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Abstract
Computer programming is a skill of increasing importance in scientific and techno-
logical fields. However, in introductory computer science (CS1) courses in higher 
education, approximately one in every three students fails. A common reason is 
that students are overwhelmed by an accelerated and inflexible pace of learning that 
jeopardizes success. Accordingly, in the computer science education literature it has 
been suggested that the pedagogical philosophy of ‘mastery learning,’ which sup-
ports students progressing at their own pace, can improve academic outcomes of 
CS1 courses. Nevertheless, few extended mastery learning implementations in CS1 
have been documented in the literature, and there is a lack of guidance and best 
practices to foster its adoption. In this paper, we present a four-year action research 
study in which a modular mastery-based CS1 course was designed, evaluated and 
improved in successive iterations with cohorts of engineering freshmen in a Latin 
American research university (N = 959). In the first year of the intervention, only 
19.3% of students passed the course in their first semester attempting it. In suc-
cessive iterations, the instructional design, teaching and learning activities, course 
content, and course management were iteratively improved such that by the fourth 
year of offering 77.1% of students passed the course in their first semester. Over 
this period, course attrition was reduced from 25.0% to 3.8% of the cohort, and stu-
dents’ mean time spent in the course decreased from 23.2 weeks (SD = 7.38) to 14.9 
(SD = 3.64). Results indicate that modularization for mastery learning is a viable 
approach for improving academic results in a CS1 course. Practical considerations 
towards successful implementation of this approach are presented and discussed.
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Introduction

Introductory computer science and programming courses at the undergraduate 
level (referred to as CS1 courses) experience failure rates near 30% in multiple 
student populations worldwide (Bennedsen & Caspersen, 2019). This occurs in 
a global context in which there is an increasing demand from industry for soft-
ware engineers, computer scientists, and STEM professionals with proficiency 
in computational thinking and programming (CompTIA, 2021; Eurostat, 2022). 
Experiences in different educational systems around the world show that stu-
dents’ exposure to computer science at the K-12 level influences their decision 
to pursue computing in higher education (Armoni & Gal-Ezer, 2014; Kurhila & 
Vihavainen, 2015; Webb et  al., 2017). Yet despite the increasing importance of 
these skills in diverse professional and scientific fields, it is not compulsory in 
many education systems to teach computational thinking and programming at the 
K-12 level (Bocconi, et al., 2016). For example, a recent report documented that 
only 51% of high schools in the United States offer at least one foundational com-
puter science course (Code.org, CSTA & ECEP Alliance, 2021). Students in the 
developing world find even more limited opportunities to learn the foundations of 
computer science at the K-12 level (Vegas et al., 2021). Thus, students who enroll 
in STEM curricula in higher education must typically learn computational think-
ing and programming at an accelerated pace in their first introductory course to 
the subject (Ahadi, et al., 2014). When this is done via traditional ‘one size fits 
all’ instructional approaches, students experiencing learning difficulties in intro-
ductory programming courses are rapidly overwhelmed by the pace of instruc-
tion, resulting in early attrition and high rates of course failure (Patitsas et  al., 
2019; Robins, 2010).

Mastery learning is a pedagogical philosophy and instructional approach 
that has been researched since the 1960’s (Bloom, 1968; Keller, 1968), based 
on the assumption that every student can master a given skill if given enough 
time, instruction and support. In contrast with traditional instruction, which sets 
a standard time period (such as a quarter or a semester) in which students are 
expected to learn the materials, mastery learning sets standards for mastering 
material that students are expected to achieve at their own pace. In the computer 
science education literature, it has been suggested that mastery learning permit-
ting students to learn at their own pace can help them make sustainable progress 
in a CS1 course (Robins, 2010). This stands in contrast to the common occur-
rence of students being unable to keep up with the pace of instruction and risking 
course failure (Petersen et al., 2016) due to a combination of cognitive (Robins 
et al., 2019), meta-cognitive (Liao et al., 2019) and motivational factors (Dorn & 
Tew, 2015).

Despite the potential benefits, adoption of mastery learning in computers sci-
ence education has remained limited, and few studies describe its implementa-
tion and evaluation. A recent review by Garner et  al., (2019) reports that there 
is a lack of documented attempts to implement mastery learning in CS1 courses 
and that general guidelines and best practices on how to do so have remained 
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unavailable. Thus, there is a pressing need to explore how to best implement mas-
tery learning in CS1 courses, establish whether these efforts lead to improved 
learning, and if so, derive guidelines and recommendations that can be helpful for 
computer science educators interested in adopting mastery learning in their own 
contexts.

In this paper, we report on the development of an introductory computer pro-
gramming course based on mastery learning at a research-based university in Latin 
America. The process was based on iterative cycles of an action research methodol-
ogy over a four-year period, involving a total of 959 students. The mastery learning 
course was designed to fit a semester-based curriculum and academic calendar. To 
accomplish this, a modular instructional design approach was adopted; that is, one 
in which the course is broken up into multiple discrete, short duration segments of 
material and learning activities, known as modules (Jenkins & Walker, 2014; Dochy, 
et al., 1989; Goldshmid & Goldshmid, 1973). Considering mastery learning’s phi-
losophy, students complete a module and are promoted to the next only after demon-
strating mastery of the respective learning goals, through both low and high-stakes 
assessments. Students can retake a module they failed without necessarily failing 
the entire course. Consequently, multiple different module progressions are possible 
in the course, reflecting students’ varying prior preparation, aptitude and efforts to 
learn computer programming. In turn, the modular structure facilitates teachers in 
adjusting content and/or instruction according to students’ needs.

The following section presents the theoretical background for this work, followed 
by the research questions. Subsequent sections describe the design, implementation 
and progressive improvement of pass rates and attrition over the four year-long itera-
tions of the course. The discussion section presents a holistic view of the challenges 
and difficulties experienced in the development of the course, and practical recom-
mendations drawn from lessons learned in the process. Finally, conclusions and ave-
nues for future research are presented.

Theoretical background

Academic failure in CS1

Failure in CS1 courses has been a topic of attention in the academic literature for the 
past several decades (e.g. Bennedsen & Caspersen, 2007, 2019; Watson & Li, 2014) 
with studies consistently reporting failure rates close to 30% on average. Benned-
sen and Caspersen (2019) report a 28% average failure rate in CS1, with variations 
between geographic regions and by type of institution, i.e., college or university. For 
example, the combined rate of students aborting, skipping or failing the course in 
universities is 29%, while this figure for colleges is 17%. In Asia, the average fail-
ure rate is 29%, in Europe it is 31% and in North America it is 24%. It can thus be 
affirmed that in much of the world and across different types of institutions, approx-
imately 20 to 30% of students fail their first programming course. Improving the 
academic results of CS1 courses can reduce student attrition, increase graduation 
rates, and increase the supply of qualified workers in scientific and technological 
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fields to meet the growing demand. A wealth of research in computer science edu-
cation has sought to explain why some students perform better than others in CS1 
courses (Basnet et al., 2018; Guzdial, 2019; McCartney et al., 2017; Patitsas et al., 
2019). One hypothesis for academic failure in CS1 courses relates to the cumula-
tive nature of the materials and posits the existence of “stumbling points” in the 
learning path of programming: that is, there is a small number of identifiable skills 
and concepts that can have a major impact on a student’s progress (Ahadi & Lister, 
2013). The implication of this is that students failing to master critical skills at key 
points in their learning will likely experience severe difficulties later in their learn-
ing path. A more general theorization of this idea is seen in Robins’ (2010) theory 
of learning edge momentum (LEM) as an explanation for students’ variability in 
learning in CS1. LEM proposes that with the tight integration of concepts and skills 
in the domain of computer programming, failure to learn concepts becomes self-
reinforcing, thus creating momentum towards unsuccessful outcomes. Conversely, 
successful learning is positively reinforcing and creates momentum towards more 
successful outcomes.

