triantafillou P (2015) Learning set cardinality in
distance nearest neighbours. In: IEEE international conference
on data mining (IEEE ICDM 2015), Atlantic City, pp 691–696

Anagnostopoulos C, Triantafillou P (2017b) Efficient scalable accurate
regression queries in In-DBMS analytics. In: IEEE international
conference on data engineering (ICDE), San Diego

Arasu A, Babu S, Widom J (2006) The CQL continuous query lan-
guage: semantic foundations and query execution. VLDB J
15(2):121–142

Awang A, Suhaimi MH (2007) RIMBAMON©: A forest monitoring
system using wireless sensor networks. In: International confer-
ence on intelligent and advanced systems 2007, Kuala Lumpur,
pp 1101–1106. doi:10.1109/ICIAS.2007.4658555

Bottou L (2016) Large-Scale machine learning with stochastic gradi-
ent descent. In: Proceedings of the 19th international conference
on computational statistics (COMPSTAT’2010), Springer, Paris,
pp 177–187

Bottou L, Curtis FE, Nocedal J (2017) Optimization methods for large-
scale machine learning. arXiv:1606.04838. [stat.ML]

Box GEP, Jenkins G (1990) Time series analysis, forecasting and con-
trol. Holden-Day, Incorporated

Cheng B, Papageorgiou A, Bauer M (2016) Geelytics: enabling on-
demand edge analytics over scoped data sources. In: IEEE inter-
national congress on big data (BigData Congress), San Francisco,
pp 101–108

Chowdappa VP, Botella C, Beferull-Lozano B (2015) Distributed clus-
tering algorithm for spatial field reconstruction in wireless sensor
networks. In: IEEE 81st vehicular technology conference (VTC
Spring), Glasgow, pp 1–6

Chu D, Deshpande A, Hellerstein JM, Hong W (2006) Approximate
data collection in sensor networks using probabilistic models. In:
Proceedings of the 22nd international conference on data engi-
neering (ICDE ’06). IEEE Computer Society, Washington, DC,
USA, p 48. doi:10.1109/ICDE.2006.21

Dallachiesa M, Jacques-Silva G, Gedik B, Wu K.-L, Palpanas T (2015)
Sliding windows over uncertain data streams. Knowl Inf Syst
45(1):159–190. doi:10.1007/s10115-014-0804-5

De Vito S, Massera E, Piga M, Martinotto L, Di Francia G (2008) On
field calibration of an electronic nose for benzene estimation in
an urban pollution monitoring scenario. Sens Actuators B Chem
129(2):750–757 (ISSN 0925-4005)

Durbin J, Jan Koopman S (2012) Time series analysis by state space
methods. Oxford Statistical Science Series

Eidson GW et al (2010) The South Carolina digital watershed: end-
to-end support for real-time management of water resources, vol
2010. In: Proc. 4th intl. symposium on innovations and real-time
applications of distributed sensor networks (IRADSN 09), USA

Ganti R, Ye F, Lei H (2011) Mobile crowdsensing: current state and
future challenges. IEEE Commun Mag 49(11):32–39

Gemulla R, Nijkamp E, Haas PJ, Sismanis Y (2011) Large-scale matrix
factorization with distributed stochastic gradient descent. In: Pro-
ceedings of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining (KDD ’11). ACM, New
York, pp 69–77

Goel S, Imielinski T (2001) Prediction-based monitoring in sensor
networks: taking lessons from MPEG. ACM SIGCOMM Com-
put Comm Rev 31(5):82–98

Gray J, Chaudhuri S et al (1997) Data cube: a relational aggregation
operator generalizing group-by, cross-tab, and sub totals. Data
Min Knowl Discov 1(1):29–53

Hentschel K, Jacob D, Singer J, Chalmers M (2016) Supersensors:
Raspberry Pi devices for smart campus infrastructure. In: 4th

