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Abstract

Computer programming is a skill of increasing importance in scientific and techno-
logical fields. However, in introductory computer science (CS1) courses in higher
education, approximately one in every three students fails. A common reason is
that students are overwhelmed by an accelerated and inflexible pace of learning that
jeopardizes success. Accordingly, in the computer science education literature it has
been suggested that the pedagogical philosophy of ‘mastery learning,” which sup-
ports students progressing at their own pace, can improve academic outcomes of
CS1 courses. Nevertheless, few extended mastery learning implementations in CS1
have been documented in the literature, and there is a lack of guidance and best
practices to foster its adoption. In this paper, we present a four-year action research
study in which a modular mastery-based CS1 course was designed, evaluated and
improved in successive iterations with cohorts of engineering freshmen in a Latin
American research university (N=959). In the first year of the intervention, only
19.3% of students passed the course in their first semester attempting it. In suc-
cessive iterations, the instructional design, teaching and learning activities, course
content, and course management were iteratively improved such that by the fourth
year of offering 77.1% of students passed the course in their first semester. Over
this period, course attrition was reduced from 25.0% to 3.8% of the cohort, and stu-
dents’ mean time spent in the course decreased from 23.2 weeks (SD="7.38) to 14.9
(SD=3.64). Results indicate that modularization for mastery learning is a viable
approach for improving academic results in a CS1 course. Practical considerations
towards successful implementation of this approach are presented and discussed.
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Introduction

Introductory computer science and programming courses at the undergraduate
level (referred to as CS1 courses) experience failure rates near 30% in multiple
student populations worldwide (Bennedsen & Caspersen, 2019). This occurs in
a global context in which there is an increasing demand from industry for soft-
ware engineers, computer scientists, and STEM professionals with proficiency
in computational thinking and programming (CompTIA, 2021; Eurostat, 2022).
Experiences in different educational systems around the world show that stu-
dents’ exposure to computer science at the K-12 level influences their decision
to pursue computing in higher education (Armoni & Gal-Ezer, 2014; Kurhila &
Vihavainen, 2015; Webb et al., 2017). Yet despite the increasing importance of
these skills in diverse professional and scientific fields, it is not compulsory in
many education systems to teach computational thinking and programming at the
K-12 level (Bocconi, et al., 2016). For example, a recent report documented that
only 51% of high schools in the United States offer at least one foundational com-
puter science course (Code.org, CSTA & ECEP Alliance, 2021). Students in the
developing world find even more limited opportunities to learn the foundations of
computer science at the K-12 level (Vegas et al., 2021). Thus, students who enroll
in STEM curricula in higher education must typically learn computational think-
ing and programming at an accelerated pace in their first introductory course to
the subject (Ahadi, et al., 2014). When this is done via traditional ‘one size fits
all’ instructional approaches, students experiencing learning difficulties in intro-
ductory programming courses are rapidly overwhelmed by the pace of instruc-
tion, resulting in early attrition and high rates of course failure (Patitsas et al.,
2019; Robins, 2010).

Mastery learning is a pedagogical philosophy and instructional approach
that has been researched since the 1960’s (Bloom, 1968; Keller, 1968), based
on the assumption that every student can master a given skill if given enough
time, instruction and support. In contrast with traditional instruction, which sets
a standard time period (such as a quarter or a semester) in which students are
expected to learn the materials, mastery learning sets standards for mastering
material that students are expected to achieve at their own pace. In the computer
science education literature, it has been suggested that mastery learning permit-
ting students to learn at their own pace can help them make sustainable progress
in a CS1 course (Robins, 2010). This stands in contrast to the common occur-
rence of students being unable to keep up with the pace of instruction and risking
course failure (Petersen et al., 2016) due to a combination of cognitive (Robins
et al., 2019), meta-cognitive (Liao et al., 2019) and motivational factors (Dorn &
Tew, 2015).

Despite the potential benefits, adoption of mastery learning in computers sci-
ence education has remained limited, and few studies describe its implementa-
tion and evaluation. A recent review by Garner et al., (2019) reports that there
is a lack of documented attempts to implement mastery learning in CS1 courses
and that general guidelines and best practices on how to do so have remained
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unavailable. Thus, there is a pressing need to explore how to best implement mas-
tery learning in CS1 courses, establish whether these efforts lead to improved
learning, and if so, derive guidelines and recommendations that can be helpful for
computer science educators interested in adopting mastery learning in their own
contexts.

In this paper, we report on the development of an introductory computer pro-
gramming course based on mastery learning at a research-based university in Latin
America. The process was based on iterative cycles of an action research methodol-
ogy over a four-year period, involving a total of 959 students. The mastery learning
course was designed to fit a semester-based curriculum and academic calendar. To
accomplish this, a modular instructional design approach was adopted; that is, one
in which the course is broken up into multiple discrete, short duration segments of
material and learning activities, known as modules (Jenkins & Walker, 2014; Dochy,
et al., 1989; Goldshmid & Goldshmid, 1973). Considering mastery learning’s phi-
losophy, students complete a module and are promoted to the next only after demon-
strating mastery of the respective learning goals, through both low and high-stakes
assessments. Students can retake a module they failed without necessarily failing
the entire course. Consequently, multiple different module progressions are possible
in the course, reflecting students’ varying prior preparation, aptitude and efforts to
learn computer programming. In turn, the modular structure facilitates teachers in
adjusting content and/or instruction according to students’ needs.

The following section presents the theoretical background for this work, followed
by the research questions. Subsequent sections describe the design, implementation
and progressive improvement of pass rates and attrition over the four year-long itera-
tions of the course. The discussion section presents a holistic view of the challenges
and difficulties experienced in the development of the course, and practical recom-
mendations drawn from lessons learned in the process. Finally, conclusions and ave-
nues for future research are presented.

Theoretical background
Academic failure in CS1

Failure in CS1 courses has been a topic of attention in the academic literature for the
past several decades (e.g. Bennedsen & Caspersen, 2007, 2019; Watson & Li, 2014)
with studies consistently reporting failure rates close to 30% on average. Benned-
sen and Caspersen (2019) report a 28% average failure rate in CS1, with variations
between geographic regions and by type of institution, i.e., college or university. For
example, the combined rate of students aborting, skipping or failing the course in
universities is 29%, while this figure for colleges is 17%. In Asia, the average fail-
ure rate is 29%, in Europe it is 31% and in North America it is 24%. It can thus be
affirmed that in much of the world and across different types of institutions, approx-
imately 20 to 30% of students fail their first programming course. Improving the
academic results of CS1 courses can reduce student attrition, increase graduation
rates, and increase the supply of qualified workers in scientific and technological
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fields to meet the growing demand. A wealth of research in computer science edu-
cation has sought to explain why some students perform better than others in CS1
courses (Basnet et al., 2018; Guzdial, 2019; McCartney et al., 2017; Patitsas et al.,
2019). One hypothesis for academic failure in CS1 courses relates to the cumula-
tive nature of the materials and posits the existence of “stumbling points” in the
learning path of programming: that is, there is a small number of identifiable skills
and concepts that can have a major impact on a student’s progress (Ahadi & Lister,
2013). The implication of this is that students failing to master critical skills at key
points in their learning will likely experience severe difficulties later in their learn-
ing path. A more general theorization of this idea is seen in Robins’ (2010) theory
of learning edge momentum (LEM) as an explanation for students’ variability in
learning in CS1. LEM proposes that with the tight integration of concepts and skills
in the domain of computer programming, failure to learn concepts becomes self-
reinforcing, thus creating momentum towards unsuccessful outcomes. Conversely,
successful learning is positively reinforcing and creates momentum towards more
successful outcomes.

The implication of both stumbling points and LEM for traditional one-size-fits-
all instruction in CS1 courses is that in every cohort, students who fail to master
fundamental concepts and skills are substantially more likely to fail to learn more
advanced and/or composite knowledge. The solution to this problem lies in allow-
ing students to progress to more complex knowledge only after they have mastered
the earlier knowledge that is required. This demands instructional design and peda-
gogy that departs from the overarching constraint of a single fixed timeline (i.e., the
monolithic rate and path of progression in a traditional course; Robins, 2010), thus
allowing each student to progress according to their own ability.

Mastery learning in CS1

Bloom (1968) developed the mastery-learning approach based on the observation
that providing all students with the same amount of time to learn and the same
instruction resulted in a distribution of student achievement that reproduced the dis-
tribution of students’ initial aptitudes, i.e., a normal curve. Carroll (1963) argued
that if individual students were provided with the time they needed to learn the
material, most students should be able to eventually master it. The shift from fixing
learning time to fixing a standard level of achievement is the driving feature of mas-
tery learning (Emery et al., 2018).

Mastery learning emphasizes the need for constant tutoring, feedback and proc-
toring, which is difficult to scale to large cohorts (Fox, 2004). Keller, (1968) recom-
mended a maximum cohort size of a hundred students due to practical difficulties
of supervising student proctors. Furthermore, since in mastery learning can decide
when to take the assessments, the approach was found to cause students to procras-
tinate and prioritize engaging in other academic activities. In traditional university
contexts, where students are under pressure to study several subjects simultane-
ously, the approach might be difficult for some, especially first year students new to
the independence required in the university context. These students often lack the
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self-regulation skills necessary to organize their time and the dedication needed to
be successful in both mastery-based and traditional courses (Eyre, 2007).

Despite the relevance and potential value of mastery learning for computer sci-
ence education, literature specific to this domain is scarce, and the limited efforts
to adopt mastery learning in computer science have been carried out in isolation
of each other. Recently, Garner and colleagues (Garner, et al., 2019) conducted a
review of mastery learning in Computer Science, including literature published
between 1992 and 2017. Considering twelve studies in this time frame, it was
identified that motivators for implementing mastery learning include the possibil-
ity of improving teaching for diverse student cohorts, addressing the ‘learning edge
momentum’ problem, guaranteeing skill mastery, and contributing to the mastery
learning literature as well as other case specific reasons. Obstacles to the imple-
mentation of mastery learning include student procrastination, scaling delivery
and developing assessments. Many experimental approaches have been observed
in distance learning, automated assessments, personalized feedback, and each pro-
gram has had to solve similar problems. Moreover, few studies focus on introduc-
tory computer science courses; only five studies were reviewed, with a duration no
longer than two semesters. The review concludes that implementation of mastery
learning in computer science has been based on the general education literature, and
that there is still a lack of an authoritative body of scholarly knowledge to guide
curricular innovation, implementation and research of mastery learning in computer
science.

Course modularization for mastery learning in CS1

The notion of dividing a full-semester course into discrete modules has been dis-
cussed by many authors beginning in the 1960s (Goldshmid & Goldshmid, 1973).
Modularization emerged as a methodology for curricular and instructional design in
European higher education, emphasizing the possibility for students to have a high
degree of customization in their curriculum (e.g., presenting students with catalogs
of modules with which to configure their courses) and to develop autonomous learn-
ing skills (Dochy, et al., 1989; van Eijil, 1986; van Meel, 1993). Nonetheless, there
are a variety of applications and ways of implementing modularization according to
the characteristics of the target educational problem and context (Jenkins & Walker,
2014).