The implication of both stumbling points and LEM for traditional one-size-fits-
all instruction in CS1 courses is that in every cohort, students who fail to master 
fundamental concepts and skills are substantially more likely to fail to learn more 
advanced and/or composite knowledge. The solution to this problem lies in allow-
ing students to progress to more complex knowledge only after they have mastered 
the earlier knowledge that is required. This demands instructional design and peda-
gogy that departs from the overarching constraint of a single fixed timeline (i.e., the 
monolithic rate and path of progression in a traditional course; Robins, 2010), thus 
allowing each student to progress according to their own ability.

Mastery learning in CS1

Bloom (1968) developed the mastery-learning approach based on the observation 
that providing all students with the same amount of time to learn and the same 
instruction resulted in a distribution of student achievement that reproduced the dis-
tribution of students’ initial aptitudes, i.e., a normal curve. Carroll (1963) argued 
that if individual students were provided with the time they needed to learn the 
material, most students should be able to eventually master it. The shift from fixing 
learning time to fixing a standard level of achievement is the driving feature of mas-
tery learning (Emery et al., 2018).

Mastery learning emphasizes the need for constant tutoring, feedback and proc-
toring, which is difficult to scale to large cohorts (Fox, 2004). Keller, (1968) recom-
mended a maximum cohort size of a hundred students due to practical difficulties 
of supervising student proctors. Furthermore, since in mastery learning can decide 
when to take the assessments, the approach was found to cause students to procras-
tinate and prioritize engaging in other academic activities. In traditional university 
contexts, where students are under pressure to study several subjects simultane-
ously, the approach might be difficult for some, especially first year students new to 
the independence required in the university context. These students often lack the 
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self-regulation skills necessary to organize their time and the dedication needed to 
be successful in both mastery-based and traditional courses (Eyre, 2007).

Despite the relevance and potential value of mastery learning for computer sci-
ence education, literature specific to this domain is scarce, and the limited efforts 
to adopt mastery learning in computer science have been carried out in isolation 
of each other. Recently, Garner and colleagues (Garner, et  al., 2019) conducted a 
review of mastery learning in Computer Science, including literature published 
between 1992 and 2017. Considering twelve studies in this time frame, it was 
identified that motivators for implementing mastery learning include the possibil-
ity of improving teaching for diverse student cohorts, addressing the ‘learning edge 
momentum’ problem, guaranteeing skill mastery, and contributing to the mastery 
learning literature as well as other case specific reasons. Obstacles to the imple-
mentation of mastery learning include student procrastination, scaling delivery 
and developing assessments. Many experimental approaches have been observed 
in distance learning, automated assessments, personalized feedback, and each pro-
gram has had to solve similar problems. Moreover, few studies focus on introduc-
tory computer science courses; only five studies were reviewed, with a duration no 
longer than two semesters. The review concludes that implementation of mastery 
learning in computer science has been based on the general education literature, and 
that there is still a lack of an authoritative body of scholarly knowledge to guide 
curricular innovation, implementation and research of mastery learning in computer 
science.

Course modularization for mastery learning in CS1

The notion of dividing a full-semester course into discrete modules has been dis-
cussed by many authors beginning in the 1960s (Goldshmid & Goldshmid, 1973). 
Modularization emerged as a methodology for curricular and instructional design in 
European higher education, emphasizing the possibility for students to have a high 
degree of customization in their curriculum (e.g., presenting students with catalogs 
of modules with which to configure their courses) and to develop autonomous learn-
ing skills (Dochy, et al., 1989; van Eijil, 1986; van Meel, 1993). Nonetheless, there 
are a variety of applications and ways of implementing modularization according to 
the characteristics of the target educational problem and context (Jenkins & Walker, 
2014).

For the present effort, modularization of a computer programming course offers 
the possibility to implement mastery learning in a scalable way, within the con-
straints of the semester-based academic activities typical of higher education institu-
tions. A modular design permits dividing a traditional course into modules. Each 
module has its own learning goals and students can work on the appropriate module 
according to their mastery level. From the operationalization standpoint, modules 
can be taught multiple times each semester, performance outcomes can be quickly 
tested and evaluated, and teaching can be continuously improved in terms of instruc-
tional strategies and assessment methods. With regard to the common mastery 
learning issue of procrastination (Fox, 2004), a modular design that prescribes dates 
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of both formative and summative assessments can drive students to focus their atten-
tion on the course and strive to meet the required mastery standard in a predictable 
time frame. With this rationale and expectations, the present authors persuaded fac-
ulty leadership at a research-based Latin American university to support transfor-
mation of an introductory programming course into a modular format for mastery 
learning.

Research framework and questions

Figure  1 depicts the methodological framework underpinning the present study, 
supporting the iterative process towards implementing and improving a modu-
lar CS1 course for mastery learning. The framework comprises a four-step action 
research methodology as described by Cohen et al., (2013) drawing on Zuber-Sker-
ritt, (2003). The action research process focuses on improving relevant aspects of 
teaching and learning as identified by Biggs, (2011) in his ‘constructive alignment’ 
framework, which include the course’s intended learning objectives, its teaching 
and learning activities, and assessment tasks (see components A–C in Fig.  1). In 
addition, instructional design, course content and skills, and course management are 
three aspects identified by Fink, (2013) which we consider central in the methodol-
ogy of the present research (see components D–F in Fig. 1). Given these compo-
nents of interest, the steps of the action research cycle include (1) strategic Plan-
ning, wherein the A–F components are designed, planned, and revised according to 
relevant learning theories, and a research agenda aligned with the educational prob-
lem is crafted, (2) Action, i.e., plan enactment, (3) Observation, evaluation and self-
evaluation of the course implementation with regard to components A–F, and (4) 
critical and self-critical Reflection on the results of points 1–3 deriving in decision 
making for the next action research cycle.

Based on the discussion presented in the previous sections, and the methodologi-
cal framework that underpins the current research, the research questions addressed 
in this paper are the following:

Fig. 1   Action research cycle towards implementing and improving the modular course for mastery learn-
ing
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1.	 What challenges and difficulties arise in the process of implementing a CS1 
modular course for mastery learning with regards to the instructional design, 
content and skills, teaching and learning, assessment and course management, 
and how are these overcome in successive action research cycles?

2.	 How do students perform in the CS1 modular course for mastery learning? How 
diverse are their module progressions and how do these evolve as a result of 
interventions conducted within the action research process?

3.	 What practical implications and recommendations emerge from the experience to 
support successful implementation of modular CS1 courses for mastery learning?

Educational context

The research was conducted in the engineering school of a Latin American research 
university. The engineering school offers undergraduate programs in five areas: 
Industrial, Civil, Electrical, Computer Science and Environmental Engineering. As 
of 2020, only 7.6% of the students enroll in the Computer Science program, how-
ever, the CS1 course is compulsory for all first year engineering students, regardless 
of program. The intended learning objectives of the course are that by its completion 
students should be able to:

•	 Explain key concepts involved in procedural computer programs, namely: input 
and output, data types, variables, operators, control flow, function invocation and 
return values, random access data structures (i.e.., simple and multidimensional 
arrays), strings, dictionaries, file access, and recursion.

•	 Model algorithms based on a procedural model of computation, specifying the 
sequence of steps required by use of a graphical language.

•	 Model simple recursive algorithms comprising base cases and recursive steps.
•	 Write procedural programs in a high-level, text-based programming language, 

including the above-listed concepts.
•	 Write programs that involve numeric computation and data visualization capa-

bilities based on 2D plots.

Previous version of the CS1 course

The version of the CS1 course that existed prior to the present study was based on 
a semester format comprising the following weekly activities: two lectures, a reci-
tation session, and a lab assignment. Assessment was based on weekly low-stakes 
assessments during lecture hours, weekly graded lab assessments and homework. 
In addition, the course incorporated a final exam worth of 30% of the final grade. It 
was customary to offer students who did not pass the exam but still reached a certain 
grade cutoff the ability to take a recovery exam and still pass the course. Under this 
scheme, the failure rates in the previous version of the course fluctuated between 30 
and 40% in the last three years of its implementation prior to the study.
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Student cohorts under study

The student cohorts that participated in the current study are described in Table 1, 
including their size and gender composition. Annually, student cohorts are compa-
rable with an average of 80% male and 20% female students. The secondary edu-
cation origin of students has also remained stable, with 78% to 83% coming from 
private secondary education institutions. Another 8–14% of the students come from 
Publicly-Funded Private Schools (PFPS). A minority of the students, less than 5%, 
come from public schools. In the national context, 37% of high school students 
attend a public school, 48% attend PFPS schools and 14% attend private schools. In 
addition, only 33% of students that attend public schools enroll in higher education, 
while 76% of students who attend private schools enroll in higher education (OECD, 
2015).