IEEE international conference on future internet of things and
cloud, FiCloud, Vienna, pp 58–62

Jiang H, Jin S, Wang C (2011) Prediction or not? An energy-efficient
framework for clustering-based data collection in wireless sen-
sor networks. IEEE Trans Parallel Distrib Syst 22(6):1064–1071

Kang J et al (2013) High-fidelity environmental monitoring using wire-
less sensor networks. Article 67. In: Proc. 11th ACM conference
on embedded networked sensor systems (SenSys ’13), USA

Kejela G, Esteves RM, Rong C (2014) Predictive analytics of sen-
sor data using distributed machine learning techniques. In:
IEEE 6th International Conference on cloud computing tech-
nology and science, Singapore, 2014, pp 626–631. doi:10.1109/
CloudCom.2014.44

Kim J-J et al (2010) Wireless monitoring of indoor air quality by a
sensor network. Indoor Built Environ 19(1):145–150

Kolomvatsos K, Anagnostopoulos C, Hadjiefthymiades S (2017)
Data fusion and type-2 fuzzy inference in contextual data stream
monitoring. IEEE Trans Syst Man Cybern Syst 47(8):1839–1853.
doi:10.1109/TSMC.2016.2560533

Kuhn M, Johnson K (2013) Applied predictive modeling. Springer,
Berlin. doi:10.1007/978-1-4614-6849-3(ISBN 9781461468493)

Lane N, Miluzzo E, Lu H, Peebles D, Choudhury T, Campbell A
(2010) A survey of mobile phone sensing. IEEE Commun Mag
48(9):140–150

Manjeshwar A, Agrawal DP (2001) TEEN: a routing protocol for
enhanced efficiency in wireless sensor networks. In: Proceed-
ings of the 15th international parallel and distributed processing
symposium (IPDPS ’01). IEEE Computer Society, Washington,
DC, p 189

McConnell SM, Skillicorn DB (2005) A distributed approach for pre-
diction in sensor networks. In: Proceedings of 1st international
workshop on data mining in sensor networks as part of the SIAM
International Conference on data mining, pp 28–37

Muth J (1960) Optimal properties of exponentially weighted forecasts.
J Am Stat Assoc 55(290):299–306

Nguyen N et al (2010) A real-time control using wireless sensor net-
work for intelligent energy management system in buildings. In:
Proc. IEEE workshop on environmental energy and structural
monitoring systems (EESMS 10), pp 87–92

Nittel S (2009) A survey of geosensor networks: advances in dynamic
environmental monitoring. Sensors 9:5664–5678

Oliveira LM, Rodrigues JJ (2011) Wireless sensor networks: a survey
on environmental monitoring. J Commun 6(2):143–151

Papithasri K, Babu M (2016) Efficient multihop dual data upload clus-
tering based mobile data collection in wireless sensor network. In:
2016 3rd international conference on advanced computing and
communication systems (ICACCS), Coimbatore, pp 1–6

Patroumpas K, Sellis T (2011) Maintaining consistent results of con-
tinuous queries under diverse window specifications. Inf Syst
36(1):42–61

Patroumpas K, Sellis T (2010) Multi-granular time-based sliding win-
dows over data streams. Temporal representation and reasoning
(TIME). In: 2010 17th international symposium, pp 146–153

Patroumpas K, Sellis T (2006) Window specification over data streams.
In: Proc. international conference on current trends in database
technology (EDBT’06). Springer, Berlin, pp 445–464

Satyanarayanan M et al (2015) Edge analytics in the internet of things.
IEEE Pervasive Comput 14(2):24–31

Silberstein A, Braynard R, Filpus G, Puggioni G, Gelfand A, Munagala
K, Yang J (2007) Data-driven processing in sensor networks. In:
Proc. Conf, innovative data systems research (CIDR) 3rd Biennial
Conference on innovative data systems research (CIDR) Jan 7–10,
2007, Asilomar, California, USA