For the present effort, modularization of a computer programming course offers
the possibility to implement mastery learning in a scalable way, within the con-
straints of the semester-based academic activities typical of higher education institu-
tions. A modular design permits dividing a traditional course into modules. Each
module has its own learning goals and students can work on the appropriate module
according to their mastery level. From the operationalization standpoint, modules
can be taught multiple times each semester, performance outcomes can be quickly
tested and evaluated, and teaching can be continuously improved in terms of instruc-
tional strategies and assessment methods. With regard to the common mastery
learning issue of procrastination (Fox, 2004), a modular design that prescribes dates
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of both formative and summative assessments can drive students to focus their atten-
tion on the course and strive to meet the required mastery standard in a predictable
time frame. With this rationale and expectations, the present authors persuaded fac-
ulty leadership at a research-based Latin American university to support transfor-
mation of an introductory programming course into a modular format for mastery
learning.

Research framework and questions

Figure 1 depicts the methodological framework underpinning the present study,
supporting the iterative process towards implementing and improving a modu-
lar CS1 course for mastery learning. The framework comprises a four-step action
research methodology as described by Cohen et al., (2013) drawing on Zuber-Sker-
ritt, (2003). The action research process focuses on improving relevant aspects of
teaching and learning as identified by Biggs, (2011) in his ‘constructive alignment’
framework, which include the course’s intended learning objectives, its teaching
and learning activities, and assessment tasks (see components A—C in Fig. 1). In
addition, instructional design, course content and skills, and course management are
three aspects identified by Fink, (2013) which we consider central in the methodol-
ogy of the present research (see components D-F in Fig. 1). Given these compo-
nents of interest, the steps of the action research cycle include (1) strategic Plan-
ning, wherein the A—F components are designed, planned, and revised according to
relevant learning theories, and a research agenda aligned with the educational prob-
lem is crafted, (2) Action, i.e., plan enactment, (3) Observation, evaluation and self-
evaluation of the course implementation with regard to components A-F, and (4)
critical and self-critical Reflection on the results of points 1-3 deriving in decision
making for the next action research cycle.

Based on the discussion presented in the previous sections, and the methodologi-
cal framework that underpins the current research, the research questions addressed
in this paper are the following:

1. Planning >

A. Intended Learning D. Instructional
Objectives Design
B. T?EChmgAaAnAd E. Content and Skills
Learning Activities
C. Asessment
F. Course Mangement

«————————— 3. Observation

4. Reflection 2. Action

Fig. 1 Action research cycle towards implementing and improving the modular course for mastery learn-
ing
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1. What challenges and difficulties arise in the process of implementing a CS1
modular course for mastery learning with regards to the instructional design,
content and skills, teaching and learning, assessment and course management,
and how are these overcome in successive action research cycles?

2. How do students perform in the CS1 modular course for mastery learning? How
diverse are their module progressions and how do these evolve as a result of
interventions conducted within the action research process?

3. What practical implications and recommendations emerge from the experience to
support successful implementation of modular CS1 courses for mastery learning?

Educational context

The research was conducted in the engineering school of a Latin American research
university. The engineering school offers undergraduate programs in five areas:
Industrial, Civil, Electrical, Computer Science and Environmental Engineering. As
of 2020, only 7.6% of the students enroll in the Computer Science program, how-
ever, the CS1 course is compulsory for all first year engineering students, regardless
of program. The intended learning objectives of the course are that by its completion
students should be able to:

e Explain key concepts involved in procedural computer programs, namely: input
and output, data types, variables, operators, control flow, function invocation and
return values, random access data structures (i.e.., simple and multidimensional
arrays), strings, dictionaries, file access, and recursion.

e Model algorithms based on a procedural model of computation, specifying the
sequence of steps required by use of a graphical language.

Model simple recursive algorithms comprising base cases and recursive steps.
Write procedural programs in a high-level, text-based programming language,
including the above-listed concepts.

e Write programs that involve numeric computation and data visualization capa-
bilities based on 2D plots.

Previous version of the CS1 course

The version of the CS1 course that existed prior to the present study was based on
a semester format comprising the following weekly activities: two lectures, a reci-
tation session, and a lab assignment. Assessment was based on weekly low-stakes
assessments during lecture hours, weekly graded lab assessments and homework.
In addition, the course incorporated a final exam worth of 30% of the final grade. It
was customary to offer students who did not pass the exam but still reached a certain
grade cutoff the ability to take a recovery exam and still pass the course. Under this
scheme, the failure rates in the previous version of the course fluctuated between 30
and 40% in the last three years of its implementation prior to the study.
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Student cohorts under study

The student cohorts that participated in the current study are described in Table 1,
including their size and gender composition. Annually, student cohorts are compa-
rable with an average of 80% male and 20% female students. The secondary edu-
cation origin of students has also remained stable, with 78% to 83% coming from
private secondary education institutions. Another 8—14% of the students come from
Publicly-Funded Private Schools (PFPS). A minority of the students, less than 5%,
come from public schools. In the national context, 37% of high school students
attend a public school, 48% attend PFPS schools and 14% attend private schools. In
addition, only 33% of students that attend public schools enroll in higher education,
while 76% of students who attend private schools enroll in higher education (OECD,
2015).

Course design features

The course developed in this study is based on the following design features, which
respond to the defined learning outcomes and a mastery learning approach:

1. Modular course architecture for mastery learning: The intent of the modular
architecture is to permit students to follow different paces of module progression
in the course according to their learning capabilities, while achieving mastery of
each relevant course unit (module) before being promoted to the next module. For
students to demonstrate attainment of mastery, each module includes a summa-
tive examination at the end. To make the course must be operational within the
structure of a semester-based calendar in the host institution with sixteen weeks
of classes per term, it was chosen to structure the course into four successive

Table 1 Student cohorts under

Cohort 2017 2018 2019 2020 Total
study

Size 228 242 227 262 959

Gender

Male 183 (80.3%) 190 (78.5%) 188 (82.8%) 200 761
(76.3%)

Female 45 (19.7%) 52 (21.5%) 39(17.2%) 62 198
(23.7%)

Secondary education institution type
Private 171 (75.0%) 186 (76.9%) 183 (80.6%) 219 759

(83.6%)
PFPS  31(13.6%) 32(132%) 22(9.7%) 21 106
(8.0%)
Public 10 (4.4%) 5 10 (4.4%) 11 36
(2.1%) (4.2%)
Other 16 (7.0%) 19 (7.9%) 12 (5.3%) 11 58
(4.2%)
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modules with equal duration of three weeks. This makes possible teaching the
modules in parallel, and the students can repeat a module in the first semester
and still be able to complete the course in the term. Also, students do not need
to wait to resit a module if they fail, as parallel modules can start and end in the
same dates.

2. Foster algorithm design skills before coding: According to Koulouri et al. (2014),
learners’ analytic capability to logically decompose problems has a positive effect
on learning programming, regardless of the programming language being used
in the process. In the previous version of the course, problem analysis and algo-
rithm design skills were taught as the initial content unit in the first week of the
course. Arguably, these skills were not given sufficient attention as they were
taught superficially, and only evaluated by low-stakes assessments. Thus, for the
modular course, it was considered that time dedicated to problem analysis and
algorithm design needed to be increased, as well as the need to adopt a more
rigorous assessment of these skills.

3. Imperative procedural programming: For decades there has been debate about
the order in which programming skills should be taught (Luxton-Reilly, et al.,
2018); that is, if object-oriented analysis and design should be taught first, i.e.,
an “objects-first” approach, or if prior to that, students must master procedural
programming. Faced with these alternatives, the present authors had developed
the preceding course based on an imperative-procedural approach, emphasizing
top-down problem analysis, and algorithm design based on the use of variables,
logical and arithmetic operators, domain of flow control structures, use of func-
tions, arrays and dictionaries. The modular course here presented maintains this
tradition, with object-oriented analysis and design skills being taught in a later
course in the curriculum.

4. Performance-based assessment: Assessment sends a strong message to students
about what counts as knowledge, insofar students’ perceptions of the require-
ments of the assessment influence their approach to learning (Ott et al., 2016;
Weurlander & Soderberg, 2012). The current authors consider that performance-
based assessment can therefore foster deep learning of course topics, as students
are required to produce working programs in their solutions to given problems,
and in this process, integrate various programming skills. Therefore, assessment
problems in the modular course are based on ‘multistructural-applying’ and ‘cre-
ating’ categories of the taxonomy proposed by Meerbaum-Salant et al., (2013).

5. Situated problems: A student’s intrinsic motivation for computer programming
can be influenced by their perceived real-world applicability of knowledge and
skills (Dorn & Tew, 2015; OGrady, 2012). This is salient in educational contexts
in which students have diverse interests, as is it the case in the current study’s
educational context. Furthermore, from a constructivist standpoint, problem
understanding can be facilitated if students can anchor problems to their real-
world experiences and prior knowledge (Ben-Ari, 2001). Thus, both practice and
assessment tasks in the modular course involve problems in which students are
encourage to ‘think as engineers’ in a particular scenario.

6. Pursuit of Constructive Alignment: The theory of constructive alignment (Biggs,
2011) is based on the idea that learners use their activity to construct knowl-
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edge as interpreted through their own existing schema, and that assessment tasks
should be aligned to what it is intended to be learned. The instructor’s duty is to
set up a learning environment that encourage students to perform learning activi-
ties that align with the intended outcomes, and to assess student performances
against the latter. The relevance of constructive alignment, its implications and
potential enhancement of teaching and learning have been emphasized by some
authors in computer science education literature (Bayu Bati et al., 2014). The
modular course here proposed aims at achieving constructive alignment among
learning outcomes, teaching and learning activities and assessment tasks.

Course iterations
Iteration 1
Planning

A design of four successive Modules (M1-M4) of three weeks each was adopted in
both semesters of the academic year (see Appendix A a). The teaching staff was led
by a coordinator (first author of the present study), and included four lecturers. The
coordinator planned the course schedule, as well as the evaluation and course mate-
rial development plan. All teaching staff had to contribute to the development of
problem sets for tutoring sessions, lab assignments, and exams during the semester,
according to the material development plan. The course coordinator monitored these
duties and oversaw the distribution of the materials in addition to their work prepar-
ing the lecture material (which included slides sets and code samples). Grading was
conducted by 20 Teaching Assistants (TAs), directed by a chief TA who reported to
the course coordinator. The number of lecturers and TAs was maintained from the
traditional course.