Course design features

The course developed in this study is based on the following design features, which 
respond to the defined learning outcomes and a mastery learning approach:

1.	 Modular course architecture for mastery learning: The intent of the modular 
architecture is to permit students to follow different paces of module progression 
in the course according to their learning capabilities, while achieving mastery of 
each relevant course unit (module) before being promoted to the next module. For 
students to demonstrate attainment of mastery, each module includes a summa-
tive examination at the end. To make the course must be operational within the 
structure of a semester-based calendar in the host institution with sixteen weeks 
of classes per term, it was chosen to structure the course into four successive 

Table 1   Student cohorts under 
study

Cohort 2017 2018 2019 2020 Total

Size 228 242 227 262 959
Gender
Male 183 (80.3%) 190 (78.5%) 188 (82.8%) 200

(76.3%)
761

Female 45 (19.7%) 52 (21.5%) 39 (17.2%) 62
(23.7%)

198

Secondary education institution type
Private 171 (75.0%) 186 (76.9%) 183 (80.6%) 219

(83.6%)
759

PFPS 31 (13.6%) 32 (13.2%) 22 (9.7%) 21
(8.0%)

106

Public 10 (4.4%) 5
(2.1%)

10 (4.4%) 11
(4.2%)

36

Other 16 (7.0%) 19 (7.9%) 12 (5.3%) 11
(4.2%)

58
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modules with equal duration of three weeks. This makes possible teaching the 
modules in parallel, and the students can repeat a module in the first semester 
and still be able to complete the course in the term. Also, students do not need 
to wait to resit a module if they fail, as parallel modules can start and end in the 
same dates.

2.	 Foster algorithm design skills before coding: According to Koulouri et al. (2014), 
learners’ analytic capability to logically decompose problems has a positive effect 
on learning programming, regardless of the programming language being used 
in the process. In the previous version of the course, problem analysis and algo-
rithm design skills were taught as the initial content unit in the first week of the 
course. Arguably, these skills were not given sufficient attention as they were 
taught superficially, and only evaluated by low-stakes assessments. Thus, for the 
modular course, it was considered that time dedicated to problem analysis and 
algorithm design needed to be increased, as well as the need to adopt a more 
rigorous assessment of these skills.

3.	 Imperative procedural programming: For decades there has been debate about 
the order in which programming skills should be taught (Luxton-Reilly, et al., 
2018); that is, if object-oriented analysis and design should be taught first, i.e., 
an “objects-first” approach, or if prior to that, students must master procedural 
programming. Faced with these alternatives, the present authors had developed 
the preceding course based on an imperative-procedural approach, emphasizing 
top-down problem analysis, and algorithm design based on the use of variables, 
logical and arithmetic operators, domain of flow control structures, use of func-
tions, arrays and dictionaries. The modular course here presented maintains this 
tradition, with object-oriented analysis and design skills being taught in a later 
course in the curriculum.

4.	 Performance-based assessment: Assessment sends a strong message to students 
about what counts as knowledge, insofar students’ perceptions of the require-
ments of the assessment influence their approach to learning (Ott et al., 2016; 
Weurlander & Soderberg, 2012). The current authors consider that performance-
based assessment can therefore foster deep learning of course topics, as students 
are required to produce working programs in their solutions to given problems, 
and in this process, integrate various programming skills. Therefore, assessment 
problems in the modular course are based on ‘multistructural-applying’ and ‘cre-
ating’ categories of the taxonomy proposed by Meerbaum-Salant et al., (2013).

5.	 Situated problems: A student’s intrinsic motivation for computer programming 
can be influenced by their perceived real-world applicability of knowledge and 
skills (Dorn & Tew, 2015; OGrady, 2012). This is salient in educational contexts 
in which students have diverse interests, as is it the case in the current study’s 
educational context. Furthermore, from a constructivist standpoint, problem 
understanding can be facilitated if students can anchor problems to their real-
world experiences and prior knowledge (Ben-Ari, 2001). Thus, both practice and 
assessment tasks in the modular course involve problems in which students are 
encourage to ‘think as engineers’ in a particular scenario.

6.	 Pursuit of Constructive Alignment: The theory of constructive alignment (Biggs, 
2011) is based on the idea that learners use their activity to construct knowl-



	 C. Alvarez et al.

1 3

edge as interpreted through their own existing schema, and that assessment tasks 
should be aligned to what it is intended to be learned. The instructor’s duty is to 
set up a learning environment that encourage students to perform learning activi-
ties that align with the intended outcomes, and to assess student performances 
against the latter. The relevance of constructive alignment, its implications and 
potential enhancement of teaching and learning have been emphasized by some 
authors in computer science education literature (Bayu Bati et al., 2014). The 
modular course here proposed aims at achieving constructive alignment among 
learning outcomes, teaching and learning activities and assessment tasks.

Course iterations

Iteration 1

Planning

A design of four successive Modules (M1-M4) of three weeks each was adopted in 
both semesters of the academic year (see Appendix A a). The teaching staff was led 
by a coordinator (first author of the present study), and included four lecturers. The 
coordinator planned the course schedule, as well as the evaluation and course mate-
rial development plan. All teaching staff had to contribute to the development of 
problem sets for tutoring sessions, lab assignments, and exams during the semester, 
according to the material development plan. The course coordinator monitored these 
duties and oversaw the distribution of the materials in addition to their work prepar-
ing the lecture material (which included slides sets and code samples). Grading was 
conducted by 20 Teaching Assistants (TAs), directed by a chief TA who reported to 
the course coordinator. The number of lecturers and TAs was maintained from the 
traditional course.

An example of how the modular course can evolve throughout an academic year 
is shown in Fig. 2. The horizontal axis shows the division of the academic year (and 
semesters) into Time Blocks (TBs). A TB within a semester spans for three weeks, 
so five TBs are commonly allotted within sixteen weeks of classes in a semester. 
The vertical axis denotes the modules that are active (given) in the TBs. Initially, 

Fig. 2   Modular course evolution example
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all students start at M1 in TB 1. As students pass and fail modules through the TBs, 
different modules need to be taught in parallel. By the end of TB 4, a part of the 
cohort may have completed all four modules, thus being the first students to pass the 
course, accomplishing so in 12 weeks. The rest of the students continue to complete 
the course in successive TBs, thus taking a varying amount of TBs to pass. From 
one TB to the next, lecturers can be reassigned by the course coordinator to teach a 
different module, as the number of students requiring attending each module varies 
from one TB to the next. For planning purposes, and considering classroom capac-
ity restrictions, the number of lecturers allocated to teaching each module had to be 
decided before the start of every TB, as module pass rates were unknown in the first 
iteration of the modular course.

In Iteration 1, similarly to the example shown in Fig. 2, an inter-term period (TB 
6) was planned to offer only the final (fourth) module of the course, and thus allow 
students with the last pending module to complete the course before the following 
semester. Enrollment in the inter-term period was made optional. It was expected 
that by the end of the first semester, most of the students would have reached or 
passed M4. In the second semester the modular course was continued for an addi-
tional five three-week TBs (i.e., TBs 7–11). Students that were not able to pass the 
course in the first semester were allowed to resume the course starting with the mod-
ule following the highest one they had passed.

In each assessment, as well as for calculation of final module grades, the grading 
system followed local conventions using a continuous scale from 1.0 to 7.0, with a 
passing level of 4.0 (50%). Grades are absolute and not curved.

Action

The structure of all course modules across iterations, including teaching and learn-
ing activities, and assessments, is depicted in Appendix A. The first two weeks of 
classes each included a lecture, a tutoring session and a lab assessment. Between 
the lecture and the tutoring session, students were expected to dedicate self-directed 
study time to solving a homework assignment and solving practice problems. In the 
third week of the module, the students sat the summative examination of the module 
instead of a lab assessment. Table 2 shows assessments and their weights per each 
module, in the first three iterations of the course.