Simoens P, Xiao Y, Pillai P, Chen Z, Ha K, Satyanarayanan M (2013)
Scalable crowd-sourcing of video from mobile devices. In: Pro-
ceeding of the 11th annual international conference on mobile

https://doi.org/10.1145/3059177
https://doi.org/10.1109/ICIAS.2007.4658555
http://arxiv.org/abs/1606.04838
https://doi.org/10.1109/ICDE.2006.21
https://doi.org/10.1007/s10115-014-0804-5
https://doi.org/10.1109/CloudCom.2014.44
https://doi.org/10.1109/CloudCom.2014.44
https://doi.org/10.1109/TSMC.2016.2560533
https://doi.org/10.1007/978-1-4614-6849-3

118 Evolving Systems (2018) 9:95–118

1 3

systems, applications, and services (MobiSys ’13). ACM, New
York, pp 139–152

Simonetto A, Leus G (2014) Distributed maximum likelihood sensor
network localization. IEEE Trans Signal Process 62(6):1424–1437

Stojmenovic I, Wen S (2014) The fog computing paradigm: scenarios
and security issues. In: 2014 Federated conference on computer
science and information systems, Warsaw, pp 1–8

The mobile-edge computing initiative. http://www.etsi.org/technolo-
gies-clusters/technologies/mobile-edge-computing (Online)

Tofallis C (2015) A better measure of relative prediction accuracy
for model selection and model estimation. J Oper Res Soc
66(8):1352–1362

Tulone D, Madden S (2006) An energy-efficient querying framework in
sensor networks for detecting node similarities. In: Proceedings of
the 9th ACM international symposium on modeling analysis and
simulation of wireless and mobile systems (MSWiM ’06). ACM,
New York, NY, USA, pp 191–300. doi:10.1145/1164717.1164768

Vulimiri A, Curino C, Godfrey PB, Jungblut T et al (2015) WANalyt-
ics: geo-distributed analytics for a data intensive world. In: Pro-
ceedings of the 2015 ACM SIGMOD international conference on
management of data, pp 1087–1092

Xu G et al (2014) Applications of wireless sensor networks in marine
environment monitoring: a survey. Sensors 14(9):16932–16954

Xu Y, Lee W-C (2003) On localized prediction for power efficient
object tracking in sensor networks. In: Proceeding of the 23rd
international conference on distributed computing systems work-
shops, 2003, pp 434–439. doi:10.1109/ICDCSW.2003.1203591

Yi S, Li C, Li Q (2015) A survey of fog computing: concepts, applica-
tions and issues. In: Proceedings of the 2015 workshop on mobile
big data, pp 37–42

Zervas E et al (2011) Multisensor data fusion for fire detection. Inf.
Fusion 12(3):1566–2535. Elsevier

http://www.etsi.org/technologies-clusters/technologies/mobile-edge-computing
http://www.etsi.org/technologies-clusters/technologies/mobile-edge-computing
https://doi.org/10.1145/1164717.1164768
https://doi.org/10.1109/ICDCSW.2003.1203591

	Predictive intelligence to the edge: impact on edge analytics
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Literature review
	1.3 Research objectives and contribution
	1.4 Organization

	2 Edge predictive intelligence
	2.1 Rationale
	2.2 Definitions and preliminaries

	3 Distributed predictive intelligence
	3.1 Sensor–actuator node intelligence
	3.2 Edge node intelligence

	4 Theoretical analyses
	4.1 Prediction error and reconstruction difference analysis
	4.2 Predictability analysis and computational complexity

	5 Performance evaluation
	5.1 Datasets and experimental setup
	5.2 Performance metrics
	5.3 Model comparison
	5.4 Sensitivity analysis and comparative assessment
	5.5 Performance assessment
	5.5.1 Re-construction difference assessment
	5.5.2 Aggregation analytics assessment
	5.5.3 Predictive analytics assessment

	6 Conclusions and future work
	References