An example of how the modular course can evolve throughout an academic year
is shown in Fig. 2. The horizontal axis shows the division of the academic year (and
semesters) into Time Blocks (TBs). A TB within a semester spans for three weeks,
so five TBs are commonly allotted within sixteen weeks of classes in a semester.
The vertical axis denotes the modules that are active (given) in the TBs. Initially,

9% of cohort

[ |

0 100

Modules

TB1 TB2 TB3 TB4 TBS TB6 TB7 TB8 TB9 TB10 TB11
F————————— First Semester ————————— Inter-Term } Second 1

Time Blocks

Fig.2 Modular course evolution example
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all students start at M1 in TB 1. As students pass and fail modules through the TBs,
different modules need to be taught in parallel. By the end of TB 4, a part of the
cohort may have completed all four modules, thus being the first students to pass the
course, accomplishing so in 12 weeks. The rest of the students continue to complete
the course in successive TBs, thus taking a varying amount of TBs to pass. From
one TB to the next, lecturers can be reassigned by the course coordinator to teach a
different module, as the number of students requiring attending each module varies
from one TB to the next. For planning purposes, and considering classroom capac-
ity restrictions, the number of lecturers allocated to teaching each module had to be
decided before the start of every TB, as module pass rates were unknown in the first
iteration of the modular course.

In Iteration 1, similarly to the example shown in Fig. 2, an inter-term period (TB
6) was planned to offer only the final (fourth) module of the course, and thus allow
students with the last pending module to complete the course before the following
semester. Enrollment in the inter-term period was made optional. It was expected
that by the end of the first semester, most of the students would have reached or
passed M4. In the second semester the modular course was continued for an addi-
tional five three-week TBs (i.e., TBs 7—11). Students that were not able to pass the
course in the first semester were allowed to resume the course starting with the mod-
ule following the highest one they had passed.

In each assessment, as well as for calculation of final module grades, the grading
system followed local conventions using a continuous scale from 1.0 to 7.0, with a
passing level of 4.0 (50%). Grades are absolute and not curved.

Action

The structure of all course modules across iterations, including teaching and learn-
ing activities, and assessments, is depicted in Appendix A. The first two weeks of
classes each included a lecture, a tutoring session and a lab assessment. Between
the lecture and the tutoring session, students were expected to dedicate self-directed
study time to solving a homework assignment and solving practice problems. In the
third week of the module, the students sat the summative examination of the module
instead of a lab assessment. Table 2 shows assessments and their weights per each
module, in the first three iterations of the course.

The contents of the course modules are shown in Appendix B, along with their
evolution throughout successive course iterations. In the first iteration, M1 encom-
passed the basics of computational thinking, including problem analysis and algo-
rithm specification. The students were taught the latter skills through drawn flow
charts. Then, computer programming based on Python 2.7 was introduced, includ-
ing basic input—output, variables, operators, pseudo-random numbers and the selec-
tion statement. In M2, more advanced flow control (including loops and flow control
nesting) and functions were taught. M3 introduced lists, nested lists, and file access.
Finally, in M4, other data structures were taught, together with Python’s numeric
computation library (NumPy), and 2D plots.

Following common recommendations in the mastery learning literature (Fox,
2004), lectures were intended as motivational with the aim to provide students with
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Table2 Course assessments and weights in the first three course iterations

Iteration 1-2017 Iteration 2-2018 Iterations 3-2019
Assessment type (per  Amount Weight Amount Weight Amount Weight
module)
Lab Assessments 2 15% each 2 7.5% each 2 7.5% each
Final Exam 1 70% 1 70% 1 70%
Homework 1 (M2, M3, M4) Optional * 1 (M1-M4) 7.5% 1 (M1-M4) 7.5%
Attendance - - 1 7.5% 1 7.5%

“Homework grades were only considered as a bonus, if these raised the students’ final average after com-
pleting all four course modules

key concepts and demonstrations to get started learning on their own. Because of
this, lecture time was reduced to 50% of the time that was allotted in the former
course. After the lectures, students were provided with readings, videos, and prob-
lem sets to support their personal study. Then, in tutoring session, students were
presented with a set of increasingly complex problems, which they could solve sup-
ported by a TA and peer collaboration. These problems were not graded. The fol-
lowing day, the students had to attend a graded laboratory assignment (weeks one
and two) or the final module exam (week three). In the first iteration of the course, in
M2 to M4, the students had a homework assignment lasting seven to ten days. These
assignments were optional, and counted in the final course grade with 16.6% weight
if their average surpassed the weighted average of other course assessments.

With the intent to provide students with instant feedback on their performance,
it was decided to implement automatic grading in most of the lab assignments. For
this, contest management system (CMS; Maggiolo & Mascellani, 2012), a platform
utilized in competitive programming environments, such as the International Olym-
piad in Informatics, was tailored to the course’s needs. Following the intent to give
assessments of a situated nature, problem statements each described a particular sce-
nario. The problem itself was divided into subgoals of increasing difficulty, each
involving a number of test cases. Examples were provided for each subgoal, show-
ing the corresponding data inputs and outputs. Upon submitting a response, each
successful test case awarded points to the student.

The final summative exam in each module required students to demonstrate mas-
tery of the knowledge and skills seen in the course up to that time. Problem state-
ments described a scenario and functional requirements of the solution to be imple-
mented. Students were always asked to write a working program that solved the
given problem. Grading of examinations was always conducted by the Tas following
a common rubric.

Observation

Students’ performance in the first iteration of the course was well below expecta-
tions at the outset of the intervention. By the end of the first semester, in TBS,
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Table 3 Proportion of students M1 M2 M3 M4 Passed Dropped out
in each course state by the end
of the first (TB5) and second Endoffirst .07 .13 37 21 .19 03
(TB13) semesters in iteration 1 semester
(TB5)
End of .00 .00 .00 .04 5 21
second
semester
(TB13)
Table 4 Module pass rates Instance M1 M2 M3 M4
for students’ first, second and
third attempts in their first three ;. 38(228)  .34(88) 50 (30) 1.00 (15)
instances in iteration 1
Second .56 (140) .79 (137) .37 (123) .63 (46)
Third .39 (61) .53 (62) .27 (110) 72 (32

“Corresponds to the inter-term period, wherein only 32 students out
of possible 47 opted in

there were students still in all four course modules (see Table 3), and only a small
fraction of students had passed the complete course.

In the first semester, pass rates were alarmingly low in M1 and M2, especially
the first time students attempted each module (see Table 4). The first time M1 was
given (i.e., in its first instance), only 37.6% of the cohort passed, thus the major-
ity of the students had to repeat it (i.e. attempt passing the module a second time).
Given the low pass rates in modules 1 and 2, only a small percent of the cohort of
students were able to reach modules 3 and 4 the first time they were offered. This
smaller number of (high-achieving) students can help explain the higher student
success in these modules in their first offering.

Students’ average time to pass all four course modules in the first iteration was
23.2 weeks (SD=7.38), close to eight TBs, considering both semesters and the
inter-term period. The course pass rate in the first semester was only 19.3%, but
including students who passed M4 in the inter-term period, this figure increased
to 28.5%. Thus before the start of the second semester, slightly below a third of
the original cohort had finished the course.

At the start of the second term 46.9% of the original cohort was in M3 and M4,
and 10.1% of the students had dropped the course. The number of students that
passed the course increased steadily in the second semester, reaching 66.7% by
the end of TB 11. As in the previous semester, M4 was offered in an extra time
block (TB12) in weeks 33-35. This increased the overall course pass percentage
to 75% (see Table 4). The overall percentage of students who dropped the course
doubled in the second semester, reaching 21%. Nearly half of this increase (i.e.,
5.7%) was due to students failing to pass M3 in the last TB it was given (TB11).
Lastly, a remaining 4.4% of the cohort in M4 did not drop but was unable to pass
the course by the end of the year.
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Reflection

The reflection step in the first iteration involved meetings with course Tas and
the teaching staff, and conducting an interview process with students. Purpose-
ful sampling was used, selecting ten students with different levels of achievement
in the course, including students who had passed the course in the first semes-
ter, students who had failed the course in the first semester, and students who
dropped out of the course. Based on these information sources, different issues
were noted, which provided explanation for the poor results obtained in the first
iteration of the modular course. The issues are summarized in Table 5.

One of the main issues found was that the methodology used in M1 to intro-
duce computational thinking and algorithm design did not meet the expected
results. Table 4 shows meager M1 pass rates in its first three instances. In the
light of academic results, and students’ testimonies in interviews, it was consid-
ered that both pedagogy and assessment required major changes (e.g., see issues
AS1, CSK1 in Table 5).

Iteration 2
Planning

In Iteration 2 the schedule of the academic year remained similar to the previous
iteration, however, due to limitations of the academic calendar, it was not pos-
sible to accommodate six TBs in the second semester but only five. The teaching
team remained stable except for a lecturer who was replaced by a doctoral student
with prior teaching experience in a traditional CS1 course. With regard to course
content, it was decided that rework of M1 was necessary, considering the need
to adopt more effective ways to teach the initial skills of the course. In planning
the second iteration of the course, most of the issues described in Table 5 were
addressed through a decision making process in which the course coordinator
consulted the teaching staff, including both professors and teaching assistants, for
ways to overcome each issue (Table 6).

Action

A major part of course improvement efforts in Iteration 2 were directed at
addressing the pedagogical issues in M1. To deal with these, it was decided to
adopt the approach of teaching visual programming with interactive tools instead
of traditional hand-drawn flowcharts, before introducing text-based program-
ming. Two block-based visual languages were considered, including code.org
(Kalelioglu, 2015) and MIT Scratch (Meerbaum-Salant et al., 2013). Scratch was
considered more convenient as it focuses strictly on visual programming, while

@ Springer



Modularization for mastery learning in CS1: a 4-year action...