The contents of the course modules are shown in Appendix B, along with their 
evolution throughout successive course iterations. In the first iteration, M1 encom-
passed the basics of computational thinking, including problem analysis and algo-
rithm specification. The students were taught the latter skills through drawn flow 
charts. Then, computer programming based on Python 2.7 was introduced, includ-
ing basic input–output, variables, operators, pseudo-random numbers and the selec-
tion statement. In M2, more advanced flow control (including loops and flow control 
nesting) and functions were taught. M3 introduced lists, nested lists, and file access. 
Finally, in M4, other data structures were taught, together with Python’s numeric 
computation library (NumPy), and 2D plots.

Following common recommendations in the mastery learning literature (Fox, 
2004), lectures were intended as motivational with the aim to provide students with 



	 C. Alvarez et al.

1 3

key concepts and demonstrations to get started learning on their own. Because of 
this, lecture time was reduced to 50% of the time that was allotted in the former 
course. After the lectures, students were provided with readings, videos, and prob-
lem sets to support their personal study. Then, in tutoring session, students were 
presented with a set of increasingly complex problems, which they could solve sup-
ported by a TA and peer collaboration. These problems were not graded. The fol-
lowing day, the students had to attend a graded laboratory assignment (weeks one 
and two) or the final module exam (week three). In the first iteration of the course, in 
M2 to M4, the students had a homework assignment lasting seven to ten days. These 
assignments were optional, and counted in the final course grade with 16.6% weight 
if their average surpassed the weighted average of other course assessments.

With the intent to provide students with instant feedback on their performance, 
it was decided to implement automatic grading in most of the lab assignments. For 
this, contest management system (CMS; Maggiolo & Mascellani, 2012), a platform 
utilized in competitive programming environments, such as the International Olym-
piad in Informatics, was tailored to the course’s needs. Following the intent to give 
assessments of a situated nature, problem statements each described a particular sce-
nario. The problem itself was divided into subgoals of increasing difficulty, each 
involving a number of test cases. Examples were provided for each subgoal, show-
ing the corresponding data inputs and outputs. Upon submitting a response, each 
successful test case awarded points to the student.

The final summative exam in each module required students to demonstrate mas-
tery of the knowledge and skills seen in the course up to that time. Problem state-
ments described a scenario and functional requirements of the solution to be imple-
mented. Students were always asked to write a working program that solved the 
given problem. Grading of examinations was always conducted by the Tas following 
a common rubric.

Observation

Students’ performance in the first iteration of the course was well below expecta-
tions at the outset of the intervention. By the end of the first semester, in TB5, 

Table 2   Course assessments and weights in the first three course iterations

* Homework grades were only considered as a bonus, if these raised the students’ final average after com-
pleting all four course modules

Iteration 1–2017 Iteration 2–2018 Iterations 3–2019

Assessment type (per 
module)

Amount Weight Amount Weight Amount Weight

Lab Assessments 2 15% each 2 7.5% each 2 7.5% each
Final Exam 1 70% 1 70% 1 70%
Homework 1 (M2, M3, M4) Optional * 1 (M1-M4) 7.5% 1 (M1-M4) 7.5%
Attendance – – 1 7.5% 1 7.5%
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there were students still in all four course modules (see Table 3), and only a small 
fraction of students had passed the complete course.

In the first semester, pass rates were alarmingly low in M1 and M2, especially 
the first time students attempted each module (see Table 4). The first time M1 was 
given (i.e., in its first instance), only 37.6% of the cohort passed, thus the major-
ity of the students had to repeat it (i.e. attempt passing the module a second time). 
Given the low pass rates in modules 1 and 2, only a small percent of the cohort of 
students were able to reach modules 3 and 4 the first time they were offered. This 
smaller number of (high-achieving) students can help explain the higher student 
success in these modules in their first offering.

Students’ average time to pass all four course modules in the first iteration was 
23.2 weeks (SD = 7.38), close to eight TBs, considering both semesters and the 
inter-term period. The course pass rate in the first semester was only 19.3%, but 
including students who passed M4 in the inter-term period, this figure increased 
to 28.5%. Thus before the start of the second semester, slightly below a third of 
the original cohort had finished the course.

At the start of the second term 46.9% of the original cohort was in M3 and M4, 
and 10.1% of the students had dropped the course. The number of students that 
passed the course increased steadily in the second semester, reaching 66.7% by 
the end of TB 11. As in the previous semester, M4 was offered in an extra time 
block (TB12) in weeks 33–35. This increased the overall course pass percentage 
to 75% (see Table 4). The overall percentage of students who dropped the course 
doubled in the second semester, reaching 21%. Nearly half of this increase (i.e., 
5.7%) was due to students failing to pass M3 in the last TB it was given (TB11). 
Lastly, a remaining 4.4% of the cohort in M4 did not drop but was unable to pass 
the course by the end of the year.

Table 3   Proportion of students 
in each course state by the end 
of the first (TB5) and second 
(TB13) semesters in iteration 1

M1 M2 M3 M4 Passed Dropped out

End of first 
semester 
(TB5)

.07 .13 .37 .21 .19 .03

End of 
second 
semester 
(TB13)

.00 .00 .00 .04 .75 .21

Table 4   Module pass rates 
for students’ first, second and 
third attempts in their first three 
instances in iteration 1

* Corresponds to the inter-term period, wherein only 32 students out 
of possible 47 opted in

Instance M1 M2 M3 M4

First .38 (228) .34 (88) .50 (30) 1.00 (15)
Second .56 (140) .79 (137) .37 (123) .63 (46)
Third .39 (61) .53 (62) .27 (110) .72 (32*)
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Reflection

The reflection step in the first iteration involved meetings with course Tas and 
the teaching staff, and conducting an interview process with students. Purpose-
ful sampling was used, selecting ten students with different levels of achievement 
in the course, including students who had passed the course in the first semes-
ter, students who had failed the course in the first semester, and students who 
dropped out of the course. Based on these information sources, different issues 
were noted, which provided explanation for the poor results obtained in the first 
iteration of the modular course. The issues are summarized in Table 5.

One of the main issues found was that the methodology used in M1 to intro-
duce computational thinking and algorithm design did not meet the expected 
results. Table  4 shows meager M1 pass rates in its first three instances. In the 
light of academic results, and students’ testimonies in interviews, it was consid-
ered that both pedagogy and assessment required major changes (e.g., see issues 
AS1, CSK1 in Table 5).

Iteration 2

Planning

In Iteration 2 the schedule of the academic year remained similar to the previous 
iteration, however, due to limitations of the academic calendar, it was not pos-
sible to accommodate six TBs in the second semester but only five. The teaching 
team remained stable except for a lecturer who was replaced by a doctoral student 
with prior teaching experience in a traditional CS1 course. With regard to course 
content, it was decided that rework of M1 was necessary, considering the need 
to adopt more effective ways to teach the initial skills of the course. In planning 
the second iteration of the course, most of the issues described in Table 5 were 
addressed through a decision making process in which the course coordinator 
consulted the teaching staff, including both professors and teaching assistants, for 
ways to overcome each issue (Table 6). 

Action

A major part of course improvement efforts in Iteration 2 were directed at 
addressing the pedagogical issues in M1. To deal with these, it was decided to 
adopt the approach of teaching visual programming with interactive tools instead 
of traditional hand-drawn flowcharts, before introducing text-based program-
ming. Two block-based visual languages were considered, including code.org 
(Kalelioğlu, 2015) and MIT Scratch (Meerbaum-Salant et al., 2013). Scratch was 
considered more convenient as it focuses strictly on visual programming, while 
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code.org draws parallels among block-based and text-based programming; the lat-
ter in ECMAScript language, which differs from Python.

With Scratch, in less than three weeks’ time, students could learn basic problem 
analysis and how to generate programs with variables, input and output, operators, 
logical and arithmetic expressions, pseudo-random number generation, conditional 
and iterative flow control, and use of lists. In addition, the teaching of Python in M1 
was simplified, moving basic flow control (i.e., the selection statement) to M2 (see 
Appendix B).

Observation

In the second iteration, students’ progress through the course was notably faster than 
in iteration one, with an average time to finish the course of 20.5 weeks. This is a 
reduction of 2.7 weeks (SD = 6.58), i.e., almost a complete TB, compared to the first 
iteration (M = 23.2, SD = 7.38). Correspondingly, module repetition was reduced.

By TB5 there were no students in M1, and 3% of the cohort were in M2 (see 
Table 7). This contrasts with Iteration 1, as in TB5 7% of the cohort were in M1 
and 13% in M2. By the end of the inter-term period (TB6), 47.4% of the cohort had 
passed the course in iteration two, compared to only 28.5% in the first iteration. In 
addition, 89% of the cohort completed the course by the end of the academic year 
(see Table 7), compared to only 75% in the previous iteration (see Table 3).

Improved results in Iteration 2 with regard to student progress, were the result 
of increased pass rates in M1 and M2 (see Table 8). On the other hand, no major 
changes in teaching and format of summative exams were introduced in M3 and M4, 

Table 7   Proportion of students 
in each course state by the end 
of the first (TB 5) and second 
(TB 11) semesters in Iteration 2

(↑) Increase in desired direction, (↓) Decrease in desired direction

M1 M2 M3 M4 Passed Dropped out

End of first 
semester 
(TB5)

.00 .03 .37 .27 .31 (↑.12) .02 (↓.01)

End of 
second 
semester 
(TB11)

.00 .00 .00 .02 .89 (↑.14) .09 (↓.11)

Table 8   Module pass rates for students’ first, second and third attempts in their first three instances in 
Iteration 2

(↑) Increase in desired direction, (↓) Decrease in undesired direction
* Corresponds to the inter-term period, wherein 67 students out of possible 68 opted in

Instance M1 M2 M3 M4

First .78 (↑.39) (242) .56 (↑.22) (189) .36 (↓.14) (105) .89 (↓.11) (38)
Second .87 (↑.31) (53) .35 (↓.44) (130) .41 (↑.04) (117) .77 (↑.14) (52)
Third .43 (↑.4) (7) .77 (↑.27) (83) .42 (↑.15) (135) .61(↓.11) (*67)
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thus, results in these modules did not improve noticeably compared to the first itera-
tion. However, like in the first iteration, students who passed M3 performed well in 
M4.

Table 9 shows homework and examination grades considering the first instance 
of each module. Greater student dedication to homework assignments was observed 
in Iteration 2. The percentage of students handing in their homework across the dif-
ferent modules ranged between 84.0% in M3 and 93.7% in M2. However, homework 
grades were consistently higher than examination grades in M1-M3, and the differ-
ence was verified to be statistically significant in these cases, with large effect sizes. 
In addition, correlations among homework and examination grades were poor, rang-
ing between 0.14 and 0.28. This may relate to different conditions under which stu-
dents develop homework assignments compared to exams; in terms of time, and the 
possibility to seek help from others. Notably, in M4 students did better in the exam 
than in the homework assignment, while the mean of homework was the lowest of 
all modules.

Reflection

After reflections involving the teaching team, teaching assistants and data analysis of 
students results in each module, we were able to see that the changes to the course in 
Iteration 2 succeeded at improving module pass rates at the beginning of the course, 
which accelerated students’ overall progress in the course. The course was improved 
by taking into consideration the many issues found in the past iteration. However, 
pedagogical and course management aspects could be improved further. Table 10 
shows salient issues found in iteration two, which related to teaching and learning 
and course management.

Iteration 3

Planning

Planning of the course remained similar with regards to TBs in each semester. Like 
in the previous iteration, only one member of the teaching staff having two years’ 
experience in the modular course was replaced by a young lecturer with a few 
semesters experience teaching traditional CS1 courses. In order to cope with issue 
CM3 raised in Iteration 2 (see Table 10), planning of assessment construction had to 
be carefully negotiated by the course coordinator with each member of the teaching 
staff.

Action

Table 11 summarizes the actions performed in Iteration 2 to overcome issues TL4, 
TL5 and CM3. In addition, the Python language was upgraded to version 3.6, as ver-
sion 2.7 was scheduled to sunset in January 2020. Syntactic and semantic changes 
among language versions are minor, especially as the present programming course 
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only focuses on the imperative procedural paradigm. However, this required a com-
prehensive update to the courses’ textbook, class material and code examples.

Observation

Students’ progress was further improved in the third iteration, with a mean time to 
complete the course of 17.7 weeks (SD = 5.60). This is an improvement of an addi-
tional 2.8 weeks over Iteration 2, due mainly to an increase in module pass rates. 
As shown in Table 12, by the end of TB5, 54% of the cohort had passed the course. 
After the inter-term period, this figure increased to 67%. By the end of the year, 94% 
of the cohort passed the course, and only 6% dropped out.

Quicker student progress in the course was due to pass rates in M1 continuing to 
be above 0.7 in the first two instances the module was offered, and later improve-
ments to pass rates in M2 and M3. Lastly, M4 maintained relatively high pass rates 
comparable to the second iteration (see Tables 12 and 13).

Reflection

Iteration 3 showed that positive effects of changes made in Iteration 2 could be rep-
licated, and that further improvement was achieved in the light of greater pass rates 
observed in M2 and M3. As pass rates in M2 and M3 were consistently improved 
in several of their instances, it can be affirmed that changes to pedagogy linked to 
addressing TL4 and TL5 (see Table 11) had a positive influence on students’ learn-
ing and performance. However, no evidence could be elicited regarding achievement 
of a better alignment among laboratory assignments, homework and examinations, 
as a result of addressing issue CM3. A path analysis procedure was conducted as a 

Table 12   Proportion of students 
in each course state by the end 
of the first (TB 5) and second 
(TB 11) semesters in iteration 3

(↑) Increase in desired direction, (↓) Increase in undesired direction, 
(⇊) Decrease in desired direction

M1 M2 M3 M4 Passed Dropped out

First semester .00 .01 .24 .16 .54 (↑.23) .05 (↑.03)
Second semester .00 .00 .00 .00 .94 (↑.05) .06 (⇊.03)

Table 13   Module pass rates for students’ first, second and third attempts in their first three instances in 
iteration 3

(↑) Increase in desired direction, (↓) Decrease in undesired direction
* Corresponds to the inter-term period, wherein 37 students out of possible 48 opted in

Instance/module M1 M2 M3 M4

First .71 (↓.07) (227) .51 (↓.05) (162) .73 (↑.37) (78) .75 (↓.14) (56)
Second .83 (-) (65) .60 (↑.25) (138) .65 (↑.24) (107) .95 (↑.18) (84)
Third – .80 (↑.03) (55) .54 (↑.12) (81) .78 (↑.17) (37*)
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means for establishing whether results in an assessment could predict results in later 
assessments. This was based on the notion that an assessment could predict per-
formance in later assessments if students manage to build and apply schemata and 
transfer knowledge related to the intended learning outcomes throughout successive, 
aligned learning and assessment events (Robins et  al., 2019). The procedure was 
performed with R v4, considering assessments in the first instances of modules M1 
to M3. In our case, with all modules it was found that only the first lab assignment 
could predict performance in the second lab assignment and in the summative exam 
(i.e., path coefficients in the range 0.44 to 0.58, p < 0.01), although the latter to a 
lesser extent (i.e., path coefficients in the range 0.02 to 0.3, p < 0.05). The second lab 
assignment could not predict performance in homework nor in the summative exam. 
In turn, homework did not predict lab assignment nor examination performance (see 
Appendix C). This provides indication that further improvement with regard to con-
structive alignment can be pursued by increasing opportunities for knowledge trans-
fer, schemata activation, and display of meta-cognitive strategies across homework, 
lab assessments and the summative exam.

Table 14 summarizes the issues found in Iteration 3, which relate to teaching and 
learning, assessment and course management. Overcoming these issues was consid-
ered essential in order to improve the course both from operational and academic 
standpoints.

Iteration 4

Planning

The fourth iteration of the course began in the midst of the worldwide COVID-19 
crisis. In the first week of the course, the university complied with the regulations 
imposed by the local health authorities and the decision to teach online throughout 
the year was made official. The course had to be quickly adapted to this format.