Kradoad syuswissasse 10y aredard pue oonoerd 03 awn YSNoud 9AeY JOU PIP SHUIPNIS *SISIOIIX
SurIojny 1938 Aep 9y} POIONPUOD SIIM SJUSUWISSISSE SB JUSTUIAUOIUT SBM SINIATOR S[Npow Jo Furw],

YIN UL %611 PUB ‘€N UL %1°SE TN

Ul %" SeM SIomawoy Suniuqgns Jou sjuapns Jo o5ejusdiad Y[ SHOMIWOY JIdY) JIqns Jou

PIP SJUSPNIS JO JOqUINU S[RIIPISUOD B ‘J[NOYJIP Puk TUOJ Iom SJUSWUSISSE JT0MAWOY JBY) USAID)

"so[npour 1oy [[e pajerdwod pey Juapnis ) 19 Auo opeIs 9sInod [euly ) daoidwr o) snuoq e
SE PAIOJJO Sem dTBIOAR JIOMAWOY Jey) USAIS ‘djenbapeur a1om yromawoy 939[dwod 0} SoAnUIdU]

suoneNyIs 9say) ut syutod 0197 UTRIQO 0) WY} PLd[ P[nod

SUOIIN[OS JIAY) UI SOYBISIW JOUIA] "UOISSIS B[ JO SINUIW SB[ Ay} Je A[uowwiod ‘wa)sAs Surpess ayy
0 uonn[os J1aY) Sumruqns 210§oq wayqoId qey 2y Jo sired [[e 9AJ0S 0} papus) SHUAPNIS ‘A[[eUonIPPY

paoperda1 Affenuew 9q 0} sjudwuisse painbar usjjo

PUE UOTIEATIOW  SYUSPNIS PAJIJJe SIY [, 1091100 A[[eorunyirioSe uaeq aaey Aew weiSoid ay) ySnoyy

uaAd ‘ndino payoadxa sy yojew A[)oexa J0U PIp uoIssIwqns s Juapns e jo ndino ayy usym (sjurod
0I9Z PIpIeME ') SJUapN)s pazifeuad-10A0 ualjo JuIpeIS pejewojne uo paseq S)USWUSISSE qer]

Apoe1100 woy) Jardisyur pue sjuswle)s wafqord ayy

peal 0) QW) JO JUNOWE JAISSAOXS Uk paIInbal sjuapn)s ‘wexa ay) 0y SINOY 0Mm) AL "SUuo[ spIom

9971 sem ‘swafqoxd om) jo Sunsisuod ‘(D xrpuaddy ur g “S1,] 99s) Wexd [ ISIY Y} “DOurISUI

104 Sursnjuood 10 anea pareadde suoneur[dxs SOWNIWOS PUE DINJONIS JUIISISUOD B PIYOR]
SJUSWIAIE]S ‘QIOWLIAYIIN,] "9SOGIOA 00 AIOM SWEXD PUL SJUSWSSISSE QB [10q UT SJUSWIL)S WI[qOIJ

oeqpasgy pue uonesyLred Jurpraoid ‘syuapnis oY) Surpms uoym s)os woqoid usamiaq yoIms
ApueIsuod 0) pey Se, Y} SNy} ‘SUOISSIS SULIOIN] SWES Y} PIPUNIE SINPOW JUSISJIP WOIJ SJUSPNIS

[erarew uonjeredord

se pey s1ojeador [erIojew Apnys mou AJuo oy} o1om sg ], SNOTAdId Sy} WOIJ SWEX JANBWWNS JY) PuL
“Xau 3y 03 (g.1) YOO[g SWIL], Suo woly a3ueyd jou pIp $19s wa[qoid 3s1o1axa pue swojqoid Suriony,

910joq SB JOUUBW dWIES dy) Ul Jysne)

QIOM PUE ‘SISSAUNLAM JIaY) SunoSIe) uonuale s Jayoed) J0 JOrqpad) A1 Jou pIp s1djeadar ‘snyy
‘SOINJOQ] SWIes A} PAPUJE AW ISIY Y} J0J A[npour Yy Surye) asoy) Yim Suofe syuapnis Suneadoy

sanianoe jo Surwn yeudoxddeut (1) u31sop [euonoONNSUJ

SOATIUIOUI SIomawoy renbapeu] (¢SV)

Surpess qef Jrejun) (ZSV)

950QI9A 00) SjuAWRIL)s Wa[qoid (1SV) JUQWISSASSY

SUOISSAs SuLI0IN) dANOJYAU] (€TL)

[eL1oyewr Apnjs Jo yor (ZIL)

SIQUWOOMAU
pue s1ajeadal y3oq J0J saIn)oo[ swes (171L) Surured] pue Suryoea],

uondrosaq

punoj anss| yuouoduio)

] UOTJBI)I UT PUNOJ SANSS] G d|qel

pringer

As



C. Alvarez et al.

PAIRISTUTWIPE 1M A3Y) 210Jaq ‘Suawalels wa[qoid Jo Juswaaordwr pue uors
-IAQI JOJ QUIT} JUSIJINS PAMO][E Ty} SKem UT PA[NPAYDS JOU 1M SANTATIOR JUAWO[AIP JUSUWISSISS Y
So[NpoW 2SINOd
IQI[IRD AU} JO ISBD 9y} Ul A[[eroadsa ‘srys Surwwrersod Jo 39s (paonpar) oy1oads e Jo A1d)sewr
Q)ENSUOWAP 0) WY} SUIMO[[E [IYM ‘DBO[ SNOAUBIIXI SIUSPNIS 2ONPII 0] SB 0 d[qepeal A[Y3Iy 2q
PINOJ TR} SIUSWSSISSE JATBWNS FUNLIIO 90UALIAdXa 9y} 9ARY 10U PIp Jjels SuIyoea) Ay, "a[npout
[oea Jo soyr1oads oy uo Sursnooy suoneurwexs sanewwns Jdnnw parnbar 9sImoos Jenpow ay)
SBAIOUM ‘PUD 3} JB UOTIBUTIUEXS SAIBWIUNS JUO ATUO pey 9sInod Sururwelr3ord feuonipen ayJ,
SurSusyreyo jsow oy se syuapms Ay £q pajiodar
a10m (CIN) SIST] paisau Jo asn pue (ZJA) suonouny ‘s[rys Surwweidolrd Surpre3ay "urea| 01 JNOYJIp
QWIT) SUIES AU JB PUEB WAY) 0} MU A[03o[dw0d o1om ST[INS PUB JUIUOD ISINOD ) SB “INIYFIP ISou
) Udaq pey [JA 1Y) PAIL[IAP SIUAPNIS PIMIIAINUI AU} JO AUBW ‘JUSIUOD J[NOYFIP ISOU I} J0J Sy

sdoo[ s yons ‘s}onasuod [0NU0d MOf
x9[dwod yim Sunjiom pue ‘9je)s a1ay) Sunepdn ‘san[eA [eRIUL JI9Y) TUIIS ‘SO[QRLIBA JUBAJ[AI TUIA)
-TJUOPT 9[qNOI} PEY SJUAPNIS JEY} PIJOU S, “PUBY JAYI0 ) UQ "W JO sem & Sem 1[9f AU} Yorym
‘Joded jo 9001d yue[q € Y 1940 Jre)s pue wajqoid ay) Surajos jo yoeoidde uasoyod ay) 0} SUONIAI
-109 Jofew ayew 03 pey ASY) PIZI[Lal Ud)JO AJY], ‘SUONN[OS JIAY} eI pue AJIpow Appuanbaiy o}
pey £3y) SE “UHIM YIOM 0] JNOLJIP 1M S)IRYIMO[J UMBIP PUBY JBY) SMATAIaYUT Ul pajiodar sjuapnig

Juowdo[oaap Juaw
-ssasse Jo Surnpayds ayerrdorddeuy (ZIAD)

UOoTONISU0d
JUQWISSISSE UT 20UALIAAXD JO YorT (TIAND)

Kymayyp yuaiuo) (TSD)

sjo0} arerrdoxddeur (13[SD)

juowoFeurr 28INo)

S[IS PUe JUAUOD)

uondrosaq

punoj anssy

juauodwo)

(ponunuoo) g s|qey

pringer

As



Modularization for mastery learning in CS1: a 4-year action...

TIAL JO SY99M OM] ISIY 9} J0J SOSIOISXS [BLIOIN] PUE SOIPIA [BUOTIONISUT
110ys Suneald ‘eriojewr ssefo Sunepdn paimnbax os[e SIY, A Ul PIseq-1X3) 210joq
SurwwresSoxd (paseq-yo0[q 9°T) [ensIA Jo Suryoed) ay) 3dope 01 paproap sem |
sAep 221y}
0] QUO WIOIJ PISBAIOUT SEM SJUSUISSISSE ] PUB SINTATIOR [BLI0IN) U9MIaq SWIL],

uoneredard pue Apmys syuapnys ases 03 swajqold

WeX? [IIM 19339q USI[e 0) IpLW SEM SIOMIWOY ‘UONIPpPE U] *(Z [qR], 99S) J[Npow
[oea UI %G/ Jo 1y31om opeis e YIm ‘AI0Jepuetl Weddq JUSWUIISSe JI0MIWOH

quojso[I oyroads ©

SurAdIyoR J9JJe SB Yons ‘WoISAS SIAD 2y} 03 JIwuqns p[noys Sjuapnis udym Joj suor
-BpUaWI091 JIOAxX0 Y)Im pasoIduil 91om SJUSWISSSSE Qe 0] SJUW)E]S W[qoId

uonnjos wajqoid ay) 10 suoneydadxa

ure[dxa 0} SULQW © Sk SJuUaWwole)s Wo[qoId 0) poppe dI1om SUOTIENSNY[T ‘QIOWLIAYIN,]

(O xpuaddy ¢/ 81 ur | g, ‘g UONEI] WOoIJ WeXd [JA oY} 99s) Arxajdwoo Sur

-SBaIdUI JO s[eo3qns Jo/pue swajqord-qns Yrm 3xajuod wa[qoid o3urs e asudwod

0) PoUSISOp Q1o SWEXH "WNWIUI B 0} PAONPaI sem Jxuod woyqoid [enur ay3 Jo
uondrrosa(q ermonns pue a3ensue| JurpreSar ‘payrduwirs sem sjuawSSasse Jo uIsaq

swexd snoraaxd 3uisiaar uo Jur

-snooj ATtrewnid ‘wrexs oy 910§9q Isnl (q.1) Jo0[g SWL], Yord 0} POppE Sem UOISSIs
[e1I0IN] PIIY} V “9[NPOW II3Y) 03 OPT1oads SUOISSIS [E110JN) 0} PAUSISSE dIoM SJUIPMS

qonoead uoneredard pajedie) sjuapnis

QAIS 0) ‘wexo oY) YIIm pausSife AJnjored sem JUSWUSISSE YIOMIWOY Y [JA U]

"PaloBUD 1M SAZURYD [BOISO[OUYD) PUE [BIISO[OPOYIW IdYM A Ul 3dooxo
‘TerIojew Apnjs Se SJUOpNIS 0} PAISAT[OP oIom Tedk snoradrd o) WOIj SJUSWSSIsSY

(Z 91qeL 998) 9[npowr

1) Jo 9peI3 A} UO %G/ JO IYSIOM B )M ‘PIPPE SEM 9PRIS 90URPUINIE UE ‘ST

-1AT)OR 9s9y) ur uonedronted Juopns 95eINOOUI 0] ‘UONIPPE U ‘SUOISSAS JuLI0)N} UT
pue sa1m}o9 ut yioq sdnoid jueragyIp ojur pajeredos a1om SISWOOMAU pue s19jeaday

Kmoygip yu2uo) (Z3SD)
sj003 9reridorddeur (131SD) S[[IS PUE JUIUOD)
saniAnoe jo Surwn yeudoxddeuy (1qr) u31sop [euonONISUY

SOATIUIOUI SIomIWoY renbapeu] (¢SV)

Surpess qef 1rejun) (ZSV)

950QJ9A 00) SjuawWaIe)s Wa[qoid (1SV) JUQWISSISS Y

SUOTSSaS SULI0IN) ATIIOAUT (€TL)

[errdYewr Apms Jo Yo (771L)