The annual calendar of the course did not undergo changes compared to the pre-
vious year, keeping the number of weeks, TBs and the inter-term period unchanged. 
There was a 15% increase in freshmen enrollment compared to the previous year, so 
a sixth lecturer was added to the teaching staff. In the second semester the teaching 
staff was reduced to two lecturers, as in all course iterations.

Action

With the change to online education, synchronous activities such as tutorials and 
lectures were streamed on platforms such as YouTube and Twitch, or conducted by 
using videoconference systems, such as Google Meet. The lectures were reduced 
from 100 to 80 min, and their focus continued to be about demonstration of skills 
and step-by-step problem solving by the lecturers. In order to improve students’ 
preparation for the lectures, the teaching team produced two to four short videos 
(i.e., three to ten minutes long) per week, 48 in total, to cover the fundamental con-
tents covered in each lecture. In previous iterations of the course, there was a limited 
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number of video capsules, used mainly in M1, but these were completely renovated. 
In a flipped classroom fashion, students were required to watch the video capsules 
before each class, and read sections of the textbook.

The course began with all six lecturers teaching M1, with groups of students 
assigned to each as had been done for the face-to-face format. Given that the online 
format allows assigning an unlimited number of students to each teacher, starting 
from TB2, the teaching staff that gave lectures was restricted to three or four lectur-
ers per TB. Thus, about half of the teaching staff was dedicated to lecturing, and the 
other lecturers had greater dedication to developing assessments and short explana-
tory videos. Dedication to lecturing and content creation duties were planned by the 
course coordinator before the start of each TB.

With regard to assessment, changes were made in Iteration 4 (see Table 15), with 
the aim to reduce the number of students’ requests for regrading at the end of each 
module, and thus lessen the burden this placed on teaching assistants at the end of 
every TB (i.e., issue CM4). In M1 and M2 grades were based only on class attend-
ance and the summative exam. Homework assignments in these two modules were 
eliminated. Lab assessments were administered in M1 to M3, but were not com-
pulsory. Rather, students could score bonus points to boost their final grade in the 
module (but were not allowed to request regrading). In M3, homework was kept in 
a similar format to the previous iteration and worth 12.5% of the final grade, and 
regrading was allowed. In M4, an integrative homework assignment, prompting 
students to comprehensively apply course knowledge and skills, was introduced, 
accounting for 22.5% weight in the final module grade. Given that this homework 
assignment was expected to demand a greater effort, lab assignments were omitted 
in M4 altogether.

The modules were taught with the same knowledge and skills ordering as in the 
last iteration. This allowed all the assessment material from the previous year to 
be completely reused in the form of worked examples so that the students could 
improve their preparation for the assessments in tutorials and in their personal study.

Changes in Iteration 4 were mostly focused on implementing the course in online 
format, however, it was feasible to address the issues that emerged in the past itera-
tion to some extent (see Table 16). In the second semester, an attempt was made 
to improve student engagement with the support of the academic counseling model 
traditionally implemented in the institution. This consists of each first year student 

Table 15   Course assessments and weights in Iteration 4

Module 1 Module 2 Module 3 Module 4

Assessment per module Weight
Low stakes lab assessment Two lab assessments which award bonus points

(up to 0.6 points on the module grade, considering 1–7 grade 
scale, with 4 as the cutoff grade)

–

Final exam 92.5% 92.5% 80% 70%
Homework – – 12.5% 22.5%
Attendance 7.5% 7.5% 7.5% 7.5%
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having an assigned academic counselor, generally a full-time academic. The secre-
tary for student affairs of the Faculty was asked to coordinate the appointment of 
video calls so that the students could meet their counselors, and be encouraged by 
them to finish the course as soon as possible. Regarding the aligned development of 
the assessments to facilitate knowledge and skill transfer, the criterion of the pre-
vious iteration was maintained, consisting of the same teacher having to develop 
homework and exams in M3 and M4 (Table 17).

Observation

In Iteration 4 the improvement trend with regard to students’ mean time to finish the 
course was maintained. This was figure was reduced to 14.9 weeks (SD = 3.64), that 
is, an improvement of 2.84 weeks (almost a complete TB) compared to Iteration 3 
(M = 17.7, SD = 5.6). In addition, 96.2% of the cohort completed the course by the 
end of the academic year, compared to 94.3% of students achieving this result in the 
previous iteration (see Tables 12 and 17).

Pass rates on M1 and M2 continued to improve (see Table 18). In Iteration 3 the 
same pass rate was found for M3 as the previous year in the first instance, but it 
worsened considerably in the second instance. In M4 there was also a worsening in 
the pass rate in the first instance. Nonetheless, at the end of TB5, 77% of the cohort 
passed the course, i.e., an increase of 23% compared to Iteration 3, due to a greater 
proportion of students in M4 in TBs 4 and 5, explained by better pass rates in M1 
and M2.

Reflection

The best academic results in Iteration 4 were obtained in a teaching context different 
from that of the previous modules. Therefore, the improvement in academic results 

Table 17   Proportion of students 
in each course state by the end 
of TB 5 in Iteration 4

(↑) Increase in desired direction, (⇊) Decrease in desired direction

M1 M2 M3 M4 Passed Dropped out

First semester .00 .01 .05 .16 .77 (.23↑) .00 (⇊)
Second semester .00 .01 .01 .02 .96 (.02↑) .04 (⇊)

Table 18   Module pass rates for students’ first, second and third attempts in their first three instances in 
iteration 4

(↑) Increase in desired direction, (↓) Decrease in undesired direction

Instance M1 M2 M3 M4

First .96 (↑.25) (262) .67 (↑.16) (251) .78 (↑.05) (169) .73 (↓.02) (131)
Second .27 (↓.56) (11) .88 (↑.28) (90) .26 (↓.39) (117) .92 (↓.03) (118)
Third (–) .73 (↓.07) (11) .70 (↑.13) (47) .84 (↑.0.06) (43)
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can be attributed to both the deliberate improvements pursued, as well as other fac-
tors beyond control of the teaching staff and research agenda.

Undeniably, students in the online mode had advantages over those who previ-
ously took the classroom-based course at the time of taking assessments. During the 
assessments, they could access study material, assessments from previous semes-
ters, and other resources. On the other hand, students in the face-to-face format were 
only allowed to consult the course’s textbook during the assessments. In spite of 
this, it could not be established that there was systematic cheating and plagiarism 
on the part of the students when taking the assessments in the online course. At the 
begining of the course, it was announced to the students that all assessments would 
be reviewed with Measure of Software Similarity (Aiken, 2020). In spite of this, 
in TB2, 23 students were found (8.8% of the cohort) to be suspected of cheating 
on their assessments due to code similarity. After investigation, it was determined 
that 11 students cheated in lab assignments or examinations. After these students 
were informed of the sanctions, which consisted of failing the course in most cases, 
plagiarism in the cohort appeared to decrease substantially (no new suspicions of 
plagiarism were detected in the following TBs).

The lifestyle of the students was also considerably affected by the pandemic and 
this could have positively influenced their performance in the Programming course. 
Under normal conditions, most students spend considerable time commuting to 
campus from their homes. On the other hand, the University does not have labora-
tories open to students permanently to facilitate their study of programming, there-
fore, students must have their own laptop to study on campus. During the pandemic, 
students spent time at home in front of their computers for most of the day, so this 
could have facilitated their dedication to the study of programming.

Students’ module progressions and performance

A longitudinal analysis of students’ performance and module progressions in the 
course was performed by consolidating academic results in a relational database, 
and constructing reports through a development environment based on the R pro-
gramming language. A student’s module progression is defined as the sequence of 
modules followed by the student throughout the course’s TBs, from start to end, and 
is specified by the corresponding sequence of module numbers, from left to right. 
For example, module progression ‘112345’ indicates that the student took M1 twice 
(i.e., failed M1 in the first TB), and continued studying and passing the following 
modules until passing M4 and thus achieving course completion by the end of the 
fifth TB. The number 5 in TB six of this progression indicates that the student had 
passed the course already.

Figure 3 shows the relative frequency of students’ module progressions in each 
iteration of the course, only considering the first five TBs (i.e., the first semester). A 
total of 31 different module progressions were found across the four years. For the 
sake of clarity in Fig. 3, module progression labels are only provided for progres-
sions including at least 3% of the students in the yearly cohort. A decreasing trend 
can be observed through the years in module progressions ending in 1, 2, and 3 (i.e. 
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students who did not pass the course in the first semester). Conversely, an increase is 
observed in progressions ending in 5 (students who did pass the course). 

Table 19 shows trends in the different progressions (module sequences) at the end 
of the first semester (TB5) in each year (iteration). Trends were tested for statistical 
significance through a chi-squared test of proportions. Looking at progressions end-
ing in M1 (i.e. 111111), in the first year, 10% of the cohort were still in M1 by the 
end of TB5. In the following two years, the proportion of students in this state was 
reduced to a minimal fraction of the cohorts (2 to 3%), and in the last year, there 
were no longer students who did not pass M1 by TB5. A similar trend is observed 
for progressions ending in M2 (e.g. 111222, 112222), as 13% of the students in the 
first year were still in M2 by the end of TB5. In contrast, in the last year only 1% of 
the cohort had not passed M2 by the end of TB5.

A considerable portion of the cohort in the first two years followed progressions 
that were still in M3 at the end of TB5 (e.g. 112333, 122333). These results were 
improved in the third year, as 70% of the cohort managed to pass M3 by the end of 
TB5. In the last year, only 5% of the cohort had failed to pass M3 by the end of TB5. 
Lastly, for progressions ending in M4 (e.g. 122344, 123344), the same proportion of 
students in the first year of the intervention as in the last. However, the proportion of 
students who managed to pass the full course at the end of TB5 increased steadily 
from year to year, reaching 80% in 2020.

Figure 4 presents the proportion of students who passed the course every year, 
starting at the conclusion of TB4. While this proportion increased in each iteration, 
a consistent trend of slow progress occurred in every second semester. Students’ 
progress stagnates in TBs 7–9 in the second semester, and improves in the last two 
TBs. Consistently with other mastery learning implementations (Fox, 2004; Garner 
et al., 2019), when the students are given too many opportunities to fail and retake 

Fig. 3   Students’ progressions in the modular course
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assessments, or are not faced with deadlines to be promoted to more advanced stud-
ies, they tend to procrastinate. Procrastination in the modular course became appar-
ent in the second semester, as most students begin thereby in M3 or M4, and have a 

Table 19   Trends in module progressions organized by module at the end of TB5 by year

Module Year Number of pro-
gressions ending 
with module

Students with 
progression ending 
with module

Cohort size Proportion χ2(1) p

1 2017 1 23 228 0.10 28.74  < 0.001
2018 1 5 243 0.02
2019 1 7 227 0.03
2020 0 0 262 0.00

2 2017 5 30 228 0.13 32.18  < 0.001
2018 3 8 243 0.03
2019 3 7 227 0.03
2020 1 3 262 0.01

3 2017 8 100 228 0.44 116.38  < 0.001
2018 7 88 243 0.36
2019 9 43 227 0.19
2020 5 13 262 0.05

4 2017 6 33 228 0.14 1.00 n.s
2018 9 68 243 0.28
2019 7 48 227 0.21
2020 7 36 262 0.14

5 (Passed) 2017 4 42 228 0.19 216.06  < 0.001
2018 5 74 243 0.31
2019 5 122 227 0.54
2020 5 210 262 0.77

Fig. 4   Proportion of students who passed the course starting at the end of week 12 (TB4) in every course 
iteration
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total of five to six TBs available in the semester to pass one or two modules. Late in 
the second semester, procrastinating students encounter pressure to finish the course 
in the last few TBs ahead. Despite this, the proportion of students ending the follow-
ing academic year without completing the course steadily dropped through course 
yearly iterations, from 25% of the cohort in 2017 to 3.8% in 2020.

Discussion

Challenges and difficulties

Introducing fundamental knowledge and skills

The fast-paced planning of the modular course made the first module intense, as 
students are expected to develop basic problem analysis, abstraction and algorithm 
design skills in no more than three weeks, while taking other parallel courses in the 
engineering curriculum. How skills are taught and assessed early in the course is of 
the utmost importance for students’ academic success, as early course results impact 
their motivation and ability to make sustained progress in later modules. Finding 
ways to accomplish fruitful learning and successful academic results in M1 proved 
to be a challenge at the outset of the project. Clearly, the use of a visual block-based 
programming language in Iteration 2 onwards was found to be a more effective alter-
native than traditional hand drawn flowcharts, to support students’ own thinking and 
solution modeling. This, however, was not obvious at the outset of the project and 
had to be realized by the teaching team after the results of the first iteration.

Managing increasing knowledge complexity and assessment difficulty

The epistemology of programming results in discernable pedagogical challenges in 
the modular course. As the course progresses, knowledge and skills that students are 
expected to master become more complex, while problem solving activity requires 
that students integrate and apply a growing number of skills. As a greater number of 
programming concepts and skills become available for formulating more sophisti-
cated problems, creative possibilities multiply. Yet for the teaching staff, experience 
with the modular course design led to the realization that good assessment construc-
tion is not about presenting students with entirely new and unexpected problems in 
assessments (i.e., ‘gotcha problems’). Instead, assessments need to consist of prob-
lems in which students can identify and transfer schemata they have had a chance to 
build over their hours of prior study and practice, including with worked examples. 
Neglecting this results in undermining constructive alignment possibilities between 
teaching and learning activities, and assessment.

As suggested by Robins et  al., (2019), a programming pedagogy that bet-
ter adjusts to students’ cognition should consider worked examples, and problems 
establishing subgoals. In addition, for students to develop knowledge transfer abili-
ties, they must be presented with examples of how a problem-solving strategy can 
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be transferred from one problem to another. These are pedagogical challenges 
especially for novice teachers of programming, who as in other disciplines tend to 
replicate the ways in which they were taught and assessed in their own educational 
experience.

Student procrastination

Consistent with the literature on mastery learning and reported experiences in mas-
tery learning (Fox, 2004), student procrastination is an issue that occurred in the 
present modular course. This behavior is observed in Fig. 4, where a plateau in the 
progress of the students remains evident in each second semester. A possible worka-
round to the procrastination issue in the second semester is to introduce the students 
incentives upfront at the start of TB7, so that they commit dedication and effort to 
pass the course as early as possible. A maximum number of reattempts to pass each 
pending module could be defined. For instance, three reattempts could be allowed 
for M3 and M4 in the second semester. That is, if the student fails a module for 
the third time, fails the course. Rules such as this will be tested in future course 
iterations.

Team coordination and teaching freedom

Unlike traditional courses, in which the course can be taught by a single teacher, 
under the modular approach, several teachers need to collaborate. As the semester 
progresses, modules need to be taught in parallel, and in every time block each mod-
ule requires different learning activities, content and assessments. Therefore, transi-
tion from the traditional course format to the modular requires a culture wherein the 
teaching staff is willing to relinquish some of their individual teaching freedoms for 
the sake of the collective effort that underpins the modular course. In this regard, 
the role of the coordinator proved essential in the modular course, not only for plan-
ning and assigning teaching staff’s duties and supervising course activities in a daily 
basis, but also for collaborating with the teaching staff in creating course content, 
and assessments well-aligned with prior teaching and learning activities for each 
module.

Practical implications and recommendations

Planning of learning activities

The modular system presented here is based on the division of the academic term 
into time blocks of fixed duration. This facilitates that student finish a given mod-
ule and move on to the next without waiting. However, the division of the course 
into four three-week modules makes the rate with which students are exposed to the 
content faster than that of a traditional course. In the modular course, a student who 
passes all modules without failing any of them can finish the course in 12 weeks, 
versus 15  weeks in a traditional semester course. With this accelerated pace of 
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learning, planning of learning activities must be organized carefully so that suffi-
cient time passes after the student is presented with basic skills in order for them 
to exercise the skills properly and solve enough practice problems before they are 
assessed. On the other hand, the modular course must offer differentiated learning 
activities for students repeating a module from those taking a module for the first 
time. Repeating students can spend less time in lecture and focus most of their time 
exercising on problems from previous assessments, problems they were unable to 
solve before, and have further opportunities to seek for help and guidance from more 
capable peers and the teaching staff.