SIOWOOMAU pue s1ojeadar [joq J0j sarod] owreg ([1]) Surures] pue Suryoea],

pawrograd suonoy

punoj anss| yuouoduio)

[ UOTJBId)] UT PUNOJ SONSsI SSAIPPe 0} g UONeI)] Ul pauriojrad suonoy 9 ajqel

pringer

As



C. Alvarez et al.

AIessaoou

J1 SJUSUSSASSE JIOMAI PUR ISIAI O} JOPIO UI SABP SUIoM Inoj 15B3] 1B SuImo[e
Jye1s Suryoe9) oY) I0J SAUI[PLIp UONBAID JUWSSIsse paute[d J0JeurpIood asmood 3y, Judwdo[aAap Juswssasse Jo Surmnpayos areridorddeuy (ZIND)

(uoneIayr 1xou 2y} ur paroxdwr rayyIny
sem ‘IoAaMOY] ‘Uondaouod SIYI) SJUSISSISSE JO SSAUISIOUOD Pue AJLIR[d “JBUIOf
ay) 03 pred 2q 03 pey UOIUJIE [NJAIBD JBY) AILME JWEIIQ SIAYOLI], "UONONNSUOD

JUQWISSAsSE JO $$2001d Ay J0J [RIOYOUq SEM UOTIBISN JSIN0D JSIY Y} UT paures
UOI}Od[JaI pue 30UALIAdXa ‘] UOIRIS) Ul PaSULYOUN PIUTRWAI Jje)s SuIyoea) oY) Sy UOT}ONIISUOD JUIWSSISSE UT dUILIAAXS JO YorT (TJAD)

JjuowageurwW 9SIN0D)

juauodwo)

pawrograd suonoy punoj anss|

(ponunuoo) 9 s|qey

pringer

As



Modularization for mastery learning in CS1: a 4-year action...

Table 7 Proportion of students M1
in each course state by the end
of the first (TB 5) and second
(TB 11) semesters in Iteration 2

M2 M3 M4 Passed Dropped out

Endof first .00 .03 .37 27 31(1.12) .02(].01)
semester
(TB5)

End of .00 .00 .00 .02 .89(1.14) .09 ({.11)
second

semester
(TB11)

(1) Increase in desired direction, (|) Decrease in desired direction

Table 8 Module pass rates for students’ first, second and third attempts in their first three instances in
Iteration 2

Instance M1 M2 M3 M4

First 18 (1.39) (242) .56 (1.22) (189) .36 (1.14) (105) .89 (].11) (38)
Second .87 (1.31) (53) .35 (1.44) (130) 41 (1.04) (117) 77 (1.14) (52)
Third 43 (1.4) (7) 77 (1.27) (83) 42 (1.15) (135) 61(1.11) ('67)

(1) Increase in desired direction, (]) Decrease in undesired direction

“Corresponds to the inter-term period, wherein 67 students out of possible 68 opted in

code.org draws parallels among block-based and text-based programming; the lat-
ter in ECMAScript language, which differs from Python.

With Scratch, in less than three weeks’ time, students could learn basic problem
analysis and how to generate programs with variables, input and output, operators,
logical and arithmetic expressions, pseudo-random number generation, conditional
and iterative flow control, and use of lists. In addition, the teaching of Python in M1
was simplified, moving basic flow control (i.e., the selection statement) to M2 (see
Appendix B).

Observation

In the second iteration, students’ progress through the course was notably faster than
in iteration one, with an average time to finish the course of 20.5 weeks. This is a
reduction of 2.7 weeks (SD=6.58), i.e., almost a complete TB, compared to the first
iteration M =23.2, SD=7.38). Correspondingly, module repetition was reduced.
By TBS5 there were no students in M1, and 3% of the cohort were in M2 (see
Table 7). This contrasts with Iteration 1, as in TB5 7% of the cohort were in M1
and 13% in M2. By the end of the inter-term period (TB6), 47.4% of the cohort had
passed the course in iteration two, compared to only 28.5% in the first iteration. In
addition, 89% of the cohort completed the course by the end of the academic year
(see Table 7), compared to only 75% in the previous iteration (see Table 3).
Improved results in Iteration 2 with regard to student progress, were the result
of increased pass rates in M1 and M2 (see Table 8). On the other hand, no major
changes in teaching and format of summative exams were introduced in M3 and M4,
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thus, results in these modules did not improve noticeably compared to the first itera-
tion. However, like in the first iteration, students who passed M3 performed well in
M4.

Table 9 shows homework and examination grades considering the first instance
of each module. Greater student dedication to homework assignments was observed
in Iteration 2. The percentage of students handing in their homework across the dif-
ferent modules ranged between 84.0% in M3 and 93.7% in M2. However, homework
grades were consistently higher than examination grades in M1-M3, and the differ-
ence was verified to be statistically significant in these cases, with large effect sizes.
In addition, correlations among homework and examination grades were poor, rang-
ing between 0.14 and 0.28. This may relate to different conditions under which stu-
dents develop homework assignments compared to exams; in terms of time, and the
possibility to seek help from others. Notably, in M4 students did better in the exam
than in the homework assignment, while the mean of homework was the lowest of
all modules.

Reflection

After reflections involving the teaching team, teaching assistants and data analysis of
students results in each module, we were able to see that the changes to the course in
Iteration 2 succeeded at improving module pass rates at the beginning of the course,
which accelerated students’ overall progress in the course. The course was improved
by taking into consideration the many issues found in the past iteration. However,
pedagogical and course management aspects could be improved further. Table 10
shows salient issues found in iteration two, which related to teaching and learning
and course management.

Iteration 3
Planning

Planning of the course remained similar with regards to TBs in each semester. Like
in the previous iteration, only one member of the teaching staff having two years’
experience in the modular course was replaced by a young lecturer with a few
semesters experience teaching traditional CS1 courses. In order to cope with issue
CM3 raised in Iteration 2 (see Table 10), planning of assessment construction had to
be carefully negotiated by the course coordinator with each member of the teaching
staff.

Action

Table 11 summarizes the actions performed in Iteration 2 to overcome issues TL4,
TLS5 and CM3. In addition, the Python language was upgraded to version 3.6, as ver-
sion 2.7 was scheduled to sunset in January 2020. Syntactic and semantic changes
among language versions are minor, especially as the present programming course
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only focuses on the imperative procedural paradigm. However, this required a com-
prehensive update to the courses’ textbook, class material and code examples.

Observation

Students’ progress was further improved in the third iteration, with a mean time to
complete the course of 17.7 weeks (SD =5.60). This is an improvement of an addi-
tional 2.8 weeks over Iteration 2, due mainly to an increase in module pass rates.
As shown in Table 12, by the end of TBS, 54% of the cohort had passed the course.
After the inter-term period, this figure increased to 67%. By the end of the year, 94%
of the cohort passed the course, and only 6% dropped out.

Quicker student progress in the course was due to pass rates in M1 continuing to
be above 0.7 in the first two instances the module was offered, and later improve-
ments to pass rates in M2 and M3. Lastly, M4 maintained relatively high pass rates
comparable to the second iteration (see Tables 12 and 13).

Reflection

Iteration 3 showed that positive effects of changes made in Iteration 2 could be rep-
licated, and that further improvement was achieved in the light of greater pass rates
observed in M2 and M3. As pass rates in M2 and M3 were consistently improved
in several of their instances, it can be affirmed that changes to pedagogy linked to
addressing TL4 and TL5 (see Table 11) had a positive influence on students’ learn-
ing and performance. However, no evidence could be elicited regarding achievement
of a better alignment among laboratory assignments, homework and examinations,
as a result of addressing issue CM3. A path analysis procedure was conducted as a

Table 12 Proportion of students Ml M2 M3 M4 Passed
in each course state by the end
of the first (TB 5) and second
(TB 11) semesters in iteration 3

Dropped out

First semester .00 .01 .24 .16 .54(1.23) .05(1.03)
Second semester .00 .00 .00 .00 .94 (1.05) .06 (l{.03)

(1) Increase in desired direction, (]) Increase in undesired direction,
(1}) Decrease in desired direction

Table 13 Module pass rates for students’ first, second and third attempts in their first three instances in
iteration 3

Instance/module M1 M2 M3 M4

First 71 .(1.07) (227) 51 .(1.05) (162) 73 (1.37) (78) 75 (1.14) (56)
Second .83 (-) (65) .60 (1.25) (138) .65 (1.24) (107) 95 (1.18) (84)
Third - .80 (1.03) (55) .54 (1.12) (81) 78 (1.17) (37

(1) Increase in desired direction, (|) Decrease in undesired direction

“Corresponds to the inter-term period, wherein 37 students out of possible 48 opted in
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means for establishing whether results in an assessment could predict results in later
assessments. This was based on the notion that an assessment could predict per-
formance in later assessments if students manage to build and apply schemata and
transfer knowledge related to the intended learning outcomes throughout successive,
aligned learning and assessment events (Robins et al., 2019). The procedure was
performed with R v4, considering assessments in the first instances of modules M1
to M3. In our case, with all modules it was found that only the first lab assignment
could predict performance in the second lab assignment and in the summative exam
(i.e., path coefficients in the range 0.44 to 0.58, p<0.01), although the latter to a
lesser extent (i.e., path coefficients in the range 0.02 to 0.3, p <0.05). The second lab
assignment could not predict performance in homework nor in the summative exam.
In turn, homework did not predict lab assignment nor examination performance (see
Appendix C). This provides indication that further improvement with regard to con-
structive alignment can be pursued by increasing opportunities for knowledge trans-
fer, schemata activation, and display of meta-cognitive strategies across homework,
lab assessments and the summative exam.

Table 14 summarizes the issues found in Iteration 3, which relate to teaching and
learning, assessment and course management. Overcoming these issues was consid-
ered essential in order to improve the course both from operational and academic
standpoints.

Iteration 4
Planning

The fourth iteration of the course began in the midst of the worldwide COVID-19
crisis. In the first week of the course, the university complied with the regulations
imposed by the local health authorities and the decision to teach online throughout
the year was made official. The course had to be quickly adapted to this format.

The annual calendar of the course did not undergo changes compared to the pre-
vious year, keeping the number of weeks, TBs and the inter-term period unchanged.
There was a 15% increase in freshmen enrollment compared to the previous year, so
a sixth lecturer was added to the teaching staff. In the second semester the teaching
staff was reduced to two lecturers, as in all course iterations.

Action

With the change to online education, synchronous activities such as tutorials and
lectures were streamed on platforms such as YouTube and Twitch, or conducted by
using videoconference systems, such as Google Meet. The lectures were reduced
from 100 to 80 min, and their focus continued to be about demonstration of skills
and step-by-step problem solving by the lecturers. In order to improve students’
preparation for the lectures, the teaching team produced two to four short videos
(i.e., three to ten minutes long) per week, 48 in total, to cover the fundamental con-
tents covered in each lecture. In previous iterations of the course, there was a limited
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number of video capsules, used mainly in M1, but these were completely renovated.
In a flipped classroom fashion, students were required to watch the video capsules
before each class, and read sections of the textbook.

The course began with all six lecturers teaching M1, with groups of students
assigned to each as had been done for the face-to-face format. Given that the online
format allows assigning an unlimited number of students to each teacher, starting
from TB2, the teaching staff that gave lectures was restricted to three or four lectur-
ers per TB. Thus, about half of the teaching staff was dedicated to lecturing, and the
other lecturers had greater dedication to developing assessments and short explana-
tory videos. Dedication to lecturing and content creation duties were planned by the
course coordinator before the start of each TB.

With regard to assessment, changes were made in Iteration 4 (see Table 15), with
the aim to reduce the number of students’ requests for regrading at the end of each
module, and thus lessen the burden this placed on teaching assistants at the end of
every TB (i.e., issue CM4). In M1 and M2 grades were based only on class attend-
ance and the summative exam. Homework assignments in these two modules were
eliminated. Lab assessments were administered in M1 to M3, but were not com-
pulsory. Rather, students could score bonus points to boost their final grade in the
module (but were not allowed to request regrading). In M3, homework was kept in
a similar format to the previous iteration and worth 12.5% of the final grade, and
regrading was allowed. In M4, an integrative homework assignment, prompting
students to comprehensively apply course knowledge and skills, was introduced,
accounting for 22.5% weight in the final module grade. Given that this homework
assignment was expected to demand a greater effort, lab assignments were omitted
in M4 altogether.

The modules were taught with the same knowledge and skills ordering as in the
last iteration. This allowed all the assessment material from the previous year to
be completely reused in the form of worked examples so that the students could
improve their preparation for the assessments in tutorials and in their personal study.

Changes in Iteration 4 were mostly focused on implementing the course in online
format, however, it was feasible to address the issues that emerged in the past itera-
tion to some extent (see Table 16). In the second semester, an attempt was made
to improve student engagement with the support of the academic counseling model
traditionally implemented in the institution. This consists of each first year student

Table 15 Course assessments and weights in Iteration 4

Module 1 Module 2 Module 3 Module 4

Assessment per module Weight
Low stakes lab assessment Two lab assessments which award bonus points -
(up to 0.6 points on the module grade, considering 1-7 grade
scale, with 4 as the cutoff grade)

Final exam 92.5% 92.5% 80% 70%
Homework - - 12.5% 22.5%
Attendance 7.5% 7.5% 7.5% 7.5%
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Table 17 Proportion of students M1
in each course state by the end
of TB 5 in Iteration 4

M2 M3 M4 Passed Dropped out

First semester .00 .01 .05 .16 .77(231) .00(l)
Second semester .00 .01 .01 .02 .96 (.021) .04 ()

(1) Increase in desired direction, (J|) Decrease in desired direction

Table 18 Module pass rates for students’ first, second and third attempts in their first three instances in
iteration 4

Instance M1 M2 M3 M4

First .96 (1.25) (262) .67 (1.16) (251) .78 (1.05) (169) 73 (1.02) (131)
Second 27 (1.56) (11) .88 (1.28) (90) .26 (1.39) (117) 92 (1.03) (118)
Third -) 73 .(1.07) (11) .70 (1.13) (47) .84 (1.0.06) (43)

(1) Increase in desired direction, () Decrease in undesired direction

having an assigned academic counselor, generally a full-time academic. The secre-
tary for student affairs of the Faculty was asked to coordinate the appointment of
video calls so that the students could meet their counselors, and be encouraged by
them to finish the course as soon as possible. Regarding the aligned development of
the assessments to facilitate knowledge and skill transfer, the criterion of the pre-
vious iteration was maintained, consisting of the same teacher having to develop
homework and exams in M3 and M4 (Table 17).

Observation

In Iteration 4 the improvement trend with regard to students’ mean time to finish the
course was maintained. This was figure was reduced to 14.9 weeks (SD =3.64), that
is, an improvement of 2.84 weeks (almost a complete TB) compared to Iteration 3
(M=17.7, SD=5.6). In addition, 96.2% of the cohort completed the course by the
end of the academic year, compared to 94.3% of students achieving this result in the
previous iteration (see Tables 12 and 17).

Pass rates on M1 and M2 continued to improve (see Table 18). In Iteration 3 the
same pass rate was found for M3 as the previous year in the first instance, but it
worsened considerably in the second instance. In M4 there was also a worsening in
the pass rate in the first instance. Nonetheless, at the end of TBS, 77% of the cohort
passed the course, i.e., an increase of 23% compared to Iteration 3, due to a greater
proportion of students in M4 in TBs 4 and 5, explained by better pass rates in M1
and M2.

Reflection

The best academic results in Iteration 4 were obtained in a teaching context different
from that of the previous modules. Therefore, the improvement in academic results
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can be attributed to both the deliberate improvements pursued, as well as other fac-
tors beyond control of the teaching staff and research agenda.

Undeniably, students in the online mode had advantages over those who previ-
ously took the classroom-based course at the time of taking assessments. During the
assessments, they could access study material, assessments from previous semes-
ters, and other resources. On the other hand, students in the face-to-face format were
only allowed to consult the course’s textbook during the assessments. In spite of
this, it could not be established that there was systematic cheating and plagiarism
on the part of the students when taking the assessments in the online course. At the
begining of the course, it was announced to the students that all assessments would
be reviewed with Measure of Software Similarity (Aiken, 2020). In spite of this,
in TB2, 23 students were found (8.8% of the cohort) to be suspected of cheating
on their assessments due to code similarity. After investigation, it was determined
that 11 students cheated in lab assignments or examinations. After these students
were informed of the sanctions, which consisted of failing the course in most cases,
plagiarism in the cohort appeared to decrease substantially (no new suspicions of
plagiarism were detected in the following TBs).

The lifestyle of the students was also considerably affected by the pandemic and
this could have positively influenced their performance in the Programming course.
Under normal conditions, most students spend considerable time commuting to
campus from their homes. On the other hand, the University does not have labora-
tories open to students permanently to facilitate their study of programming, there-
fore, students must have their own laptop to study on campus. During the pandemic,
students spent time at home in front of their computers for most of the day, so this
could have facilitated their dedication to the study of programming.

Students’ module progressions and performance

A longitudinal analysis of students’ performance and module progressions in the
course was performed by consolidating academic results in a relational database,
and constructing reports through a development environment based on the R pro-
gramming language. A student’s module progression is defined as the sequence of
modules followed by the student throughout the course’s TBs, from start to end, and
is specified by the corresponding sequence of module numbers, from left to right.
For example, module progression ‘112345’ indicates that the student took M1 twice
(i.e., failed M1 in the first TB), and continued studying and passing the following
modules until passing M4 and thus achieving course completion by the end of the
fifth TB. The number 5 in TB six of this progression indicates that the student had
passed the course already.

Figure 3 shows the relative frequency of students’ module progressions in each
iteration of the course, only considering the first five TBs (i.e., the first semester). A
total of 31 different module progressions were found across the four years. For the
sake of clarity in Fig. 3, module progression labels are only provided for progres-
sions including at least 3% of the students in the yearly cohort. A decreasing trend
can be observed through the years in module progressions ending in 1, 2, and 3 (i.e.
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Fig.3 Students’ progressions in the modular course

students who did not pass the course in the first semester). Conversely, an increase is
observed in progressions ending in 5 (students who did pass the course).

Table 19 shows trends in the different progressions (module sequences) at the end
of the first semester (TBS5) in each year (iteration). Trends were tested for statistical
significance through a chi-squared test of proportions. Looking at progressions end-
ing in M1 (i.e. 111111), in the first year, 10% of the cohort were still in M1 by the
end of TBS. In the following two years, the proportion of students in this state was
reduced to a minimal fraction of the cohorts (2 to 3%), and in the last year, there
were no longer students who did not pass M1 by TBS5. A similar trend is observed
for progressions ending in M2 (e.g. 111222, 112222), as 13% of the students in the
first year were still in M2 by the end of TBS. In contrast, in the last year only 1% of
the cohort had not passed M2 by the end of TBS.

A considerable portion of the cohort in the first two years followed progressions
that were still in M3 at the end of TBS5 (e.g. 112333, 122333). These results were
improved in the third year, as 70% of the cohort managed to pass M3 by the end of
TBS. In the last year, only 5% of the cohort had failed to pass M3 by the end of TBS.
Lastly, for progressions ending in M4 (e.g. 122344, 123344), the same proportion of
students in the first year of the intervention as in the last. However, the proportion of
students who managed to pass the full course at the end of TBS increased steadily
from year to year, reaching 80% in 2020.

Figure 4 presents the proportion of students who passed the course every year,
starting at the conclusion of TB4. While this proportion increased in each iteration,
a consistent trend of slow progress occurred in every second semester. Students’
progress stagnates in TBs 7-9 in the second semester, and improves in the last two
TBs. Consistently with other mastery learning implementations (Fox, 2004; Garner
et al., 2019), when the students are given too many opportunities to fail and retake
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Table 19 Trends in module progressions organized by module at the end of TB5 by year

Module Year Number of pro- Students with Cohort size Proportion x2(1) p
gressions ending progression ending
with module with module
1 2017 1 23 228 0.10 28.74 <0.001
2018 1 5 243 0.02
2019 1 7 227 0.03
2020 0 0 262 0.00
2 2017 5 30 228 0.13 32.18 <0.001
2018 3 8 243 0.03
2019 3 7 227 0.03
2020 1 3 262 0.01
3 2017 8 100 228 0.44 116.38 <0.001
2018 7 88 243 0.36
2019 9 43 227 0.19
2020 5 13 262 0.05
4 2017 6 33 228 0.14 1.00 n.s
2018 9 68 243 0.28
2019 7 48 227 0.21
2020 7 36 262 0.14
5 (Passed) 2017 4 42 228 0.19 216.06 <0.001
2018 5 74 243 0.31
2019 5 122 227 0.54
2020 5 210 262 0.77
Proportion of students who passed the course
1.00 96.2%
91.7% 94.3%
88.9%
77.19
0.75
66.5% 750%|  Tteration
66.7%
g 53.7% 1
= 050 47.5% — 2
> 36.6% — 3
: 30,69
28.5% — 4
0.25

18.5% /.3%
12.0%

6.6%.
/Elrst Semester Inter-term

Second Semester

Summer

12

15 17 20

Week

25

30

35

Fig. 4 Proportion of students who passed the course starting at the end of week 12 (TB4) in every course

iteration

assessments, or are not faced with deadlines to be promoted to more advanced stud-
ies, they tend to procrastinate. Procrastination in the modular course became appar-
ent in the second semester, as most students begin thereby in M3 or M4, and have a
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total of five to six TBs available in the semester to pass one or two modules. Late in
the second semester, procrastinating students encounter pressure to finish the course
in the last few TBs ahead. Despite this, the proportion of students ending the follow-
ing academic year without completing the course steadily dropped through course
yearly iterations, from 25% of the cohort in 2017 to 3.8% in 2020.