Block programming before text‑based programming

The process of learning computational thinking and programming demands the 
concurrent display of a complex mix of skills, including reading comprehension, 
problem analysis, abstraction, and elaborating the solution representation. Accord-
ing to learning edge momentum theory (Robins, 2010), mastering these basic skills 
is key to academic success in the course. Traditional ways in which computational 
thinking and algorithm design skills have been taught in CS1 courses have been 
based on the generation of pseudocode, flowcharts or the use of visual modeling 
tools. More recently, the use of block programming languages, such as MIT Scratch 
and code.org, has become common, especially in K12 education. Despite the fact 
that these languages are frequently used for recreational purposes (e.g., for creating 
video games and multimedia), experience in the modular course shows that they are 
an powerful means for introducing post-secondary students to algorithm design and 
programming. Through these languages, students do not have to type code, includ-
ing all the syntactic subtleties involved, such as indenting code with tabulation, and 
correctly typing each line. Instead, students use programming blocks that are easily 
recognizable (i.e., visual, with definite shapes and colors), and syntactically helpful 
(pluggable). The fact that with block programming students do not have to type code 
from the very beginning in a blank file brings the benefit of offloading some of the 
cognitive load of the task, so that they can rather dedicate more cognition and effort 
to model the solution, test it, and try different ways to solve the problem. In addition, 
other desirable skills, such as program tracing and debugging can be developed by 
the students early in the course through the use of block-based programming. The 
introduction of block-based programming and text-based programming worked well 
in a spiral fashion, meaning that students can be introduced to text-based program-
ing through the same examples they saw before with block-based programming. The 
intent of this is to facilitate schema building and knowledge transfer, and again, off-
loading some of the cognitive load, so that when they come to learn the text-based 
programming language they can focus on learning the syntax and the mechanics 
of typing code sentences, through examples whose algorithmic and computational 
underpinnings they are already familiar with.
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Assessment construction

There has been debate about the convenience of incorporating cover stories or 
detailed contexts into programming problem statements (Morrison et  al., 2015). 
The experience in the modular course studied here was that verbose problem state-
ments in the tests and lab assignments created a greater need for complex reading 
comprehension, adding extraneous cognitive load and leading students to incor-
rectly interpret the requirements of the problem (Robins et al., 2019). In addition, 
reading unnecessarily lengthy problem statements can be detrimental to students’ 
performance in time-constrained exams. Problem statements that minimize the ini-
tial context presentation and lead the student to the problem requirements directly, 
stated as sub-goals, are thus preferred. Each subgoal can add more context to the 
problem statement if required. Subgoals can progressively increase skill complexity, 
and can allow incremental progress in solving the given problem. However, it is rec-
ommended that there are sub-goals that do not depend on fully completing others, so 
that the student has a greater opportunity to demonstrate their mastery of independ-
ent skills. Finally, if it is desired that students face less structured problems, this can 
be done through homework assignments, for which they can have much more time, 
and they can also turn to the teaching staff and their peers to resolve doubts and 
exchange ideas.

Constructive alignment

In the modular course, it is essential that students know how they will be assessed 
and that they can prepare in advance to take a summative exam successfully, as sum-
mative exams largely determine their success or failure in the modular course. For 
this, it is essential that students can have study material with abundant worked exam-
ples, and that tutoring sessions are focused on supporting students to solve problems 
at the exam’s required level of proficiency. Through these activities, students must 
be capable of building their computational thinking and problem solving schemata, 
and complementarily, assessments must be constructed in ways that foster students’ 
activation of that same schemata, and promote transfer of their learned abilities to 
the problems that are presented.

Teaching team and culture

In a CS1 course, as in other contexts where there is teaching with technology, effec-
tive teaching depends on the technological pedagogical content knowledge (Koehler 
& Mishra, 2009) that the teachers possess. With regard to pedagogical knowledge, 
teachers must have the ability to teach using the programming language, perform-
ing live coding examples that students can follow and perform simultaneously with 
them. Teachers must also have the ability to review what students program, give 
them feedback, and help them overcome what is keeping them from moving for-
ward. In addition, teachers must know and be aware of the nature of the knowl-
edge and skills that are required to be taught in each module of the course, since 
this is essential if a constructive alignment strategy is to be developed. From an 
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organizational standpoint, teachers must be willing to work as a team and to perform 
under a coordinating role. Lastly, the course coordinator together with the teaching 
team must have the support of the Faculty leadership to have freedom to make deci-
sions about how to innovate and continuously improve the course.

Conclusions

This paper presents the development of a modular CS1 course based on mastery 
learning, over a period of four years, with a total of 959 engineering freshmen in 
a Latin American university. The development of this intervention reduced yearly 
course attrition from 25 to 3.8% of the cohort, decreased the average time spent 
by students in the course from 23.2 (SD = 7.38) weeks to 14.9 (SD = 3.64), and 
improved the course pass rate in the first semester from 19.3 to 77.1%.

The modular course based on mastery learning fulfilled the goal of allowing 
students to move through different module progressions according to their own 
learning ability and effort. The course gave the students the possibility to retake 
modules in which they had greater learning difficulties, without failing the entire 
course, as had happened to 30 to 40% of the cohort in the previous traditional 
course. Despite procrastination observed in the second semester, in the final itera-
tion of the intervention, over 95% of the students passed the complete course by 
the end of the year.

The implementation of a CS1 course in the format here presented requires a 
well-aligned teaching team coordinated around the project and its objectives. In 
addition, it demands teachers with a high level of pedagogical, technological and 
epistemological knowledge about the teaching of programming. In the present 
project, this knowledge had to be developed and systematized over the course of 
the four years. Some practices that emerged in the present research could help 
researchers and practitioners from avoid some of the traps the present authors 
fell into at the beginning of the project. First, the way in which the initial course 
content is introduced influences the motivation and academic performance of stu-
dents as they move towards more complex contents and skills. This was found in 
the first two iterations of the course and is consistent with the theory of learn-
ing edge momentum (Robins, 2010). Second, the constructive alignment of learn-
ing goals, with teaching and learning activities and assessment must be achieved 
through the development of teaching materials, worked examples, and assess-
ments in a coordinated manner by the teaching team. The teaching materials must 
cover all relevant problem solving strategies and schemata that students need to 
learn in each module. Third, assessments must focus on validating students’ pos-
session of intended problem solving schemata and actual programming skills, 
both which must be clearly identifiable and in explicit connection with students’ 
past learning experiences. In addition, given that skills and knowledge grow pro-
gressively more complex in the course, planning of teaching and learning activi-
ties must allow sufficient time for students’ deep learning and preparation. These 
recommendations are consistent with recent research at the intersection of cog-
nitive science and computer science education (Robins et  al., 2019). Lastly, the 
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support and trust of the Faculty leadership, in terms of granting creative auton-
omy and decision-making to the teaching team for continuous improvement of 
the course is key to academic success.

In the future, the present authors aim to propose a formal process for the design 
of constructively aligned teaching, learning activities and assessments in the con-
text of mastery learning-based CS1 courses. Also, the present authors are devel-
oping predictive models to detect students at greater risk of failing the course in 
the first semester, aiming to provide these students with greater support and per-
sonalization of their learning experiences. Lastly, a mobile intelligent program-
ming tutor will be evaluated as a means to provide students with a complement to 
regular teaching and learning activities in the course, for constant programming 
practice, anywhere and anytime.

Appendix A

See Fig. 5.

(a) (b)

(c) (d)

Fig. 5   Design of course modules in course iterations a One (2017), b Two (2018), c Three (2019), and d 
Four (2020)
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Appendix C

See Figs. 6, 7. 

Fig. 6   Module 1 exam from Iteration 1 (2017), Time Block 1. Translated from original Spanish

Fig. 7   Module 1 exam excerpt from Iteration 2 (2018), Time Block 1. Translated from original Spanish
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Appendix D

See Fig. 8.
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