Discussion
Challenges and difficulties
Introducing fundamental knowledge and skills

The fast-paced planning of the modular course made the first module intense, as
students are expected to develop basic problem analysis, abstraction and algorithm
design skills in no more than three weeks, while taking other parallel courses in the
engineering curriculum. How skills are taught and assessed early in the course is of
the utmost importance for students’ academic success, as early course results impact
their motivation and ability to make sustained progress in later modules. Finding
ways to accomplish fruitful learning and successful academic results in M1 proved
to be a challenge at the outset of the project. Clearly, the use of a visual block-based
programming language in Iteration 2 onwards was found to be a more effective alter-
native than traditional hand drawn flowcharts, to support students’ own thinking and
solution modeling. This, however, was not obvious at the outset of the project and
had to be realized by the teaching team after the results of the first iteration.

Managing increasing knowledge complexity and assessment difficulty

The epistemology of programming results in discernable pedagogical challenges in
the modular course. As the course progresses, knowledge and skills that students are
expected to master become more complex, while problem solving activity requires
that students integrate and apply a growing number of skills. As a greater number of
programming concepts and skills become available for formulating more sophisti-
cated problems, creative possibilities multiply. Yet for the teaching staff, experience
with the modular course design led to the realization that good assessment construc-
tion is not about presenting students with entirely new and unexpected problems in
assessments (i.e., ‘gotcha problems’). Instead, assessments need to consist of prob-
lems in which students can identify and transfer schemata they have had a chance to
build over their hours of prior study and practice, including with worked examples.
Neglecting this results in undermining constructive alignment possibilities between
teaching and learning activities, and assessment.

As suggested by Robins et al., (2019), a programming pedagogy that bet-
ter adjusts to students’ cognition should consider worked examples, and problems
establishing subgoals. In addition, for students to develop knowledge transfer abili-
ties, they must be presented with examples of how a problem-solving strategy can
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be transferred from one problem to another. These are pedagogical challenges
especially for novice teachers of programming, who as in other disciplines tend to
replicate the ways in which they were taught and assessed in their own educational
experience.

Student procrastination

Consistent with the literature on mastery learning and reported experiences in mas-
tery learning (Fox, 2004), student procrastination is an issue that occurred in the
present modular course. This behavior is observed in Fig. 4, where a plateau in the
progress of the students remains evident in each second semester. A possible worka-
round to the procrastination issue in the second semester is to introduce the students
incentives upfront at the start of TB7, so that they commit dedication and effort to
pass the course as early as possible. A maximum number of reattempts to pass each
pending module could be defined. For instance, three reattempts could be allowed
for M3 and M4 in the second semester. That is, if the student fails a module for
the third time, fails the course. Rules such as this will be tested in future course
iterations.

Team coordination and teaching freedom

Unlike traditional courses, in which the course can be taught by a single teacher,
under the modular approach, several teachers need to collaborate. As the semester
progresses, modules need to be taught in parallel, and in every time block each mod-
ule requires different learning activities, content and assessments. Therefore, transi-
tion from the traditional course format to the modular requires a culture wherein the
teaching staff is willing to relinquish some of their individual teaching freedoms for
the sake of the collective effort that underpins the modular course. In this regard,
the role of the coordinator proved essential in the modular course, not only for plan-
ning and assigning teaching staff’s duties and supervising course activities in a daily
basis, but also for collaborating with the teaching staff in creating course content,
and assessments well-aligned with prior teaching and learning activities for each
module.

Practical implications and recommendations
Planning of learning activities

The modular system presented here is based on the division of the academic term
into time blocks of fixed duration. This facilitates that student finish a given mod-
ule and move on to the next without waiting. However, the division of the course
into four three-week modules makes the rate with which students are exposed to the
content faster than that of a traditional course. In the modular course, a student who
passes all modules without failing any of them can finish the course in 12 weeks,
versus 15 weeks in a traditional semester course. With this accelerated pace of
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learning, planning of learning activities must be organized carefully so that suffi-
cient time passes after the student is presented with basic skills in order for them
to exercise the skills properly and solve enough practice problems before they are
assessed. On the other hand, the modular course must offer differentiated learning
activities for students repeating a module from those taking a module for the first
time. Repeating students can spend less time in lecture and focus most of their time
exercising on problems from previous assessments, problems they were unable to
solve before, and have further opportunities to seek for help and guidance from more
capable peers and the teaching staff.

Block programming before text-based programming

The process of learning computational thinking and programming demands the
concurrent display of a complex mix of skills, including reading comprehension,
problem analysis, abstraction, and elaborating the solution representation. Accord-
ing to learning edge momentum theory (Robins, 2010), mastering these basic skills
is key to academic success in the course. Traditional ways in which computational
thinking and algorithm design skills have been taught in CS1 courses have been
based on the generation of pseudocode, flowcharts or the use of visual modeling
tools. More recently, the use of block programming languages, such as MIT Scratch
and code.org, has become common, especially in K12 education. Despite the fact
that these languages are frequently used for recreational purposes (e.g., for creating
video games and multimedia), experience in the modular course shows that they are
an powerful means for introducing post-secondary students to algorithm design and
programming. Through these languages, students do not have to type code, includ-
ing all the syntactic subtleties involved, such as indenting code with tabulation, and
correctly typing each line. Instead, students use programming blocks that are easily
recognizable (i.e., visual, with definite shapes and colors), and syntactically helpful
(pluggable). The fact that with block programming students do not have to type code
from the very beginning in a blank file brings the benefit of offloading some of the
cognitive load of the task, so that they can rather dedicate more cognition and effort
to model the solution, test it, and try different ways to solve the problem. In addition,
other desirable skills, such as program tracing and debugging can be developed by
the students early in the course through the use of block-based programming. The
introduction of block-based programming and text-based programming worked well
in a spiral fashion, meaning that students can be introduced to text-based program-
ing through the same examples they saw before with block-based programming. The
intent of this is to facilitate schema building and knowledge transfer, and again, off-
loading some of the cognitive load, so that when they come to learn the text-based
programming language they can focus on learning the syntax and the mechanics
of typing code sentences, through examples whose algorithmic and computational
underpinnings they are already familiar with.
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Assessment construction

There has been debate about the convenience of incorporating cover stories or
detailed contexts into programming problem statements (Morrison et al., 2015).
The experience in the modular course studied here was that verbose problem state-
ments in the tests and lab assignments created a greater need for complex reading
comprehension, adding extraneous cognitive load and leading students to incor-
rectly interpret the requirements of the problem (Robins et al., 2019). In addition,
reading unnecessarily lengthy problem statements can be detrimental to students’
performance in time-constrained exams. Problem statements that minimize the ini-
tial context presentation and lead the student to the problem requirements directly,
stated as sub-goals, are thus preferred. Each subgoal can add more context to the
problem statement if required. Subgoals can progressively increase skill complexity,
and can allow incremental progress in solving the given problem. However, it is rec-
ommended that there are sub-goals that do not depend on fully completing others, so
that the student has a greater opportunity to demonstrate their mastery of independ-
ent skills. Finally, if it is desired that students face less structured problems, this can
be done through homework assignments, for which they can have much more time,
and they can also turn to the teaching staff and their peers to resolve doubts and
exchange ideas.

Constructive alignment

In the modular course, it is essential that students know how they will be assessed
and that they can prepare in advance to take a summative exam successfully, as sum-
mative exams largely determine their success or failure in the modular course. For
this, it is essential that students can have study material with abundant worked exam-
ples, and that tutoring sessions are focused on supporting students to solve problems
at the exam’s required level of proficiency. Through these activities, students must
be capable of building their computational thinking and problem solving schemata,
and complementarily, assessments must be constructed in ways that foster students’
activation of that same schemata, and promote transfer of their learned abilities to
the problems that are presented.

Teaching team and culture

In a CS1 course, as in other contexts where there is teaching with technology, effec-
tive teaching depends on the technological pedagogical content knowledge (Koehler
& Mishra, 2009) that the teachers possess. With regard to pedagogical knowledge,
teachers must have the ability to teach using the programming language, perform-
ing live coding examples that students can follow and perform simultaneously with
them. Teachers must also have the ability to review what students program, give
them feedback, and help them overcome what is keeping them from moving for-
ward. In addition, teachers must know and be aware of the nature of the knowl-
edge and skills that are required to be taught in each module of the course, since
this is essential if a constructive alignment strategy is to be developed. From an
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organizational standpoint, teachers must be willing to work as a team and to perform
under a coordinating role. Lastly, the course coordinator together with the teaching
team must have the support of the Faculty leadership to have freedom to make deci-
sions about how to innovate and continuously improve the course.

Conclusions

This paper presents the development of a modular CS1 course based on mastery
learning, over a period of four years, with a total of 959 engineering freshmen in
a Latin American university. The development of this intervention reduced yearly
course attrition from 25 to 3.8% of the cohort, decreased the average time spent
by students in the course from 23.2 (SD=7.38) weeks to 14.9 (SD=3.64), and
improved the course pass rate in the first semester from 19.3 to 77.1%.

The modular course based on mastery learning fulfilled the goal of allowing
students to move through different module progressions according to their own
learning ability and effort. The course gave the students the possibility to retake
modules in which they had greater learning difficulties, without failing the entire
course, as had happened to 30 to 40% of the cohort in the previous traditional
course. Despite procrastination observed in the second semester, in the final itera-
tion of the intervention, over 95% of the students passed the complete course by
the end of the year.

The implementation of a CS1 course in the format here presented requires a
well-aligned teaching team coordinated around the project and its objectives. In
addition, it demands teachers with a high level of pedagogical, technological and
epistemological knowledge about the teaching of programming. In the present
project, this knowledge had to be developed and systematized over the course of
the four years. Some practices that emerged in the present research could help
researchers and practitioners from avoid some of the traps the present authors
fell into at the beginning of the project. First, the way in which the initial course
content is introduced influences the motivation and academic performance of stu-
dents as they move towards more complex contents and skills. This was found in
the first two iterations of the course and is consistent with the theory of learn-
ing edge momentum (Robins, 2010). Second, the constructive alignment of learn-
ing goals, with teaching and learning activities and assessment must be achieved
through the development of teaching materials, worked examples, and assess-
ments in a coordinated manner by the teaching team. The teaching materials must
cover all relevant problem solving strategies and schemata that students need to
learn in each module. Third, assessments must focus on validating students’ pos-
session of intended problem solving schemata and actual programming skills,
both which must be clearly identifiable and in explicit connection with students’
past learning experiences. In addition, given that skills and knowledge grow pro-
gressively more complex in the course, planning of teaching and learning activi-
ties must allow sufficient time for students’ deep learning and preparation. These
recommendations are consistent with recent research at the intersection of cog-
nitive science and computer science education (Robins et al., 2019). Lastly, the
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support and trust of the Faculty leadership, in terms of granting creative auton-
omy and decision-making to the teaching team for continuous improvement of
the course is key to academic success.

In the future, the present authors aim to propose a formal process for the design
of constructively aligned teaching, learning activities and assessments in the con-
text of mastery learning-based CS1 courses. Also, the present authors are devel-
oping predictive models to detect students at greater risk of failing the course in
the first semester, aiming to provide these students with greater support and per-
sonalization of their learning experiences. Lastly, a mobile intelligent program-
ming tutor will be evaluated as a means to provide students with a complement to
regular teaching and learning activities in the course, for constant programming
practice, anywhere and anytime.

Appendix A

See Fig. 5.

Course Module Structure (lteration One, 2017)
Weeks 1-2 (10 hours) Course Module Structure (lteration Two, 2018)
Teciuro Time Totorng Tab Assignment
a{ (Wednesday) '—» Wednesday-Friday) H (Mond }—» (Tuesday)
Py ‘ Pl ol ot Wesks 1-2 (10 hours)
1 | Teciure Personal Study Tme Tatoring Personal Study
Next week (Wednesday) (Wedhnesday-Friday) (Friday) Time (Weekend)
Week 3 (10 hours) 2 hours 2hours 2howrs 2hours
ezt Time S t
(Wednesday) Wednesday-Friday) (Monday)
2hours 6 hours 2hours

Tab Assessment
(Mondzy)
ours

il Wodle J
. Next Week

(Tuesdayl Week 3 (10 hours)

Next Module (Wednesday) (Wednesday-Friday) (Friday) {Monday) Grades
2 hours 4 hours 2 hours. 2 hours (Tuesday)

() (b)

Course Module Structure (Iteration Four, 2020)

Taforing Tab Assessment
(Friday) Time (Weekend)
2 hours 2hours

M1-M3 (Monday)
2

o

Weeks 1-2 (10 hours)

Tecurs Personal Study Time
Wednesday) (Wednesday-Friday)
2 hours 2hours

Course Module Structure (lteration Three, 2019)

Weeks 1-2 (10 hours)

Teciure Personal Study Time Tatoring Personal Study Tab Assessment
Wednesday) (Wecnesday-Fiday) (Friday) Time (Weekend) (Tuesday) Next Week
ours ours ours hours ours
= T 2 2t 2 2”‘ Week 3 (10 hours)
Next Week ‘ Teciure }» Fomework M3 Tifoing Eam Final Module
Wednesday) kWeanesdayFndayY}—' (Friday) H Monday) }—o Grades
Week 3 (10 hours) 2hours ahours 2hours 2 hours (Tvesdiay)
‘ Tecture }—'HcmeworkMZ—MA Tatoring ‘ Fam Final Module
(Wechnesday) (Wednesday-Friday) }—o (Friday) }—o (Monday) ’—o Grades.
2 hours 4 hours 2 nours 2 hours (Toesday) Next Module
Integrative Homework M4
Next Module

(©) (d)

Fig.5 Design of course modules in course iterations a One (2017), b Two (2018), ¢ Three (2019), and d
Four (2020)
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Appendix C

See Figs. 6, 7.

CS1- Bxam - MIVL

Module 1 Exam
2017-TB1

Time: 2 hours

Problem 1

Introduction

Two clements are used to pay the ticket in our public transportation system:
metro turnstile, and prepaid cards that store information and can only be writ
validators.

A passenger can transfer from one means of transport to another, 5o a trip co
the first leg of a trip, the ticket corresponding to that leg is paid, and in subs
if there is a difference between the total paid for the trip and the cost of the
the Metro has a higher cost than the Bus, so a trip that consists only of Bus
in which there is at least one Metro section,

When boarding the bus, the passenger presents their prepaid card and the
charged or not, if there is enough balance and responds by turning on a red Ii
to the failed or successful result, respectively.
The leg information is stored on the prepaid card as a leg list, including the

= service: A string identifying the name of the line or service (Example:

= direction: A string identifying the dircetion of travel (Example: ‘City
of Metro, it is not possible to know the direction of travel beforcha
always "Metro', and the passenger will always travel in the same directic
« time: An integer registering the time at which the prepaid card was tou
measured in minutes since 01-01-2007 at 00:00:00.
= payment: An integer telling the amount payed in the leg of the trip.
Between the beginning of the first and the beginning of the last leg of a trip, 1
pass, otherwise it is considered that a new trip has started and the user is cha
cannot take a bus route in the opposite direction within the same trip, in whis
its corresponding charge.

Requirements

Draw a flow chart for the algorithm that a validator installed on a bus or me
must determine how much to charge in a leg and turn on the red light in case
due to insufficient balance. Assume that there are the following variables that

= Data about the current trip leg, wmd. becomes available after setting '
lst': service, direction, time, pay)

» Data about the bus or Metro in which the validator is installed: serVal
dirVal with the direction of the current service, ticketVal with the
installed.

CS1.- Exam - MIVL Problem 1 (continued)

CS1 - Exam - MIVI Problem 2 (continued)

= currentTime with the current time as an integer (counted in minutes
metroTicket indicating the metro fare, busTicket indicating the bu:
busTicket < metroTicket < 2+busTicket.

« balance indicating funds available in the prepaid card.
At the end of exeeution, the following variables must be set
= resVal: the value ‘green’ must be set on successful card validation, ‘red
« paymentVal: value that must be payed according to validation, or zer

» balance: remaining funds in the prepaid card (if no charges are made t.

Hint

. vaen the way in which time is represented in variables time and cu
mpare, sum and add minutes to hours ke with integer mumbers.

Problem 2

Introduction

A dmdmlne bank has been operating in the country for years, which to
authorities ustomer transaction orders only through ordinary mail
ndicaing the acvrot numbes o / o whers they e tanale manay, T)
of offcials who process the envelopes manually. Over time, the capacity has b
i implementing an optical character recogaition (OCR) system to process ot
system identifies checking account mumbers in the letters received, and send
rresponding branch, which is deducted from each specific account mumber

So far the OCR system works perfectly and manages to identify all the 9-
letters, without generating errors. However, mast of these numbers represent t

ing accounts, thus the improvement in productivity is not what is expec

Requirements

You are asked to write a program that can discard those numbers that are ko
a bank account number. In case of representing an account, the

branch and the responsible area manager, to whom this letter will be sent to t
been discarded, the word ‘Discarded’ must be printed on the screen. The prog
account mumber 0 be analyzed and then process it according to the followiny

= No account begins with the digit ‘0', that is, the digit ‘0" never appears

= The first 3 digits of an account correspond to the branch, but there is a
outside the country and has the first 4 digits dedicated to identifying th

= The branches have identifications within the ranges 101 to 221, 430 to
both numbers inclusive).

« The next digits after the branch number identify the account within th

= An account can be in national or foreign currency. Al foreign currency

Problem 1 continues in the next page..

Problem 2 continues in the next page..

* The identification of accounts in national currency has 4 digits, while th
digits

» For accounts in foreign currency, after the account identification the next
The code for Chilean pesas is 99, but it is not part of the account numb

* The penultimate digit always reprosents the area within the branch that
except for branch 3016 which only has area 1 and is not added to the ac

 The last digit is a Check Digit (CD). Note that it is only necessary to e:
Dot necessary to do any verification or validation of the account number

The output of the program must include a line indicating each of the followin,
* Branch
* Account
* Currency
* Area

. CD

Examples of expected output for different inputs

301680537
301670342
301570342
439254983
251268504
221868543

Hints

= An integer can never have ‘0’ as the first digit. If a string starting with ‘0
all leading zeros are simply ignored. Ex: ‘00456' becomes 456, that is, ¢
digits

» Sketch a paper flow chart to structure your algorithm before programm
evaluated, it can help you sort through your ideas and make programmi

Fig.6 Module 1 exam from Iteration 1 (2017), Time Block 1. Translated from original Spanish

CS1- Exam - MIV1

Module 1 Exam
2018-TB1

Instructions

This exam has four problems and you must solve only three. Problems 1 and 2 ar
can freely choose a problem between 3 and 4. You will have 2 hours to slve the |
Bonus points: If you choose to solve problem 4 and submit it complete and con
with additional 0.5 points.

Problem 1

Develop a Python progeam (name it p1.py) that simulates the operation of an :
receive the current time and the alarm time separately. The alarm lasts for 90
activation time.  Truo if th

and False otherwise. Two executions of the program are illustrated below:

Enter the current tize
Enter hour: 3
Eater minuts
Enter
Eater
Eater
Eater
Enter se
False

Eater the current tize
Eater hour:
Enter minute: 3

ip: Your ds,
entered by the user falls within the alarm activation interval.

Problem 2

Develop a Scratch program (name it p2.5b2) that simulates the operation of a ¢
For this, the user enters the starting time, including hour, minute and second, sef

CS1- Exam - MIVL Problem 2 (continued)

CS1- Exam - MIV1 Problem 3 (continued)

=

Figura 1: The start time is entered scparately. In this example, 23:59

The cat displays a message with the time entered for one second, then advances |

Figura 2: Counting begins at 23:59:58. Images of the first three second

‘Tip: Remember to consider what happens when the seconds reach 60, when the
hours reach 24.

Problem 3

Develop a Scratch program (name it p3.s52) that implements a clock that rece
city, and displays the time according to the chosen time zone.
First the start time is requested separately, as in the previous problem:

()

Figura 3: The start time is entered separately. In this example, 23:59

Then the city where the user is located is requested:

Figura 4: The city is entered.

“The program must have two lsts (you must create them yoursel): one with citie
respective time zoncs, the latter indicating the mumber of hours to be added to t

Figura 5: List of cities and time zones.

Problem 4

Develop a Scratch progeam (name it pé.sb2) that simulates the operation of a
must enter the starting time of the clock, with hour, minute and second separate

&

&= 9 = o

—

Figura 6: The start time is entered separately. In this example, 23:50

Internally it has a list with previously entered alarms:

Problem 2 continues in the next page...

Problem 3 continues in the next page...

Problem 4 continues in the next page...

Fig.7 Module 1 exam excerpt from Iteration 2 (2018), Time Block 1. Translated from original Spanish
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Appendix D
See Fig. 8.
M1 M2 M3
0.44** 0.52** 0.58***
LAB2 LAB2 LAB2
0.15* 0.25*** 0.22*** 0.3 0.13 0.23**
HOMEWORK 0.3*** HOMEWORK 0.13* HOMEWORK 0.02
0.07 0.2*** 0.06
ExaM EXAM ExAM
N=227, CFI=1.00, TLI=1.02, RMSEA=0.00 N=162, CFI=1.00, TLI=1.18, RMSEA=0.00 N=78, CFI=1.00, TLI=1.03, RMSEA=0.00

#p<0.1, **p<0.05, ***p<0.01

Fig. 8 Path analyses conducted with assessments in M1-M3, in the first instance of each, in course Itera-
tion 3
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